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Abstract
Machine learning and logical reasoning have been the two foundational pillars of Artificial 
Intelligence (AI) since its inception, and yet, until recently the interactions between these 
two fields have been relatively limited. Despite their individual success and largely inde-
pendent development, there are new problems on the horizon that seem solvable only via 
a combination of ideas from these two fields of AI. These problems can be broadly char-
acterized as follows: how can learning be used to make logical reasoning and synthesis/
verification engines more efficient and powerful, and in the reverse direction, how can we 
use reasoning to improve the accuracy, generalizability, and trustworthiness of learning. 
In this perspective paper, we address the above-mentioned questions with an emphasis on 
certain paradigmatic trends at the intersection of learning and reasoning. Our intent here 
is not to be a comprehensive survey of all the ways in which learning and reasoning have 
been combined in the past. Rather we focus on certain recent paradigms where corrective 
feedback loops between learning and reasoning seem to play a particularly important role. 
Specifically, we observe the following three trends: first, the use of learning techniques 
(especially, reinforcement learning) in sequencing, selecting, and initializing proof rules 
in solvers/provers; second, combinations of inductive learning and deductive reasoning in 
the context of program synthesis and verification; and third, the use of solver layers in 
providing corrective feedback to machine learning models in order to help improve their 
accuracy, generalizability, and robustness with respect to partial specifications or domain 
knowledge. We believe that these paradigms are likely to have significant and dramatic 
impact on AI and its applications for a long time to come.

Keywords  Combinations of learning and reasoning · Learning for solvers · Learning for 
verification and synthesis · Solver layers in deep neural networks

1  Introduction

Artificial Intelligence (AI), since its inception, has had two major sub-fields, namely, logi-
cal reasoning and machine learning (ML) [31]. Each of these topics has had transformative 
positive impact on many fields of science, engineering, and business [9]. For example, in 
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recent years learning techniques have effectively addressed longstanding problems within 
the context of computer vision, natural language processing, and game-playing at an elite 
level [12, 41, 75]. Similarly, we have witnessed a revolution in software engineering, pro-
gram analysis, and verification thanks to logical reasoning tools such as SAT/SMT/CP 
solvers [10].

Despite remarkable and independent progress in both reasoning and learning, it is fair to 
say that the interactions between the two fields have been rather limited over the years [9, 
31]. This is not to say that there are no interactions at all. Many methodologies for combin-
ing inductive learning and deductive reasoning have been developed in recent years [80]. 
For example, techniques have been proposed for injecting knowledge in learning  [26]. 
Another example is Inductive Logic Programming (ILP) that aims to learn models or 
hypotheses from positive/negative examples and background knowledge, expressed in first-
order logic [18, 74]. Yet another approach is neuro-symbolic AI, a broad area whose goal 
is to “integrate ML and reasoning” [89]. However, despite these attempts to bring reason-
ing and learning closer together over the years, we still are at an early stage of development 
in topics at the intersection of reasoning and learning.

Fortunately, over the last decade there is a recognition among longtime AI observers 
and researchers that there are new problems on the horizon that seem solvable only via 
combinations of learning and reasoning [9]. As a consequence, we are now witnessing an 
intensification of interactions between these two areas.

These include emerging fields such as trustworthy, secure, privacy-preserving, explain-
able, interpretable and reliable ML, where logical specification languages and automated 
reasoning tools such as SAT, SMT, CP, and MILP solvers will likely play an important 
role  [87, 93]. For example, a completely new class of solvers has recently been devel-
oped with the goal of verifying ML models and there is now an annual competition called 
VNNCOMP to benchmark these solvers on large real-world neural networks [13], exempli-
fying the use of reasoning for learning.

In the opposite direction, it is now apparent that ML has a key role to play in formal 
reasoning of programs (i.e., use of ML in program synthesis, analysis, and verification), 
as well as in enabling logical reasoning tools become more efficient and powerful (i.e., 
the use of ML in solvers and provers). For example, there is an increasing use of Rein-
forcement Learning (RL) techniques alongside logical reasoning methods in the context of 
proving mathematical conjectures [15], as well as the continued use of ML in SAT/SMT/
CP solvers in enabling them to become more efficient and effective for a variety of appli-
cations in software engineering, security, cryptanalysis, combinatorial mathematics, and 
AI [56, 59, 60].

Additionally, a new class of ML models are being developed that use a solver, as a logic 
or reasoning layer, during training and/or inference. Here we are referring to recent work 
such as SATnet, that combines ML models with differentiable solvers  [92], the use of 
combinatorial blackbox solvers in Deep Neural Networks (DNNs) [72], as well as Logic 
Guided Machine Learning (LGML) [84], and its cousin Logic Guided Genetic Algorithms 
(LGGA) [7].

1.1 � Goal and scope of this paper

Given these interactions between learning and reasoning over the last few decades, both 
shallow and deep, and the recent intensification of such interactions, it is but natural to ask 
“are there any identifiable common themes or lessons that have the potential for long-term 
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impact on AI and applications?" In an attempt to answer this question, it is tempting to 
write a deep and comprehensive survey of the field with the aim of developing a well-
articulated perspective. Unfortunately, this is a near impossible task given how quickly the 
field is evolving and the diversity of interactions between learning and reasoning. Hence, 
in this perspective paper ,1 we narrowly focus on a few topics at the intersection of learning 
and reasoning, where we can identify certain long-term trends.

Specifically, in this paper we focus on three areas, namely, ML techniques for solv-
ers [29, 56, 59, 60], the use of ML for synthesis/verification of programs and proofs [80], 
and the very recent trend of combinations of ML and solvers for training and/or infer-
ence [7, 72, 84, 92]. In a nutshell, we observe that many, if not all, techniques in the above-
mentioned three areas at the intersection of learning and reasoning have the following in 
common, namely, “corrective feedback loops between ML and reasoning”.

A quick recap of abstraction-refinement techniques, dominant in formal verification, 
synthesis, analysis, and SAT and SMT solvers, can help contextualize what we mean by 
corrective feedback loops. Briefly, abstraction-refinement techniques, such as Counter-
Example Guided Abstraction Refinement (CEGAR) [22], Counter-Example Guided Induc-
tive Synthesis (CEGIS)  [82], and Conflict-Driven Clause Learning (CDCL)  [85], take 
as input a formal object (e.g., a mathematical formula) and perform reasoning with it. 
Typically, these techniques iteratively perform an over-approximation  2 as in the case of 
CEGAR or an under-approximation as in the case of CDCL, and then check whether the 
resulting abstraction is sufficient to get the correct answer. If not, they provide a corrective 
feedback, referred to as a “refinement" and iterate.

These abstractions and refinements can take many forms, and there is a vast literature 
on them in verification and synthesis contexts  [10, 88]. For example, in the case of the 
CDCL SAT solver the abstraction is an under-approximation in the form of a reduced for-
mula R under a partial assignment A applied to the input formula F. If A satisfies F, the 
method terminates. Else, it refines by constructing a proof P of why A does not satisfy F, 
and this proof is then fed back to the abstraction, thus correcting it and preventing future 
mistakes similar to the under-approximation R. More precisely, proofs P guide the Boolean 
Constraint Propagation (BCP) and the branching heuristic in refining the successive under-
approximations that the solver constructs in a corrective-feedback loop. This process 
repeats until the correct answer is determined.

Naturally, one can view many verification algorithms such as CEGAR or CDCL as 
consisting of two processes, an abstractor and a refiner .3 Now, the obvious next question 
is the following: what has all this got to do with learning or its interaction with reason-
ing? A quick leap of imagination leads one to a connection between abstraction-refinement 
with reinforcement learning, where the abstractor corresponds to an agent and a refiner 
corresponds to the environment, and the refiner provides corrective-feedback to the agent. 
Of course, there are important differences. However, the connection is strong enough that 
many recent ML-based CDCL algorithms have been viewed this way, enabling a lifting 
of techniques from the RL setting to SAT solving  [29, 56, 59]. Another example is the 

1  Given that the focus of this paper is to provide a perspective on certain emerging trends in AI, there is no 
experimental or scientific data associated with it.
2  Conceptually, the terms abstraction and approximation are very similar in their technical meaning in the 
broad context of program analysis, synthesis, and verification. Hence, we use them interchangeably.
3  It is possible to imagine more complex configurations with multiple kinds of abstractors and refiners, but 
we won’t discuss them for the sake of brevity.
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above-mentioned use of solver layers in DNNs, a la SATNet, where the solver is used to 
provide corrective feedback to a DNN [7, 72, 84, 92]. Yet another example is the use of 
ML techniques to synthesize programs  [80]. These techniques initially construct over-
approximation of the requirements and then use verification techniques to refine, until a 
satisfactory program is synthesized.

1.1.1 � Corrective feedback loops in learning and reasoning

We do not aim to formally define corrective feedback loops between abstractors and refin-
ers here, but rather provide a high-level informal description. Informally, corrective feed-
back loops can be viewed as consisting of two processes (or sub-routines) wherein one 
of them can be termed an agent or abstractor (aka, a student or a synthesizer/prover) and 
the other an environment or refiner (sometimes referred to as a teacher/verifier), commu-
nicating with each other iteratively. The precise definitions of an agent and environment 
depend on context. Fortunately, all these terms are well defined in many contexts includ-
ing machine learning or formal methods. At a high level, we can think of an abstractor as 
a function whose aim is to construct a feasible abstraction (as in an over-approximation of 
a formula/code or an ML model that approximates some function), while the goal of the 
refiner is to correct the abstraction (as in providing learnt clauses or refinement formulas or 
reward signal) until the abstraction is in some meaningful contextual sense indistinguish-
able from the ”actual” function or system-under-analysis. Put differently, the goal of the 
interaction between the abstractor and refiner is to minimize some objective function that 
makes it infeasible to distinguish the abstraction from system-under-analysis or learn a pol-
icy by maximizing rewards.

As mentioned above, corrective feedback methods are common in formal methods. Fur-
ther, corrective feedback loops are widely used in machine learning, even though one may 
not explicitly identify them as such in the literature. For example, all of RL can be viewed 
as corrective feedback from the environment to the learning agent(s) via a reward mecha-
nism with the goal of learning an optimal policy [77]. Other areas where corrective feed-
back loops have been studied include control theory and program synthesis. Obviously, our 
goal is not survey all these notions of corrective feedback loops. Rather, the goal is identify 
this theme of corrective feedback in the algorithms being developed at the intersection of 
reasoning and learning.

In a nutshell, the theme of the paper then is the following: “Many algorithms being 
developed at the intersection of reasoning and learning can be viewed as consisting of 
two processes, one of which is an ML technique and the other a reasoning engine. The 
ML technique is often used to construct abstractions, while reasoning techniques can be 
leveraged to verify and correct them in a corrective feedback loop. This class of iterative 
learning+reasoning algorithms enable us to solve classes of AI problems that otherwise 
seem very difficult or infeasible to solve.”

1.1.2 � Related work

For a deep and comprehensive overview of topics at the intersection of learning and rea-
soning, we refer the reader to an excellent paper by a group of authors who use the rather 
artful pseudonym K.R. Amel  [9]. The K.R. Amel paper is an invaluable resource that 
touches on almost every conceivable research topic at the intersection of ML and reason-
ing (with a strong focus on Knowledge Representation and Reasoning or KRR). The stated 
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goal of the K.R. Amel paper is to “construct an inventory of common concerns in KRR 
and ML, of methodologies combining reasoning principles and learning, of examples of 
KRR/ML synergies”. By contrast, our work is a deep dive into specific topics at the inter-
section of ML and reasoning, and identifying the general principle of corrective feedback 
loops between ML and reasoning.

For a comprehensive and recent survey on the use of ML techniques for reasoning, we 
strongly recommend the excellent book by Sean Holden [46]. This reference book surveys 
the entire field of ML for solvers starting from the late 1980s to the present, classifying 
various types of ML techniques used in solvers based on how they are used. For an over-
view of ML techniques used in solvers with a sharp focus on Constraint Programming 
(CP), we recommend the comprehensive survey paper by Popescu et al. [70].

Another topic at the intersection of ML and logic is verification of ML models, espe-
cially Deep Neural Networks (DNNs)  [13]. Many DNN solvers, based on MILP solvers 
have been developed to verify whether DNNs are vulnerable to certain kinds of adversarial 
attacks. We avoid surveying this topic because it is still quite new and it is too early to tell 
what paradigms are likely to dominate this field in the long term. We refer the reader to the 
VNNCOMP and VNNLIB websites [13, 91] for additional information on this topic.

2 � ML for solvers

Logical reasoners (LR) or solvers  ,4 computer programs that take as input mathematical 
formulas and decide whether they have solutions (i.e., are satisfiable), have long been a 
dominant area of AI research since the 1950s. Solvers have found application in plan-
ning [53], knowledge representation and reasoning (KRR) [90], and software engineering 
(broadly construed to include testing, analysis, and verification)  [17, 24]. For example, 
SAT solvers such as MapleSAT [56] and SMT solvers such as Z3 [28] are integral to many 
software testing, program analysis and verification techniques.

The field of logical reasoning by itself is quite broad with many different roots, resulting 
in disparate communities of researchers working on a variety of mathematical software. 
For example, the field of Constraint Programming (CP) developed wholly as a sub-field of 
AI, while the fields of SAT/SMT solvers and first/higher-order theorem provers developed 
largely as part of formal methods and programming languages, Mixed Integer Linear Pro-
gramming (MILP) solvers as part of optimization research, and Computer Algebra Systems 
(CAS) at the intersection of mathematics and computer science. Yet, increasingly these 
fields are coming closer together, where the common thread is the introduction of similar 
ML methods in all these symbolic reasoning systems, a theme we highlight below.

Concretely, we primarily focus on ML techniques as applied to SAT solvers, in par-
ticular how the CDCL algorithm can be viewed as an RL system, where the agent is the 
branching heuristic, while the corrective feedback is provided by its symbolic reasoning 
engine (i.e., conflict analysis). Having said that, we also very briefly survey the use of ML 
to predict satisfiability directly, as well as its use in Stochastic Local Search (SLS). The 
goal is to provide some contrast between the use of corrective feedback loops in CDCL and 
other uses of ML in solvers.

4  In this paper, we interchangeably use the terms logical reasoners, symbolic reasoners, decision proce-
dures, and solvers (dually, provers), since all such systems fundamentally reason about mathematical formu-
las and decide whether they are satisfiable (dually, valid).
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2.1 � Brief history of ML for solvers

For most of its history, logical reasoning as a field has been dominated by algorithms 
that implement proof systems (e.g., resolution) or are search-based (e.g., stochastic local 
search) or some combinations thereof (e.g., Conflict-Driven Clause-Learning). Proof sys-
tems are a very natural way to approach the question of how best to implement a solver, 
since proof construction and deduction are central to logical reasoning. At the same time, 
search methods such as stochastic local search (SLS) have also been developed and shown 
to be effective in some settings, especially when input formulas are randomly-generated 
and satisfiable. However, interestingly, until a couple of decades ago, most solver algo-
rithms or heuristics were not ML based.

Part of the reason for a lack of early enthusiasm towards using ML methods for logi-
cal reasoning was driven by the belief that ML is unsuitable for handling symbolic data 
or that ML methods cannot generalize well in the context of formulas and proofs, since 
even a minor change to these symbolic objects completely changes their properties and 
thus making learning generalizations difficult. Another reason is that scalable and practical 
implementations and specialized hardware for ML methods were not widely available until 
recently, further limiting their adoption in the early days of logical reasoning.

Fortunately, over the last 30 years we have witnessed a sea change in the use of ML 
in logical reasoning systems, with the trend beginning as early as 1989 in the pioneering 
works of Ertel et al. [33] and Johnson [50]. Additionally, nearly two decades ago, the effec-
tiveness of ML for algorithm and parameter selection for solvers was demonstrated both 
for SMT [78] and SAT [44]. Part of the reason for this dramatic change is the availability 
of a significant amount of data relating to formal objects as formulas and proofs. Solv-
ers generate copious amounts of data as they solve formulas. Significant portions of such 
data have been collected and curated over the years. Another reason is the maturity of ML 
software and hardware infrastructural support, such as PyTorch or Tensorflow. However, 
arguably the most important reason for the adoption of ML in logical reasoners is due to 
paradigmatic shifts in our understanding of the value of ML methods in a constraint solv-
ing setting [56, 59]. Specifically, today we have a wide variety of ML methods for logical 
reasoning ranging from directly predicting satisfiability, algorithm selection or parameter 
tuning in solvers, or as optimization heuristics in implementations of proof systems. In this 
Section, we cover these different ways of applying ML to logical reasoning and contrast 
their strengths and weaknesses. We conclude this section with our view of the long term 
trends in the field of ML for solvers.

2.2 � Background on the SAT/SMT problem and solvers

Boolean satisfiability (SAT) is one of the central problems in computer science and math-
ematics, at the heart of the famous P vs. NP question and is believed to be intractable in 
general [10]. This problem has been studied intensively both by theorists and practitioners 
since it was shown to be NP-complete by Stephen Cook, and independently by Leonid 
Levin, in 1971 [25]. The problem can be stated as follows:

Problem  1  (The Boolean Satisfiability Problem) Given a Boolean formula 
�(x1, x2,… , x

n
) in conjunctive normal form (CNF) over Boolean variables x1, x2,… , x

n
 , 

determine whether it is satisfiable. We say that a formula �(x1, x2,… , x
n
) is satisfiable 

if there exists an assignment to the variables of �(x1, x2,… , x
n
) such that the formula 
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evaluates to true under that assignment. Otherwise, we say the formula is unsatisfiable. 
This problem is also sometimes referred to as CNF-SAT.

There are many variations of the SAT problem (e.g., k-CNF, CircuitSAT, etc.) that are 
all equivalent from a worst-case complexity perspective. By SAT, we always refer to the 
CNF-SAT problem, unless otherwise stated. A SAT solver is a computer program aimed at 
solving the Boolean satisfiability problem. The term SMT stands for Satisfiability Modulo 
Theories, and the SMT problem refers to the satisfiability problem for first-order theories 
that are particular relevant in software engineering. We refer the reader to the Handbook 
of Satisfiability for a more thorough treatment of SAT, SMT, and constraint programming 
(CP) solvers and first-order provers [10].

It goes without saying that the two properties users want from solvers are correctness 
(i.e., the solver declares an input formula F to be satisfiable if and only if F is indeed sat-
isfiable) and scalability (i.e., as the size of the input formula grows, hopefully the running 
time of the solver does not grow exponentially). Unfortunately, due to the fact that most 
solvers aim to solve NP-hard problems, believed to be intractable, we do not expect any 
solver to scale well beyond a certain finite formula size for most formula classes. Even so, 
we can and do empirically compare solvers over a large and growing set of open-source 
benchmarks obtained from a variety of applications that includes program analysis, verifi-
cation, security, AI, as well as randomly-generated k-SAT instances.

Solvers are compared annually at the SAT competition that witnesses dramatic progress 
each and every year [35]. Some of these solvers, such as MapleSAT and variants [56], Glu-
cose [5] etc. routinely solve formulas with hundreds of millions of variables and clauses in 
them. Further, with increasing use of ML methods, solvers are able to scale new heights 
not witnessed even a few years ago.

2.3 � Classification of ML methods for logic solvers

A rich and diverse set of ML techniques for solvers have been explored over the past few 
decades. For example, one could use the type of ML method used such as supervised learn-
ing or reinforcement learning. However, we choose to classify ML methods into four cat-
egories based on how they are used, i.e., to directly predict satisfiability, solution search 
heuristics, parameter tuning, and optimization heuristics aimed at selection, sequencing, 
and initialization of proof rules, tactics, and algorithms.

2.3.1 � Satisfiability prediction: from formulas to SAT/UNSAT

A natural way to view the satisfiability problem for any logic L is as a classification prob-
lem, i.e., given an L-formula F, classify it as satisfiable or not. The earliest attempt in this 
regard was by Johnson [50]. Building on previous work by Hopfield and Tank [47] in the 
context of the Traveling Salesman Problem (TSP), Johnson’s method defined recurrent 
neural network such that the associated objective function attains globally optimum values 
only at satisfying assignments in the associated Boolean polytope. While this was a very 
novel and pioneering approach at the time, the method was not particularly effective. Even 
for small formulas, the loss landscape proved to be hard to navigate to due to the numerous 
local minima it contained. Further, the method did not guarantee convergence.

In 2008, Devlin and O’Sullivan  [30] used many standard supervised learning tech-
niques to go from structural features of an input formula, such as number of variables 
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and clauses, to directly predicting satisfiability. The motivation for such approaches is 
quite straightforward, namely, that supervised learning techniques have been very suc-
cessful in a plethora of domains, and so it is only natural to try and predict satisfiability 
from large representative feature sets. A significant amount of effort goes into feature 
selection and engineering, since formulas possess a near endless number of features and 
it can be quite challenging to select a representative predictive subset.

Perhaps the most interesting new class of ML-based solvers that predict satisfiability 
directly are those based on Graph Neural Networks (GNNs) [11]. The most well-known 
among them is the NeuroSAT solver by Selsam et al.  [81]. GNNs are an exciting new 
class of neural networks that are able to take arbitrarily large graphs as inputs, unlike 
Multi Layer Perceptrons (MLPs) that only accept as input fixed-sized vectors or Recur-
rent Neural Networks (RNNs) that accept arbitrarily long sequences of fixed-size vec-
tors. This feature of GNNs is particularly useful in the context of solvers because for-
mulas are easily represented as graphs. Further, due to the fact that GNN-based solvers 
directly accept formulas (as graphs), they completely circumvent the feature engineer-
ing problem faced by above-described methods that aim to predict satisfiability directly. 
Finally, GNN-based solvers have another important feature is that they respect many 
invariances, such as permutation invariance, that Boolean formulas possess.

Briefly, GNN-based solvers work via a message passing mechanism, similar to well-
known satisfiability methods such as survey and belief propagation. The GNN-based 
solver, NeuroSAT, takes a bipartite graph of a Boolean formula as input, wherein the 
nodes of graph correspond to literals and clauses of the input formula, and there is an 
edge between a literal node and clause node if the literal occurs in the corresponding 
clause in the input formula (there are also special edges between the nodes correspond-
ing to a variable x and the node corresponding to its complement).

The solver iteratively computes an embedding vector for each node (i.e., for both lit-
eral and clause nodes) in the graph via a series of messages passed back and forth along 
the edges. Every literal and clause of the input formula has an embedding at the start 
of an iteration. The iterations perform two consecutive message passing updates. First, 
each clause node receives messages from its neighbouring literal nodes and updates its 
embedding appropriately. Second, each literal receives messages from its neighbouring 
clauses, as well as its complement, and updates its embedding accordingly. Eventually, 
the embeddings of the variable nodes converge to a representation in ℝ for each of the 
2v literals, that corresponds to a satisfying assignment if the formula is predicted to be 
satisfiable or denotes that the formula is unsatisfiable.

Employing ML methods to predict satisfiability directly has indeed garnered a fair 
amount of attention in recent years. Unfortunately, these methods suffer from poor scal-
ability, accuracy, and generalizability. The poor scalability of such solvers is largely 
due to the computational effort required for feature computation and engineering, since 
those features that are often the best predictor of satisfiability are also the most difficult 
to compute.

Even in the case of GNN-based solvers, that do not compute any features and process 
formulas directly as graphs, the scalability is poor due to performance issues with embed-
ding computations in GNNs. Further, the general lack of 100% accuracy of such solvers 
means that they are inherently incomplete or unsound. Hence, they are not particularly use-
ful by themselves and have to be used in conjunction with some kind of correction mech-
anism if one’s goal is to decide satisfiability. Finally, formulas from different classes of 
application tend to have very different structural features, making it difficult to train satisfi-
ability predictors that generalize well.
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2.3.2 � ML heuristics for stochastic local search

Stochastic Local Search (SLS) methods are a class of search-based solvers with an 
extensive history and have been found to be remarkably good at solving randomly-
generated formulas [76]. Unlike solvers based on proof systems such as CDCL, search-
based methods typically search through the space of assignments corresponding to an 
input formula looking for a satisfying one and are often incomplete.

Briefly, the SLS algorithm works as follows: it initially selects a candidate assign-
ment (usually randomly) and checks if the input formula is satisfiable under this candi-
date assignment. If yes, the method returns that assignment, else, at least one variable’s 
value in the assignment is flipped (i.e., true to false, or vice-versa) to obtain a modified 
assignment. Subsequent to that a check is performed to see whether the input formula 
is satisfiable under this modified assignment. This process continues until either the 
input formula has been decided as satisfiable or the maximum number of flips allowed 
by the method has been reached.

Given the simplicity of the algorithm, there are very few places in the SLS algo-
rithm that are particularly suited for ML-based heuristics. Having said that, there are 
two subroutines that are ripe for ML-based heuristics and they are the selection heuris-
tics for flipping variables and the heuristics for choosing the initial assignment.

Over the last several decades considerable research has been gone into heuristic 
for selecting variables to be flipped (flip heuristic). Most flip heuristics use statistics 
of different kinds to determine which variable to flip next. That is, they dynamically 
compute a variety of metrics per variable and then flip the variable that is highest in 
some order defined over these metrics. For example, a popular metric is the number of 
additional clauses satisfied by flipping a variable, instead of not flipping it, referred to 
as net gain of a variable v. Similarly, negative gain (resp. positive gain) is the number 
of clauses rendered unsatisfied (resp. satisfied), that were previously satisfied (resp. 
unsatisfied), by flipping the value of a variable v.

In a series of papers, Fukunaga [38–40], proposes the following idea: a flip heuristic 
can be viewed as computing some combination of a set of the above-mentioned met-
rics (which he refers to as primitives), such as negative or positive gain. Once viewed 
in this way, combinations of these primitives can be explored via Genetic Algorithms 
(GAs) that aim to minimize some loss in order to evolutionarily come up with a com-
bination of primitives. The advantage of such methods is that they are online, dynamic, 
and adapt the heuristic to the given formula. Other researchers have also come up with 
similar GA approaches for adaptive heuristics [16].

A few observations are in order here. In general, SLS methods tend not to exploit 
the logical structure of input formulas, unlike CDCL solvers, and hence are unlikely to 
perform well on industrial instances. Having said that, the research on SLS methods, 
especially ML-based flip heuristics, is fertile ground for metrics that can be adapted 
to CDCL solvers. In recent years, flip statistics have been applied in the context of 
CDCL-based parallel portfolio and divide-and-conquer solvers [65], as well as newer 
SLS+CDCL solvers have been proposed [61]. A long-term trend that we see here is the 
leveraging of ML-based heuristics and metrics being adapted to a newer class of com-
binations of SLS and CDCL solvers.
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2.3.3 � Selecting and sequencing proof rules, tactics, and algorithms

Arguably, one of the most impactful SAT algorithm to-date is the Conflict-Driven 
Clause Learning method  [63], which in turn is built on top of the DPLL SAT algo-
rithm  [27]. It is no exaggeration to state that the CDCL-based solvers, such as Mini-
SAT  [32], Glucose  [5], MapleSAT and variants  [56], etc., have had a transformative 
impact on many fields including software engineering, security, and AI  [10]. Not sur-
prisingly, these solvers are a jumble of complex and intricate heuristics, making it dif-
ficult to describe them in great detail in a few short pages here. Fortunately, it is possi-
ble to describe CDCL solvers as implementations of proof systems. This abstraction not 
only dramatically simplifies our presentation, but more importantly enables us to power-
fully articulate why ML methods can be effectively integrated into CDCL-based solvers.

Proof systems are a very natural way of thinking about solvers abstractly, since proof 
construction and deduction are central to logical reasoning. Hence, it is not surprising 
that many solver algorithms are based on proof systems, unlike solvers that are based on 
ML methods aimed at directly predict satisfiability (e.g., NeuroSAT) or stochastic local 
search solvers. For example, it is easy to show that the DPLL SAT algorithm, introduced 
in series of papers in early 1960s [27], implements the well-known tree-like resolution 
proof system. Also, recently Atserias et al. [3] and Pipatsrisawat et al. [69] showed that 
the CDCL SAT algorithm, viewed as a proof system, is polynomially equivalent to the 
resolution proof system.

More generally, proof complexity theorists have long argued for the view that solvers 
of all kinds, whether they be SAT, SMT, MAXSAT, QBF, CP solvers or first-order prov-
ers, are best abstracted as proof systems. This view obviously makes a lot of sense when 
a solver is used to establish unsatisfiability, given that one powerful way to do so is by 
constructing a refutational proof. Further, even when solvers determine that an input is 
satisfiable, they do so by constructing a proof of unsatisfiability of those parts of the 
search space of the input formula that are empty (i.e., do not contain any solutions).

Additionally, this view that “solvers implement proof systems” is helpful from a 
practical design perspective as well, particularly as an argument in favor of using ML 
heuristics in solvers. Starting in 2016, Liang and Ganesh along with their collabora-
tors [56, 57, 59] articulated this idea into a coherent thesis, i.e., solver algorithms that 
implement proof system (e.g., CDCL) can be viewed as consisting of two disjoint sets 
of sub-routines, wherein, one set implements inference/proof rules (e.g., Boolean Con-
straint Propagation implements unit resolution and conflict analysis implements general 
resolution), while the other set implement heuristics that are aimed at sequencing (e.g., 
branching), selecting (e.g., tactic or algorithm selection), and initializing (e.g., value 
initialization) these proof rules with the goal of constructing optimal proofs. Further, 
given the abundant availability of data regarding solver behavior and input formulas, 
one can implement these heuristics via ML methods, leveraging the wealth of knowl-
edge in ML-based optimization methods.

This view has led to the recent rapid development of a variety of ML-based branch-
ing  [60], restart  [59], initialization  [29], and algorithm and tactic selection meth-
ods [71], transforming solver research into a unique field at the intersection of ML and 
symbolic reasoning.

We can capture the above-stated view as the following pithy slogan:
Solvers implement proof systems via a combination of symbolic reasoning rule-based 

methods and ML heuristics aimed at optimally sequencing, selecting and initializing 
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proof rules in order to construct optimal proofs for a given input formula. A particularly 
effective way to do this is to view a solver’s sequencing and selection heuristics as rein-
forcement learning agents that sequence/select rules based on the rewards they obtain 
by interacting with a deductive environment.

2.3.4 � Conflict‑driven clause learning solvers and reinforcement learning

The algorithm that best exemplifies the above-stated design principle is the modern ML-
based CDCL solver (See Figs.  1 and   2)  [56]. While the modern version of the CDCL 
algorithm is quite complex, it has been empirically established that the three sub-routines 
that are most important from an efficiency point of view are conflict analysis, Boolean 
Constraint Propagator (BCP), and the branching heuristic. The conflict analysis method, 
which essentially implements the general resolution proof rule, is aimed at finding the root 
cause for why assignments do not satisfy the input formula. The BCP subroutine, which 

Fig. 1   A Schematic view of the Conflict-Driven Clause-Learning (CDCL) SAT Solving Algorithm. One 
can see that above algorithm has two distinct loops in it, one where BCP is followed by branching, and 
other where BCP is followed by conflict analysis. The first loop can be viewed as an agent performing 
actions (branching on variables), while the second can be viewed as a deductive environment that analyzes 
and determines why the partial assignment does not satisfy the input formula and returns a reward to the 
agent in terms of a conflict clause
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abstractly implements unit resolution proof rule, simplifies the formula with respect to unit 
clauses and choices made by the branching heuristic. Finally, the branching heuristic is a 
method aimed at choosing variables from the input formula and assigning them a value. 
When viewed from an RL lens, the branching heuristic can be seen as a student/agent, 
while the conflict analysis and BCP together can be viewed as a deductive environment/
teacher, with both the student and teacher interacting with each other iteratively with the 
goal of creating efficient proofs.

Briefly, the CDCL algorithm (Fig. 1) works as follows: upon receiving an input Boolean 
formula F, the CDCL algorithm first simplifies the formula F with respect to any unit 
clauses in F using the BCP sub-routine. For example, if (x) is a unit clause in the formula, 
then x is set to true and the entire formula is simplified accordingly. After this step, the 
solver could be in one of three possible states: a satisfying assignment has been found, 
at which point the solver terminates and returns SAT, or the solver has reached a state 
where it cannot determine whether the input formula is satisfiable or not, at which point the 
branching heuristic (the student agent) chooses a variable and adds it to a stack of chosen/
decision variables and consequent implications, or a “conflict state” has been reached. A 
conflict state is defined as when either the formula has been determined to be unsatisfi-
able, at which point the solver returns UNSAT, or an unsatisfying assignment I has been 
found contingent on some decision variables. The second of these two scenarios triggers 
“conflict analysis” (i.e., the teacher/environment is executed to determine a reward), which 
causes the teacher to analyze the root cause of why the assignment I was unsatisfying, 
learn a “blocking or learnt clause” C. By blocking we mean that the clause C prevents the 
solver from ever again exploring this unsatisfying assignment I and potentially exponen-
tially many other assignments that are unsatisfying due to the same root cause. The solver 
backtracks to undo the decisions that led to the conflict, adds learnt clause C to its database 
of facts implied by the input formula F, and then continues its search until it converges to 
the correct SAT/UNSAT answer.

When viewed from an online RL point of view (See Fig.  2), the student agent (i.e., 
the branching heuristic) performs actions that correspond to choosing decision variables. 
There are n possible actions that the student can take corresponding to the n variables in 

Fig. 2   Reinforcement learning view of conflict-driven clause-learning SAT solvers. In this view, the 
branching or decision heuristic chooses variables (agents choosing actions) resulting in unsatisfying partial 
assignments that trigger interactions with a clause-learning system (deductive environment) that provides 
corrective feedback in terms of conflict clauses (rewards)
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the input formula F. The natural question that arises is the following: what is the optimal 
online policy for the student?. That is, when the heuristic is ready to choose a variable, 
which one should be chosen. Ideally, the student(s) should take those actions that maximize 
their reward. In their paper on this RL view of CDCL, Liang et al. [56] modeled branch-
ing heuristic or agent as in the stateless Multi-Armed Bandit problem. They then proposed 
a reward function based on learnt clauses, i.e., those decision variables or actions that 
were involved in the implications that led to a conflict and the consequent learnt clauses 
where rewarded by increasing their “activity”, while all other variables were not rewarded. 
The idea is that those decision variables that caused the solver to deduce a valuable learnt 
clause in the near past would also likely pay off in the near future, during the run of the 
solver, with more learnt clauses.

The above-mentioned RL-based branching heuristic is by no means the first such 
method. Perhaps the earliest ML heuristic in the context of the DPLL solver was by 
Lagoudakis and Littman  [58], who used reinforcement learning (RL) as part of a #SAT 
solver implemented via a DPLL procedure. In brief, their solver works as follows: as men-
tioned previously, branching heuristics are perhaps one of the most important determinant 
of a solver’s performance. In their solver, Lagoudakis and Littman implemented seven dif-
ferent branching heuristics and the goal of their RL agent is to choose the best among these 
techniques, immediately prior to a variable being selected to be branched upon. The agent 
in this case chooses between heuristics (as opposed to variables in the case of LRB, as dis-
cussed above) and uses a history-based reward metric.

In their work, Duan et al. [29] used Bayesian Moment Matching technique to learn an 
initial value to variable assignments that would be more efficient than the default heuristic 
of setting all variables to the value FALSE, as is often done in most SAT solvers. Flint and 
Blaschko  [34] describe a method where they draw a correspondence between the search 
performed by CDCL SAT solver and heuristic search, a la the A* search algorithm [45], 
and use a perceptron to predict which variable, if branched upon, is most likely to lead to 
a satisfying assignment. As features they use simple variable counts in unary and binary 
learnt clauses as well as the activity of variables.

There are other interesting lines of research at the intersection of the ML and reason-
ing, such as algorithm selection of solvers [83, 94]. We do not cover these here primarily 
because these techniques treat solvers as blackboxes, and the ML techniques used are not 
tied intimately into the inner workings of the solver and hence fall outside the scope of the 
discussion here. Having said that, these are powerful techniques that have been extensively 
studied elsewhere [10].

In conclusion, this line of research where ML heuristics are used to optimally select, 
sequence, and initialize proof rules seems to have had the most impact of all the ML meth-
ods that have been researched in the context of ML for solvers. Such ML heuristics are 
already part of leading sequential and parallel solvers, whether they be SAT, SMT or CP.

3 � Inductive learning in synthesis and verification

Inductive machine learning has a close connection with some of the most effective meth-
ods for formal verification and synthesis. In this section, we describe how these connec-
tions go back a few decades, and outline some directions for the future. A longer exposition 
of the ideas described here may be found in [80].
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We begin by revisiting the traditional view of formal verification, as a decision problem 
with three inputs (see Fig. 3): (i) A model of the system to be verified, S; (ii) A model of 
the environment, E, and (iii) The property to be verified, Φ . The verifier generates as out-
put a YES/NO answer, indicating whether or not S satisfies the property Φ in environment 
E. Typically, a NO output is accompanied by one or more counterexamples which indicate 
how Φ is violated. For a YES answer, some tools also include a proof or certificate of cor-
rectness, which can be checked by an independent procedure.

Similarly, in formal synthesis, one starts with the inputs E and Φ , and seeks to generate 
a system S such that S‖E ⊧ Φ.

As we will see in this section, there is an important and close connection between for-
mal verification and formal synthesis. In fact, the roots of model checking lie in the prob-
lem of synthesis: the seminal paper on model checking by Clarke and Emerson [19] begins 
with this sentence:

“We propose a method of constructing concurrent programs in which the synchro-
nization skeleton of the program is automatically synthesized from a high-level 
(branching time) Temporal Logic specification.”

Moreover, we will see how the bridge from formal verification to synthesis is facilitated 
through the use of machine learning.

3.1 � Verification by reduction to synthesis

A key connection between formal verification and formal synthesis is that many approaches 
to verification operate by solving one or more synthesis tasks. In other words, verification 
is performed by reduction to synthesis.

We begin by illustrating this notion with two examples.
Consider a common verification problem: proving that a certain property is an invari-

ant of a system — i.e., that it holds in all states of that system. First, we introduce suitable 
notation. Additional background material may be found in a book chapter on formal mod-
eling for verification [88].

Let M = (I, �) be a transition system where I is a logical formula encoding the set of 
initial states, and � is a formula representing the transition relation. For simplicity, assume 
that M is finite-state, so that I and � are Boolean formulas. Suppose we want to verify that 
M satisfies a temporal logic property Φ ≐ G� where � is a logical formula involving no 
temporal operators. We now consider two methods to perform such verification.

Fig. 3   The traditional view of formal verification
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3.1.1 � Invariant inference

Consider first an approach to prove this property by (mathematical) induction. In this case, 
we seek to prove the validity of the following two logical statements:

where, in the usual way, �(s) denotes that the logical formula � is expressed over variables 
encoding a state s.

In practice, when one attempts verification by induction as above for a system that is 
correct, one fails to prove the validity of the second statement, Formula 2. This failure is 
rarely due to any limitation in the underlying validity checkers for Formula 2. Instead, it 
is usually because the hypothesized invariant � is “not strong enough.” More precisely, � 
needs to be conjoined (strengthened) with another formula, known as the auxiliary induc-
tive invariant.

Put another way, the problem of verifying whether a system satisfies an invariant prop-
erty reduces to the problem of synthesizing an auxiliary invariant � such that the following 
two formulas are valid:

If no such � exists, then it means that the property � is not an invariant of M, since other-
wise, at a minimum, a � characterizing all reachable states of M should satisfy Formulas 3 
and 4 above.

3.1.2 � Abstraction‑based model checking

Another common approach to solving the invariant verification problem is based on sound 
and complete abstraction. Given the original system M, one seeks to compute an abstract 
transition system �(M) = (I� , ��) such that �(M) satisfies Φ if and only if M satisfies Φ . 
This approach is computationally advantageous when the process of computing �(M) 
and then verifying whether it satisfies Φ is significantly more efficient than the process of 
directly verifying M in the first place. We do not seek to describe in detail what abstrac-
tions are used, or how they are computed. The only point we emphasize here is that the 
process of computing the abstraction is a synthesis task.

In other words, instead of directly verifying whether M satisfies Φ , we seek to synthe-
size an abstraction function � such that �(M) satisfies Φ if and only if M satisfies Φ , and 
then we verify whether �(M) satisfies Φ.

3.1.3 � Other examples

In the original papers outlining verification by reduction to synthesis, and accompanying 
presentations, Seshia [79, 80] listed several formal artifacts generated in verification that 
could benefit from the application of synthesis, including not just inductive invariants and 

(1)Base Case: I(s) ⇒ �(s)

(2)Induction Step: �(s) ∧ �(s, s�) ⇒ �(s�)

(3)I(s) ⇒ �(s) ∧ �(s)

(4)�(s) ∧ �(s) ∧ �(s, s�) ⇒ �(s�) ∧ �(s�)
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abstractions, but also auxiliary invariants, environment assumptions and models, interface 
specifications, pre- and post-conditions for procedures, ranking functions for proving ter-
mination, interpolants, etc. Moreover, Seshia also mentioned how the formal artifacts pro-
duced inside solvers, such as theory lemmas learned within SMT solvers and instantiations 
of quantifiers in SMT solvers, can also benefit from synthesis. In the decade since, we have 
seen several papers demonstrate this use of synthesis for verification, particularly applica-
tions of the paradigm of syntax-guided synthesis (SyGuS) [1].

3.2 � SID and counterexample‑guided inductive synthesis

If verification can be effectively solved by reduction to synthesis, how can one effectively 
solve synthesis problems?

There are a variety of techniques for solving formal synthesis, ranging from the clas-
sic deductive approaches such as the methods of Manna and Waldinger [64] to ML-based 
“inductive synthesis”. However, the dramatic advances in program synthesis achieved over 
the last two decades have come about as a result of a combination of inductive and deduc-
tive synthesis. This trend was formalized in [79, 80] as the Structure-Induction-Deduction 
(SID) methodology, an integration of inductive inference and deductive reasoning using 
structure hypotheses — hypotheses about the structural form of the artifacts being synthe-
sized. Common approaches such as sketch-based synthesis  [82], template-based synthe-
sis [49] and component-based synthesis [48] are instances of the SID approach. For further 
details, we refer the reader to [80].

The most popular instantiation of SID is the technique known as counterexample-guided 
inductive synthesis (CEGIS) [82]. Figure 4 gives a high-level view of the CEGIS approach 
to synthesis.

The defining aspect of CEGIS is its learning strategy: learning from counterexamples 
provided by a verification oracle and positive examples provided by an input–output ora-
cle. The learning algorithm, which is initialized with a particular choice of concept class 
L and possibly with an initial set of (positive) examples, proceeds by searching the space 

Fig. 4   Counterexample-guided inductive synthesis (CEGIS)



442	 Formal Methods in System Design (2022) 60:426–451

1 3

of candidate concepts for one that is consistent with the examples seen so far. There may 
be several such consistent concepts, and the search strategy determines the chosen can-
didate, an expression e. The concept e is then presented to the verification oracle, which 
checks the candidate against the correctness specification Φ . This verification oracle can 
be implemented as an SMT solver that checks whether Φ is satisfied by the candidate. If 
yes, the synthesizer terminates and outputs this candidate. Otherwise, the verification ora-
cle generates a counterexample, which is returned to the learner. The learning algorithm 
adds the counterexample to its set of examples and repeats its search. Note that the precise 
encoding of a counterexample and its use can vary depending on the details of the learning 
algorithm employed. It is possible that, after some number of iterations of this loop, the 
learning algorithm may be unable to find a candidate concept consistent with its current 
set of (positive/negative) examples, in which case the learning step, and hence the overall 
CEGIS procedure, fails.

Several search strategies have been developed over the years for learning a candidate 
expression (program) in L, each with its pros and cons. See [1, 6] for an overview of the 
basic approaches for CEGIS.

3.3 � Counterexample‑guided abstraction refinement

Counterexample-guided abstraction refinement (CEGAR) [21] is an algorithmic approach 
to perform abstraction-based model checking. CEGAR has been successfully applied 
to hardware  [21], software  [14], and hybrid systems  [20]. In the context of this section, 
CEGAR can be seen as a learning-based approach to synthesizing abstractions for formal 
verification.

Figure  5 gives an overview of the CEGAR approach. CEGAR solves the synthesis 
task described in Sec. 3.1.2 of generating abstract models that are sound (they contain all 

Fig. 5   Counterexample-guided abstraction refinement (CEGAR) as inductive synthesis
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behaviors of the original system) and precise (a counterexample generated for the abstract 
model is also a counterexample for the original system).

One can view CEGAR as an instance of the SID approach as follows:

•	 The abstract domain, which defines the form of the abstraction function, is the struc-
ture hypothesis. For example, in verifying digital circuits, one might use localization 
abstraction [54], in which abstract states are cubes over the state variables.

•	 The inductive learner is an algorithm to learn a new abstraction function from a spu-
rious counterexample. Consider the case of localization abstraction. One approach in 
CEGAR is to walk the lattice of abstraction functions, from most abstract (hide all vari-
ables) to least abstract (the original system). This problem can be viewed as a form 
of learning based on version spaces [62], although the traditional CEGAR refinement 
algorithms are somewhat different from the learning algorithms proposed in the version 
spaces framework. Gupta, Clarke, et al. [23, 43] have previously observed the link to 
inductive learning and have proposed versions of CEGAR based on alternative machine 
learning algorithms (such as induction on decision trees).

•	 The deductive engine for finite-state model checking comprises the model checker and 
a SAT solver. The model checker is invoked on the abstract model to check the property 
of interest, while the SAT solver is used to check if a counterexample is spurious.

In fact, CEGAR can be seen as an instance of CEGIS, where the deductive engine plays the 
role of the verification engine, the inductive learner plays the role of the inductive synthe-
sizer, and the structure hypothesis defines the space of artifacts (abstractions) to be synthe-
sized. We emphasize that the idea of CEGAR precedes that of CEGIS and the SID method-
ology, and CEGAR was undoubtedly influential in the formulation of CEGIS. Our aim, in 
this section, is to simply point out how the ideas generalize and connect to the effective use 
of machine learning for formal verification and synthesis.

3.4 � Formal inductive synthesis and oracle‑guided inductive synthesis

While CEGIS has been, by far, the leading algorithmic method for program synthesis over 
the last fifteen years, there is also a growing realization of its limitations. Foremost amongst 
these is a heavy reliance on having a verification oracle with two crucial properties: (i) it 
must be efficient and (ii) it must provide informative counterexamples. However, when ver-
ification itself is computationally expensive, high-quality formal specifications are unavail-
able, or when the verifier does not by default provide counterexamples that help the learner 
converge quickly to a correct program, CEGIS falls short. For this reason, researchers have 
developed alternatives to the basic CEGIS approach such as learning from distinguishing 
inputs [48], which uses an oracle that can provide inputs that distinguish seemingly-correct 
candidate programs, and CEGIS(T), which generalizes from concrete counterexamples to 
produce constraints that better direct the search for candidate programs [2].

Even with these alternatives to CEGIS, approaches to inductive learning-based syn-
thesis share some common characteristics that have been captured in the SID methodol-
ogy  [80] and further formalized by Jha and Seshia  [51] as formal inductive synthesis 
(FIS), a family of synthesis problems, and oracle-guided inductive synthesis (OGIS), a 
family of solution techniques for solving FIS. Central to FIS and OGIS is the concept 
of an oracle interface, which is a set of query-response pairs that define the interface 
between the learner and the oracle(s) that guide the learner in its search for a program. 
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An FIS problem has four inputs: (i) a space of candidate programs or formal artifacts, 
(ii) a domain of example behaviors or traces, (iii) a formal specification, and (iv) an 
oracle interface that defines the types of oracles available to the learner and the interface 
to them. Thus, in contrast to pure learning-based methods, it requires the presence of 
a formal specification defining correctness and also allows for the use of richer oracle 
interactions than possible in standard ML paradigms such as supervised, unsupervised, 
and active learning. The only exception is the area of query-based learning (e.g.  [4]), 
but even here there is an important distinction: in query-based learning, the oracles are 
part of the problem description and the learner must work with any oracle that satis-
fies the oracle interface, whereas in FIS, the oracles are part of the solution and can be 
co-designed with the learner so long as they adhere to the oracle interface. See [51] for 
more details and theoretical results about FIS and OGIS.

Oracle-guided inductive synthesis (OGIS) generalizes CEGIS and other variants of 
inductive synthesis by developing a general theory of interaction between learners and 
oracles. In OGIS, the process of synthesis is coordinated by a dialog between a learner 
and an oracle that adheres to a given oracle interface. A OGIS procedure comprises a pair 
of learner and oracle and solves a given FIS problem if there exists a dialog that either 
converges in the learner providing a candidate program that satisfies the formal specifica-
tion or the learner concluding that no such program exists for the given FIS problem. Jha 
and Seshia [51] provide several instantiations of OGIS, including CEGIS and Angluin’s L∗ 
query-based learning algorithm for deterministic finite automata. For example, CEGIS is 
a special case of OGIS, where the oracle interface comprises two query types: a positive 
witness query where an oracle must provide a positive example (input–output example or 
trace) and a counterexample query where a verification oracle provides a counterexample 
showing how the candidate program violates the formal specification. Jha and Seshia [51] 
provide a theoretical analysis of CEGIS, showing how different choices of counterexample 
can influence whether CEGIS converges to a correct program or not, for infinite-sized pro-
gram spaces where termination is not guaranteed. They also show how, for finite program 
spaces, the concept of teaching dimension  [42] is useful to bound the query complexity 
of OGIS. More recently, other researchers have introduced newer query types such as the 
Hoare query introduced by Feldman et  al.  [36], where they show, for invariant synthe-
sis, a class of finite-state transition systems and invariants such that every learner, even 
computationally-unbounded ones, will require 2Ω(n) Hoare queries, where n is the number 
of Boolean state variables.

While the afore-mentioned papers set out the initial theory of FIS and OGIS, much 
more remains to be done. One important goal is to develop efficient, general-purpose solv-
ers to solve OGIS problems. A step towards this goal has been recently taken by Polgreen 
et  al.  [73] who introduce the frameworks of satisfiability modulo theories and oracles 
(SMTO) and synthesis modulo oracles (SyMO). SMTO extends SMT solving with rea-
soning about oracle functions. SyMO extends synthesis solving, particularly SyGuS solv-
ing, to admit a more general class of oracle interfaces, and provides a generic approach 
to solving OGIS problems via SyGuS by translating oracle responses back into logical 
constraints. SMTO and SyMO is now being integrated into verification tools such as the 
UCLID5 system [68, 86].

In summary, formal inductive synthesis and oracle-guided inductive synthesis provide 
a firm foundation for learning-driven synthesis and its integration with formal verification, 
building on the pioneering contributions of CEGAR and CEGIS. We believe the develop-
ment of the theory, algorithms, and applications of FIS and OGIS will be a productive 
topic of research for the coming decade.
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4 � Deep neural networks with feedback from solvers

In recent years, another very interesting trend of incorporating solvers in DNNs is gain-
ing momentum that promises to change AI in a fundamental way. The solvers in these 
DNN-solver NeuroSymbolic architectures are used during training as part of the back-
propagation step [92] and/or during inference, or as an active learning corrective feed-
back mechanism from solver to the DNN post-inference [92]. We cover three prominent 
lines of research in this context, namely, SATnet  [92], integration of blackbox solvers 
in DNNs [72], and provide a brief overview of additional attempts at integrating DNNs 
and solvers.

In their paper on the SATNet tool, Wang et al. present a DNN architecture with a dif-
ferentiable approximate MAXSAT solver layer. Their differentiable approximate solver 
is based on a coordinate descent approach to solving the semidefinite program (SDP) 
relaxation of the MAXSAT problem. During the backward pass of its training, the 
SATNet tool leverages the fact that the solver is differentiable, in order to differentiate 
through it and appropriately update the weights of DNN. Unlike many other attempts at 
integrating solvers into DNNs, SATNet does not assume that the logical structure of the 
problem is given, but rather is learnt. Prominently, the authors use SATNet to learn how 
to play “Visual Sudoku" solely from examples. The Visual Sudoku problem asks for 
a system to map images of incomplete Sudoku puzzles to completed puzzles. SATNet 
uses its differentiable solver to learn the logical structure between the variables repre-
senting a Sudoku puzzle, while at the same time attempts to solve the given incomplete 
input Sudoku puzzle.

By contrast, Vlastelica et al.  [72] use a combinatorial blackbox solver as a layer in 
a DNN with the goal of ensuring global consistency in a multi-object tracking or route 
planning on map images. Consider the problem of a robot trying to find the shortest 
path given a picture of a map. This problem requires the robot to solve two sub-prob-
lems, first image and object recognition that recognizes a map and paths in it, and a 
second sub-problem of solving for the shortest path through the graph corresponding to 
the input map. Further, the authors assume that the only labels available are the outputs 
of solvers, and hence their tool has to discover the label for the output of the DNN itself. 
Finally, the authors insist on using a combinatorial solver as a blackbox and not require 
it to be differentiable. The requirement that solvers be differentiable is a big weakness 
of methods like SATNet because such solvers are sub-optimal in terms of runtime, per-
formance and optimality guarantees. Further, this requirement limits the choices one has 
for the solver layer, limiting ones ability to leverage the transformational progress made 
in combinatorial solver algorithms.

The primary technical challenge for such a design boils down to providing mean-
ingful gradient information to the DNN from the solver during the backward pass. To 
accomplish, the authors are able to leverage the minimization structure of the underly-
ing combinatorial problem and efficiently compute a gradient of a continuous interpola-
tion of the linearization of the loss computed over output of the solver and the actual 
label. They successfully apply their method to a variety of problems including the prob-
lem of route planning over map images in the context of robotics. We find this approach 
to be very versatile and can be applied in a variety of contexts where one needs to bring 
learning and reasoning together in corrective feedback loop.

Another approach that combines ML with solvers is Logic Guided Machine Learn-
ing (LGML)  [84] and its cousin Logic Guided Genetic Algorithms (LGGA)  [7]. The 
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context of these approaches is symbolic regression (SR), where the goal is to convert 
data into symbolic formulas via ML [67]. Symbolic regression (SR) is a broad sub-field 
of ML where the goal is to learn a model that takes as input data and a mathematical 
language L, and outputs an L-formula that fits the data [52, 67].

The primary application of SR is in automated knowledge discovery from data, and it 
can be helpful in interpreting models [8]. A problem common to many SR techniques is 
that the equations produced by these systems often overfit their input data, i.e., relying on 
input data alone is sometimes a poor guide to discovering new knowledge. A more effec-
tive approach is to leverage known facts or domain knowledge to debug equations learnt by 
SR systems.

In their paper, Scott et al. [84] propose a new class of methods that combines SR sys-
tems with SMT solvers. The SMT solvers are used to cross-verify whether the equations 
produced by the SR are consistent with domain knowledge, which are expressed in the 
language of the SMT solver. If not, a counterexample is generated which is then fed back 
to the SR model, in a manner similar to Counter-Example Guided Abstraction Refine-
ment. Kim et al. [52] recently demonstrated a DNN-based symbolic regression technique, 
wherein equation learning is performed via gradient-based optimization, and can be com-
bined with other DNN layers.

One of the most important recent developments in ML research is the rise of large 
language models (LLMs) such as OpenAI’s GPT4  [66]. These models seem to perform 
spectacular feats of generating text and other media that match, and often exceed, expert 
human-level capabilities. While such models are known to perform logical and mathemati-
cal reasoning (e.g., Minerva  [55] from Google Research), they also fail spectacularly on 
many instances of such tasks. It is but natural to ask whether combining LLMs with solvers 
and provers can improve their performance at reasoning tasks. One direction of research in 
this context that we find noteworthy is the tight integration of LLMs with proof assistants 
such as HOL Lite and Coq, often referred to as Neural Theorem Proving (NTP). Due to 
space limitations, we don’t expand on this topic and refer the reader to recent work on 
NTPs [37].

In most of these above-mentioned approaches, logical reasoning tools such as solvers/
provers are used to provide corrective feedback to a DNN or an ML model. In some of 
these techniques, such as SATnet, solvers are used both during training as well as inference.

5 � Conclusion

In this perspective paper, we discuss topics at the intersection of ML and logical reasoning, 
which historically have been the two key pillars of AI. While the advances in these two 
sub-fields have been impressive, they have largely been pursued by different communities. 
In recent years, researchers have identified the need to bring these communities together, 
and some work has started at the intersection of these two sub-areas. This paper highlights 
the need for tighter integration between ML and logical reasoning. Within this context, we 
cover three topics highlighting the synergy between ML and logical reasoning: (1) use of 
ML in solvers, (2) use of ML in synthesis and verification of programs and proofs, and (3) 
combinations of ML and symbolic solvers with the goal of enabling logical reasoning in 
ML. Rather than give an exhaustive survey of these topics, we have tried to provide enough 
background to highlight interesting directions for future research. One direction that is par-
ticularly noteworthy is the use of corrective feedback loops between an ML models and 
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reasoning engines. We are inspired by our belief that research at the intersection of learn-
ing and reasoning can be deeply and fundamentally transformative for both the field of AI 
and society more broadly. We very much hope that the directions and problems that we 
have identified will stimulate further research in this new and emerging field of AI.
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