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Abstract

This study presents a simplified thermal-fluids (TF) mathematical model to analyze large

surface deformations in cryoprotective agents (CPA) during cryopreservation by vitrification.

The CPA deforms during vitrification due to material flow caused by the combined effects of

thermal gradients within the domain, thermal contraction due to temperature, and exponen-

tial increase in the viscosity of the CPA as it is cooled towards glass transition. While it is

well understood that vitrification is associated with thermo-mechanical stress, which might

lead to structural damage, those large deformations can lead to stress concentration, further

intensifying the probability to structural failure. The results of the TF model are experimen-

tally validated by means of cryomacroscopy on a cuvette containing 7.05M dimethyl sulfox-

ide (DMSO) as a representative CPA. The TF model presented in this study is a simplified

version of a previously presented thermo-mechanics (TM) model, where the TM model is

set to solve the coupled heat transfer, fluid mechanics and solid mechanics problems, while

the TF model omits further deformations in the solid state. It is demonstrated in this study

that the TF model alone is sufficient to capture large-body deformations during vitrification.

However, the TF model alone cannot be used to estimate mechanical stresses, which

become significant only when the deformation rates become so small that the deformed

body practically behaves as an amorphous solid. This study demonstrates the high sensitiv-

ity of deformation predictions to variation in material properties, chief among which are the

variations of density and viscosity with temperature. Finally, this study includes a discussion

on the possibility of turning on and off the TF and TM models in respective parts of the

domain, in order to solve the multiphysics problem in a computationally cost-effective

manner.
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Introduction

Despite remarkable advancements in organ transplantation, the shortage of suitable organs on

demand is the major obstacle, preventing this life-saving treatment from reaching its potential.

Roughly 36,000 organ transplants were performed in US in 2018, whereas the total number of

patients on the waitlist for transplant was more than 110,000 [1]. The preservation of tissues

and organs can provide the ability to replace organs and tissues on demand, saving millions of

lives each year, which is a public health benefit on par with curing cancer [2]. The preservation

of organs and tissues has thus been described as “the supply line for organ transplantation” [3].

While cryopreservation has successfully been implemented for preservation of small-sized

specimens (in the scale of μm to mm), preservation of large-sized tissues and organs (in a scale

of cm and above) requires overcoming challenges related to toxicity of cryoprotective agents

(CPA) [4], ice formation [5], chilling and ischemic injuries [6], and thermomechanical stress

[7–11]. Cryopreservation of tissues and organs by means of vitrification (vitreous in Latin

means glassy) is a promising ice-free preservation alternative for large size biological speci-

mens [12, 13].

While suppression of ice crystallization is key for successful vitrification [5], it also depends

on a delicate balance between the competing needs to reduce the toxicity effects of the CPA

[4], and to keep thermo-mechanical stresses in safe levels [7, 14–16]. Thermo-mechanical

stress (or thermal stress for simplicity) is driven by the natural tendency of all materials to

change volume with temperature, with the thermal expansion coefficient as its measure. Ther-

mal stress develops when the thermal expansion is constraint, and structural damage will fol-

low when the stress reaches excessive levels [7, 14, 15, 17–19]. Thermal stress can also arise due

to thermal expansion associated with phase transition [20] (partial crystallization), differential

thermal expansion within the material due to temperature gradients [8], and thermal expan-

sion mismatch between the specimen and the container [21].

Thermal expansion may also drive fluid flow during vitrification, causing the specimen to

deform at a rate which is affected by the viscosity of the material [17]. The viscosity of the CPA

increases exponentially by fifteen orders of magnitude during the vitrification process [22],

from a water-like viscosity level at room temperature, to such a high value around the glass

transition temperature, that flow is practically arrested and the material behaves like an amor-

phous solid. Due to the combined effect of temperature gradients during the inward cooling

process of the specimen, and variations in thermal expansion and viscosity with temperature,

dramatic deformation at free surfaces may be observed [11, 23–25]. However, since these sur-

face deformations dissipate during rewarming, as the CPA regains fluid-like viscosity at higher

temperatures, and since the specimens are most frequently evaluated only after recovery from

cryogenic storage, such large surface deformations has eluded cryobiologists for decades.

A Proprietary in-situ imaging device, known as the cryomacroscope, was used to first

observe the formation of large deformations in the shape of a surface cavity in vials and

cuvettes filled with CPA [23–25]. Over the past two decades, five different types of the cryoma-

croscope have been developed, to facilitate visualization of physical effects like crystallization,

contamination, surface deformation, photoelasticity effects, and fracturing in specimens

undergoing cryopreservation protocols [23–26].

Such large deformation can increase the average stress level within the specimen and cause

stress concentrations along its surfaces [11, 23–26]. The stress developed during cooling might

intensify when the temperature distribution across the specimen equilibrates during cryogenic

storage (i.e., residual stress), and might even further intensify at the onset of rewarming [11,

27, 28]. Previous thermomechanical stress analysis relied on extracting the deformed surface

geometry from cryomacroscopy images [26]. This approach is based on the notion that large
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deformations occur in the CPA only when its viscosity is low and consequently stress develop-

ment is negligible, while significant stresses develop only in lower temperatures, where the vis-

cosity is high and deformations are small.

A thermo-mechanics (TM) mathematical model has been recently presented to investigate

the effects of free surface deformation during vitrification [11]. The TM model is formulated

to solve the related coupled problem of heat transfer, fluid mechanics, and solid mechanics.

Following the good qualitative agreement of the TM model with experimental data obtained

using the scanning cryomacroscopy [23, 25, 26], the current study aims at quantitative valida-

tion of the proposed model, while putting into test its underlying assumption and its sensitivity

on material properties. The previous study included solid mechanics aspects to study effects

such as stress concentration and the likelihood to structural damage, whereas the current

study focuses on the ability to model surface deformations. With this objective in mind, the

current study proposes a simplified thermal-fluids (TF) mathematical model and explores if is

sufficient to capture body deformation by means of validation against experimental data.

Unlike the TM model, the TF model is formulated to solve the coupled problem of heat trans-

fer and fluid mechanics only, excluding solid-mechanics effects, and thereby reducing compu-

tation complexity and accelerating computation runtime. In summary, the unique

contribution of the current study is twofold: (i) presenting a simplified mathematical model

for analysis of free surface deformation during vitrification, and (ii) validating the model

against experimental results obtained on the cryomacroscope platform.

Methods and materials

Experimental apparatus

The scanning cryomacroscope was used in this study, which is a device tailored for in situ visu-

alization of macro-scale physical events, such as ice crystallization, fracturing, thermal strain

(photoelasticity), and contamination that may occur during cryopreservation processes [23–

26]. Since this device has been presented previously in various configurations [23, 25, 26], the

specific setup is described here in brief only, for completeness of the presentation. The cryo-

macroscope is designed to retrofit as the lid of a commercially available controlled-rate cooler

(Kryo 10, Planar PLC, UK). Due to the harsh environment in the cooling chamber, visualiza-

tion is achieved by means of a borescope, where all electronic components, including the cam-

era, its scanning mechanism, and the light sources are positioned external to the cooling

chamber. Fig 1(A) displays the experimentation stage of the cryomacroscope, where the imag-

ing target is a CPA-filled cuvette (a rectangular vial with superior optical properties) [23].

Scanning of the cuvette may be assisted by direct or background illumination, facilitated by

fiber-optics bundles extending up to the specimen stage from the light sources placed outside

the cooling environment.

The red arrows in Fig 1(B) display the direction of view, where the image is reflected

through a 45˚ mirror to a CCD camera [23, 26]. A stepper motor and a mount-and-carriage

system for the camera setup allows for vertical scanning of the entire cuvette. The thermal his-

tory of the cooling chamber is obtained with a K-type thermocouple placed in the freestream

flow of coolant surrounding the cuvette [23–25]. Control of the various components of the

cryomacroscope, as well as monitoring of images and temperatures in real-time, are carried

out using a proprietary cryomacroscope control code (C3) [23–26]. The same software is also

used for post processing to create a digital video overlaying time and temperature data. Fig 1

(C) displays snapshots of the surface deformation at selected points in time during cooling.
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Fig 1. (A) Schematic illustration of the cryomacroscope. (B) Side view illustration showing the path of light passing through the cuvette

using red arrows. (C) Selected images displaying surface deformation at various times during the vitrification process subject to a

constant cooling rate of 25˚C/min from an initial temperature of 10˚C down to final temperature of -125˚C. The cuvette has outer

dimensions of 12.5 mm × 12.5 mm × 45 mm, filled with 2.8 ml of 7.05M DMSO.

https://doi.org/10.1371/journal.pone.0282613.g001
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Benchmark data

Reference datasets for surface deformations were obtained while experimenting on dimethyl

sulfoxide (DMSO) as a vitrifying material, which is the key ingredient in many CPA cocktails

[29]. Specifically, 7.05 M DMSO solution has been demonstrated previously as a reference

solution to study thermo-mechanics effects in high concentration CPAs, such as VS55 and

DP6, which drew significant attention over the years [25]. Consistent with previous studies

[23, 25], polystyrene cuvettes (Plastibrand, BRAND Gmbh + Co. KG, Germany) are used for

the experiments, having outer dimensions of 12.5 mm × 12.5 mm × 45 mm and wall thickness

of 1.25 mm, Fig 1. Relevant physical properties for the 7.05 M DMSO and polystyrene are

listed in Table 1.

Two types of datasets were collected for the comparison of computer modeling results with

experimental data: (i) the shape of the deformed surface across the center plane of the cuvette;

and (ii) the transient displacement of the CPA surface along the centerline of the cuvette, that

is the point of maximum deformation. With reference to Fig 2(A), the free surface displace-

ment along the centerline of the cuvette is calculated by:

usðtÞ ¼ HeðtÞ � Heð0Þ; He ¼
HpLe

Lp
ð1Þ

where H is height from a refence line marked on the cuvette, L is the inner width of the cuvette,

t is time, and the indices e and p refer to experimental value and its appearance on the com-

puter screen, respectively.

A special attention is paid to the calculation of Lp since there is no reference width along the

center plane of the cuvette. Here, due to the symmetry of the problem, and since given the

change in the apparent width with the depth of field, the reference width is estimated as:

Lp ¼
1

2
ðL�

p þ L��

p Þ ð2Þ

where Lp� and Lp�� are the apparent inner widths of the cuvette on the front and back surfaces

of the cuvette, Fig 2(B).

The two most significant sources of uncertainty in displacement measurements, using the

scheme described above are: (i) uncertainty in distance measurements on the computer screen,

which accounts for screen resolution, the computation measurement tool, and human error;

and (ii) reference measurement of the actual cuvette width with a caliper, which is assumed to

be the same as the uncertainty in the specific caliper measurements, δLe = ±0.1 mm.

Table 1. Material properties of 7.05M DMSO and polystyrene used in this study (temperatures are in ˚C).

Property Material Value/Function Ref.

Density, kg/m3 CPA 1090–0.6922T+0.000257T2 [29]

Cuvette 1055–0.26T [30]

Thermal conductivity, W/m-˚C CPA 0.356+7.42×10-4T-1.29×10-6T2-6.87×10-8T3-2.95×10-10T4 [31]

Cuvette 0.14+1.3×10-4T [32]

Thermal Expansion Coefficient, 1/˚C CPA 1.1×10−5 [33]

Cuvette 8×10−5 [30]

Specific Heat, J/kg-˚C CPA 2804+4.205T−0.054T2−4.902×10−5T3 [24]

Cuvette 1121+3.94T [34]

Heat Transfer Coefficient, W/m2-˚C Free, h1 10 [24]

Forced, h2 350

https://doi.org/10.1371/journal.pone.0282613.t001
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The uncertainty in measurements from the computer screen, δHp, is estimated as twice the

standard deviation in measuring a cavity depth, Hp, in a series of independent measurements:

dHp ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ðHp;i � HpÞ

2

n � 1

s

ð3Þ

where δ refers to uncertainty, n is the number of repetitions, i is an index, and the bar repre-

sents an average value. Based on 10 repetitions, the uncertainty in depth measurements is esti-

mated as ±0.11 mm or 0.94% of a cavity depth of 12.1 mm from the reference line,

Fig 2. Parameters used for the analysis of experimental measurements, Eqs (1) and (2). (A) front view of the cuvette from the cryomacroscope, and (B)

top view of the cuvette illustrating the scaling effect (not drawn to scale). The calculated inner width of the cuvette on the front face, Lp�, is 10.18 ± 0.11 mm

for image in (A), while the experimentally measured width is 10 ± 0.1 mm.

https://doi.org/10.1371/journal.pone.0282613.g002
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corresponding to the maximum deformation for the cooling rate of 20˚C/min at the tempera-

ture of -125˚C.

The uncertainty in width measurements is calculated as:

dLp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ðdHpÞ
2

q

ð4Þ

where the uncertainties in vertical and horizontal measurements on the computer screen are

similar, while the factor 3 corresponds to evaluating Lp as an average of two additional mea-

surements, Eq (2). The uncertainty in width measurements, δLp is estimated as ±0.19 mm, cor-

responding to the maximum deformation for the cooling rate of 20˚C/min at the temperature

of -125˚C.

Finally, the resulting uncertainty in the cavity depth measurements can be calculated as:

dus ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

@us

@Hp
dHp

 !2

þ
@us

@Lp
dLp

 !2

þ
@us

@Le
dLe

� �2

v
u
u
t ð5Þ

where the error bars displayed with the experimental data in this study equal ± 2δus.
While the estimated uncertainty in Eq (5) is associated with the analysis of a single experi-

ment, the repeatability in experimentation should also be considered when comparing experi-

mental observation with mathematical modeling. For this purpose, four experiments were

performed under the same cooling rate and final temperature of 20˚C/min and -125˚C, respec-

tively. Using Eq (1), the maximum depth cavity for this set of experiments was found to be

5.48 ± 0.15 mm, or variability among experiments of 2.74% of full depth.

Mathematical modeling

Heat transfer model. The heat transfer model accounts for combined heat conduction

and free convection due to the temperature-dependent density, while ignoring the viscous

heat dissipation [35]:

rcp
@T
@t

þ v:rT
� �

¼ r � ðkrTÞ ð6Þ

where ρ is the density, cp is the specific heat, t is the time, T is the temperature, v is the velocity

field, k is the thermal conductivity, and bold symbols signify vectorial quantities. Heat transfer

by forced convection is assumed on the outer surface of the cuvette [35]:

�bn � krTð Þ ¼ hðTc � T1Þ ð7Þ

where bn is a unit normal to the outer surface, and the subscripts c and 1 denote the outer wall

surface of the cuvette and cooling chamber environment, respectively. The overall heat transfer

coefficient between the cuvette wall and the cooling chamber environment, h, was measured

experimentally in a previous study [24]. Continuity in temperature and heat flux is assumed

on all interfaces between the container wall and CPA [11, 35].

Fluid mechanics model. The Navier-Stokes equation is used to model CPA flow, while

assuming that the inertial forces are negligible in comparison with the viscous forces (i.e.,

creeping flow) [36]:

r
@v
@t

¼ r � �pI þ m rv þ rvð Þ
0

� �
�

2

3
m r � vð ÞI

� �

þ rg ð8Þ

where p is the pressure, I is the identity matrix, μ is the dynamic viscosity, g is the gravitational
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acceleration, the prime denotes matrix transposition. The conservation of mass is given by

[36]:

@r

@t
þ r � rvð Þ ¼ 0 ð9Þ

The coupling between the heat transfer and fluid mechanics models comes about in two

ways: (i) by implementing temperature-dependent viscosity and density in Eqs (8)–(9), and

(ii) by using the solution to the velocity field in heat transfer calculations based on Eq (6).

Special attention is paid to the free surface boundary condition, Fig 3(B). The normal stress

at the free surface (i.e., at the CPA-air interface) is assumed zero, while surface tension is

neglected [36]:

�pI þ m rv þ rvð Þ
T� �

�
2

3
m r � vð ÞI

� �

� bn ¼ 0 ð10Þ

Lastly, a no slip boundary condition is assumed on all solid surfaces:

vw ¼ 0 ð11Þ

Solid mechanics model. The vitrifying CPA is modeled as a Maxwell fluid [10, 11, 24, 26,

27, 37]:

_ε ¼ _εelastic þ _εcreep þ _εthermal ð12Þ

Fig 3. Schematic illustration of the geometric models and applied boundary conditions for FEA. (A) 3D geometric model and boundary conditions for the

TF model; (B) 2D axisymmetric geometric model and boundary conditions for the TF model; (C) 2D axisymmetric geometric model and boundary conditions

for the TM model; where σvis denotes stress due to viscosity effects in the TF model.

https://doi.org/10.1371/journal.pone.0282613.g003
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where the elastic strain, εelastic, the creep strain, εcreep, and the thermal strain, εthermal, are calcu-

lated by:

_εelastic ¼
1

E
1 þ vð Þ _σ � vI � tr _σð Þ½ � ð13Þ

_εcreep ¼
S

2m
ð14Þ

_εthermal ¼ a _TI ð15Þ

and where E is Young’s Modulus, ν is Poisson’s ratio, σ is the stress, tr is the trace of the stress

tensor, S is the deviatoric stress tensor, and α is the thermal expansion coefficient. Finally, con-

sistent with current and prior experimental observations [7, 11, 24, 28], it is assumed that the

CPA adheres to the container walls as it vitrifies.

Thermal protocol

This study focuses on the cooling part of the cryogenic protocol, where two group of experi-

ments were conducted. The first consists of a constant cooling rate from an initial temperature

of 10˚C down to a final temperature of -125˚C, which is 7˚C above the glass transition temper-

ature of 7.05M DMSO (-132˚C) [22, 33]. The variable parameter in this experimental group is

the cooling rate, ranging between 10˚C/min and 25˚C/min, which are all above the critical

cooling rate (CCR) required to avoid crystallization in 7.05M DMSO (<5˚C/min) [38]. The

same cooling rate of 20˚C/min was kept constant in the second group, while the final tempera-

ture varied in the range of -115˚C and -135˚C. Either way, the specific experimental thermal

history was used as an input for the respective computer modeling for benchmarking

purposes.

Computer modeling

Computer modeling was performed using the finite element analysis (FEA) commercial soft-

ware package COMSOL Multiphysics (v5.6). Due to the high computation cost of such analy-

sis, given the symmetry of the problem, and as reference for future studies, Fig 3 displays two

closely related thermo-fluids problems: (A) a rectangular geometry, depicting the 3D nature of

the problem, having the same dimensions as the cuvette used for experimentation (Fig 1); and

(B-C) a cylinder, representing a 2D and axisymmetric problem, having the same outer diame-

ter as the external width of the cuvette, and the same wall thickness and height. The CPA was

filled up to a height of 27.5 mm in all cases. Based on solution convergence studies, the 3D

geometry was discretized into 105 linear elements, combining tetrahedral, prismatic, and

quadrilateral, shapes based on a volume criterion and an inbuilt mesh generator in COMSOL

Multiphysics. Similarly, the 2D geometry was discretized into 4×104 linear triangular

elements.

Modeling of the large surface deformation observed during experimentation requires a spe-

cial attention, to maintain the integrity of numerical solution [39]. While a simple solution to

the problem may come about by incrementally remeshing that deforming object with a mesh

suitable for small deformations, the current study uses the so-called Arbitrary Lagrangian-

Eulerian (ALE) approach, which permits the mesh itself to experience large deformations

without compromise the accuracy of the solution, and thereby accelerates the solution runtime

[11, 39]. Implementation of this solution approach requires the specification of the mesh

deformation velocity on all boundaries, which requires a special attention at the free surface
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(the deformation along the walls is restricted). In practice, the mesh deformation velocity nor-

mal to the air-CPA interface is calculated as the normal component of the fluid velocity field

from Eq (8). The mathematical model utilizes automatic time stepping with a maximum time

step size of 20s, based on a convergence study.

Results and discussion

Experimental validation of the TF modeling

Fig 4 displays comparison of experimental data with 2D and 3D TF modeling results for a rep-

resentative case of 20˚C/min cooling rate and final temperature of -125˚C. While qualitatively

both the 2D and 3D cases display a similar trend of deformation, the 2D solution better cap-

tures the free surface shape earlier in the process, Fig 4(B), while the 3D solution better cap-

tures the shape at a more advanced stage, Fig 4(C). Fig 5(C) displays the free surface

displacement history comparison along the centerline of the cuvette, for the same experiment,

Fig 4. Comparison of experimental results with mathematical modeling, subject to an initial temperature of 10˚C and a cooling rate 20˚C/min. (A)-(C) display the

snapshots of the deformed surface at different times, while (D)-(F) display the 2D TF modeling results, respectively. In addition, the overlayed red and yellow curves on

the snapshots display the deformed surface base on the 2D and the 3D TF problem, respectively. Note the different velocity field scales.

https://doi.org/10.1371/journal.pone.0282613.g004
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displayed in Fig 4. Furthermore, Fig 5 displays the sensitivity of the free surface deformation

history to the cooling rate. The maximum displacement observed during experimentation is

4.26±0.22 mm, 5.41±0.23 mm, 6.12±0.25 mm, and 6.37±0.25 mm for cooling rates of 10˚C/

min, 15˚C/min, 20˚C/min, and 25˚C/min, respectively. The maximum displacement calcu-

lated based on the 2D TF model for the same cooling rates is, 3.77 mm, 4.87 mm, 5.01 mm,

and 5.67 mm, respectively. Consistent with previous observations [11, 24], the final maximum

axial displacement increases with cooling rate, as can be observed from Fig 5. Faster cooling

rates result in higher thermal gradients in the CPA domain [24], which explain the increase in

us with increasing cooling rates [23].

Fig 5. Displacement history along the centerline of the cuvette subject to a constant cooling rate (CR). The CR ranges from 10˚C/min to 25˚C/min from an

initial temperature of 10˚C, where computer modeling results are obtained for a 2D TF problem, and the subscripts exp and mod refer to experimental data and

modeling results, respectively.

https://doi.org/10.1371/journal.pone.0282613.g005
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From a related case study for the final temperatures of -115˚C, -125˚C, and -135˚C, while

maintaining an initial temperature of 10˚C and a cooling rate of 20˚C/min, the maximum

final us was experimentally measured as 3.92±0.20 mm, 6.12±0.25 mm and 8.61±0.29 mm,

respectively. The corresponding values based on 2D TF modeling was calculated as 3.41 mm,

5.01 mm, and 10.04 mm, respectively. It follows that the magnitude of surface deformation

increases with the cooling rate and the decreasing final temperature.

The average difference between the modeling results and the experimental data in these

study cases is 13.4%, while the maximum difference of 18.1% is observed for the cooling rate

of 20˚C/min and final temperature of -125˚C. The mismatch between experimental data and

simulation results can be attributed to the following sources: (i) the fish-eye effect [40] associ-

ated with the borescope optics, which can cause the center of the image to appear bulged; (ii)

the surface tension effect on the initial surface shape, which deviates from the ideal flat surface

modeled; (iii) uncertainty in computer modeling due to reported uncertainty in thermophysi-

cal properties [41], which is not accounted for in this study; and (iv) gaps in knowledge about

material properties.

To study the sensitivity of the mathematical solution to variation in CPA density, a hypo-

thetical CPA material was assumed (HCPA), which has identical thermophysical properties to

7.05M DMSO (Table 1), except for the density. The increasing density of the HCPA with the

decreasing temperature is 15% steeper than that of 7.05M DMSO, as illustrated in Fig 6(A).

This steeper slope results in absolute difference in density in the range of 0 to 0.88%, and a rela-

tive density variation of 0 to 14.5% between the temperatures 0˚C to -100˚C, respectively. Fig 6

(B) displays the resulting axial displacement at the center of the cuvette, for the 2D TF model

subject to initial condition of 10˚C and cooling rate of 20˚C/min, a case for which the experi-

mental and modeling results show the highest difference at final temperature. Clearly, while

0.88% of measured density values is expected to be much smaller than the uncertainty in

Fig 6. A 2D TF modeling case study on the effect of density variation with temperature, where HCPA is a hypothetical CPA having similar properties to

7.05M DMSO but 15% steeper variation. (A) temperature-dependent density; (B) experimental results used as the base for this case study, representing the

worst match between modeling and experimental data in Fig 5 (cooling rate of 20F0B0C/min). The steeper-slope density curve results in absolute difference in

density in the range of 0 to 0.88%, and a relative density variation of 0 to 14.5% between the temperatures 0˚C to -100˚C, respectively.

https://doi.org/10.1371/journal.pone.0282613.g006
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density measurement, it can provide one plausible reason to the deviation of modeling results

from experimental data. With this being noted, from thermal fluids considerations, the relative

variation in density along the process is the more influential effect.

The variation of viscosity with temperature is also expected to play a key role affecting sur-

face deformation, where the viscosity of the glass forming material increases by 14 orders of

magnitude during cooling from the initial temperature to glass transition. In this study, the

viscosity is represented by a single exponent term, while a second exponential term could

potentially yield larger modeled displacements at higher temperatures, and more moderate

displacements with the decreasing temperature [42]. Of course, the single exponential model

of viscosity with temperature is the simplest to implement [43], while the knowledge about

actual physical behavior of glass-forming CPAs is only sparsely available. While it is possible to

keep tweaking the HCPA properties to match a particular experimental dataset, the general

conclusion is that the deformation during vitrification is highly dependent on the variation in

thermophysical properties.

Solid mechanics effects on surface deformation

To compare the simplified TF model with the more comprehensive TM model, Fig 7 displays

the displacement histories along the centerline of the cuvette, us, for a 2D special case having a

Fig 7. 2D TF vs TM model. Comparison of displacement histories along the centerline of the container between the

2D TM and TF 2D models for a cooling rate of 20F0B0C/min. The error bars refer to the uncertainty in experimental

measurements for reference, although the displayed results are of FEA.

https://doi.org/10.1371/journal.pone.0282613.g007
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cooling rate of 20˚C/min and minimum temperature of -125˚C. The difference in the maxi-

mum displacement between the models is less than 1.5%, indicating that the surface deforma-

tion is primarily affected by material flow when the viscosity level is relatively low, while

material deformation due to mechanical stress may have marginal contribution to the overall

deformation.

Recall that the temperature gradients and thermal expansion mismatch across the CPA

domain may give rise to mechanical stress [7, 21], while the total strain rate in the TM model

is the sum of elastic, thermal and viscous strain rates, Eq (12). In this model, the viscous strain

rate in the CPA is significant at high temperatures only, when the viscosity is very low, and it is

insignificant at low temperatures, when the viscosity is very high [7]. Furthermore, the thermal

expansion in a free of constraints solid due to thermal expansion [44] is much smaller than in

a liquid [45] under similar temperature changes. Hence, the deformation in the CPA due to

fluid flow is significantly higher than the deformation when the CPA behaves like a solid. It fol-

lows that the shape and magnitude of deformation in the vitrifying material can be closely

approximated with the TF model, while neglecting solid-mechanics effect. Consistently, stress

at high enough magnitudes to affect the structure of the material might occur only at very low

temperatures and can be approximated while neglecting earlier material flow.

While the difference in us
¼

between the TF and TM models is less than 1.5%, the computa-

tion time required for the solving the problems is 26 min and 4.5 hours, respectively, using an

Intel Core i7-9700 machine (8-core, 12 MB cache, 4.7 GHz). This opens new opportunities for

more computationally affordable modeling, when activating the significant parts of the model

based on local criteria, while transitioning from the TF model to the TM model as appropriate.

This time saving is of paramount importance when modeling complex organ geometries, and

larger container volumes to accommodate them.

Effect of container shape

Fig 8 displays the displacement histories for the 2D and 3D TF models, while maintaining the

above thermal protocol. The modeled deformations follow the same trend in both cases, with a

maximum difference of 4.1% at final temperature, which is less than the uncertainty in the dis-

placement measurements. The computation time required for the 2D and 3D models is 26

min and 3.5 h, respectively. It follows that simplifying the 3D problem as a 2D case leads to

runtime acceleration of an order of magnitude. While this approximation may be good only

for a selected set of cases, its effect on runtime is dramatic. Of course, solving the full-blown

3D TM problem requires tremendous computer resources, which may be impractical for com-

plex organ geometries and large-size vitrification.

Summary and conclusion

A TM mathematical model has been presented recently to investigate thermo-mechanical

effects associated with large deformations during cryopreservation by vitrification [11]. The

TM model is formulated to solve the coupled problem of heat transfer, fluid mechanics, and

solid mechanics. A simplified TF model for the analysis of the same large deformation during

vitrification is presented in this study. The main difference in the applications of both models

is that the TM model is design for the analysis of thermo-mechanical effects, while the TF

model is design to capture the deformation of the vitrified material only. The rationale behind

the simplified approach is that large deformations during vitrification occur only in higher

cryogenic temperatures, when the low viscosity material can easily flow but cannot sustain

high mechanical load. Conversely, significant mechanical stresses develop in low cryogenic

temperatures only, due to the exponentially increased viscosity, which results in small
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deformations. The mathematical solution is obtained by simultaneously solving coupled heat

transfer and fluid mechanics problems, using the commercial FEA code COMSOL Multiphy-

sics. The computation results are validated against experimental measurements of axial dis-

placement in the free surface of a CPA-filled cuvette during cryomacroscopy experiments.

For the experimental validation of the mathematical model, six different cases are studied

with various cooling rates and final temperatures, representative of cryopreservation applica-

tions. The investigated cooling rates are in the range of 10˚C/min to -25˚C/min, while the final

temperature is in the range of -115˚C to -135˚C. Generally, experimental results demonstrate

that the extent of deformation increases with increasing cooling rate, and independently with

the decreasing final temperature.

Comparison of the simplified TF model with the more comprehensive TM model proposed

previously [11] indicates that the deformation at the CPA surface is primarily due to material

flow associated with relatively low viscosity, when the contribution of solid mechanics effects

is marginal. Conversely, significant mechanical stress may develop when the material flow is

constrained by high viscosity. This suggests that cost-effectiveness in computation of vitrifica-

tion processes can come about by activating only the significant parts of the TM model based

on the localized thermal conditions.

While this study is focused on the surface deformation of CPA contained in a cuvette, the

model proposed in this study is applicable to the analysis of deformations in other complex

Fig 8. TF 2D vs 3D model. Comparison of displacement histories along the centerline of the container between the TF

2D and 3D models for a cooling rate of 20F0B0C/min. The error bars refer to the uncertainty in experimental

measurements for reference, although the displayed results are of FEA.

https://doi.org/10.1371/journal.pone.0282613.g008
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systems, such as the pillow-shaped cryobag. Accounting for the presence of tissue specimens

in the CPA domain can be accomplished straightforwardly by further varying the thermophy-

sical properties across the domain, providing specific data on their thermophysical properties.

Finally, this study demonstrates the high sensitivity of material deformation not only to the

thermophysical property values, but also to the variation of these properties with temperature.

This study highlights the unmet need to expand the databases on thermophysical properties of

CPA-loaded tissues and organs.
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