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Abstract

Solar active regions and sunspots are believed to be formed by the emergence of strong toroidal magnetic flux from
the solar interior. Modeling of such events has focused on the dynamics of compact magnetic entities, colloquially
known as “flux tubes,” often considered to be isolated magnetic structures embedded in an otherwise field-free
environment. In this paper, we show that relaxing such idealized assumptions can lead to surprisingly different
dynamics. We consider the rise of tube-like flux concentrations embedded in a large-scale volume-filling horizontal
field in an initially quiescent adiabatically stratified compressible fluid. In a previous letter, we revealed the
unexpected major result that concentrations whose twist is aligned with the background field at the bottom of the
tube are more likely to rise than the opposite orientation (for certain values of parameters). This bias leads to a
selection rule which, when applied to solar dynamics, is in agreement with the observations known as the solar
hemispheric helicity rule(s) (SHHR). Here, we examine this selection mechanism in more detail than was possible
in the earlier letter. We explore the dependence on parameters via simulations, delineating the Selective Rise
Regime, where the bias operates. We provide a theoretical model to predict and explain the simulation dynamics.
Furthermore, we create synthetic helicity maps from Monte Carlo simulations to mimic the SHHR observations,
and to demonstrate that our mechanism explains the observed scatter in the rule, as well as its variation over the
solar cycle.
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1. Introduction

Large-scale solar surface magnetic fields, such as sunspots
embedded in active regions, are widely believed to be
manifestations of a deep interior magnetic field rising to the
surface due to magnetic buoyancy (Parker 1975). While small-
scale fields (on the scale of observable solar surface velocities)
exhibit very turbulent behavior, the large-scale fields appear to
have surprisingly ordered dynamics. Observational studies
have clearly established the cyclic nature of such large-scale
solar magnetic fields, often exhibited as the butterfly pattern of
the emergence of active regions and surface sunspots. Further
regularity rules include Hale’s Law, associated with active
region polarity, and Joy’s Law, associated with their long-
itudinal tilt (Hale et al. 1919).

More recent observations of the solar surface have focused
on other structural properties of the active regions. Magnetic
helicity (Moffatt 1969), defined as Hy = /1A - (V X A)dV
(where B =V x A is the magnetic field, A is its potential, and
V denotes volume), measures the complexity of the active
regions in terms of the twisting, kinking, and linking of
magnetic field lines there. Magnetic helicity is an important
dynamical quantity for a number of reasons. For example, in
ideal MHD, H,, is conserved and is, therefore, a significant
constraint for dynamo theory (Berger 1984; Berger &
Field 1984; Blackman & Field 2002). Furthermore, the release
of energy stored in helical fields by reconnection (requiring
some resistivity) in the solar atmosphere is thought to be a
driver of energetic events, such as flares, jets, and coronal mass
ejections (CMEs; e.g., Low 1996; Amari et al. 2003; Nindos &
Andrews 2004). Observationally, the calculation of magnetic
helicity is complicated, since the vector potential A is not

directly observable, and is even not uniquely defined in terms
of the directly observable B field. However, the current helicity,
He= f vB - (V x B)dV, is unique, and its key components can be
constructed from observations; therefore, Hc has been extensively
used in place of, or as a proxy for, Hy,.

Detailed observations of current helicity have once again
exhibited a remarkable degree of temporal and structural
coherence in the large-scale field (Seehafer 1990; Pevtsov et al.
1995; Abramenko et al. 1997; Bao & Zhang 1998). These
observations together have established the “solar hemispheric
helicity rule(s) (SHHR).” The SHHR primarily states that
active regions in the northern hemisphere possess predomi-
nantly negative helicity, whereas active regions in the southern
hemisphere have predominantly positive helicity. This bias is
cycle-independent, but is not an absolute rule, since it is obeyed
by only 60%-80% of active regions. Although the detailed
temporal variation of adherence to the rule has not yet been
established, various observational studies (Bao et al. 2000a,
2000b; Hagino & Sakurai 2005; Hao & Zhang 2011) at least
seem to agree that the SHHR is violated more strongly at the
transition between cycles. Modeling efforts that may contribute
to the explanation of the origin of the SHHR are the subject of
this paper.

The observed structural properties of emerging magnetic flux
at the solar surface have motivated the idea that quasi-
cylindrical bundles of relatively strong, toroidal magnetic flux,
generally known as “flux tubes,” rise from the solar interior due
to magnetic buoyancy. Magnetic buoyancy can be thought of
as the upward force introduced by the presence of a magnetic
field concentration in a stratified compressible fluid (Parker
1955). If the total pressure and temperature equilibrate quickly,
as might generally be expected in this context, then the
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contribution of the magnetic pressure to the total pressure
reduces the gas density locally where the magnetic concentra-
tion exists, producing the buoyancy force. Conceptually, the
rise of magnetically buoyant structures seems to fit the
observations well. For example, if the rise of a toroidal
structure is not axisymmetric, then any upwards-arching of the
rising magnetic structures (creating what is often called an (-
loop) could eventually pierce the visible surface in such a way
that the “legs” of the loops then neatly explain the existence of
sunspot pairs and their polarities. Some interaction between the
structure and the background global rotation during transit
could further lead to the tilts of Joy’s Law. However, despite
these highly compelling conceptual ideas, the creation of such
magnetic structures, and the dynamics of their transport from
the solar interior toward the solar surface, are not adequately
understood.

The modeling of rising magnetic flux based solely on
magnetic buoyancy (therefore generally ignoring convection
and dynamo processes) can be broadly divided into two
classes: (a) studies of the rise of preconceived magnetic “flux
tubes”, and (b) studies of magnetic buoyancy instabilities. The
first class of studies assumes the existence of a magnetic flux-
tube-like structure, without any dynamical inclusion of its
originating process or field. It is important to note that, in this
case, the “flux tube” is a purely arbitrary geometrical
construction, placed in a field-free environment. This environ-
ment may mimic certain solar-like conditions, such as
stratification, but the magnetic structure is totally isolated and
disconnected from any larger-scale field (and the environment
is often initially quiescent). Initial studies in this class (e.g.,
Moreno-Insertis 1983, 1986; Choudhuri 1989; D’Silva &
Choudhuri 1993; Fan et al. 1993, 1994; Caligari et al. 1995;
Longcope & Klapper 1997) focused on the “thin flux tube
approximation” (Spruit 1981) where a flux tube is purely a line
with no cross-sectional area, but with ascribed buoyancy,
tension, and drag forces. Using appropriately chosen para-
meters, these thin flux tube models can exhibit many of the
characteristics noted in the solar observations, such as the
correct latitudes of emergence, and Joy’s law, for example.
Such agreements with solar observations have then been used
to infer unobservable solar characteristics, such as the strength
of the magnetic field at their region of formation (Choudhuri &
Gilman 1987).

Despite being extremely useful in terms of building initial
intuition, these studies do not capture more complete dynamics,
as was quickly discovered when finite cross-sectional flux tubes
were modeled. For example, it was soon found via two-
dimensional numerical simulations that, in order to maintain a
coherent rise, finite-size flux tubes need to have a significant
amount of magnetic field line twist in order to avoid being
ripped apart by the trailing vortices generated in their wake
(Moreno-Insertis & Emonet 1996). This revealed the essential
role of the twist, in this case, providing the necessary centrally
directed tension force required for a flux tube to remain
cohesive. The rise of finite-size flux tubes in these models is
still driven by magnetic buoyancy, either from a pre-assigned
non-equilibrium initial condition, or via an instability (e.g.,
Schuessler 1979; Schussler et al. 1994; Longcope et al. 1996;
Moreno-Insertis & Emonet 1996; Emonet & Moreno-Insertis
1998; Fan et al. 1998a), although, as mentioned above, other
dynamics, such as wake dynamics, rapidly come to play a
significant role. In three-dimensional numerical models of finite
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cross-sectional tubes, secondary instabilities are revealed,
leading to a kinking or an arching structure (Linton et al. 1998,
1999; Fan et al. 1999; Fan et al. 1998b; Fan 2001a, 2001b), highly
reminiscent of the 2-loops envisaged as being necessary to match
the solar surface emergence observations.

The second general class of modeling studies has focused on
the formation of magnetic flux structures based on the
instability of large-scale flux sheets. The parcel argument for
the concept of magnetic buoyancy, briefly mentioned above,
can be rigorously formulated into an instability problem, which
generally reveals that instability can occur when the horizontal
magnetic field increases sufficiently rapidly with depth
(compared to the background entropy gradient)(Parker 1955;
Acheson 1979). Two- and three-dimensional simulations of
horizontal magnetic flux sheets (e.g., Cattaneo & Hughes 1988;
Matthews et al. 1995; Hughes et al. 1997; Wissink et al. 2000;
Vasil & Brummell 2008; Guerrero & Kipyld 2011) have
demonstrated that magnetic buoyancy instabilities evolve to
form strong flux concentrations that are closely akin to the
conceptual geometry of the isolated flux tubes described for the
type (a) studies above. The concentrations are pseudo-
cylindrical, in the sense that they have a “mushroom-like”
cross-section perpendicular to the field lines that is substantially
narrower than any variation along the field lines. The long-
wavelength variation down the initially horizontal field lines,
corresponding to the most unstable modes, naturally leads to €)-
like rising structures, as required by the observations. Only a
few studies have included processes related to the origin and
formation of the magnetic flux sheets which subsequently give
rise to these instabilities (e.g., Brummell et al. 2002; Cline
2003; Cline et al. 2003a, 2003b; Cattaneo et al. 2006; Kersalé
et al. 2007; Vasil & Brummell 2008). For example, in Vasil &
Brummell (2008), a forced, vertically sheared, horizontal flow
first creates a localized horizontal (“toroidal”’) magnetic sheet
from a seed initial vertical (“poloidal”) field. This sheet
subsequently gives rise to magnetic buoyancy instabilities
(Vasil & Brummell 2009) that again exhibit the formation of
strong magnetic flux-tube-like structures.

It should be noted at this point that there is a third class of
studies, i.e., full global spherical convective dynamo models,
where strong bands of toroidal magnetic field, potentially
containing buoyant loop-like elements, can be seen (Brown
et al. 2010; Nelson et al. 2011, 2013; Nelson & Miesch 2014).
However, since the scale of these structures is very large, it is
hard to relate these directly to “flux tubes.” Such structures
could possibly be reorganized by near-surface processes into
smaller-scale structures, or could be the origin of the field for
the other two types of investigations mentioned above.

It is crucial to realize that, with respect to the second class of
magnetic buoyancy investigations (particularly those that
include the layer formation process), the flux structures formed
are not isolated magnetic entities, as is assumed in the first
class. Instead, any magnetic structures formed are embedded in
a large-scale background field. Therefore, such structures may
be better referred to as magnetic flux concentrations. The rise of
such concentrations may be significantly different from the rise
of isolated flux tubes in a field-free environment, as discussed
in some detail in Cline et al. (2003a). For example, whether the
enhanced connectivity of an embedded concentration in a
large-scale background field helps or hinders rise is not
understood. Connectivity to the background field during the
rise may create tension that opposes the rise. On the other hand,
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connectivity could also potentially alleviate some of the issues
associated with the rise of isolated structures, such as their need
to conserve flux as the structure rises through a strong density
stratification, leading to “ballooning” of the structure. Interac-
tion between the background field and the rising concentration
could also certainly rearrange observable quantities of interest,
such as the helicity of the structure. This potential for different
dynamics motivates the need for modeling that incorporates
such possibilities when examining the causes of observable
characteristics such as the SHHR. We provide a first cut at this
here in this paper. However, before we describe our efforts, we
will outline other work directly related to the SHHR that has
emerged from the previous categories of modeling.

Theories for the origin of the SHHR abound, but few are
very complete dynamically or fit the observations in a highly
compelling manner. One might expect solar magnetic fields, in
general, to have a handedness or chirality, since much of our
understanding of solar dynamo theory is based around the
necessity of the existence of chiral turbulent flows in order to
produce any mechanism that resembles a mean-field o effect
(Steenbeck et al. 1966). Of course, the Coriolis force is readily
available to break symmetry to achieve this. Many theories for
the SHHR therefore rely on the existence of the Coriolis force,
either directly or indirectly. Some authors have argued that the
helicity in the SHHR is a direct result of the correlation of the
fields in a mean-field dynamo. For example, Gilman &
Charbonneau (1999) explore the relationship between different
mean-field dynamo models and the subsequently observed
current helicity. Unfortunately, the results are highly dependent
on the exact formulation of the « effect, and can produce mean
fields with the same correlations as the SHHR, or the opposite,
depending on model choices. Other models loosen the direct
correlation with the « effect (Gosain & Brandenburg 2019)
somewhat by invoking scale-dependence, whereby the smaller
scales have the opposite sign of « to the large scales. Overall,
however, such mean-field models can only provide the overall
helicity of global axisymmetric fields, and struggle to say
something meaningful about anything that looks like an active
region.

Most other investigations therefore fall into the first category
of magnetic buoyancy modeling (described as type (a) above),
and have centered around how isolated, preconceived, rising
flux tubes of some sort can “acquire” helicity during their
transit to the surface.' Rising isolated flux tubes writhe in
response to the Coriolis force to create a tilt of the 2 loop in
accordance with Joy’s Law (Wang & Sheeley 1991; D’Silva &
Choudhuri 1993; Fan et al. 1994). Since the tilt corresponds to
the writhe of a flux tube, in order to conserve helicity, the tube
acquires the opposite-signed twist. Since the tilt was right-
handed (left-handed) in the Northern (Southern) hemisphere,
the twist is left-handed (right-handed) in accordance with the
SHHR. Unfortunately, Joy’s Law tilts do not provide twists
strong enough to explain the observed surface helicity values
(Longcope et al. 1999; Fan & Gong 2000). Furthermore, the
latitudinal dependence expected in this case is not seen in
the observations (Pevtsov & Canfield 1999; Holder et al. 2004).
Wang (2013) attempted to circumvent this constraint by
allowing the twist to be generated solely by the action of

! Note that most authors cited now refer to mechanisms for generating twist,

rather than helicity, leaving the direction of the toroidal field connecting the
two to be understood from the underlying dynamo fields. We refer to the
authors’ results here in their language.
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Coriolis force on the expansion of legs of the 2 loop as it rises,
concluding that sufficient helicity could be generated as long as
the rise were slow enough. Choudhuri (2003) postulated a
different, highly conceptual model, whereby the twist is
acquired when an untwisted tube rises into a near-surface
large-scale background poloidal field. In their “mean-field
circulation-dominated solar dynamo (CDSD)” model, this
poloidal field originates from the decay of tilted active regions
in a Babcock-Leighton type mechanism (Babcock 1961;
Leighton 1969). The acquired twist is therefore ultimately a
result of the interaction of the dynamo field with rotation once
again. Inspired by the Choudhuri (2003) model, Chatterjee
et al. (2006) and Hotta & Yokoyama (2012) have studied (via
models and simulations, respectively) the accretion of twist
onto an initially untwisted flux tube in the presence of specific
formulations of background field.

A general drawback of the above models is that they predict
a fairly strictly enforced SHHR, and do not easily explain the
observed weak (60%—-80%) adherence to the rule, and the
significant inherent scatter therein (although the model in
Choudhuri et al. (2004) does show some level of violation
during the transition between cycles, thanks to the correlation
of the dynamo fields in the CDSD model). One theory that does
account for this, and is therefore perhaps the leading SHHR
theory to date, is that of Longcope et al. (1998), hereafter
referred to as LFP. LFP invokes the action of rotationally
influenced convective turbulence on the transit of thin flux
tubes through the convection zone. In a sense, their “X>” effect
is a small-scale version of previous ideas, whereby the
buffeting by Coriolis-influenced helical turbulence imparts
net writhe to a thin flux tube that must then be compensated by
a net twist of opposite sign. In this manner, the sign is again in
accordance with the SHHR, and the turbulent nature leads to
significant fluctuations and scatter, as required. However, this
model has no obvious basis for temporal variations of the
adherence to the rule over the solar cycle, which becomes even
more pronounced toward its end, as found in various
observations.

The biggest differences between our model for the SHHR
(described below) and the models described above are that (i)
we consider the dynamics of a finite-sized concentration of
magnetic field in a volume-filling field, rather than an isolated
magnetic entity, thereby being more in accord with type (b)
models and full dynamo simulations, and (ii) our model allows
for structures to be created with any initial helicity, and a
selection mechanism then “sorts” or “filters” these to reveal the
appropriate SHHR handedness rule in general, although
naturally accompanied by a lot of scatter. The SHHR in our
case is derived from the initial configuration of the magnetic
field and this filtering mechanism, and is not acquired during
its transit. Perhaps the closest previous model to our own is that
of Choudhuri (2003), since it involves the interaction of a
magnetic structure with an overlying dynamo-generated large-
scale field. However, the similarities stop there, since the
expected locations of the two effects are entirely different, and,
again, our model is a method of sorting helicities rather than
creating (or acquiring) helicity. It should be noted at this point
that our mechanism can be readily combined with all the other
mechanisms, and it is entirely possible, if not probable, that at
least some of them play a significant role. The degree to which
each contributes is an interesting question.
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Preliminary results based on our model have been published
in Manek et al. (2018; hereafter referred to as Paper I: see the
extended review in Section 3). This preliminary work simply
studied the effect of adding a background field of various
strengths and directions to a canonical flux concentration.
However, the results clearly show that magnetic flux
concentrations rising in the presence of even a relatively weak
large-scale background field exhibit very different dynamics to
the dynamics studied under the simplistic assumptions of
isolated flux tubes rising in a field-free environment. This work
found that even weak background fields could quench the rise
of flux concentrations that would rise in the absence of a
background field. More remarkably perhaps, the work
discovered the selection mechanism mentioned above. This
selection mechanism, when applied to the solar context, agrees
with many facets of the SHHR to a surprising degree of detail.
In this followup paper, we go beyond simply demonstrating the
effect, as in the original paper, and focus on examining the
robustness of these results to the many various assumptions of
the model, as well as the dependence on parameters. In
particular, with the help of a detailed analytic model, we outline
exactly when the bias leading to the SHHR-like behavior in this
model will manifest, in terms of the relative strengths and
configurations of the magnetic flux concentration, and the
background field. Furthermore, we extend the work to create a
synthetic SHHR map demonstrating the detailed agreement of
this model to the observations. We also specifically address the
issue of significant scatter in the observations of SHHR and its
temporal variation.

2. Model and Methods

Our model essentially evolves a cylindrical flux structure
(comprising both an axial and a locally azimuthal magnetic
field component, so that the field is helical), embedded in a
large-scale background magnetic field, oriented horizontally
and perpendicularly to the tube axis. When compared to the
motivating solar application, the cylindrical flux structure
should be thought of as toroidal (and therefore represents the
typical idea of a twisted magnetic flux tube, soon after
formation, in the deep interior), and the large-scale background
field should be thought of as poloidal, representing the deep
interior poloidal component of the dynamo field (see Figure 1).
The flux structure setup is very similar to that of many previous
studies (e.g., Moreno-Insertis & Emonet 1996; Hughes et al.
1998, hereafter referred to as HFJ), but our model includes the
crucial addition of the large-scale background field, making the
flux structure a concentration rather than an isolated tube. We
choose an adiabatically stratified fluid layer covering 1.2
density scale heights, so that it roughly mimics the region
containing the upper tachocline and the lower 40% of the
convection zone. Even though no convection is present in our
current simulation setup, we have chosen the initial background
field profile to mimic what might be expected if indeed
convection were to be present. That is, we concentrate the
horizontal field near the bottom of the domain as if it had
undergone magnetic pumping into the overshoot region at the
top of the tachocline via turbulent convection (see e.g., Tobias
et al. 2001). Ultimately, however, our results turn out to be
relatively insensitive to this choice of configuration. The more
complicated problem with convection present will be addressed
in later studies. We ignore the origins of these initial fields,
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assuming that they have already been formed by dynamo and
instability processes, and study their evolution. Note that these
are not instability calculations, as the initial conditions are not
in any equilibrium by choice; we imagine the start of our
simulations to represent a portion of the later stages of a
nonlinear instability simulation (e.g., Vasil & Brummell 2008).
Our aim is very simply to understand the effect of a volume-
filling source background field on the rise of a pre-formed
concentration, under conditions akin to the deeper solar
interior. Other models (e.g., Chen et al. 2017) examine the
emergence of field at the photosphere, given initial conditions
from the interior, and it is one of our goals to build toward an
understanding of the origin of the initial conditions needed for
those simulations.

In order to study the model described above, we solve the
equations of magnetohydrodynamics (MHD) using the publicly
available FLASH code (Fryxell et al. 2000; Dubey et al. 2013)
in a Cartesian domain. The equations solved, in non-
dimensional conservation form, are as follows:

@ + V.(pv) = 0, (la)
Ot
% + V.(ovv — BB) + Vp, = pg + V.1, (1b)
OpE
o + V.(W(pE + p,) — B(v.B)) = pg.v
+V.v.t + oVT) + V.(B x (nV x B)), (1¢)
%—f + V.(WB — Bv) = —V x (nV x B), (1d)
where
BZ
Pe=p+ 2, (le)
2
E—lv2+e+lB—2 (1f)
2 2 p’
= u((w) + (V)T — %(V.v)l). (1g)

Here, p is the density of a magnetized fluid, v = (vy, vy, v,) is
the fluid velocity, B = (B,, B,, B.) is the magnetic field, p is the
fluid thermal pressure, p, is the total pressure (fluid and
magnetic), g is the body force per unit mass, 7 is the viscous
stress tensor, E is the specific total energy, T is the temperature,
o is the heat conductivity, n is the magnetic resistivity, € is the
specific internal energy, p is the coefficient of viscosity
(dynamic viscosity), and I is the unit (identity) tensor. Here, p,
o, and n are chosen such that magnetic Prandtl number,

Pr, = g _ 1, and Prandtl number, Pr = g _ 0.1.

Thesz:7 MHD equations are solved in alfocal Cartesian 2D
simulation box of dimensions x&[— 1, 1] and y€ [0, 4],
whose geometry relative to a spherical star is shown in
Figure 1. The simulations are 2.five-dimensional, in the sense
that fields in the third (z) direction are included, but the
dynamics are independent of this direction. This non-
dimensionalization can be regarded as specified by the relative
size of the tube compared to the variation of the background
hydrostatic state, which is a weak adiabatic polytropic
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Figure 1. Cartoon sketch of the relation of the model to the Sun (adapted from
Paper I). Our 2.5 dimensional model relates the Cartesian directions x to
latitude, y to height, and z to longitude. Vectors in the z direction exist, but the
model is independent of this direction. The domain spans the lower convection
zone and the transition to the radiative zone. The model horizontal background
field is related to a deep, large-scale poloidal field. The magnetic concentration
is identified with twisted toroidal field structures, and is initially placed deep in
the stratification.

Y
# " u g 3w xomow = E

stratification
T=1+60; p=0+0)p=(1+06)", (2

where y’ =4 — y. Throughout this paper, we set non-
dimensional temperature gradient @ = 0.25, and the polytropic
index m=1.5 (the adiabatic value for a perfect gas with
v = % = 2, where C, and C, are the specific heats at
constaﬁt pressure and volume, respectively). The polytropic
hydrostatic model dictates that g = —gy = —0(m + 1)y.
Note that our model is essentially at a fixed plasma (.
Variation of the magnetic field configuration does alter 3
somewhat, but for the parameters that we have surveyed, the
variation is not substantial.

The magnetic initial conditions consist of a cylindrical
concentration (which we still often colloquially refer to as
“the tube”) of radius r <R, centered at (x., y.) (where r is
the local radius of the tube relative to its center:
r= \/ (x — x.)> + (y — y.)?), embedded within a background
horizontal (but vertically varying) field. Throughout this study,
we choose to use R=0.125, and take the center of the tube to be
at (x., y.)=(0, 0.5). The axial (z direction) field inside the
concentration is constant, and defines the scale for the
amplitude of the magnetic field, so that B,=1 there (although
note that a Gaussian cross-section of axial field is used instead
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of this top-hat profile to test robustness in Section 3). To define
the azimuthal field in the concentration, we use potential
function A, to ensure that the solenoidal condition is satisfied:

A, =—q(x*+ (y —y)») + K, 3)

where we choose K such that the continuity of A, =0 is
ensured at the edge of the tube » = R. The parameter g defines
the twist of the tube field lines, and is a key parameter of the
simulations. The magnetic field defining the concentration is
therefore given by

Bupe = (—29(y — ), 2gx, 1), r<R. “4)

The large-scale overlying background field in which the flux
tube is embedded is aligned horizontally (in x), and we choose
an exponential variation in y to represent a poloidal field
perhaps more confined to the base of the convection or upper
tachocline:

Bk = (Bpack, 0, 0) = (Bs exp(yCZ—ITIBy), 0, 0) )

Here, therefore, B; is the strength of the background field
relative to the initial magnetic field strength at the center of the
flux tube, and H, is the scale height of the exponentially
decreasing field. We vary both these parameters to explore the
effect of the configuration of the overlying field, from weak to
strong, and from significantly confined to almost constant in the
vertical. The total initial magnetic field in the concentration is
therefore given by

B, = Btube + Bback = (_2q (y - yc)

Y — y), 2gx, 1), r <R, (6)

+ B, ex
p( 2Hp

and outside the tube is simply B,y = Bpack- This setup, with no
background field (B; = 0), is similar to the case studied in HFJ
with the parameter o = 0 (with the only differences being that
we do not assume symmetry of the rising flux tube about the
mid-plane, and we choose a slightly larger tube cross-section).

On insertion of a magnetic field into a stratification, it is
generally assumed that the total pressure equilibrates quickly,
making the total pressure continuous with the external
conditions. The thermodynamics of the tube can then be
specified, such that there is a density anomaly, with the tube
less dense than the surroundings. However, there is no unique
way of specifying these initial conditions, as the effect of extra
magnetic pressure can be accounted for by the density, the
temperature, or both combined. One formulation of the initial
conditions that has been used by others (e.g., HFJ, Moreno-
Insertis & Emonet 1996), and was also used in Paper I, is to
have the temperature continuous at the edge, but varying inside
the tube, such that density and total pressure are merely a
function of height (Figure 2). We adopt this again here, but
investigate the effects of varying the form of these initial
conditions briefly as part of the robustness tests in this paper
(see Appendix A), finding that they have little bearing on the
major results.

We choose the top and bottom boundaries of the simulation
box to be fixed temperature, stress-free, and impermeable to
flow but not to magnetic fields, given respectively by

T(y=0)=1+6%=2 T(y=4)=1 )
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Figure 2. Vertical profiles of the initial thermodynamic conditions through the
center of the magnetic flux concentration, along x = 0.

Ov.
=—=0 8
Vy Dy ®)
9By _ 0B, _ 9)
dy dy

At the right and left boundaries of the simulation box, we
implement Neumann boundary conditions
g:%:%:%:%zo (10)
Ox Ox Ox Ox Oox
which permit the outflow of the fields. While outflow magnetic
boundary conditions are somewhat controversial (Forbes &
Priest 1987), these conditions are commensurate with the
earlier studies of HFJ. In the current setup, the diameter of the
tube is one eighth of the horizontal domain, and can rise
vertically through 16 times its size, thereby allowing significant
room for the unconstrained dynamics of a single tube. Hence,
in this work, we only present dynamics far from the
boundaries, and we have further checked that the results are
robust to alternative choices of boundary conditions and other
reasonable domain sizes.

3. Previous Results: Dynamics of a Flux Concentration

We briefly revisit the results of Paper I so that the key
results, on which we are expanding here, are clear. However, so
as not to be completely repetitive, and as one test of robustness,
we change the radial profile of the initial magnetic flux
concentration from that used in the previous paper, keeping all
other parameters the same. Paper I used a top-hat distribution
for the axial field B, i.e., B, = 1 for r < R, where R is the radius
of the concentration. Here, instead, we use a Gaussian profile in
radius, where B, = B, exp(—r2/R?) for r < 2R, as also used in,
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for example, Cheung et al. (2006). We choose B,,, such that the
net integrated B, inside the Gaussian flux tube is the same as
the previously studied top-hat distribution.

Figure 3 shows intensity plots of B, as a function of time for
a number of simulations at varying background field strength
and orientation, but with otherwise fixed parameters (equiva-
lent to Figure 2 of Paper I). The crucial results, which we now
describe, are essentially the same, regardless of the form of the
magnetic initial condition. Figure 3(a) shows a canonical case,
exhibiting the characteristic rise of an isolated twisted magnetic
flux tube in a field-free environment via the action of magnetic
buoyancy. The flux tube rises coherently, forming a “mush-
room-like” structure, without any non-diffusive flux loss, a
result found by many (e.g., HFJ).

Paper I found that the introduction of background field
significantly affects these rise dynamics, and this can also be
seen in these new results in the subsequent panels of Figure 3.
In the presence of a background field of strength, B, =0.1
(Figure 3(b)), the rising flux structure experiences some initial
flux loss due to transport down the overlaying background field
lines, but rises in a qualitatively similar manner to the canonical
case. Here, the rising flux structure is still reasonably coherent,
and is able to transport upwards a major portion of the initial
flux in the flux tube. With a stronger background field strength,
B, = 0.2 (Figure 3(c)), the coherency of the initial flux structure
is completely disrupted, and no significant upward flux
transport is observed. A more fine-grained parameter study of
varying background field strengths reveals that an overlying
background field with a typical strength of B;>0.16 can
completely halt the rise of an initially buoyant twisted magnetic
flux tube of the canonical type. The first surprising result in
Paper I, repeated here in a slightly different configuration, is
therefore that a relatively weak background field (only 16% of
the initial tube strength) can totally suppress the buoyant rise of
the structures.

The second, perhaps more surprising result of Paper I is that
the quenching threshold depends on the relative orientation of
the twist of the magnetic concentration (i.e., its local azimuthal
field) and the background field. Paper I investigated this by
keeping fixed twist, reversing the background field, and
varying the background field strength to find the value where
rise was suppressed again, a process we repeat here with our
new Gaussian tube. Figure 3(d) shows the rise of a magnetic
flux tube in the presence of an overlying large-scale back-
ground field of strength, B, = —0.02 (2% of the initial axial
field at tube center), oriented in the negative horizontal (x)
direction, showing that this very weak strength does not affect
the dynamics in any significant way. However, by slightly
increasing the overlying field strength to By=—0.06
(Figure 3(e)), the rise of the buoyant tube is completely
suppressed and the coherent initial structure completely
disintegrates. This surprising behavior sets another, even
lower, background field strength threshold for the quenching
of flux tube rise in this field orientation.

Note that, in these particular investigations, the twist is
always positive (i.e., the azimuthal field in the concentration is
oriented in a counterclockwise fashion), and we then experi-
ment by flipping the orientation of the background field. The
symmetry of the problem allows us to make analogous
conclusions for a case where the flux tube twist is flipped,
while keeping the orientation of the background field constant.
In other words, when keeping the background field always
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Figure 3. Intensity plots showing the evolution of (normalized) B.(x, y, ) for various background field strengths. Shown in rows (a, b, ¢, d, and e respectively) are
B, =0,0.1, 0.2, 0.02, — 0.06. For all cases, Hz = 0.125. Three times are shown for each case. In (a), (b), (d), and (e) the times are (t;, 1, 13) = (5, 10, 15) but for (c)
the times are (¢1, t, t3) = (2, 5, 8). Contours of A, have been added to panels (b) and (d). Panels (a), (b) and (d) demonstrate cases of successful rise, whereas in panels
(c) and (e) the rise is suppressed. The initial axial magnetic field profile in each of these cases is given by Equation (B2).
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Figure 4. Rising flux fraction, fq.«(#), for the initial Gaussian magnetic axial field profile. (a) B; > 0, (b) B; < 0 with Hg = 0.125, and vy spresnola = 0.02.

positive, for example, tubes with a positive twist (where the
azimuthal field forming the twist is aligned with background
field at the bottom of the tube and counter to the background
field at the top) are quenched when fields above B; = 0.16 are
present, whereas tubes with negative twist (azimuthal field
aligned with the background field at the top of the tube and
counter to the background field at the bottom) are quenched at
strengths above B;=0.06. There are, therefore, certain
intermediate background field strengths where one orientation
of twist (relative to the background field) is suppressed,
whereas the other is not, i.e., a “selective rise regime (SRR)” in
background field strength exists where a selection mechanism
operates, allowing structures of one twist to rise while
suppressing the other. It so happens that this selection
mechanism of tubes is remarkably commensurate with the
SHHR in many respects, as was originally explained in Paper I,
and as we will outline again shortly. In this paper, and in
particular in Section 4.1, we will investigate the mechanism,
parametric dependencies, and properties of this SRR in far
greater detail.

The qualitative picture of the rise and suppression of tubes in
the presence of a background field as described by Figure 3 can
be corroborated more quantitatively via calculation of the rising
flux fraction, f.x(f) (as performed in Paper I for the top-hat
initial condition, rather than the Gaussian condition shown
here). The rising flux fraction is given by

BX dx dy
Jrux @) = S ey (i

f f B, dx dy
where B,g=B,(x, y, t=0), and B:, = B.((x, y, t) where
Vy(X, ¥, 1) > Vy threshold)- HET, V) hreshond 18 @ judiciously chosen
velocity that tracks any flux rising upwards at or above this

threshold velocity value. A large flux fraction therefore indicates
that a significant portion of the original axial flux in the flux tube is
still rising, and lower flux fractions indicate that normal buoyant
rise is being impeded. Figure 4 shows the rising flux fraction as a
function of time for various background field strengths and
orientations, where Hg = (0.125. Panel (a) of Figure 4 corroborates
the first surprising result, whereby even a relatively weak
background field strength (~ 20%) can suppress the rise of the
flux tube. In this panel, the canonical result where B, =0 can be
seen to maintain the rise of almost all the flux (with only a slight
diffusive loss), whereas B; = 0.1 reduces the rising fraction to less
than 0.5. Panel (b) corroborates the second result, regarding the
effect of changing the orientation of the background field for a
similarly twisted flux tube. Here, for a negatively oriented
background field (retaining a positive twist in the structure), the
substantially more dramatic reduction of rising flux fraction by the
same background field strengths is readily apparent. Note that both
panels show the rise only until the time at which the flux tube
either reaches the top of the simulation box or is completely
stopped.

The reasons behind such observed dynamics were analyzed
in Paper I. We outline the basic ideas here, but investigate them
in far greater detail in Section 4 of this paper (including a
mathematical model of the dynamics). When a background
field is present, tension forces induced in the overlying
background field, as the tube attempts to lift it up during its
rise, oppose that rise. Furthermore, the axial magnetic flux that
provides the majority of the magnetic buoyancy for the rise can
be transported (“drained”) down the trailing background field,
and the trailing vortices that normally drive the buoyant rise
can be disrupted by the presence of the wrapped-around
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Figure 5. This figure shows how to translate our model results into the solar case. Panels (a) and (b) show a pictorial representation of the first and second half of an
arbitrary full 22 yr solar cycle, respectively. The cartoon spheres depict the action of differential rotation on an existing dynamo poloidal field (i.e., the mean-field
effect). The dynamo poloidal field is represented with red arrow markers, and the toroidal field with blue markers. The differential rotation (indicated by black arrow
markers) stretches the poloidal field into the toroidal field, leading to a certain orientation of the directions of the two fields in each hemisphere (for each half of the
cycle). The cylindrical cartoons show how the above oriented fields relate to the axial (blue, toroidal) and background (red, poloidal) fields of our model. Furthermore,
the tube cartoons show the twist (azimuthal, non-axial field, green markers) of structures that are predicted to rise preferentially by our model. The resultant correlation
of axial (blue) and twist (green) is commensurate with the SHHR. Figure adapted from Paper 1.

background field, causing further retardation. In the absence of
a background field, the net internal tension force in the flux
tube is initially symmetric (independent of azimuthal angle,
always pointing radially inward, and therefore with no up or
down component), and hence makes no initial contribution in
determining the rise characteristics, other than to provide the
coherency necessary for successful rise (Moreno-Insertis &
Emonet 1996). However, the introduction of a horizontal
background field in the presence of a twisted flux concentration
has the effect of adjusting the local B, at the leading and trailing
edges of the flux tube differentially. The added background
field can either enhance or detract from the contribution of the
azimuthal field of the twist at either place, depending on the
relative orientation of the two elements of the field. For
example, a positive background field enhances the azimuthal
field at the bottom of a positively twisted tube, and detracts
from it at the top, whereas a negative background field acting
on the same twist would enhance the top and decrease the
bottom. Forces (internal to the flux tube) involving gradients of
magnetic field, i.e., magnetic buoyancy and tension, are thus
adjusted differently at the leading and trailing edges of the flux
tube, depending on the orientation of the background field. We
find that an orientation of the background field and flux tube
twist that enhances the local B, at the trailing edge of the flux
tube and decreases it at the leading edge creates an asymmetric
tension force in the tube that acts upwards, in concert with
magnetic buoyancy forces. This enhancement acts against the
retarding tension forces of the overlying field, and therefore a
higher threshold of overlying field is required to suppress
the rise. On the other hand, if the relative orientation of the
background field and the twist has the effect of decreasing
the local B, at the trailing edge of the flux tube, and increasing
it at the leading edge, then a net tension force is induced in the
tube, acting downwards in concert with the retarding tension
induced by rise in the overlying field. This increases opposition
to the magnetic buoyant forces driving the rise, and therefore
rise is more easily suppressed.

Paper I showed that this selection mechanism, when applied
to a solar context, had many qualities in agreement with the
SHHR, in particular the correct helicity parity. Figure 5 shows
how the model results translate to the solar scenario for a
complete 22 yr solar cycle, where the fields reverse after 11 yr.

The azimuthal field direction (twist) of the flux concentration,
along with its axial field direction, gives a certain sign of
current helicity to the initial flux concentration. Note that our
selection rule depends only on the relative orientation of the
twist and the background field, such that the axial field
direction, and therefore the current helicity, must be determined
by the particular circumstances of the solar situation.
Figure 5(a) shows the first half of a sample solar cycle, defined
by the N-S orientation of the large-scale poloidal field (red
arrows). We assume, as is commonly the case in the current
understanding of the generation of large-scale solar fields, that
deep in the solar interior, the action of differential rotation on
the large-scale background poloidal field leads to the genera-
tion of strong toroidal flux sheets, which subsequently leads to
more localised toroidal flux concentrations (likely via magnetic
buoyancy instabilities). This assumption ensures that the
toroidal axial field orientations (blue arrows) of a flux
concentration and the large-scale background poloidal field
are correlated with each other. For example, for the first half of
our sample cycle, shown in Figure 5(a), the N-S orientation of
the poloidal field leads to an eastward toroidal field in the
northern hemisphere, and a westward field in the southern
hemisphere. In the second half of our sample cycle
(Figure 5(b), the poloidal field (red arrows) reverses (S-N),
and the action of the differential rotation therefore produces a
westward toroidal field in the northern hemisphere, and an
eastward field in the southern hemisphere. Based on the N-S
orientation of the poloidal background field for the first half of
the sample solar cycle in Figure 5(a), the selection mechanism
of Paper I then requires that flux concentrations, twisted
counterclockwise, are more likely to rise (in either hemisphere),
as they require a higher threshold of poloidal field strength to
disrupt their dynamics. This counterclockwise twist, paired
with the different axial toroidal field direction in each
hemisphere, then dictates which helicity has a preferential rise.
A positive correlation between the twist and the axial toroidal
field direction would lead to a positive helicity flux concentra-
tion, and, similarly, a negative correlation would lead to a
negative helicity flux concentration. It can be seen in
Figure 5(a) that flux structures with negative helicity in the
northern hemisphere, and positive helicity in the southern
hemisphere, are more likely to rise. For simplicity of
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Figure 6. A map of rise success/failure in ¢ — By space for fixed Hg = 0.125.
Background field strengths B are given as percentages of the axial field
strength of the magnetic flux structure. Background field and flux tube twist
orientation by sign are shown schematically for clarity. Red (darkest) color
signifies a definite failed rise of the flux structure, whereas the green (lightest)
color signifies a definite successful rise. Orange (intermediate shade) signifies
an intermediate result, where the structure may rise, but the dynamics are
noticeably different from other rising cases. Simulations lying inside the white
dotted lines are either cases with negligible background field By ~ 0, or cases
where the twist is so low (g ~ 0) that structures would not rise coherently.

understanding, Figure 5 shows these cases—those requiring a
higher threshold of background field to halt/break up the rise
of a flux concentration, i.e., configurations that are preferred, in
the sense that they are more likely to rise. It can be seen that
Figure 5(a) is in agreement with the “Solar Hemispheric
Helicity Rule.” Furthermore, in the second half of the cycle,
shown in Figure 5(b), both the poloidal field and the toroidal
field flip direction (sign) in each hemisphere, thereby preser-
ving the helicity of the structure that has a preferential rise. This
selection mechanism is therefore commensurate with the parity
rules of the SHHR and its invariance over the full solar cycle.

The mechanism discovered here also points to a potential
explanation for the large scatter found in the SHHR observa-
tions, which was not examined in Paper I, but is explored in
detail in this paper. The selection only happens for a range of
relative strengths of twist in terms of the structure and
background field strengths (which we call the SRR). We might
expect either of these contributions to vary outside of this
range, thereby allowing violations to the rule. We investigate,
and also synthetically reproduce, this scatter in more detail later
in this paper.

The above results originally reported in Paper I (and repeated
here for a different axial field profile in terms of the tube-like
structure) were obtained from a small number of experiments,
based around a canonical setup. We now proceed to quantify
the robustness and parametric dependence of the SRR in detail
through a much broader range of simulations (Section 4),
which is the main purpose of this paper. We also, in particular,
expand the understanding of the mechanism by producing an
analytical model (Section 4.2). Furthermore, to create a more
realistic comparison between the model ideas and the
observations of the SHHR, we then extend the single flux
structure simulations to Monte Carlo (MC) simulations,
containing multiple tubes with randomly generated properties,
in order to examine the helicity distribution of the emerging
flux concentrations (Section 4.4).
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4. New Results: Parametric Dependence of the SRR
4.1. A Broader Survey of q —Bg Space at Fixed Hg

We define our SRR as the region in parameter space where
one relative orientation of twist and background field rises
successfully but the reverse orientation does not. Given that the
dynamics of the selection mechanism depend on the interaction
between the background field and the twist of the tube, it might
be expected that the SRR is most strongly dependent on g and
By, and we concentrate on this first, fixing for now the other
main parameter, i.e., the scale height of the background field
configuration, at Hz = 0.125 (and, as always, keeping the other
parameters at their canonical values: m=1.5, R=0.125,
0 =0.25). It is perhaps easiest to think of the SRR as the
parameter regime where one sign of twist rises but the other
does not, at fixed background field strength and orientation.
Note, however, that our original simulations fixed the twist, and
examined the effect of reversing the field. The SRR, therefore,
is really a two-dimensional region of g — B, parameter space
(for fixed Hp), and we investigate this here.

Figure 6 shows a much broader survey of results in the
q — B, parameter space than that provided in Paper I. The
original work in Paper I would correspond to a single row at
qg=2.5 (not actually shown in this new figure). Schematic
indications of the crucial twist and background field orienta-
tions are shown in the border of the table, along with their
values, for ease of interpretation of their signs. The figure
shows a matrix colored at each g — B, value, according to
whether a simulation at those values shows that the flux
concentration clearly rises (green), clearly fails to rise (red), or
something less easily determined (orange). The determination
in each simulation is accomplished using visualizations and the
flux fractions, as exemplified in Figures 3 and 4. The relatively
complicated intermediate dynamics represented by the orange
colored cases are examined in more detail in Section 4.4.
Swapping both the sign of ¢ and B; results in the same
dynamics (equivalent to simply viewing the same system from
the other end of the flux tube), and so the table is diagonally
symmetric across the origin. All four quadrants of the matrix
have been included in the table for ease of use, but this
symmetry emphasizes that the selection mechanism only
depends on the relative direction and strength of B and the
twist, g. We therefore explain one half of the survey chart
(Bs > 0), since analogous interpretations can be drawn for the
other half. Note that in our model setup, when g changes sign,
the current helicity of the tube also changes sign, since B,
remains fixed in the positive z direction. This is irrelevant to the
selection mechanism, since it depends solely on twist, not on
helicity. For relevance to the solar case, however, the selection
mechanism can be cast in terms of helicity, given that there, the
sign of the background field and the tubes axial field are
correlated, according to our understanding of the dynamics of
the solar dynamo. The cases within the white dotted lines are
special cases. For ¢ <0.25, all cases fail to rise coherently,
regardless of the background field strength, because some
initial twist is required to maintain the coherency of the tube
(Moreno-Insertis & Emonet 1996). For all other ¢ = 0.25, with
zero background field, the tube rises successfully.

For any fixed By, the table in Figure 6 clearly shows that an
asymmetry exists between positive and negative g. For By > 0,
the transition from red (unsuccessful rise) to green (successful
rise) for negative g occurs (if it occurs at all in the cases
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surveyed) at far larger |g| than for positive ¢. By symmetry, for
B, <0, the roles are reversed, with the g >0 boundary
occurring at much larger |g|. The different |g| at which the
red—green (unsuccessful-successful) transition occurs (say |g_|
for the negative g and |q, | for the positive ¢) delineate the SRR
at that B,. The SRR can therefore be defined, based on the
simulation data at any B, as the set

SRR = {g s.t. |q| € [min(|q_|, |g,]), max(lg_|, lg,D1}. (12)

Within this set, the g of one sign rises and the other does not. It
can easily be verified from Figure 6 that, for B, > 0, structures
where g > 0 rise if their g lies in the SRR found at that B,
whereas for By < 0, it is the structures where g < 0 that rise.

Figure 6 shows that the boundaries of the SRR, given by |g_|
and |g.|, vary with B. For higher |B,|, stronger ¢ is clearly
required to overcome the background field in order to rise, and
the SRR becomes defined by higher |g| values, and appears to
widen the extent of |¢|. These issues are investigated in detail
via a numerical model in the next section.

At this point, it is worth noting that there are some physical
limits on what we might expect for reasonable values of |g],
despite the fact that we have no direct observational evidence
from the solar interior to help us out in this matter. Firstly, in
our model, structures with |g| = 12 are unphysical, since in that
case the azimuthal field is sufficiently strong that the associated
magnetic pressure induces a negative density in the initial
conditions for the structure.” Secondly, structures with lg| = 8
are probably unstable to kink instabilities (according to Linton
et al. (1996), whose three-dimensional model has a different
field configuration from our two-dimensional model, but is a
reasonable guide). These issues informed our choice of range in
g in these simulations. Similarly, we have no direct observa-
tional data for the strength of solar interior magnetic fields, but
it seems reasonable to presume that the background poloidal
field strength is only a fraction of the strength of any rising flux
structure.

Ultimately, the ¢ — By diagram in Figure 6 exhibits
compactly the results of a selection mechanism, and therefore
illustrates clearly what we have referred to as the SRR, i.e., the
parameter regime in which the selection occurs. The overall
conclusions to be drawn from the simulation data presented in
Figure 6 may be that an SRR of some extent occurs for almost
all reasonably physical parameter values. This seems to imply
the existence of an overall bias for the rise of flux structures,
even if they show significant variance in their magnetic
composition. In general, a prevalence of positively twisted
structures might be expected to emerge from a distribution of
structures in the presence of a positive background field, and a
prevalence of negatively twisted structures might be expected
in a negative background field. We verify these ideas in
Section 4.4, but first we turn to an analytical model that defines
the SRR explicitly in terms of the parameters, allowing a more
fine-grained exploration and understanding of the parameter
space.

4.2. An Analytical Model of the Dynamics

Our previous paper, Paper I, provided some brief insights
into the reasons for the varying dynamics associated with the
different orientations of fields and tubes. Here, we extend those

2 This limit is actually not constant, but is instead a very weakly decreasing
function of By, and is shown later as the dashed line in Figure 8.
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ideas into a detailed model to explain and predict the g — B;
behavior discussed above, together with the dependence on
other parameters. To formulate the model, we carry out a
theoretical analysis of the key magnetic forces acting on the
flux concentration in the vertical (y) direction as it initially
begins to rise. Our model is based on the following ideas:
firstly, we have in mind that the rise of a tube-like
concentration through the overlying background field is
generally hindered by tension induced in the background field
as it is wrapped around the structure, and is then lifted and
stretched upwards. Secondly, building on the ideas in Paper I,
we expect that the introduction of the background field induces
differential values for the internal tension and buoyancy forces
across the tube-like concentration, which can lead to net forces
that either help or hinder the rise. To create a model that
predicts whether rise is successful or not, we calculate the
differential buoyancy and tension forces from the initial
conditions at =0, then estimate the impeding tension forces
from the overlying field, induced as the structure rises. A
balance of these forces should delimit the bounding case
between successful and unsuccessful rise. Note that, since the
selection mechanism and all the results discussed so far are
robust to different formulations of magnetic initial conditions
(see Section 3 and Appendix A), in order to make analytic
integration of the net forces easier, we revert back to the “top-
hat” magnetic initial conditions (B,=1 for r<R in the
concentration; see Equation 6) as used in Paper I, rather than
the Gaussian cross-section used in Section 3.

The buoyancy force in the y-direction, Fyuoyancy,y» including
its magnetic contribution, is generally thought of as the driving
force for the rise of the concentration. We have deliberately set
up our problem so that the presence of the magnetic field of the
concentration produces a density (and temperature) perturba-
tion (under the assumption of fast equilibrium of the total
pressure; see Appendix A, Case 2) that will drive the rise. The
addition of a background field that varies with height can create
a perturbation to the vertical buoyancy force which is
asymmetric about the center of the tube, and therefore has a
net contribution. Ultimately, however, we will find in the
following calculation that the magnetic contribution to the
buoyancy force is dominated by the axial field of the tube, and
that this differential perturbation is unimportant (with respect to
the buoyancy force, although it will be crucial for the tension
force). The net buoyancy force in the vertical (y) direction over
the circular region of the tube-like concentration in our
Cartesian coordinate system is given by

+R |R*—y"? b Bsz
a7 as,in + -
f;R Oy Peos 2

o~
+pgas,ing]dx dy,’

Fbuoyancy,y =

13)

where g = 0(m + 1)y as per Equation (2), and y/ =y — y.
This latter translation does not affect the analytical calculations
mentioned below; hence, for clarity, we drop the dashes in the
subsequent calculations from y’ and simply use y. Here, B is
the total magnetic field inside the flux tube, accounting for both
the field of the magnetic flux structure and the background
field; pgasin and pguqin are the gas pressure and density inside
the tube, respectively. Assuming total pressure balance
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between the inside of the tube and the outside, we have

i Bk
pgas,in + ; _pgas out + 2ac (14)

where pgas oue and the corresponding pgqs oue are the gas pressure
and density outside the flux tube in the stratified background
given by the polytropic model (Equation (2)). The density
inside the flux tube, pgasin, is then given in terms of Pgas oues
adjusted by the magnetic field (as described in more detail by
the initial conditions outlined in Appendix A, Case 2):

1 + 4¢°R? — 4qyB,
200 + 04 — (v + )

The factor in the denominator related to the initial polytropic
temperature profile above, Tyusout = 1 + 0(4 — (v 4 y.)), varies
only by a small fraction across the vertical extent of the flux
tube, and can be assumed to be roughly constant, equal to the
average value, T,y,. This makes the analytical calculation of the
integrals in Equation (14) more tractable. Plugging (14) and
(15) into (13), and using the polytropic nature of the outside
gas, the net buoyancy force equation reduces to

F B +R m 8 Bback
buoyancy,y = «[;R R 8}/ 2

2p2
~ 1 + 4’q R 4quback dx dy
vag

pgas,in(y) = pgas,out(y) - (15)

)—Q(m—l—l)

(16)

The final term in the integral is related to the cross term
(~ B,Bpack), and yields a difficult term in the integration. We
drop this term here, expecting it to be relatively insignificant,
and indeed verify that this is the case later. In order to integrate
the first term in Equation (16), we use Equation (5) to substitute

2 —
i M HBBback —&BXZ exp -y , (17)
oy\ 2 2 2 Hg

and then, after integrating Equation (16) once with respect to x,
we further use the definition of the modified first order Bessel

function,
1
2z f (1 -
T J-1

with t =y/R and z = R/Hp. The result of the overall integration
of Equation (16) (excluding the cross term) is then

O(m + 1)7R?

h(z) = 1)/ 2e=2 4y, (18)

Fbuoyancy,y = WBSZHI%RII(ZT) + (4q2R2 + 1),

avg

19)

where 7= R/(2H3). Equation (19) shows that the net buoyancy
force has components dependent on both the strength of the
background field (through the first term and B?) and the tube
field strength (through the second term, dependent on ¢ and a
constant value for the axial field). When evaluating this
expression for our parameters later, we will see that the second
term clearly dominates.

When a background field is included, the role of the internal
tension force in the overall dynamics can be equally as
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important as the buoyancy force in determining the net upward
driving force. When there is no background field (B, = 0), the
internal tension force in the tube is symmetric, and acts toward
the center of the tube. As such, there is no net force in any
direction at t=0, and tension serves only to maintain the
coherency of the tube in this case. On the introduction of a
background field that varies in the vertical, this internal tension
force becomes asymmetrical around the horizontal mid-line of
the tube, and, as pointed out in Paper I, the net vertical force
induced can act upwards, thereby aiding the rise, or down-
wards, thereby hindering the rise. We denote this internal
tension force in the vertical (y) direction by Fiepsion,y» given by

+R| R
Ftension,y == f f (B . V)By dx dy
sz)

_f” BaB + 8,28 \ax |av, 20y
—JR?—y? ay

where y is translated as before. With the chosen magnetic initial

OB,
conditions given in Equation (6), 8—) =0, atr=0,

+R a
Ftensmn) - f l Jr dx]dy
+R RLv
- e (200 + B @oddidy - @1
+R Rz—v
_f [ e ( 4q% + 24B, exp(zHB)]dx]dy 22)

Integrating this, once again using the modified Bessel
function in (18) (with r=y/R and z = R/2Hp), gives

Ftension,y = 87T61R3YH311(T)- (23)

Equation (23) confirms that the net internal tension force is zero
when the large-scale background field is not present (B; = 0).
Moreover, it is now clear that the introduction of background
field (B, = 0) creates a net internal tension force that can either
support the rise of the flux tube (Fiension,y > 0), or hinder its rise
(Fiension,y < 0), based on the sign of the product of twist and
background field. This is commensurate with our earlier
findings from the simulations, in that it is the alignment of
the twist and the background field that dictate the behavior. If g
and By have the same sign (i.e., the azimuthal field of the tube
and the background field are aligned at the bottom of the tube),
then the product ¢B, is positive, and the tension force is
upwards, supporting rise. Note that for a fixed By, the net
tension force varies linearly with q.

The third part of the force budget that we need to consider is
the tension force induced in the large-scale background field by
the rise of the structure upward into this field, which we denote
by Fyack,y- This opposes the rise of the tube. To estimate Fyac y»
we examine the tension force induced in a rise that proceeds to
a general height, H. For a successful rise in our simulations, H
will be approximately equal to or greater than the maximum
vertical size of the simulation box, y,,,=4. Tension forces in
curved field lines can be written as the square of the magnitude
of the field, divided by the radius of curvature, pointing inward
to the curve. If we assume that a rising tube lifts all of the field
it encounters during the rise, concentrating it into a narrow
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region wrapped around the tube, then a description of the net
tension force (in the y-translated coordinate system used
earlier) opposing the vertical rise induced during the rise might
reasonably be given by the integrated square amplitude of the
field, divided by the radius of the tube:

1 pH
Fucky =~ [ Bhacdy 24)
B pH -y
== exp| — |d 25
. | p( HB) y 25)
2 J—
= _HsBy 1 - exp(—H) . (26)
R H

For small H, i.e., H< Hp, we can rewrite the exponential
function using series expansion, keeping only those terms up to
first order, giving
HB?
Fback,y = - Rb .
Clearly, the tension force induced in the background field is
then linear in H, and will be negligible when the height to
which the flux tube rises, H, is very small, as expected. When
the flux tube rises more significantly, i.e., H>> Hp, the net
induced tension force tends to a constant value:

27)

—HpB?
.

The tension therefore only varies rapidly over a height of about
a scale height Hp, and its role can be bounded nicely above by
Equation (28).

If we make the assumption that the internal buoyancy and
tension forces in the tube-like concentration do not change
much from their initial values, then the marginal case defining
the transition from a failed rise to a successful rise is given by a
balance of the three elements described above, i.e.,

Fback,y = (28)

Eension,y + Fbuoyancy,y + Fback,y = 0. (29)

Assuming some non-negligible rise, H>> Hp,

Equations (19), (28), and (23), this becomes

using

4
lw]qz + [87RB,Hyhi(D)]g
7:1Vg
2 2
+[M + 7TB>HZRI (2T) — %] =0. (30)
2Ty R

This equation is quadratic in ¢, and we can calculate its roots
(91, q2) for given Hg and B; (given also 0, m, T,y,, and R, which
are assumed to have fixed values throughout this paper). These
roots (g1, g») are the model estimates of the (¢g_, g) from the
simulation data in Figure 6 above.

Table 1 shows examples of the numerical values of these
roots for some selected B; and Hp. Figure 7 accompanies the
table, and shows the relative contributions of the individual
components of magnetic buoyancy, internal tension, and
background field tension forces, plus their total, based on
model Equations (19), (23), and (28), respectively, as a
function of ¢ for the canonical background field configuration
where Hp = 0.125, and at the B, indicated. We will use these
cases as illustrative examples. A more complete evaluation of
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Table 1
Roots of the Quadratic Equation (30) for Some Sample Values of By and Hp
B; Hp q1 q2
0.03 0.075 —3.14 4 2.26i —3.14-2.26i
0.125 —2.97 4+ 2.32i —2.97-2.32i
0.175 —2.93 42.23i —2.93-2.23i
0.05 0.075 —9.01 —1.45
0.125 —8.62 —1.29
0.175 —-8.71 —1.05
0.10 0.075 —20.72 —0.21
0.125 —19.99 0.17
0.175 —20.08 0.56
0.16 0.075 —33.90 0.41
0.125 —-32.75 1.04
0.175 —32.87 1.64

the roots of the canonical case is given in Figure 8, and other
Hp values are addressed in the next section. In Table 1, we see
that for very weak values of By(B; < 0.03 at Hz =0.125), no
real roots for g exist. This is consistent with the fact that all
values of twists, whether positive or negative, will rise
successfully when only a very weak background field is
present (assuming that g is above the minimum threshold
necessary to maintain the coherency of the structure).’
Figure 7(a) illustrates this result, as Fioyy, the sum of the
forces on the left-hand side of Equation (30), does not cross the
horizontal axis for any ¢ at this B,. For intermediate and high
values of By, we obtain two real roots which are asymmetric in
q. For example, we find that the roots for B, = 0.10 are g = (¢,
q2) ~(—19.99, 0.17), and those for B,=0.16 are g=(q,,
q>) ~ (—32.75, 1.04). This asymmetry in the roots defines the
model definition of the SRR. For example, if g; <0, and
g» > 0, then rise occurs for structures with ¢ < ¢, and g > ¢,
and there is a region of |g| between |g;| and |g| where
structures possessing + |g| and — |g| behave differently (+ |g|
rises, — |¢| does not). The canonical examples from Paper I for
B, =10.10, showed that g =2.5 rose but ¢ = — 2.5 did not, and
that |g| = 2.5 lies in the SRR of this B,, which we can see here
is given by 0.17 <|g| < 19.99. More generally, in these
examples with positive By, positively twisted flux tubes that
are fairly weak can rise, whereas negatively twisted flux
structures of the same strength (or even relatively much
stronger) cannot.

Figure 7 clarifies the origin of the asymmetrical roots, and
therefore the SRR, in terms of individual force contributions.
The buoyancy force (black lines derived from Equation (19)
with associated circles from simulation data—see below) is
quadratic in ¢, and can now be seen to be dominated by the
contribution from the initial density perturbation due to the
magnetic structure (the second term on the right-hand side of
Equation (19)), since the buoyancy force is very close to
symmetric in g, and only very weakly dependent on By. The
asymmetry in the g dependence of the total upward force on the
tube (green line; diamonds) instead stems from the net vertical
internal tension force in the tube (red line; squares). This is

3 This is similar to the ¢ 2 0.25 threshold for the B; = 0 case; note, however,
that the presence of background field may adjust this.
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(a)B, = 0.03 (b)B, = 0.10 (¢)B, = 0.16
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Figure 7. Forces acting on the flux tube in the vertical direction, calculated from the theoretical model: area-integrated net buoyancy and tension forces internal to the
tube, the upper bound estimation of the opposing tension force induced in the background field by the rise, and the total upwards vertical force (the sum of internal
buoyancy, internal tension, and induced external tension). These are plotted as a function of the flux tube twist, ¢, for B; = (a) 0.03, (b) 0.10, and (c) 0.16, for the
canonical value of Hg = 0.125. The symbols show the corresponding integrated forces calculated using the simulation data.
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Figure 8. The SRR given by the model as a function of B, for Hg = 0.125.
Black circles and red diamonds represent the absolute value of the roots from
Equation (30). For these cases with positive By, ¢; is negative and is the root
with the larger modulus (black circles). The other root, g,, has a smaller
modulus (red diamonds) and changes sign from positive to negative at around
B, ~ 0.09. Blue dashed vertical lines in the plot are the cases studied using
numerical simulations and the black dashed line represents the highest
allowable twist to keep the thermodynamic conditions inside the flux
concentration physical (i.e., such that the density remains positive). The green
circles are the limits of the SRR found in the numerical simulations.

linear in ¢, and is significant in size, as it depends on By and Hp,
rather than these quantities squared. For the B, > 0 shown here,
negative g creates a negative tension force, serving to reduce
the effectiveness of the buoyancy force, and retarding the rise
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of negative ¢ structures. This effect can completely inhibit the
rise, unless the buoyancy force (proportional to ¢?) is large
enough to compensate. Where g > 0, the internal tension force
is positive, and aids in the rise of the structure. The tension in
the background field (blue line; no symbols) is independent of
g, serving only to reduce the chances of an even rise across the
range of ¢ at fixed B, (although it is dependent on B2). The net
force, given by the left-hand side of Equation (30) (green line;
diamonds) is therefore a shifted and tilted quadratic function.
Where this function passes through zero we find the roots ¢,
and ¢, and it is now clear that the effect of the background
field on the internal tension of the tube is responsible for
introducing the major asymmetry into this function and is
therefore the culprit in terms of creating the asymmetric roots
leading to the existence of the SRR.

The results discussed here relate only to B; > 0. The results
for B; <0 can be inferred from the symmetry in the g — By
space, as noted earlier in relation to the simulation data in
Figure 6. For example, in an equivalent of Figure 7 for B; <0,
the buoyancy force and the tension force induced in the
background field would remain essentially the same, but the
internal tube tension force would switch sign. The roles of ¢,
and g, would therefore be reversed, with an asymmetry such
that |q1] < |g2|. A general definition of the model SRR such
that it is valid for any orientation of By, in terms of the roots
of the quadratic, is given, similarly to Equation (12), by

SRR odel = {g s.t. |g| € [min(|gl, |g,]), max(lql, |g,D]}.
(€2))

Figure 8 shows an example of the delineation of the SRR in
q — B, space via this method (at the canonical parameter
values, in particular Hg=0.125;0other Hp are addressed
below). The red diamond points show min(|g,|, |g,|) values,
and the black circular points show max(|g|, |g,|). For these
cases, where By > 0, the root of smaller modulus is ¢,. The
SRR is the region between the lines. Structures with values of ¢
of either sign, such that |g| is above the upper limit of the SRR
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(line of black points) all rise. For By 2 0.09, where ¢; and ¢
are of opposite sign, structures with both signs of ¢ would fail
to rise if |g| is below the lower limit (red diamonds). For
0 < B;<0.09, where ¢g; and g, are both negative, both signs
would rise for |g| below the red line. Only within the SRR
range do structures of one sign rise, whereas structures with the
opposite sign do not. Positive twist rises preferentially for the
cases shown here with B, > 0, but negative twist would rise
preferentially if B;<0. The SRR definition given in
Equation (31) is presented as a range of g at fixed By and is
therefore a function of B,. The SRR is actually a region in
q — B, space, and could equally be presented as a range of B,
i.e., a function of ¢, as is clear from both the data and the
model, as shown in Figures 6 and 8.

The model proposed therefore seems to explain the nature of
the observed dynamics very well. However, a number of
simplifications have been introduced: the assumption that the
background temperature variation across the tube was reason-
ably represented by its average; that it is reasonable to omit the
q dependent term in Equation (16); that it is a good
approximation to estimate the internal tube forces (buoyancy
and internal tension) only at r=0, and then to use this to
deduce the subsequent ¢ > 0 rise behavior. Since we have all
the data from the simulations, it is constructive to compare
what we can in the model with the numerical simulations in
order to verify our assumptions. We therefore start by crudely
calculating the net internal forces in the structure at =0 by
summing over the relevant quantities inside the tube area, as
follows:

0 B?
Fbuoyancy,y,sim = Z [__(Pgas + _)
ij st.r<R dy 2

+ pglijAx; Ay, (32)

Ftension,y,sim = Z (B - V)By]i,ijiij (33)
ij st <R

Ftotal,y,sim = Fbuoyancy,y,sim + Ftension,y,sim + Fback,y7 (34)

where 7;; = xiz + O = yc)2 with i, j indicating the indices of
the discrete simulation grid in the x and y directions,
respectively. For each relevant simulation that we have
performed, we plot the values of these net internal forces in
accordance with the appropriately colored symbols in Figure 7.
Internal magnetic tension (red squares) calculated using the
simulation data exactly matches that of the model’s estimate.
The black circles representing the internal tube buoyancy from
the simulations do have a slight linear dependence on g added
to the symmetrical quadratic term, but this is so slight that it is
not visually apparent in the figure, vindicating our omission of
this term in the model.

The major source of uncertainty in our model, therefore,
comes from the estimate of Fyycky. This quantity is a very
rough approximation to one aspect of more complex dynamics.
Onmitted effects include the deformed geometry of the structure,
effects of the wake and the overlaying field on the wake, any
drainage from the main structure, and diffusive effects, at least.
These additional effects are hard to model, and would be hard
to check against data even if they were modeled, since they are
not compactly spatially located to the structure, and are time-
evolving. The discrepancy associated with these errors shows
up in comparisons of the roots obtained by solving the

15

Manek & Brummell

quadratic Equation (30) and the SRR range deduced by
observing the simulations. The upper and lower bounds of the
SRR deduced from the simulations are shown for a few sample
By, as indicated by the green circles in Figure 8. Although the
simulation SRR boundaries are only visually extracted from a
coarse set of simulations and are therefore relatively inaccurate,
it is clear from this comparison that the simulated SRR is
substantially narrower than the model predicts. It appears that
our estimate of the rise-quenching effects from the background
field is indeed quite a severe underestimation, as we imagined.
We could attempt ad hoc changes to the model (e.g., increasing
the radius of curvature of the retarding external tension force in
the background field to reduce its effect and to account for the
topology of the rising structure later in its rise), or to calibrate
the model to the data, but since the simulations are fairly
coarsely spaced in parameter (¢ — B space), and the bound-
aries between successful and failed rise are sometimes not
entirely obvious, then this seems unlikely to be particularly
accurate. Furthermore, the omitted effects are probably also
dependent on the parameters (such as By and Hp), and therefore
a simple calibration is unlikely to work universally. However,
even with some significant uncertainty, the model provides a
good explanation of the dynamics behind the SRR, and
provides useful predictions of the trends seen in the simula-
tions, at the very least. In particular, the extent of the SRR
growth, and the root of lower modulus growth (in signed value)
with increasing B; (see also Figure 12 later) appears to be a
robust result. These facts have a significant influence on the
expected distribution of the signs of the emerging helicity, as
will be discussed in detail in Section 4.4.

4.3. Dependence on the Scale Height of the Background Field

We have now established the importance of the presence of
the large-scale background field on the dynamics of a rising
flux tube, concentrating so far on the relationship between the
background field strength and the twist strength, and their
relative orientations. We now examine the dependence on
the configuration of the background field, which we have
characterized as an exponential with scale height Hg. Figure 9
shows the variation in the background field, Bp,, as a function
of height, y, for some example values of scale height Hz, when
By =0.1. The dotted horizontal lines in the figure show the
initial vertical location of the flux concentration. Recall that B,
specifies the field strength at the center of the tube, so all these
lines intersect at that point, with the value B, = 0.1. This figure
is intended to emphasize the fact that when Hp is small, the
background field variation across the flux tube is substantial,
whereas for high values of Hp, the background field changes
very little with height overall, thus its variation across the tube
is small. Since this differential is key to the new dynamics
discussed above, we might expect Hp to play a role.

Figure 10 shows intensity plots of the (normalized) axial
field B, at three different times in the evolution of system, for
three values of scale height, Hz = 0.125, 0.175, 0.300, while
keeping the background field strength and twist of the flux tube
constant (at By = 0.10, and g = 2.5). Overall, Figure 10 shows
that the rise of the flux structure is quenched for higher Hp.
Figure 10(a), exhibiting the evolution for the canonical
Hp=0.125, shows that a typical flux structure—a “squashed”
head with trailing vortices—rises through the background field
toward the top of the simulation domain. Figure 10(b), for
Hpy =0.175, shows another overall successful rise, but this time
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Figure 9. Variation of background field as a function of height for different
scale heights, Hg, where By = 0.1. Dotted horizontal lines indicate the vertical
location of the flux tube.

there is considerable drainage of the axial flux, B,, away from
the tube head, down the the overlaying background field lines,
plus some significant changes to the geometry of the head and
the trailing vortices. Note that the flux tube is further from the
top of the simulation domain at =20 in Figure 10(b), and is
therefore rising more slowly compared to the previous case,
even though it appears to be still rising as a fairly independent
structure. Figure 10(c) shows the case with an even larger scale
height, Hg = 0.3. In this case, there does not appear to be any
coherent rising flux structure.

The quenching of the rise of the flux structure with the
increase in scale height of the background field can be
understood from a physical perspective, with confirmation
from our mathematical model. One can imagine that
increasing the scale height of the background field could
lead to three effects that could potentially affect the dynamics.
Firstly, a larger Hp redistributes the background field in the
tube, which affects the magnetic pressure driving the rise of
the tube. The analytical approximation in Equation (19)
reveals that this dependence is quite complex, being
proportional to Héll (R/Hp). This is a function that increases
with Hp, and therefore its contribution to the magnetic
buoyancy is enhanced at larger Hz. However, as discussed
above, this magnetic pressure contribution is much smaller
than the contribution from the initial density perturbation in
the buoyancy term, proportional to g =6(m + 1). This first
effect is therefore probably not very significant.

The second potential effect is that an increase in Hp leads to
a decrease in the differential of the amplitude of the field across
the tube vertically. It is this differential that drives the selection
mechanism, via its effect on the magnetic tension in the tube.
Any effect (either an increased likelihood of rise when By and ¢
are of the same sign, or a decreased likelihood when B, and ¢
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are of opposite signs) is reduced for larger Hg. In the case
shown in Figure 10, we might expect the tension-driven
enhancement of the rise to be reduced by larger Hp. This
expectation can again be examined using the analytical model,
this time via Equation (23). There, it can be seen that the
direction of the force depends on the sign of gB;, and also that
the amplitude again has a complicated dependence on Hp:
Fiensiony ~ Hpl1(R/2Hp). This dependence is almost constant,
only decreasing very slightly over a significant range of Hp.
This second effect is therefore again probably not very
important.

The third effect remains as the likely major dynamical factor.
Increasing Hp also serves to increase the integrated field that
contributes to the retarding force of the overlaying background
field. One might expect larger Hp to imply a larger value of the
integrated field, and therefore a large force countering the rise.
Since this is an integral over the distance traveled upwards by
the tube, this is probably a substantial effect. These ideas can
again be verified via the analytical model, where this time the
dependence can be seen from Equation (28) to be straightfor-
wardly linear: Fiax,~ Hp. As mentioned previously, this
estimate is also potentially an underestimate, with some
significant factors related to other effects omitted. This also
lends some credence to this being the dominant physical term
here, although we do not know the Hy dependence of the other
effects.

Having established some physical intuition, we can further
employ the analytical model developed in Section 4.2 to
analyze the broader dependence of the SRR on the scale height
of the background field, Hp. Figure 11 plots the SRR from
Equation (31) in g — By space for fixed H,, (Figure 11(a)), and
in ¢ — Hp space for fixed B, (Figure 11(b)). The blue vertical
dashed lines in each of the subplots show the values where
numerical simulations exist for comparison with the model. For
the values of Hp surveyed, by comparing the panels of 11(a) or
examining an individual panel of Figure 11(b) at fixed B,, we
see that the demarcation (and therefore the extent) of the SRR
(in |g|) only varies by a very moderate amount. This is
commensurate with our earlier conclusion that the tension
effect driving the existence of the SRR is only very weakly
dependent on Hp. On the other hand, individual panels of
Figure 11(a), or a comparison of the panels in Figure 11(b)
confirms that varying the background field strength, By, can
significantly change the extent of the SRR for fixed values of
Hp. This is clarified once again by the analytical model, where
the tube internal tension term in Equation (23) that establishes
the SRR is linearly dependent on By, but is roughly constant
with Hp (via the term Hpl{(R/2Hp)). An important, and
perhaps unexpected, result overall here is that an SRR still
exists, even for high Hp, although the g values at which it
occurs become less physical.

It now becomes necessary to reconcile the above statements
with the dramatic quenching of the rise of a structure with
increasing Hp observed in Figure 10. Firstly, it should be noted
again that we expect realistic values of the twist g to be of the
order g < 10. Higher values create unphysical (negative) values
of density (see the horizontal dashed line in Figure 8), and other
work has shown that high g are unstable. For instance, the
initial Gaussian profile for the axial field used in Section 3
would require a critical value of g.,= 1 /R = 8 for the flux tube
to be kink unstable in three dimensions (Linton et al. 1996).
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Figure 10. Effect of background field scale height variation on the dynamics. Intensity plots of normalized B.(x, y, t) for Hp = 0.125, 0.175, 0.300 (a, b, and c,
respectively), with By = 0.10, and ¢ = 2.5 in all cases. All the subplots are scaled with respective max(B.).

This restriction means that realistic flux structures probably lie
much closer to the lower limit of the SRR than the upper. If g is
such that it is close to the lower boundary, then even a small
variation in Hp and a weak dependence of the SRR boundary
on Hp can have a dramatic effect. This is essentially what was
demonstrated in the simulations shown in Figure 10. The
simulations in this figure are at ¢=2.5, and B;=0.10,
corresponding to the second blue dashed line in Figure 11(a),
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and the middle panel in Figure 11(b). In the latter, for g =2.5,
the moderate upward tilt of the lower boundary of the SRR (red
diamonds) with increasing Hp shifts the solution from inside
the SRR (for Hz =0.125) to below the SRR (for Hz =0.3),
thereby switching it from a rising solution to a quenched
solution. A small change in Hp can therefore have an effect,
due to the proximity of natural solutions to the lower boundary
of the SRR.
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previous figure). These figures solidify our interpretation that
the width of the SRR is only very weakly dependent on Hp, but
significantly dependent on B,. Note again that at very low

To emphasize the above dependencies, Figure 12 plots the
width of the SRR, ||q;| — |g2||, as a function of (a) By, for a

range of Hp, and (b) Hp, for a wide range of B, (as in the
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values of B, (e.g., B,=0.03) there is no SRR, since the
differential tension force required to generate the necessary
asymmetry for the SRR is negligible.

4.4. Multiple Flux Concentrations

With an understanding of the dynamics of a selection
mechanism established for a single flux concentration, in this
section we examine the collective effect leading to the
observations known as the SHHR. The SHHR observations
accumulate the signs and strengths of the helicity of emerging
active regions over the whole solar cycle (and eventually
multiple cycles) to extract any net bias. The SHHR observa-
tions have a large “scatter,” in the sense that not all individual
active regions agree with the rules—overall, only 60%—80%
of active regions appear to concur—and the degree of
agreement appears to vary over the solar cycle (Seehafer 1990;
Pevtsov et al. 1995; Abramenko et al. 1997; Bao & Zhang
1998; Bao et al. 2000a, 2000b; Hagino & Sakurai 2005; Hao &
Zhang 2011; Singh et al. 2018). This scatter, and its temporal
variation, is not well understood. In this section, we therefore
attempt to use our model to create synthetic SHHR observa-
tions, with a view to potentially elucidating reasons for these
effects.

To reproduce the SHHR observations, we simulate the
evolution of multiple (toroidal) flux structures via different
background (poloidal) field strengths, representing different
parts of the solar cycle. We fix the values of the other
parameters at the canonical values: m=1.5, Hzp=0.125,
R=0.125, §=0.25. For each field strength, we perform a
series of Monte Carlo (MC) simulations where, for each
simulation, a wide domain is initialized, including a number of
flux tubes with randomly assigned twist strength (both positive
and negative) and horizontal location. We then examine
whether the selection effects shown for single flux tubes leads
to a persistent bias over the whole cycle (simulated by our
range of background field strengths). It may seem likely that
this is the case, as we have identified a selection mechanism,
but this needs to be confirmed, since this setup offers the
possibility of new dynamics emerging from the interaction of
tubes, and the randomness may potentially swamp any bias.

In order to have reasonably significant statistics for each case
in this MC study, we perform fifty independent simulations
(each containing multiple tubes) for each background field
strength. Since we are not addressing the origin of the flux
structures, our assumption is that they are formed from a sheet
of toroidal field, attributable to a magnetic buoyancy instability
(see for e.g., Vasil & Brummell 2008; Guerrero & Képyld
2011). If this were to be the case, we might then expect
multiple flux structures to be formed at the same time in a
turbulent environment, and such structures would most likely
possess random strengths, twists, and separations drawn from
some distribution. We therefore choose each of our simulations
in the MC series for a particular background field strength to
start with five flux concentrations, with random initial twists
(=5 < g <5), and random distance, d, between them (with the
constraint, d > 2R, so that they do not overlap), embedded
initially at the same (canonical) height in the prescribed
overlying large-scale background field. The random values are
drawn from a uniform distribution over the range given. Our
setup certainly has some significant degree of arbitrariness,
owing to the limitations in our quantitative understanding of
the amount of twist in flux tubes, the distance between them,
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and their strengths at their origination in the deep solar interior.
For example, our choice of drawing the random values of twist
from a uniform distribution might not be very realistic, and a
Gaussian with a larger range might be better (or perhaps even a
skewed distribution, to account for the effects in the formation
of tubes not included in our model, e.g., rotation: see Chatterjee
et al. 2011). However, as mentioned above, there are some
constraints on the value of |g|. Firstly, |g| 2 12 (the dashed line
in Figure 8, which is actually a very weakly decreasing
function of By) is unphysical, since in this case the azimuthal
field is sufficiently strong to induce a negative density in the
structure. Secondly, structures where |g| 2 8 are unstable to
kink instabilities (according to Linton et al. (1996), which does
not fit our model exactly, but is probably a reasonable guide).
Therefore, our chosen distribution (uniform, |g| <5) seems
reasonable, in that it makes it likely that the initial simulation
setup has a mixture of weak and reasonably strong concentra-
tions of both helicities, and, if anything, overemphasizes the
stronger twists (i.e., those more likely to violate the SHHR). An
MC series of this type (fifty simulations, five random tubes
each) is reported for four different background field strengths,
ranging from relatively weak to relatively influential
(0.01 £ B;<0.10). We identify the weak background field
with the beginning and end of the cycle, and the stronger
background with the peak of the cycle, although we have no
direct observational evidence from the deep solar interior of the
relative strengths of these fields from which to set their values.

Figure 13 shows the results of the MC simulations for each
of the four different background field strengths. Each circle in
the plot represents an accumulation over a specified time
interval [fy, #;] in the simulation of the absolute value of the
z-component of the net horizontal current helicity, measured
along a line at y = 3. We call this quantity H;:

4 1
HFUm LI[B.(V X B)], dx dt
nopl B,
:ffBza'—andxdt
n J-1 Ox ady

This quantity is evaluated from the simulations as a sum over
the x grid points at height y =3 at a particular time, and over
the data output in the time interval from 70 =0 to t; =70. It
represents the magnitude of the net helicity of all the flux
concentrations that successfully rise through 75% of the model
solar interior in the simulation setup. The open and filled circles
indicate the net sign, corresponding to net negative and positive
helicity, respectively. Each panel in the plot shows the 50 MC
simulations for a given field strength, B,, representing a given
time in the solar cycle, plotted against the simulation number,
which could be loosely interpreted as short time intervals at that
point in the cycle, but are in reality just different realizations
whose ensemble average becomes meaningful. The overall bias
in the emerging helicity at any specific time in the solar cycle is
therefore given by any statistically significant deviation of the
percentage of each sign of helicity away from a 50%-50%
balance. These percentage values are noted on the plots. Note
that, owing to the orientation of the tube’s axial field along the
positive z direction, and the background field along the the
positive x direction, our setup corresponds to the the southern
hemisphere in the first half of the cycle, as shown in
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Figure 13. Synthetic SHHR. Each dot shows the sign (solid circle = positive; open circle = negative) and aggregated strength (vertical axis) of the horizontal
component of the current helicity passing through y = 3 during the interval from ¢ = 0 to ¢ = 70, according to a simulation involving five flux structures embedded
within the background field of strength B, shown for each panel. The flux structures in each simulation have randomly assigned twist and separation from a
distribution. Each panel contains 50 of such MC simulations, and represents a particular time in the solar cycle, with low B; representing times around solar minimum,
and higher B, being associated with solar maximum. Percentages show the relative distribution of positive and negative helicity. Positive helicity is expected to

dominate for the configuration.

Figure 5(a), where positive helicity is expected to dominate via
the SHHR. Furthermore, to relate to the observations, we are
assuming that some three-dimensional process leads to arching
of our simulated flux concentrations for emergence, so that the
axial helicity that we measure horizontally in 2D is strongly
correlated with the vertical helicity component that emerges in
the observations. We will test these assumptions in 3D in the
future.

Figure 13 displays a systematic trend in the relative
percentages of the two signs of accumulated helicity with
increasing background field strength. For a very weak back-
ground field strength of B; = 0.01 in Figure 13(a), we find that
the surviving and accumulating helicity at y =3 is roughly
equally divided between both signs of helicity. There is a slight
bias toward an anti-SHHR result (more negative helicity) as has
actually been observed in the solar case, but we do not dwell on
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this, as this seems fairly statistically insignificant here, given
that the number of MC simulations is only 50. At higher
background field strengths (which we relate to being closer to
solar maximum in the the solar cycle), we find results that are
definitely commensurate with the SHHR. At B; = 0.03, we find
that around 66% of the successfully rising flux concentrations
possess positive helicity; at B;=0.05 we find that 78% are
positive, and at B; = 0.1, 86% are positive. These results are in
agreement with the overall SHHR trend, which is that positive
helicity should generally be preferred in this Southern hemi-
sphere setup (and, of course, the results for the Northern
hemisphere can be inferred by symmetry). Furthermore, these
results also agree with the observed trend that there are fewer
violations to the SHHR (i.e., better agreement) around solar
maximum, and more violations (worse agreement) around solar
minimum (Hagino & Sakurai 2005). Note that we correlate a
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Figure 14. Solar Hemispheric Helicity rule violations. Both panels show intensity plots of normalized B_(x, y, t) at (t1, t, 13, 14, Is, ts) = (1, 11,21, 31,41, 51). Panels a
and b are independent instances of the MC simulations at B; = 0.05, chosen to depict particular SHHR violation mechanisms. With the axial field, B., out of the plane,
and the poloidal background field aligned in the positive x direction, this setup is representative of the solar southern hemisphere (see Figure 5(a)). The sign and
strength of the field line twist (g) at #; is indicated for all concentrations, with the subscript corresponding to the numbering of the concentrations along the x-axis.
Panel (a) shows violations occurring due to the rise of a strongly twisted tube with negative twist. Panel (b) shows a violation occurring due to the interaction of two

negatively twisted tubes.

stronger deep interior background poloidal field in our model
with solar maximum, and a weaker poloidal field with solar
minimum. Since the deep interior fields are unknown, we rely
upon mean-field dynamo models to justify this (see e.g.,
Charbonneau 2020, and references therein). Many such models
demonstrate that the poloidal and toroidal fields are reasonably
in phase, and the latter are widely used as a proxy for the
butterfly diagram.

These major results can be interpreted fairly straightforwardly in
the light of the work in Sections 4.1 and 4.2, and, in particular, the
q — B, diagrams based on the simulations (e.g., Figure 6) and the
model (e.g., Figures 8, 11 and see also Figure 12). In general, these
plots show that there is only a narrow SRR at weak By, but that the
SRR grows wider in extent in |g| as By increases (a robust trend,
even though the data and the model do not agree precisely on the
location of the boundaries of the SRR, due to the inaccuracies of
the model, as discussed above). Violations of the SRR would
mainly be detected when the twist of a structure is strong enough
for it to lie above the SRR (although this is not the only possibility,
as discussed below). Since there are good physical reasons for the
value of |g| to be capped above, clearly, where the SRR is
narrower at lower B, more violations might be expected to occur,
since our distribution of ¢ in the MC simulations is more likely to
place them above the SRR region (and below the cap). In the limit
of the SRR vanishing, all structures lie outside the SRR and either
do not rise, or are equally likely to rise, therefore yielding
percentage values for the helicity sign distribution close to 50%—
50%. As the SRR becomes wider at higher B;, the number of
violations drops, as g values drawn from the distribution become
less likely to lie above the SRR. This leads to more complete
compliance with the SRR, and a ratio of the emerging helicity
signs that would tend toward 100%—0% in favor of the sign of
helicity expected from the SHHR (positive in our example cases).
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Indeed, for higher B, (B;=0.06 in Figure 8), the cap of our
distribution (|g| = 5) lies below the upper bound of the SRR for
both the model and the data, and almost 100% agreement would
be expected, potentially violated only by very low |g| lying in the
small region below the lower bound of the SRR (red diamonds in
the model). Structures with such sub-SRR twist are only expected
to rise when B, < 0.09 (where both roots ¢; and g, are negative);
violations are not expected for sub-SRR values of twist for
B 2 0.09, since both signs should not rise, but, interestingly, in
this region another method of violation (discussed below) operates,
reducing the agreement with the SHHR from 100%. Regardless of
these details, the trend to fewer violations for stronger By seems
very robust and explainable in terms of the selection mechanism
found here.

The above result, related to the expected degree of scatter in
the observations, and its dependence on the solar cycle, is a
reflection of how violations to the SHHR are achieved in the
MC simulations. We therefore investigate the causes of these
violations in more detail here. To exhibit the mechanisms we
find, we focus on those cases where B;=0.05 and 0.10. We
find three distinct, relevant reasons for violations, which are
discussed below:

1. Strongly twisted flux tube: The first, and main, reason, as
mentioned previously, is simply the existence of strongly
twisted flux concentrations of the “wrong” sign (where, here,
“wrong” means that the sign of helicity of the structure
violates the SHHR; in the cases shown here, the “wrong”
sign is negative, since the SHHR would predict predomi-
nantly positive helicity). If the structures are sufficiently
strongly twisted to lie above the SRR, then these structures
will rise. As proof of this via the simulations, Figures 14(a)
and (b) show examples of the time evolution of normalized
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Figure 15. Violation of the SHHR via restructuring of the twist. Panels show normalized B (x, y, ) for B, = 0.1 at (t;, t, 13, 14, 15, ts) = (0, 5, 9, 15, 20, 40). Tube 5 has
anti-clockwise (positive) twist at f = #; but gets rearranged to a clockwise (negative) twist by ¢ = 5. This mechanism is quite common for strong background fields and
weakly twisted structures.

axial magnetic field strength, B,, from the MC simulations
performed with By =0.05. The twist sign and strength of
individual flux concentrations are shown, numbered by their
relative position along the horizontal axis at f=t.
Figure 14(a) shows a case where the randomly assigned
twists of all the flux concentrations in the simulation are
negative (clockwise), and therefore not what would be
expected from the SHHR. However, tube 1 has almost the
maximum twist allowable within our distribution, and we see
that at # =1, this tube has risen significantly through the
model solar interior, and is approaching the y=3 level
where we measure the net helicity. Note that tubes 3 and
Sare behaving similarly, but to a lesser extent. From
Figures 6 and 8 it can be seen that these high values of |g]| lie
outside the numerically identified SRR (but inside the
potentially inaccurate upper boundary of the model SRR),
and therefore might be expected to rise. This is the main
source of scatter, and was predicted based on our single
structure simulations.

. Tube-tube interaction: Figure 14(b) exhibits the second
class of violation, which is a case where interactions
between multiple structures do play an important role. Of
the five flux concentrations in this figure, four of them
have ¢ <0, and the remaining one (g;) has g > 0. The
first three, q;, g, and g3, behave as one might expect: g,
is moderately strong and positive and therefore, being in
the SRR, it is expected to rise; ¢» and g3 are strong, but
negative, and therefore may still rise since, they are above
the SRR (as per the previous method of violation). The
other two, g4 and gs, are very close together, thanks to the
use of random distances between concentrations in these
MC simulations. The dynamics of the tubes, then, are no
longer those of individual single tubes, as the interactions
between structures become important. Since both these
concentrations have the same twist, they coalesce very
quickly, forming a single, more strongly buoyant region.
This structure is still negative, but has effectively more
twist and more buoyancy, and therefore rises more
quickly, becoming a violation of the previous kind due to
its strong effective twist. This shows that separation of
the structures can be an important element of the
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dynamics, as the original twist distribution alone would
not have predicted the resulting outcome.

3. Flux tube twist rearrangement: A third scenario that can
lead to violations of the SHHR is particularly peculiar, and
results from the conversion of weak “correct” signed
structures into the “wrong” sign during the rise. An
example is shown from one of the MC simulations for the
case of B, =0.1 in Figure 15. These types of violations are
quite common at higher By, and account for the majority of
the violations shown in Figure 13(d). Figure 15 shows the
evolution of B,, a clear indicator of twist in the tube, in this
example. The first three of the structures initially have
negative twist, and the remaining two are positive. The first
three tubes do not rise successfully, since they have only
moderate twist strength lying in the SRR, and are therefore
filtered out by the selection mechanism. Tube 4 has positive
twist, but is too weak to rise (lies below the SRR). Tube 5
is the peculiar case. This structure has an intermediate
positive twist, and is expected to rise, in consideration of
the SRR. However, this structure undergoes a topological
arrangement early in its transit, flipping the sign of its twist
(visible in the plot as a flip from blue over red in the B,
field to red over blue). The exact mechanism for the flip is a
little difficult to discern, but appears to be facilitated by the
interaction of the strong background field wrapping around
and into the trailing vortices of the original structure. The
structure continues to rise despite this rearrangement, and
therefore emerges with the “wrong” sign.

Overall, these MC simulations have revealed the perhaps
expected result, that the SRR mechanism can be responsible for
the aggregated helicity bias constituting the observed SHHR,
but has further identified good reasons for the scatter in the
observations and in its temporal variation, some of which are
beyond explanation, even with respect to our concept of the
existence of an SRR.

5. Discussion and Conclusions

In this work, we have examined the rise of a tube-like
concentration of magnetic flux in the presence of a large-scale
background field. Our model aims to elucidate the processes
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that bring magnetic structures from the deep solar interior
toward the solar surface, where observations are made. The
core of our work has been to relax some of the constraints of
previous models. Much intuition has been gleaned from vastly
simplified models using either the thin flux tube approximation
or finite cross-sectional tubes, but in general, these studies have
examined the evolution of preconceived cylindrical magnetic
structures that are isolated, in the sense that they are embedded
in a field-free background. These simulations do not address
the origin of such structures. Studies of magnetic buoyancy
instabilities that do try to examine this question show that the
resultant structures are concentrations of strong magnetic fields
within a volume-filling, weaker, large-scale background field.
Our premise has been that the dynamics of concentrations
might be substantially different from isolated structures. At this
stage, we have examined the most obvious extension of
previous models, where we embed the preconceived tube-like
structures of earlier studies into a large-scale background field,
to convert them from isolated structures to a concentration. We
continue to ignore the origin of these fields, and the dynamics
of convection in the rise of the concentration, leaving these
added complexities for later studies.

We do succeed in showing that relaxing these assumptions
can lead to drastically different rise dynamics in the magnetic
flux structure. In particular, our results reveal that the rise of the
flux structure is (perhaps not surprisingly) impeded by the
background field, although, unexpectedly, it can be completely
quenched by a relatively weak background field (a factor of 10-
20 weaker than the peak tube strength). This quenching is
achieved by a combination of (i) tension induced by the
stretching out of the overlaying field as it is lifted by the rising
structure, (ii) a drainage of the axial flux supplying the
buoyancy of the structure out along the overlaying background
field lines, and (iii) suppression of the trailing vortices that self-
propel the structure after the initial buoyant rise.

Much more surprising is that the strength of the background
field (B,) required to quench the rise of the magnetic structure is
dependent on the relative orientation of the twist of the
structure (¢) and the background field. When the background
field is aligned with the azimuthal field (By) at the bottom of the
structure, a net tension force is created inside the tube that is
directed upwards, complementing the buoyancy force driving
the rise. When the background field is aligned with azimuthal
field at the top of the structure, the net internal tension force
points downwards, complementing the forces that are trying to
retard the rise of the tube. Since this mechanism depends only
on the relative orientation of the twist of the structure and
background field, this mechanism can be regarded as one that
either (a) for a structure of fixed twist, enhances the likelihood
of the rise of the structure for one particular orientation of
background field, or (b) for a fixed background field, enhances
the likelihood of the rise of structures with a certain twist. Note
that, given a limited knowledge of the field strengths in the
deep interior of the Sun, for this work, we have little guidance
on our choice of B, which sets the relative strengths of the
background poloidal field to the axial field of the tube.
However, our experience with instability simulations (e.g.,
Vasil & Brummell 2008) suggests that rising structures are not
many orders of magnitudes stronger than their originating field,
providing hope that the range of B, where we find interesting
dynamics is realistic.
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The latter point of view leads us more readily to the
conclusion that this selection mechanism is commensurate with
the SHHR. In the solar context, the axial field direction and the
overlaying poloidal field are not independent, and this
connection (via the differential rotation), allows our mech-
anism, which depends on twist only, to be cast as one that
depends on helicity. When applied to the solar context, our
mechanism selects the correct helicity as the preferred helicity
in each hemisphere, to concur with the SHHR (negative
helicity in the Northern hemisphere, positive in the Southern).
This preference is independent of which half of the full 22 yr
solar cycle is examined, since the orientation of both the
overlaying background poloidal field and the toroidal field
providing the axial field of the structure flip when switching
after 11 yr. This mechanism therefore appears to be a
reasonable candidate for the origin of the SHHR, since it
agrees with this major component of the rules.

Interestingly, the mechanism that we have discovered
provides explanations for many additional details relating to
the SHHR. In particular, our mechanism can also (i) explain the
fact that the SHHR is only a weak rule, in the sense that only
60-80% of active regions obey the rule, and therefore 20-40%
are in violation, and (ii) provide a plausible reason for the
observed increased disparity in the rule around the period
between cycles. Indeed, expanding on the latter, our model
provides a prediction for the dependence of the adherence on
the main SHHR over the cycle. These further affirmations of
SHHR characteristics are gleaned from a deeper examination of
the mechanism, which was the focus of much of the rest of this
paper.

To facilitate this understanding, we explored the reason
behind these dynamics in detail via an analytical model of the
forces acting on the magnetic structure. The success of an
attempted rise depends on the internal magnetic buoyancy and
tension forces of the structure, as modified by the existence of
the background field, as it competes with the induced tension
force in the overlying large-scale background field, created by
the rise through that field. The effect of the introduction of
large-scale background field on the flux tube is to adjust the
overall buoyancy and internal tension forces in such a way that
it can either facilitate or hinder its rise. Our mathematical model
confirms that the predominant adjustment comes from the
internal tension force, which we analytically show to be
dependent on the product of g and B, thereby revealing once
again the dependence on the alignment (i.e., sign) of these two
entities: having the same sign provides a positive (upward)
tension force that encourages rise, whereas opposite signs
create a negative tension force that counters the rise. Setting the
net force balance of these three forces to zero provides a
quadratic Equation (30), whose roots define the regime where
the selection mechanism operates. We call this region in
parameter space the SRR. The region depends on the
parameters g, By, and Hp (the twist, the strength of the
background field, and the scale height of the background field),
which we consider to be the main parameters of our studies;
there are other parameters, which we have fixed at canonical
values. It turns out that the dependence on the configuration of
the background field via Hp is weak, and therefore the SRR can
be considered primarily as a region of ¢ — B, parameter space,
defined by the modulus of the roots of the characteristic
quadratic Equation (30). Between the (modulus of the) two
roots is the SRR, where the selection mechanism operates, and
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one sign of twist rises preferentially over the other. Above the
largest root, both signs of twist will rise successfully. Below the
smallest root, both twists can rise, or neither twist may rise,
depending on the nature of the roots, but structures of both
signs behave similarly.

The analytical model SRR exhibits the general character-
istics of the g — By dependence of the simulation data, and
clarifies the existence of the selection mechanism as a direct
result of the asymmetry of the internal tension force in the
magnetic structure. The quantitative agreement of the analytical
SRR, and the selection regime found from the simulations are
not perfect, mainly because estimation of the retarding effect of
the tension from the overlying field is difficult, and we do not
account for other retarding effects, such as drainage of the axial
flux driving the buoyancy, or the destruction of the trailing
vortices aiding the rise. However, the analytic model and
simulation results do, in tandem, provide an explanation as to
why violations of the SHHR that induce “scatter” in the
observations might be expected. The main reason for this is that
structures containing twist of either sign, whose strength is
above the upper bound of the SRR (for a given By), will rise
successfully. If it is expected that the twist of the magnetic
structures arises randomly in the structure generation process,
then some distribution of twist might also be expected,
including strong values of either sign whose moduli lie outside
the SRR. These values would not have the bias of the SHHR,
and would induce violations in the observed data.

In order to test these ideas, we carried out an MC study with
the aim of synthetically reproducing the nearest equivalent of
SHHR observations from our simulations. For a given B,, we
computed a significant number of simulations containing
multiple magnetic flux structures with randomly assigned
twists (and spacing) from a reasonably wide uniform distribu-
tion. From these, we calculated the sign and strength of the net
helicity that “emerged” near the top of our simulation box. The
relative fractional distribution of these signs (and strengths)
mimic the observations leading to the SHHR at that particular
B,. We associated the chosen B, with a time in the solar cycle,
with small By representing solar minimum, and large By being
related to solar maximum. We find that for low By, the
fractional distribution of the signs of helicity at emergence is
statistically close to 50%—-50%. This fractional distribution
increases as B, increases, up to around 85%-15% in favor of
the sign expected from the SHHR for the largest Bg computed.
Overall, this is in good agreement with the SHHR observations,
where concurrence with the rule occurs for 60%—-70% of the
total active regions over the whole cycle. The violations in our
simulations can be checked to confirm that they mainly
originate from values of twist lying outside the SRR, although
other odd effects caused by structure interactions can also occur
in these multiple tube simulations.

A nice quality of these MC simulations is that they provide a
prediction for the temporal evolution of the agreement with the
SHHR, via the fractional distribution of the signs. The
distribution depends on By (which we associate with epoch in
the cycle) since the extent of the SRR (in |¢|) depends on By,
widening as B; increases. This means that it is increasingly
difficult to violate the SHHR (i.e., to possess a degree of twist
that is simultaneously below any physical cap, and large
enough to fall above the upper SRR boundary) as B, increases,
and hence the rule is obeyed more completely at higher B, (note
that this assumes that other effects at very small twist are less
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important). Utilizing SHHR observational data collected over
more solar cycles, this prediction could be tested.

Various other models (Longcope et al. 1998; Choudhuri
2003) have attempted to address the issue of the origin of
SHHR, as described in the introduction, and here it is pertinent
to describe the main differences in the results from our model
in relation to others, and what each can contribute to our
understanding. A major distinction between our model and
most others is that the magnetic flux structures in most other
models are initially untwisted, acquiring the appropriate twist
by some mechanism during transit, whereas in our model, all
flux structures possess some twist initially (of random size and
sign) and structures with the “correct” twist are then selected
for rise by a filtering mechanism. The models acquiring twist
either do it directly, by rising into and then merging with
another field (e.g., Choudhuri 2003), or indirectly, by acquiring
writhe from dynamics influenced by the Coriolis force, which
then, via helicity conservation, induces a compensatory twist of
the “correct” sign (e.g., LFP). A big difference between
the models, therefore, is the degree to which they explain the
scatter in the adherence to the SHHR. For example, the
Choudhuri model, as presented, predicts 100% agreement
with the SHHR, except perhaps at solar minimum. The X
mechanism of LFP, however, does produce a scatter, since the
twist is generated (indirectly) from interaction with the
convective turbulence, and therefore a distribution of twist
will result. It is worth noting that most of these previous models
assume that the magnetic flux structures have zero twist
initially, which seems unlikely. Allowing an initial distribution
of twists (as in our model) would actually provide another
source of scatter in the resultant twist observations in these
models as well.

The different models also provide different results for the
solar cycle-dependence of the SHHR, particularly with respect
to the cycle-dependence of the scatter of the observations, and
the anti-SHHR behavior observed at solar minimum (Seehafer
1990; Pevtsov et al. 1995; Abramenko et al. 1997; Bao &
Zhang 1998; Bao et al. 2000a, 2000b; Hagino & Sakurai 2005;
Hao & Zhang 2011). For example, our model predicts that
agreement with the SHHR increases in the rise to solar
maximum, and decreases toward solar minimum, whereas the
model of LFP predicts no variation in agreement over a solar
cycle. Our model and Choudhuri’s model both predict anti-
SHHR behavior in the transition between cycles if the switch in
polarity of the poloidal and toroidal components of the dynamo
field are slightly out of phase. The model of LFP does not know
about this phase information, depending solely on the influence
of rotation on convection, which is cycle-independent.

All these mechanisms are complementary in some sense, and
could all be contributing to the ultimate helicity content of
rising structures, and therefore the SHHR observations. One
can imagine a scenario where our model is dominant near the
base of the convection zone, LFP’s model operates in the bulk
of the convection zone, and Choudhuri’s model contributes
near the surface. Our model is a very complete one, in the sense
that it individually not only explains the preferred helicity of
active regions, as required by the SHHR, but also the scatter in
the observations, and possibly other elements, such as the anti-
SHHR behavior at the beginning of the cycle. We have already
begun full 3D simulations to confirm our mechanism in that
context. In future work, we will expand these to simulations
that include a rotationally influenced convective zone through
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which the structure must transit. In this manner, we will be able
to examine the contributions of the various mechanisms, while
moving away from the concept of isolated (and thin) flux tubes,
given that the dynamics of magnetic flux concentrations are
undeniably different.

One additional, highly conjectural, but fascinating possibility
from our model is that it could potentially offer an indirect
understanding of the elusive magnetic nature of the solar
interior. Since the degree of agreement with the SHHR (the
scatter fraction) is significantly dependent on the strength of the
interior field (B,) in our model (but only weakly dependent on
the configuration, Hp), the exact observed fractional degree of
scatter might provide a probe at least into the interior field
strength, if not the vertical variation of the field. We therefore
look forward to improved multi-cycle observations of
the SHHR.
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Appendix A
Different Initial Thermodynamic Conditions

The Appendices here contain material related to the robustness
of our results. We have tested robustness to different models for
the thermal initial conditions, different models of the magnetic
configuration of the flux structure, different models for the
background field, changing the boundary conditions, and varying
the (dimensionless) magnetic diffusivity. The ultimate conclusion
is that the results are very robust, and therefore much of this work
is withdrawn from the main text in order to highlight the more
salient points. Here, we outline the first two of these robustness
checks, as they are pertinent to discussions presented in the paper.
The initial thermal conditions are relevant to understanding the
forces in the model in Section 2, and the alternative model for the
structure of the tube’s internal fields is used in Section 3 (both to
actively demonstrate robustness, and to provide different results
from the previous letter).

The effect of the introduction of a magnetic flux structure
into a stratified gas is to add an extra magnetic pressure to the
total pressure. However, it is generally assumed that the total
pressure equilibrates quickly under the circumstances of
interest, thereby adjusting the gas pressure in the magnetic
concentration. This change in gas pressure can lead to a change
in density, temperature, or both. There is no unique way of
specifying the initial thermodynamic conditions inside the
magnetic flux tube. In order to check the robustness of our
results in the context of these different formulations, we have
tested two commonly used sets of initial thermal conditions.
The crucial result to highlight here is that changing these makes
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essentially no difference to our major results, and only very
minor differences to any of the dynamics of the problem. We
supply some description here to verify this fact, and to provide
details of the formulations used in the main text (Case 2).
Incidentally, we did also examine a case that did not initially
obey the condition of total pressure equilibration, which would
be considered unphysical by most. Since this case again
produced very similar results, it is not included here.

When a flux tube is introduced into the stratification, the
assumption of total pressure balance introduced above dictates
that

pgas,in + pB,in = pgas,out + pB,out (Al)

throughout the interior, or at least at the edge of the tube. Here,
Dgas.in and pp i, are the gas and magnetic pressure inside the flux
tube respectively, and, similarly, pgas oue and pp oue are the gas
and magnetic pressure outside the flux tube. The latter two are
known, and given respectively by Equation (2) and

|Bou 2 Y=Y
pB,out = (;[ = Bs exp CHB .

(A2)

These therefore depend solely on height y. If B;=0, the
magnetic pressure inside the flux tube, pg;, depends on the
interior magnetic field B;,, which includes contributions from
both the magnetic field of the flux tube (Byp.) and the
background field (By,.x); thus, from Equation (6),

_ |Bin|2 _ 1+ 4q2}"2 B 4q(y - yc)Bback + Bbzack
2 2

PB.in
(A3)

where we have used x> + (y — y.)?> = r? for simplicity. This
is a function of x and y.

Equations (A1), (A3) and (A2) together dictate an adjusted
gas pressure inside the concentration, pg,sin. In forming a
complete set of initial conditions, it therefore remains to
determine how to compensate for this adjustment with the
temperature and the density inside the flux structure. We
consider two cases.

Case 1: The simplest setup is to assume that both pressure
and temperature equilibrate quickly to match the external
thermodynamics. The assumption of total pressure and
temperature equilibration is perhaps the most commonly
applied in order to explain the existence of magnetic buoyancy
in magnetic field concentrations. Under these assumptions, we
have

pgas,in (-x’ y) = pgas,out (y) + pB,ou[ (y) - pB,in ()C, }’), (A4a)
T:gas,in ()’) = gas,out(y), (A4b)
i (-xs )
Paasin @ ¥) = M. (Adc)
Tgas,in(y)

Above, Ty in, the gas temperature inside the concentration is
set to the polytropic gas temperature outside, Tgus ou» based on
the above assumption, and the density inside the concentration
is then determined by the ideal gas equation from this
temperature, together with the adjusted gas pressure pg,in.
Figure 16(i)) shows the properties of these initial conditions
(zoomed in to focus on the flux tube and its near exterior).
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Figure 16. Thermodynamic initial conditions for (i) Case 1, and (ii) Case 2: (a) gas pressure, (b) density, (c) temperature, and (d) total pressure. A subset of the domain
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Figure 17. Comparison of (a) vertical position of the head of the rising flux tube and (b) rising flux fractions for three different initial thermodynamic conditions for
By = 0. Flux fraction (calculated with vy, ipreshola = 0.03) in (b) has been curtailed at the time when the flux tube structure reaches the top of the simulation box.

Case 2: A somewhat less restrictive interpretation of the internal
thermodynamics has been used by some authors, (e.g., Hughes
et al. 1998). Here, the temperature is considered as merely
continuous at the edge of the tube, and is allowed to vary, such
that the density and total pressure inside the tube are solely a
function of height. To achieve this, the pressure and temperature

at the edge of the concentration (r = \/x2 + (y — y.)* = R) are

used to set the adjusted density at the edge:

pgas,edge (y) = pgas,out ()’) + pB,oul (y) - pB,in (x’ )’) |r:R ) (Asa)
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Tgas,edge(y) = Tgas,out(y)’

(A5b)
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pgas,edge (}7)

. (A5¢)
7:gas,eclge (y)

pgas,edge (y) =

This density is then propagated over all x, and, together with
the adjusted internal pressure from Equation (Al), used to
create the internal temperature:

Paasin (5 ¥) = Paas.ou V) + Ppou (V) — Ppin(x,y)  (Aba)
pgas,in (y) = pgas,edge (y) (A6b)

Ps: i (X, }’)
Tgas,in(xa y) === (A60)

pgas,in (y)

Figure 16(ii) shows the properties for Case 2.

Figure 17 compares the vertical position of the head of the
magnetic flux structure and rising flux fraction from
Equation (11) for both cases, for simulations in the absence
of background field (B; = 0). We find the location of the head
of the flux tube by measuring the vertical distance to the
maximum of B, on the central plane, x =0, as a function of
time. We curtail this plot at the time (denoted by the rise time)
when the flux tube structure has reached the top of the
simulation box. The two cases have quite different internal
density functions inside the initial magnetic structure, since, as
shown above, in Case 1 it is a function of x and y, whereas for
Case 2 it is solely a function of y. Despite these differences in
the initial thermodynamic conditions, the time it takes for the
flux tube to reach the top of the simulation box is very similar
(see Figure 17(a)), with Case 1 being slightly slower, since its
integrated density perturbation is slightly smaller. The rising
flux fractions, as shown in figure (17)), are also very similar,
showing the usual characteristics of successful rise. Hence, it

(a)

—~
S
~—
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appears that the simulation results are robust to different
interpretations of the initial thermodynamic conditions. We
have used Case 2 as our canonical case for all the results in this

paper.

Appendix B
Initial axial magnetic field profile

As mentioned and demonstrated in Section 1, we have also
tested the effect of switching the flux tube profile from the top-
hat profile of Paper I to a Gaussian profile, an approach used by
various other authors (e.g., Cheung et al. 2006). The top-hat
profile is given simply by

1 ifr <R,
B.(r,0) = {o ifr > R,, (BD)
whereas a Gaussian profile is given by
—r2/R?
B.(r, 0) = 4 Boe 71T TS 2Ry (B2)
0 if r > 2R,,.

We choose B,, such that the integral of B2 over the
concentration is the same in both cases, and therefore the
buoyancy forces induced by each are also the same.

Figure 18 shows line cuts of these two initial magnetic field
profiles through the center of the flux tube at a height of
y=0.5. A top-hat profile exhibits unrealistically strong
magnetic field gradients at the edge of the flux tube, although
this appears not to be an issue, since, given the parameters of
the simulations here, diffusion acts quickly to smooth these
gradients. This can be seen in Figure 18(b), which shows the
profiles at t=1. Even at this very early stage in the rise, the

1.6 T I 1.6 T L
1.4 — 1.4 _
12— — 1.2 —
1 L —t — —
0 L il L |
ﬁ i ] i ]
> 0.8— — 08— —
CQN i ] i ]
0.6 — — 06— —
0.4 — — 04 _|
0.2— — 02— —]

0.5

Figure 18. Line cuts of B, against x at the height of the center of the magnetic concentration, y = 0.5, for simulations begun with both top-hat and Gaussian profiles
inside the magnetic structure. (a) The initial condition at t = 0. (b) A short time later, at r = 1.
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Figure 19. (a) Rise time and (b) flux fraction for top-hat and Gaussian magnetic field profiles at B; = 0.

top-hat profile has been smoothed to a more physical profile,
and the two profiles have become very similar.

Ultimately, we again found that the choice of profile had
little consequence with respect to the dynamics of interest.
Figure 19 shows the rise time and flux fraction as a function of
time for both these cases (when B, = 0), and it can be seen that
the dynamics are very similar. A more stringent test is the
comparison of, for example, Figure 3 in this paper with Figure
2 of Paper 1. Based on these, it is clear that the results are not
substantially influenced by the choice of profile.
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