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Abstract
Inspired by a result of Szőke, we give potential-theoretic characterizations of the
dimension of the Bergman space of holomorphic sections of the restriction of a holo-
morphic line bundle on P1 to some open set D ⊂ P1.

Keywords Bergman space · Riemann sphere · Holomorphic line bundles

Mathematics Subject Classification 32A36 · 32L05 · 30F99

1 Introduction

The Bergman space, A2(!), of an open set ! ⊂ Cn is the vector space of L2(!)-
integrable holomorphic functions on !. Endowed with the L2(!)-norm, A2(!) is a
reproducing kernel Hilbert space on !, whose reproducing kernel captures the geom-
etry of the underlying domain. Because of that, Bergman spaces and their associated
operators have been heavily studied in complex analysis. However, some fundamental
properties of Bergman spaces are still unknown. For instance, open sets with infi-
nite dimensional Bergman spaces have not been completely characterized. While this
problem is interesting in its own right, it also has geometric consequences since the
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dimension of the Bergman space is a biholomorphic invariant, and is monotonic under
the inclusion of open sets. For example, these properties are used in [7] to show that
a smooth strongly pseudoconvex domain in Cn cannot contain a biholomorphic copy
of Cn , i.e., a Fatou–Bieberbach domain.

Note that holomorphic monomials are always L2-integrable on bounded subsets of
Cn . Thus, open sets that are biholomorphically equivalent to bounded sets have infinite
dimensional Bergman spaces. In fact, it is known that the Bergman space of an open set
in C is infinite dimensional if it is non-trivial, see [18]. This dichotomy does not hold
in higher dimensions, see Wiegerinck’s examples [18]. We note that these examples
are not pseudoconvex domains. It is an open problem whether this dichotomy holds
for pseudoconvex domains, which might be viewed as true analogues of open sets in
C. See [3,6,7,10,12,13] for partial results on the dimension of Bergman spaces of open
sets in higher dimensions.

Through work of Carleson [4] and Wiegerinck [18], the dimension of the Bergman
space of an open set in the complex plane is completely characterized by the polarity
of the complement, see the equivalences (a)–(c) in Theorem 1.1. The results on the
dimension of theBergman space of open sets inCmaybe consolidated as the following
theorem.

Theorem 1.1 [4], [18], [7], [8] Let K ! C be a closed subset. Then the following are
equivalent.

(a) K is polar.
(b) A2(C \ K ) = {0}.
(c) dim A2(C \ K ) < ∞.
(d) There exists no bounded ψ ∈ C∞(C \ K ) such that $ψ > 0 on C \ K.

That the Bergman space is either trivial or infinite dimensional, i.e., the equivalence
of (b) and (c), is due to Wiegerinck, see [18]. Carleson shows in [4, Theorem 1, Sect.
VI] that the Bergman space is nontrivial if and only if the logarithmic capacity of
K is positive, that is, the equivalence of (a) and (c). Property (d) is an additional,
potential-theoretic characterization of open sets inCwith finite dimensional Bergman
spaces. A proof of implication (c) ⇒ (d) may be found in [7], while implication
(d) ⇒ (c) is due to [8, Prop. 5.1].

Recently, Szőke [16] considered the dimension problem in the setting of compact
Riemann surfaces. He conjectures that, given a holomorphic line bundle L on a com-
pact Riemann surface M , the Bergman space, A2(D; L), of holomorphic sections of
the restriction of L to an open set D ⊂ M either coincides with the space of global
holomorphic sections of L , or is infinite dimensional; see Sect. 2.2 for the precise
definition of A2(D; L). Furthermore, he proves this conjecture in the case when M is
P1, the Riemann sphere.

Theorem 1.2 [16] Let L be a holomorphic line bundle on P1, and D ⊂ P1 be an open
set. Then A2(D; L) is either equal to #(P1; L), i.e., the space of global holomorphic
sections on P1, or infinite dimensional.

Szőke’s proof is a modification of Wiegerinck’s proof in [18], and relies on the rel-
atively simple algebraic structure of holomorphic line bundles on P1. While this proof
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is hard to generalize to other compact Riemann surfaces, Szőke gives a partial result
for general compact Riemann surfaces. However, he does not provide any potential-
theoretic characterizations, akin to Theorem 1.1, for the general case; see Proposition
2.1 in [16]. An objective of this paper is to fill this gap for P1. In fact, our main result
is a complete analogue of Theorem 1.1 for Bergman spaces of holomorphic sections
on open subsets of P1.

Theorem 1.3 Let $ : L → P1 be a holomorphic line bundle. Suppose that K ! P1

is a compact subset. Then the following are equivalent.

(a) K is polar.
(b) A2(P1 \ K ; L) = #(P1; L).
(c) dim A2(P1 \ K ; L) < ∞.
(d) There exists no bounded functionψ ∈ C∞(P1\K ) such that i∂∂̄ψ ≥ ω on P1\K

for some volume form ω on P1.

The implications (a) ⇒ (b) ⇒ (c) ⇒ (a) are proved using some basic results
in potential theory. In particular, our proof of (c) ⇒ (a) in Sect. 3.2 is inspired
by Wiegerinck’s proof in [18], but uses Carleson’s construction of a nontrivial L2-
integrable holomorphic function as seen in [4, Theorem 9.5, Chap. 21]. We include
this proof of the implication (c) ⇒ (a), because it does not rely on partial differential
equations techniques, unlike our proof of (c) ⇒ (d) ⇒ (a).

As in the proof of Theorem 1.1, the proof of the implication (c) ⇒ (d) in
Theorem 1.3 is done by using Hörmander’s weighted L2-method for solving the
Cauchy–Riemann equations. We note that the equivalence of (a) and (d) can be
paraphrased as: K is nonpolar if and only if, for every Hermitian metric h on L and
volume form ω on P1, there is a bounded function ψ ∈ C∞(P1 \ K ) satisfying

i'e−ψh ≥ ω on P1 \ K .

That is, whenever K is nonpolar, the given Hermitian metric h on L may be twisted
such that the newly obtained Hermitian metric on L|D has positive curvature, see [11,
Theorem 3.11.2] for a related result on general open Riemann surfaces. This positivity
lets one use Hörmander’s method successfully; the boundedness of ψ ensures that the
resultant estimates are for theBergman spaces associated to the givenHermitianmetric
h on L .

The proof of (d) ⇒ (a) in Theorem 1.3 is also motivated by the proof of the same
implication in Theorem 1.1. In the latter, one uses the potential function associated to
the equilibrium measure of a compact, nonpolar set to construct the strictly subhar-
monic, bounded weight function ψ . This construction may be done in a local chart
to prove the implication (d) ⇒ (a) in Theorem 1.3. In fact, the proofs of the equiva-
lences in Theorem 1.3 are all done in a local chart. However, these proofs, except for
the direct proof of (c) ⇒ (a) in Sect. 3.2, do not depend on the particular structure
of L and h so that an extension of Theorem 1.3 to compact Riemann surfaces seems
feasible. In fact, we will consider this question for compact Riemann surfaces in a
forthcoming paper.

As a byproduct of the proof of the implication (c) ⇒ (d) of Theorem 1.3, one
obtains a complete description of the dimension of the weighted Bergman space
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A2
e−ψ (!), where ! ⊂ C is an open set, and ψ is a subharmonic function on C. This is

a combination of Corollary 3.3, which is a version of Theorem 1.1 for A2
e−ψ (!), and

the complete characterization of the dimension of Ae−ψ (C) due to Borichev, Le, and
Youssfi; see [2, Theorem 2.6].

In [18], Wiegerinck gives examples of domains inC2 that have nontrivial, but finite
dimensional Bergman spaces. These examples immediately show that the dichotomy
conjectured for compact Riemann surfaces does not hold for the Bergman spaces of
holomorphic sections of a specific holomorphic line bundle, L = O(−3), on the
complex projective space P2. Motivated by Wiegerinck’s construction, we produce
non-pseudoconvex examples in P2 to show that this dichotomy is absent irrespective
of the choice of holomorphic line bundle on P2.

The paper is structured as follows. In Sect. 2, we detail the required background
material and notation on Bergman spaces, potential theory, and holomorphic line bun-
dles on P1. The first four subsections of Sect. 3 contain the proofs of the equivalences
of Theorem 1.3. This is followed by Sect. 3.5, where the results on the dimension of
weighted Bergman spaces for open sets inC are given. In Sect. 4, we show by example
that for each holomorphic line bundle on P2, there is a domain in P2 such that the
Bergman space of the corresponding holomorphic sections does not equal the space
of global holomorphic sections but is finite dimensional.

2 Background and Preliminaries

2.1 Bergman Spaces inCn and Potential Theory inC

Let! ⊂ Cn be an open subset, and λ be the standard volume form onC. For a positive
function φ on!, the weighted Bergman space of!with weight φ is the Banach space

A2
φ(!) :=

{

f ∈ O(!) : || f || :=
(∫

!
| f (z)|2φ(z)λ(z)

)1/2

< ∞
}

.

For φ ≡ 1, the space A2
φ(!) is denoted by A2(!), and referred to as the Bergman

space of !.
A set K ⊂ C is said to be polar if there is a nonconstant subharmonic function s on

C such that K ⊂ {z ∈ C : s(z) = −∞}. Polar sets admit an alternate characterization
via logarithmic potential theory. For a finite Borel measure ν with compact support in
C, its potential is the function pν : C → [−∞,∞) given by

pν(z) =
∫

C
ln |z − w| dν(w), z ∈ C.

The energy of ν is the quantity

I (ν) =
∫

C
pν(z) dν(z).

The (logarithmic) capacity of K ⊂ C is defined as

cap(K ) := sup{eI (ν) : ν is a Borel probability measure with compact support in K }.
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For a compact nonpolar set K ⊂ C, it is known that there is a unique Borel probability
measure νK supported on K such that

I (νK ) = sup{I (ν) : ν is a Borel probability measure on K }.

This measure is called the equilibrium measure of K . The following result relates the
notion of polarity, local polarity, and capacity.

Theorem 2.1 Let K ⊂ C be a Borel subset. Then the following are equivalent.

(i) K is polar.
(ii) There is an open set G containing K , and a subharmonic function s on G,

nonconstant on any component of G, such that K ⊂ {x ∈ G : s(x) = −∞}.
(iii) For any ζ ∈ C, there is a connected open neighborhood Vζ of ζ and a nonconstant

subharmonic function sζ on Vζ such that K ∩ Vζ ⊂ {x ∈ Vζ : sζ (x) = −∞}.
(iv) cap(K ) = 0.

For the equivalences of (i) and (ii), (i) and (iii), and (i) and (iv), see for instance
Proposition 5.5, Lemma 5.6 and Theorem 7.5, respectively, in [5, Chap. 21].

2.2 Bergman Spaces of Holomorphic Sections

Let M be a complex manifold. Given a holomorphic line bundle $ : L → M and an
open set D ⊂ M , the space of holomorphic sections of L|D is denoted by #(D; L).

Let ω be a volume form on M . Given a holomorphic line bundle $ : L → M ,
and a smooth Hermitian metric h on L , we define the Bergman space of sections of
(L|D, h) as

A2
h,ω(D; L) =

{

s ∈ #(D; L) : ||s|| :=
(∫

D
h(s, s)ω

)1/2

< ∞
}

.

A2
h,ω(D; L) is a reproducing kernel Hilbert space. If M = Cn , then #(D; L) = O(D)

and h(s, s)ω = |s|2φλ, for some positive function φ on Cn . In this case, A2
h,ω(D; L)

is the weighted Bergman space A2
φ(D).

Lemma 2.2 Let M, D, L, h,ω be as above. Suppose that M is compact. Then, as a
vector space, A2

h,ω(D; L) is independent of the choices of h and ω. In particular,
A2
h,ω(M; L) = #(M; L).

Proof Given any two smooth volume forms, ω and ω′, on M , and any two smooth
Hermitian metrics, h and h′, on L , there exist smooth positive functions, f and g, on
M , such that ω = f ω′ and h = gh′. Thus, the Bergman spaces of the sections of L|D
are isomorphic for different choices of the volume form on M and Hermitian metric
on L .

The final claim holds since h(s, s) is a continuous positive function on M for any
choice of h and s. ,-
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Remark 2.3 In this paper, M is either P1 or P2. Thus, in view of Lemma 2.2,
A2
h,ω(D; L) is simply denoted by A2(D; L).

2.3 Line Bundles on P1

We recall certain standard facts about P1. Given any q ∈ P1, one may choose coor-
dinates ζ = [ζ0 : ζ1] on P1 so that q = [0 : 1]. In this case, we often identify
Uz = P1 \ {q} with the complex plane C via

ϕz : ζ = [ζ0 : ζ1] .→ z = ζ1

ζ0
,

and refer to z as the local coordinate on the affine chart P1 \ {q}. On occasion, the
chart (U 1/z,ϕ1/z) given by ϕ1/z : ζ .→ ζ0/ζ1 on U 1/z = P1 \ {[1 : 0]} will also be
used. In this case, we will use the coordinate w on ϕ1/z(U 1/z) = C.

A smooth volume formω onP1 is of the form f ωFS, whereωFS is the Fubini–Study
volume form, and f is a smooth positive function on P1. Thus, in the local coordinate
z,

ω(z) = f (z)
idz ∧ dz

2(1+ |z|2)2 , z ∈ C,

where f : C → (0,∞) is smooth, and f ◦ ϕz admits a smooth positive extension
to P1. Given a smooth function ψ on an open set in P1, ∂∂ψ is the unique smooth
(1, 1)-form on P1 satisfying (ϕz)∗

(
∂∂ψ

)
(z) = ∂2(ψ◦ϕz)

∂z∂z (z) dz ∧ dz for all z ∈ Uz .
Next, anyholomorphic line bundle$ : L → P1 is of the formO(k), for some k ∈ Z,

where O(k) is the line bundle associated to the divisor k{p} for any fixed p ∈ P1.
In the local coordinate z, a global section of O(k) is given by a pair, s = (s1, s2),
of holomorphic functions on C such that s1(z) = zks2(1/z) if z ∈ C∗. Similarly, a
Hermitian metric on L = O(k) is given by a pair, h = (h1, h2), of smooth positive
functions on C, such that h1(z) = |z|−2kh2(1/z) if z ∈ C∗. Owing to the relationship
between h1 and h2, ∂∂h1(z) = ∂∂h2(1/z), z ∈ C∗, where ∂∂ f (z) = ∂2 f

∂z∂z (z) dz ∧ dz
for any C2-smooth function f on C. Thus, there is a smooth (1, 1)-form 'h on P1

such that (ϕz)∗'h = ∂∂h1 and
(
ϕ1/z

)
∗ 'h = ∂∂h2. The form 'h is referred to as the

curvature of the Hermitian metric h. Note that it suffices to specify s1, h1 and ∂∂h1,
which is the convention we will employ. Lastly, recall the following description of the
space of global sections of O(k), k ∈ Z.
Lemma 2.4 Let k ∈ Z. In the local coordinate z,

A2(P1;O(k)) = #(P1;O(k)) =
{
{polynomials of degree at most k}, if k ≥ 0,
{ f ≡ 0}, if k < 0.

In particular, dim A2(P1;O(k)) = dim #(P1;O(k)) = max{0, k + 1}.
While Lemma 2.4 is a standard result, see [17, p. 81], we direct the reader to the

remarks before Corollary 3.3 for a proof in the case k ≥ −2.
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2.4 Potential Theory on P1

Given an open setU ⊂ P1, and an upper semicontinuous function s : U → [−∞,∞)

with s≡/ − ∞ on any connected component of U , s is said to be subharmonic on
U if, for every coordinate chart (V ,ϕ) that intersects U , s ◦ ϕ−1 is subharmonic on
ϕ(U ∩ V ) ⊂ C.

Definition 2.5 Given a set K ⊂ P1, K is said to be polar if for each ζ ∈ P1, there is
an open neighborhood Vζ ⊂ P1 of ζ and a subharmonic function sζ on Vζ such that
K ∩ Vζ ⊂ {x ∈ Vζ : sζ (x) = −∞}.

Lemma 2.6 Let K ⊂ P1 be compact. For any fixed q = [0 : 1] ∈ P1, K is polar in P1

if and only if K∗ := ϕz(K ) is polar in C.

Proof First, suppose that K is polar. Let ζ∗ ∈ C and ζ = ϕ−1
z (ζ∗). Then it is clear

that

K∗ ∩Uζ∗ ⊂ {x ∈ Uζ∗ : sζ∗ (x) = −∞},

where Uζ∗ = ϕz(Vζ \ {q}), and sζ∗ = sζ ◦ ϕ−1
z . Thus, K∗ is polar in C.

Next, assume that K∗ is polar. By a similar reasoning as above, we obtain that for
every ζ ∈ P1 \ {q}, there exists a Vζ ⊂ P1 and a subharmonic function sζ on Vζ

that satisfy the condition in Definition 2.5. It remains to produce such a pair (Vζ , sζ )
for ζ = q. Since subharmonicity is preserved by biholomorphic maps, it follows that
the set K∗∗ := ϕ1/z ◦ ϕ−1

z (K∗) is polar in C∗. In fact, by Theorem 2.1, K∗∗ is polar
in C. On the other hand, {0} = ϕ1/z({q}) is also polar in C. Now, using the fact
that the union of two polar sets in C is polar in C, see [5, Lemma 5.6, Chap. 21],
ϕ1/z(K ) = K∗∗ ∪ {0} is polar in C, i.e., there is a subharmonic function s on C such
that ϕ1/z(K ) ⊂ {x ∈ C : s(x) = −∞}. To complete the proof, we simply observe
that Vq = ϕ−1

1/z(C) and sq = s ◦ ϕ1/z satisfy the condition required at q ∈ K in
Definition 2.5. ,-

3 Proof(s) of theMain Result

By Lemma 2.4, (b) ⇒ (c). In Sects. 3.1–3.4, we prove the implications (a) ⇒ (b),
(c) ⇒ (a), (c) ⇒ (d), and (d) ⇒ (a), respectively. This section concludes with
the characterization of weighted Bergman spaces, A2

e−ψ (!), for subharmonic ψ and
! ⊂ C open.

3.1 Proof of (a) Implies (b)

In order to prove that A2(P1 \ K ; L) = #(P1; L) whenever K ⊂ P1 is a compact
polar set, we first prove a version of this result for sets in C in Lemma 3.1 below. A
readily available result in the literature is that A2(!) = A2(! \ X) for any open set
! ⊂ C and polar, compact set X ⊂ !, see, for instance, Theorem 9.5 in [5, Chap. 21]
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and the paragraph preceding it. We present a generalization of this result to the case
when X is a polar and relatively closed subset of !.1

Lemma 3.1 [15] Let ! ⊂ C be an open subset, and X ⊂ C be a closed polar subset.
Then, A2(! \ X) = A2(!), i.e., for any f ∈ A2(! \ X), there is an F ∈ A2(!) such
that F |!\X = f .

Proof The proof uses the fact that for any a ∈ ! ∩ X , there exists an ra > 0 such that
D(a, ra) ⊂ !, and bD(a, ra) ∩ X = ∅, see Theorem 7.3.9 in [1].

Now, let Da := D(a, ra) and Xa := D(a, ra) ∩ X , where ra is as above. Then,
Xa is a compact subset of Da . Using the result for compact, polar sets mentioned
before the statement of this lemma, for any f ∈ A2(!), there is an Fa ∈ A2(Da) such
that Fa |Da\Xa = f |Da\Xa . For any a, b ∈ X such that Da ∩ Db 4= ∅, we have that
(Da ∩ Db) \ X is a nonempty open set because X is a closed and polar set. Thus, it
follows from the identity theorem that Fa = Fb on Da ∩ Db. Hence, the following
function is well-defined and holomorphic on !:

F(z) =
{
Fa(z), z ∈ Da,

f (z), z ∈ ! \ X .

Moreover, since f and F differ only on the zero measure set X , it follows that
||F ||A2(!) = || f ||A2(!\X). ,-

We are now set to prove that (a) implies (b) in Theorem 1.3.

Proof (Proof of (a) ⇒ (b) in Theorem 1.3) Suppose that K ! P1 is polar. If K
is empty, then (b) follows from (a), see Lemma 2.4. Thus, we assume that K is a
nonempty polar set, and fix a q ∈ K . With q = [0 : 1], we fix the Hermitian metric
on L = O(k) as h1(z) = 1/(1 + |z|2)k in the local coordinate z. To account for the
volume form in the local coordinate z, we set

φk(z) :=
1

(1+ |z|2)k+2 , z ∈ C. (3.1)

Setting D∗ := C \ K∗, it then follows that A2(D;O(k)) is isomorphic to A2
φk
(D∗).

Next, we show that A2
φk
(D∗) = A2

φk
(C). For this, let f ∈ A2

φk
(D∗). For any R > 0,

set D∗(R) = D∗ ∩ D(0; R) and fR = f · χD∗(R) . Then, since

φk(z) ≥
{
1, if k < −2,
(1+ R2)−k−2, if k ≥ −2,

z ∈ D(0; R),

it follows that fR ∈ A2(D∗(R)). However, K∗ is a closed polar subset of C. Thus, by
Lemma 3.1, there exists an FR ∈ A2(D(0; R)) such that FR |D∗(R) = fR . We abuse

1 After the first draft of thismanuscript appeared on the arXiv, Pflug brought to our attention that Lemma 3.1
has appeared in [15], where Siciak attributes it to Sakai and Skwarczyński. Since neither [15] nor the source
cited therein are easily accessible, we give a proof of Lemma 3.1 in this work. This proof is simpler than
our original one, and follows an argument suggested by Pflug. This argument resembles that of Siciak’s.
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notation, and assume that FR is defined on C by setting it to be 0 on C \ D(0; R).
Since

FS|D∗(R) = FR |D∗(R) = f |D∗(R) whenever S ≥ R > 0,

it follows from the identity theorem that FS|D(0;R) = FR |D(0;R) for all S ≥ R > 0.
Thus, the sequence {FN }n∈N admits a pointwise limit, say F , on C. Moreover, since
F |D(0;N ) = FN for all N ∈ N, F ∈ O(C) and F |D∗ = f . In particular, F is
measurable so that

‖F‖L2
φk
(C) = ‖F‖L2

φk
(D∗) = ‖ f ‖L2

φk
(D∗) < ∞

follows. Therefore, A2
φk
(D∗) is isomorphic to A2

φk
(C). Finally, note that A2

φk
(C) is

isomorphic to A2(P1;O(k)), which is #(P1;O(k)), by Lemma 2.4. Thus, (a) implies
(b) in Theorem 1.3. ,-

3.2 Proof of (c) Implies (a) via the Cauchy Transform Approach

Proof We prove the implication by contraposition, i.e., we prove that if K ! P1 is
nonpolar, then A2(P1 \K ;O(k)) is infinite dimensional. As in the proof of (a) ⇒ (b)
in Sect. 3.1, we assume that q = [0 : 1] ∈ K and fix the Hermitian metric h1(z) =
1/(1+ |z|2)k onO(k). Then, it suffices to show that A2

φk
(D∗) is infinite dimensional,

where φk is as in (3.1), and D∗ = C \ K∗.
Case 1. Suppose that k ≥ −2. Then, since φk(z) ≤ 1 for all z ∈ C, A2(D∗) ⊂
A2

φk
(D∗). Since, by Lemma 2.6, C \ D∗ = K∗ is nonpolar, Theorem 1.1 yields that

A2(D∗), and therefore, A2
φk
(D∗) is infinite dimensional.

Case 2. Suppose that k < −2. In this case, A2
φk
(D∗) ⊂ A2(D∗), so Theorem 1.1

does not directly yield our claim. However, we use the techniques of Carleson and
Wiegerinck to produce infinitely many independent functions in A2

φk
(D∗).

First, we recall Carleson’s construction of a nontrivial function in A2(D∗); see
[5, Theorem 9.5, Chap. 21] for a detailed exposition. Set K∗ := ϕz(K ) = C \ D∗.
Then, K∗ is a Borel nonpolar set in C. Thus, it contains a compact set, say E , with
positive logarithmic capacity, see for instance [5, Theorem 7.5, Chap. 21]. Let E1, E2
be disjoint compact subsets of E , each of which has positive logarithmic capacity. For
j ∈ {1, 2}, let µ j be the equilibrium measure of E j , and set µ = µ1 − µ2. Set f to
be the Cauchy transform of µ, i.e.,

f (z) =
∫

E

dµ(ξ)
ξ − z

. (3.2)

Then, f is analytic on C∞ \ E , with f (∞) = f ′(∞) = 0. Carleson further shows
that f ∈ A2(C \ E) which is contained in A2(D∗).

We next use Wiegerinck’s technique to produce a sequence of linearly independent
functions {g j } j∈N ⊂ A2(C\ E) such that g j vanishes at∞, and its order of vanishing
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at ∞ is at least j . Assuming the existence of this sequence for the moment, we claim
that g j ∈ A2

φk
(D∗) for all j ≥ −k. To see this, fix a j ≥ −k, and note that there exist

{c j,/}/≥ j ⊂ C and R > 0 so that

g j (z) =
∞∑

/= j

c/, j z−/ for |z| > R.

Thus, since j ≥ −k and k < −2, it follows that
∫

D∗
|g j (z)|2

idz ∧ dz
2(1+ |z|2)k+2

≤ (1+ R2)−2−k
∫

D(0;R)\E
|g j (z)|2 λ(z)

+
∫

|z|>R
|g j (z)|2

idz ∧ dz
2(1+ |z|2)k+2

≤ ||g j ||2A2(C\E) + 2π
∫

r>R

∑

/= j

|c/, j |2r−2/r(1+ r2)−2−kdr < ∞.

This gives the infinite dimensionality of A2
φk
(D∗). It remains to construct the sequence

{g j } j∈N.
Subcase 1. Suppose that f in (3.2) is rational. Since f is L2-integrable on C \ E ,
but not on C, E must have positive Lebesgue measure. In this case, the function

g(z) =
∫

E

λ(ξ)

ξ − z
is bounded and analytic on C \ E , with g(∞) = 0 and g′(∞) = −λ(E), see [9, p. 2].
Thus, g j ∈ A2(C \ E) for all j ∈ N, and each g j has order of vanishing j at ∞. In
this case, we set g j = g j .
Subcase 2. Suppose that f in (3.2) is not rational. Expanding f in a Laurent series
around ∞, one gets

f (z) =
∞∑

/=p

c/ z−/, for some p ≥ 2, cp 4= 0.

Now, we produce a nontrivial function g ∈ A2(C \ E) whose Laurent expansion at
∞ does not contain any terms in z−1,…,z−p. Let z1, . . . , z p+1 be distinct points in
C \ E , and

g(z) =
p+1∑

/=1

b/
( f (z) − f (z/))

z − z/
.

Then, expanding g as a Laurent series around ∞, one obtains g(z) = ∑∞
/=1 a/ z/,

where

am =
p+1∑

/=1

−b/ f (z/) z
m−1
/ , m ∈ {1, . . . , p}. (3.3)
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Here, the constants b1, . . . , bp+1 are chosen to solve the homogeneous system of p
linear equations obtained by setting am = 0, m ∈ {1, . . . , p}. Moreover, g cannot be
trivial, else f will be rational. Thus, g has the desired properties.

Setting g1 = · · · = gp = f and gp+1 = g, we construct g j inductively for
j ≥ p + 1 by repeating the above procedure for g j−1 in place of f . This completes
the construction of the sequence in all cases, and hence, the proof of Theorem 1.3. ,-

3.3 Proof of (c) Implies (d)

The proof of this implication follows from a similar result for sets in C.

Lemma 3.2 Let ! ⊂ C be an open set and A2
e−ψ1

(!) be the weighted Bergman
space for some ψ1 ∈ C∞(!,R). Suppose that there exists a subharmonic function
ψ2 ∈ C∞(!,R) such that it is bounded above, ψ1 + ψ2 is subharmonic on !, and

$ψ2 > 0 on U

for an open set U ! !. Then A2
e−ψ1

(!) is infinite dimensionial.

Proof This follows from work in [7], see Theorem 1 and Lemma 7 therein. The lat-
ter requires a slight modification. This modification consists of replacing Kϕ(z) by
ψ1(z)+ Kψ2(z), and using the boundedness from above of ψ2 to show that the con-
structed function u belongs to L2

e−ψ1
(!). ,-

Proof (Proof of (c) ⇒ (d) in Theorem 1.3) The proof is done by contraposition. Thus,
we assume that there exists a bounded function ψ ∈ C∞(P1 \ K ) such that i∂∂̄ψ ≥ ω

holds on P1 \ K for some volume form ω on P1. Note that, if K was empty, then it
would follow that there is a bounded, nonconstant subharmonic function onC. Hence,
we may assume that K is nonempty. As before, we choose a q ∈ K and coordinates
such that q = [0 : 1]. Set K∗ = ϕz(K ).

Next,we note that, as in Sect. 3.2, it suffices to show that A2
φk
(D∗), for D∗ := C\K∗,

is infinite dimensional for each k ∈ Z.
For that, we use Lemma 3.2. In particular, we set ψ̃2 = ψ ◦ ϕ−1

z . Then, clearly,
ψ̃2 ∈ C∞(D∗) is a bounded, strictly subharmonic function. Moreover, it follows that
there is a constant c1 > 0 such that

$ψ̃2(z) ≥ c1(1+ |z|2)−2 for z ∈ D∗.

Next, set ψ1 := − ln(φk). Then ψ1 ∈ C∞(D∗) and

$ψ1(z) = 4(k + 2)(1+ |z|2)−2 (3.4)

on D∗. Hence, there exists a constant c > 0 such that

$(ψ1 + cψ̃2) > 0 on D∗.
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Setting ψ2 = cψ̃2, it follows that the hypotheses of Lemma 3.2 are satisfied for any
open set U ! D∗. Thus, A2

φk
(D∗) is infinite dimensional. ,-

3.4 Proof of (d) Implies (a)

Proof This proof is also done by contraposition. That is, we assume that K ⊂ P1

is nonpolar. Since K is nonempty, we may construct ψ in a chart first. As before,
we let q ∈ K and choose coordinates such that q = [0 : 1]. We set K∗ = ϕz(K )

and D∗ = C \ K∗. We shall use a function which was initially constructed in the
proof of Proposition 5.1 in [8]. For that, let G ⊂ K∗ be a nonpolar, compact set
and ν = νG be the equilibrium measure of G. The associated potential function
p = pG : C −→ [−∞,∞) is defined as

p(z) =
∫

C
ln |z − w| dν(w) for z ∈ C.

Since p is harmonic on Gc, see for instance [14, Theorem 3.1.2], it follows that
$e−p = e−p|∇ p|2 onGc. Thus, e−p is subharmonic onGc, and strictly subharmonic
at all points in Gc at which the gradient of p is nonvanishing. It follows from the proof
of Proposition 5.1 in [8] that |∇ p| is strictly positive outside a sufficiently large disc
containing G. In particular, there exist constants τ1, R > 0 such that G ⊂ D(0, R)
and

|∇ p(z)| > τ1

|z| for z ∈ D(0, 2R)c.

Furthermore, since ν is an equilibrium measure, one obtains for z ∈ D(0, 2R)c that

p(z) =
∫

C
ln |z − w| dν(w) ≤ ln(3|z|/2).

Therefore,

$e−p(z) ≥ 2
3

τ 21
|z|3 for z ∈ D(0, 2R)c.

Strict subharmonicity on all of Gc may now be achieved by adding to e−p a particular
compactly supported functionwhich is strictly subharmonic onD(0, 2R). For instance,
let χ ∈ C∞

0 (D(0, R′)) for some R′ > 2R such that χ(z) = |z|2 on D(0, 2R). Then,
for ε > 0 sufficiently small, there exist τ2, τ3 > 0 such that the function ψ∗(z) :=
e−p(z) + εχ(z) satisfies

$ψ∗(z) ≥
{

τ2
|z|3 , for z ∈ D(0, 2R)c,
τ3, for z ∈ D(0, 2R).

(3.5)
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It follows that ψ := ψ∗ ◦ ϕz satisfies i∂∂̄ψ ≥ ω on P1 \ K for some volume form ω

on P1. Moreover, Frostman’s theorem implies that e−p is bounded on Gc, and hence,
ψ∗ is bounded on Gc. That is, ψ is bounded on P1 \ K , and hence satisfies (d) in
Theorem 1.3. ,-

3.5 A Corollary to Lemma 3.2 onWeighted Bergman Spaces

A variation of Lemma 3.2 yields an analogue of Theorem 1.1 for the Bergman space
A2
e−ψ (!) for ψ subharmonic on !, see Corollary 3.3 below.
The dimension of A2

e−ψ (C) for ψ subharmonic on C is completely described by
Borichev, Le, and Youssfi in [2, Theorem 2.6] in terms of the continuous part (µψ )

c

of the Riesz measure µψ of ψ . They show that dim A2
e−ψ (C) < ∞ is finite if and only

if (µψ )
c(C) < ∞, and

(a) if (µψ )
c(C) = 0, then dim A2

e−ψ (C) = 0,
(b) if 0 < (µψ )

c(C) < ∞, then

dim A2
e−ψ (C) = max

{
n ∈ N : n < (µψ )

c(C)/4π
}
.

Recall that A2(P1;O(k)) is isomorphic to A2
φk
(C), and that Lemma 2.4 states that

dim A2(P1,O(k)) = max{0, k + 1}. Using [2, Theorem 2.6], we can now rediscover
Lemma 2.4 for k ≥ −2. In particular, for k ≥ −2, the function ψ := − ln(φk) is
subharmonic since

($ψ)(z) = 4(k + 2)(1+ |z|2)−2.

It follows that (µψ )
c(z) = 4(k + 2)(1+ |z|2)−2λ(z), so that (µψ )

c(C) = 4π(k + 2).
By (a) and (b) above, it follows that dim A2

φk
(C) = max{0, k + 1}.

As in the case of unweightedBergman spaces, the dimension of aweightedBergman
space for an open set in C may be determined through the polarity of its complement
as follows.

Corollary 3.3 Let K ⊂ C be a closed set, ψ a subharmonic function on C. Then the
following hold.

(1) If K is nonpolar, then A2
e−ψ (C \ K ) is infinite dimensional.

(2) If K is polar, then A2
e−ψ (C \ K ) is isomorphic to A2

e−ψ (C).

Proof To prove (1), we note first that Lemma 3.2 still holds if ψ1 is subharmonic, not
necessarily smooth, on ! as long as the open set U ! ! may be chosen such that
e−ψ1 is integrable on U .

Next, we note that Propositions 2.1 and 2.2 in [10] imply that e−ψ is integrable
except near finitely many points. Thus, we may choose an open set U in C \ K such
that e−ψ is integrable onU . Now, choose ψ2 equal to ψ∗ as defined above (3.5). Then
ψ2 is a bounded above, strictly subharmonic, smooth function on C \ K . Thus, with
ψ1 := ψ , the claim follows from the above mentioned variation of Lemma 3.2
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For the proof of (2) we first note that ψ is upper semicontinuous, which implies
that ψ is bounded from above on any compact subset of C. Write ! for C \ K ,
and let f ∈ A2

e−ψ (!). It then follows that f ∈ A2(! ∩ D(0, R)) for any R > 0.
We now may proceed as in the paragraph following (3.1) and construct a function
F ∈ O(C) such that F |! = f . Since K is of Lebesgue measure 0, it then follows that
‖F‖L2

e−ψ (C) = ‖ f ‖L2
e−ψ (!). Thus, A

2
e−ψ (C \ K ) is isomorphic to A2

e−ψ (C). ,-

4 Finite Dimensional Bergman Spaces in P2

In this section, we show that the dichotomy displayed by Bergman spaces on P1 does
not hold in higher dimensional projective spaces. In particular, for every holomorphic
line bundle L on P2, there exists a domain D ⊂ P2 such that the dimension of the
Bergman space A2(D; L) is finite, but strictly larger than that of the space of global
holomorphic sections of L . The examples in this section are entirely motivated by
Wiegerinck’s examples in [18].

In analogy with P1, we use the coordinates ζ = [ζ0 : ζ1 : ζ2] on P2. The open set
U (z,w) = P2 \ {ζ : ζ0 = 0} is identified with C2 via

ϕ(z,w) : ζ = [ζ0 : ζ1 : ζ2] .→ (z, w) =
(

ζ1

ζ0
,
ζ2

ζ0

)
,

and (z, w) are referred to as the local coordinates on the affine chart U (z,w). Any
holomorphic line bundle$ : L → P2 is of the formO(k), for some k ∈ Z, whereO(k)
is the line bundle associated to the divisor k{/} for any fixed hyperplane / ⊂ P1. In the
local coordinates (z, w), a global section ofO(k) is given by a triplet, s = (s1, s2, s3),
of holomorphic functions on C2 such that

s1(z, w) =
{
zks2(1/z, w/z), if (z, w) ∈ C2 \ {z = 0},
wks3(z/w, 1/w), if (z, w) ∈ C2 \ {w = 0}. (4.1)

Similarly, a Hermitianmetric onO(k) is given by a triplet, h = (h1, h2, h3), of smooth
positive functions on C2 that satisfy compatibility conditions analogous to (4.1). In
view of Lemma 2.2, we fix the following smooth volume form on P2, and Hermitian
metric on O(k), k ∈ Z, respectively, in the local coordinates (z, w) on U (z,w):

ωFS(z, w) = (1+ |z|2 + |w|2)−3 dz ∧ dz ∧ dw ∧ dw,

h1(z, w) = (1+ |z|2 + |w|2)−k .

Finally, recall the following description of the space of global sections of O(k), see
[17, p. 81].
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Lemma 4.1 Let k ∈ Z. In the local coordinates (z, w) on the affine chart U (z,w),

A2(P2;O(k)) = #(P2;O(k)) =
{
span{z pwq : (p, q) ∈ N2, p + q ≤ k}, if k ≥ 0,
{ f ≡ 0}, if k < 0.

In particular, dim A2(P2;O(k)) = dim #(P2;O(k)) = max
{
0, (k+1)(k+2)

2

}
.

Theorem 4.2 Given k ∈ Z, there exists a domain !k ⊂ P2 such that

dim A2(P2;O(k)) < dim A2(!k;O(k)) < ∞.

In particular, dim A2(!k;O(k)) = 1 for k < −2, and dim A2(!k;O(k)) = (k +
3)(k + 4)/2 for k ≥ −2.

Proof It suffices to produce a domain in the chartU (z,w), i.e., a domain !k ⊂ C2 such
that dim A2

φk
(C2) < dim A2

φk
(!k) < ∞, where

φk(z, w) = (1+ |z|2 + |w|2)k+3, (z, w) ∈ C2.

The desired domain will be of the form B ∪ X/ ∪ Y ∪ Zm , for appropriately chosen
/,m ∈ N, where

B =
{
(z, w) ∈ C2 : max{|z|, |w|} < 2

}
,

X/ =
{
(z, w) ∈ C2 : |z| >

√
2, |w| < 1/|z|/

}
, / ∈ N,

Y =
{
(z, w) ∈ C2 : |w| >

√
2, |z| < 1/|w|

}
,

Zm =
{
(z, w) ∈ C2 : |z|2 + |w|2 > 2,

∣∣|z| − |w|
∣∣ <

1
(|z| + |w|)m

}
, m ∈ N \ {0, 1}.

In the rest of the proof, A2
k,mon(!) denotes the set of monomials in A2

φk
(!), for any

! ⊂ C2. We claim that

A2
k,mon(B) = {z pwq : (p, q) ∈ N2}, (4.2)

A2
k,mon(X/) = {z pwq : (p, q) ∈ N2, p − /q ≤ / + k + 1}, (4.3)

A2
k,mon(Y ) = {z pwq : (p, q) ∈ N2, q − p ≤ k + 2}, (4.4)

A2
k,mon(Zm) = {z pwq : (p, q) ∈ N2, 2(p + q) ≤ m + 2k + 2}. (4.5)

Assuming (4.2)–(4.5) for the moment, set

!k =
{
B ∪ X1 ∪ Y ∪ Z2, if k ≥ −2,
B ∪ X1−2(k+2) ∪ Y ∪ Z−2(2k+3), if k < −2.

(4.6)
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Since !k is Reinhardt for any k ∈ Z, A2
k,mon(!k) is a basis for A2

φk
(!k). Thus,

dim A2
φk
(!k) is the cardinality of A2

k,mon(!k). From (4.6), if k ≥ −2,

A2
k,mon(!k) = {z pwq : (p, q) ∈ N2, |p − q| ≤ k + 2, p + q ≤ k + 2},

which is of cardinality (k+3)(k+4)
2 . On the other hand, if k < −2, i.e., k + 2 = −t for

some t ≥ 1, then

A2
k,mon(!k) =

{
z pwq : (p, q) ∈ N2,

p − t
1+ 2t

≤ q ≤ p − t, p + q ≤ t
}
= {zt }.

Thus, recalling Lemma 4.1, dim A2
φk
(C2) < dim A2

φk
(!k) < ∞, in either case.

It now remains to prove (4.2)–(4.5). We use the notation L ≈ M for L,M ∈ R
to mean that there exist constants c, d > 0 such that cM ≤ L ≤ dM . Since (4.2) is
clear, and (4.4) follows from (4.3), we only need to prove (4.3) and (4.5). To find the
monomials which are contained in A2

φk
(X/), consider

X̃/ =
{
(r , s) : r >

√
2, 0 < s < 1/r/

}
.

For p, q, / ∈ N, we get

||z pwq ||2
A2

φk
(X/)

= (2π)2
∫

X̃/

r2p+1s2q+1

(1+ r2 + s2)3+k ds dr =: (2π)2 · J .

To determine the range of p and q for which J is finite for a given /, we consider X̃/

in polar coordinates, i.e.,

X̃/ = {(R cos θ, R sin θ) : R cos θ >
√
2, R/+1 sin θ(cos θ)/ < 1, θ ∈ (0,π/2)},

and introduce

J (a, g) :=
∫ ∞

a

∫ g(R)

0

R2p+2q+2

(1+ R2)3+k (cos θ)2p+1(sin θ)2q+1R dθ dR,

where a > 0 is a constant and g is a positive, continuous function. We notice that
θ ∈ (0,π/4) on X̃/. It then follows that

J (2, arcsin(R−/−1)) ≤ J ≤ J (
√
2, arcsin(

√
2
/
R−/−1)),

because, firstly, anypoint in X̃/ satisfies R >
√
2 and θ ∈ (0, arcsin(

√
2
/
R−/−1)), and,

secondly, any point with R > 2 and θ ∈ (0, arcsin(R−/−1)) is a point in X̃/.Hence, it
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remains to estimateJ (a, arcsin(cR−/−1) for c ∈ {1,
√
2
/}. Again, since θ ∈ (0,π/4)

on X̃/, it follows that

J (a, arcsin(cR−/−1)) =
∫ ∞

a

R2p+2q+2

(1+ R2)3+k

×
(∫ arcsin(cR−/−1)

0
(cos θ)2p+1(sin θ)2q+1 dθ

)

R dR

≈
∫ ∞

a

R2p+2q+2

(1+ R2)3+k

×
(∫ arcsin(cR−/−1)

0
cos θ(sin θ)2q+1 dθ

)

R dR

≈
∫ ∞

a
R2p+2q+3−(/+1)(2q+2)−2(3+k) dR,

which converges if and only if 2p + 2q + 3 − (/ + 1)(2q + 2) − 2(3+ k) < −1. It
follows that z pwq ∈ A2

φk
(X/) if and only if

p − /q ≤ k + / + 1. (4.7)

In a similar fashion, we find the monomials in A2
φk
(Zm). For that, we write

Z̃m =
{
(r , s) : r2 + s2 > 2, |r − s|(r + s)m < 1

}

and note that for p, q,m ∈ N

||z pwq ||2
A2

φk
(Zm)

= (2π)2
∫

Z̃m

r2p+1s2q+1

(1+ r2 + s2)3+k dr ds := (2π)2 · I.

As before, we introduce polar coordinates on Z̃m . It is straightforward to check that
then

Z̃m =
{
(R cos θ, R sin θ) : R >

√
2,

∣∣sin
(π
4 − θ

)∣∣ cosm
(π
4 − θ

)
< (

√
2R)−m−1, θ ∈ (0, π

2 )
}

=
{(

R cos
(π
4 − ψ

)
, R sin

(π
4 − ψ

))
: R >

√
2, |sinψ | cosm ψ < (

√
2R)−m−1,ψ ∈ (−π

4 ,
π
4 )

}
.

We work in the coordinates (R,ψ) to estimate I, utilizing integrals of the form

I(g) :=
∫ ∞

√
2

∫ g(R)

−g(R)

R2p+2q+3

(1+ R2)3+k cos
2p+1 (

π
4 − ψ

)
sin2q+1 (

π
4 − ψ

)
dψ dR

for some positive, continuous function g. Since ψ ∈ [−π/4,π/4), it follows that

I
(
arcsin

(
(
√
2R)−m−1)

)
≤ I ≤ I

(
arcsin

(√
2R−m−1

))
.
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Sincem ≥ 2, both trigonometric functions in the definition of I(g) are strictly positive
for |ψ | ≤ | arcsin(

√
2R−m−1)|. Therefore,

I
(
arcsin(cR−m−1)

)
≈

∫ ∞
√
2

∫ arcsin(cR−m−1)

− arcsin(cR−m−1)

R2p+2q+3

(1+ R2)3+k dψ dR

for c ∈ {
√
2,

√
2
−m−1}. Moreover, |t/2| ≤ | sin t | ≤ |t | holds for |t | ≤ π/4. Thus

I
(
arcsin(cR−m−1

)
≈

∫ ∞
√
2
R2p+2q+3−(m+1)−2(3+k)dR,

which converges if and only if

2(p + q) ≤ m + 2k + 2. (4.8)

This completes the proof of (4.5), and thus, of Theorem 4.2. ,-
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