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1 | INTRODUCTION

In this paper, we generalize to arbitrary dimension n the main result proved by Lopez-Hernanz
et al. in [22] for n = 2. Namely, we consider a germ of biholomorphism F € Diff(C",0) with a
formal invariant curve I at the origin. Assuming that the multiplier A of the restricted (formal)
diffeomorphism F| is a root of unity or satisfies |1| < 1, we prove that either I is contained in
the set of periodic points of F or there exists a finite family of stable manifolds of F whose union
consists of and contains eventually any orbit of F asymptotic to T, that is, having flat contact with
T. Note that the condition on A corresponds to the necessary condition for the existence of stable
orbits of the one-dimensional dynamics of F| when T is convergent (see Pérez-Marco [29, 30]).
It does not depend on the rest of the multipliers of F.
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In the two-dimensional case, the stable manifolds obtained in [22] are either one-dimensional
(saddle behavior) or open sets (node behavior). In dimension n > 3, we also obtain stable man-
ifolds of intermediate dimension 1 < s < n that share some properties with both the saddle and
the node cases of dimension two. Although the theorem is very similar, the proof is not a straight-
forward generalization of the two-dimensional one. We need to introduce new techniques that we
discuss below in this introduction.

Let us first describe more precisely the statement of the main theorem.

A stable set of F is a subset B C V of an open neighborhood V' of 0 where F is defined which
is invariant, that is, F(B) C B, and such that the orbit of each point of B converges to 0. If B is an
analytic, locally closed submanifold of V then we say that B is a stable manifold of F (in V). Let
us remark that, as in [22], our definition of stable manifold is more general than the classical one,
since the stable manifolds considered in this paper do not contain the origin in general, even if by
definition their closures contain it.

A formal (irreducible) curve T at 0 € C" is a prime ideal T of C[[x,,...,X,]] such that
C[[x,..-,x,]]/T has dimension 1. We say that I is invariant by F if [ o F = T. In this case, we
can consider the restriction F|p, which is a formal diffeomorphism in one variable (see Section 2
for details). A non-trivial (positive) orbit O of F is asymptotic to a formal curve I if O converges
to the origin and, for any finite composition o of blow-ups of points, the lifted orbit c=1(0) has a
limit equal to the point on the transform of I' by o. If this is the case then I' is necessarily invariant
for F (see Section 2).

Our main result is the following:

Theorem 1. Consider F € Diff(C",0) and let T be a formal invariant curve of F. Assume that the
multiplier 1 = (F|)'(0) is a root of unity or satisfies |A| < 1. Then we have one of the following two
possibilities:

(i) The curveT is contained in the set of fixed points of some non-trivial iterate of F, or
(ii) F|r is not periodic and there exist orbits of F asymptotic to T.

In the latter case, in any sufficiently small open neighborhood V of 0 there exists a non-empty finite
Sfamily of pairwise disjoint stable manifolds Sy, ..., S, C V of F of pure positive dimension and with
finitely many connected components such that the orbit of every point in S; U --- U S, is asymptotic
to T and such that any orbit of F asymptotic to I is eventually contained in S; U -+ U S,..

The stable manifolds S, ..., S, provide a base of asymptotic convergence along I' Ueda [38]. We
can be more precise in the hyperbolic case:

Proposition 2. Consider F € Diff(C",0) and let T be an invariant formal curve of F. Assume that
the multiplier A = (F|)'(0) satisfies |1| < 1. ThenT is a germ of an analytic curve at the origin and
a representative of T is a stable manifold of F that eventually contains any orbit of F asymptotic to T.

The result can be stated more generally for a formal periodic curve I' (i.e., I' is invariant for some
iterate F* of F). More precisely, we apply Theorem 1 to F* and T in order to obtain stable manifolds
for FS, which induce stable manifolds for F by simple arguments that can be found in [22].

It is worth mentioning that whereas a planar diffeomorphism F € Diff(C?,0) always has a
formal periodic curve (Ribon [32], see also Corollary 4.21), this is no longer true for dimension
n > 3 by an example of a holomorphic vector field of Gémez-Mont and Luengo [16], whose flow
is treated by Abate and Tovena in [1]. As a consequence of the results in Section 4, we will obtain
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in Section 4.6 a condition that guarantees the existence of formal invariant curves in dimension
three, inspired by a result of Cerveau and Lins for vector fields [11].

Notice thatin any dimension there are linear examples of biholomorphisms F with an invariant
axis for which the multiplier A either satisfies |A| > 1 oris irrationally neutral (i.e., |A| = 1 and itis
not a root of unity) and Theorem 1 does not hold. Thus, the hypothesis concerning 1 in Theorem 1
is necessary. In fact, for n = 1, as we mentioned above, if there are positive orbits of F converging
to the origin then A satisfies the hypothesis of Theorem 1.

Let us describe the structure of the proof of Theorem 1. After recalling in Section 2 the main
definitions and properties concerning formal curves, blow-ups, and asymptotic orbits, in Section 3
we study the case where F|- is hyperbolic attracting and we prove Proposition 2. In this case, the
result is a consequence of the classical stable manifold and Hartman- Grobman theorems for
diffeomorphisms and the proof goes as in the two-dimensional case [22].

The case where the multiplier A is a root of unity is the core of the paper. We assume that F| is
not periodic. One of the main ingredients in this case is a suitable normal form for the pair (F, T'),
that we call Ramis-Sibuya form. Namely, there exist coordinates (x,y) at 0 € C" such that I' is
non-singular and transverse to x = 0 and F is written as

F(x,y) = (x — x9+1 4 py2atl 4 O(x2q+2), exp D) + qu)y + O(qu)),

where q > 1, b € C, D(x) is a diagonal polynomial matrix of degree at most g — 1 and C is a con-
stant matrix such that [D(x), C] = 0. Ramis-Sibuya form is inspired by a classical result on normal
forms of systems of linear ordinary differential equations (ODEs) with formal meromorphic coef-
ficients due to Turrittin [37]. Such normal forms are also used for non-linear systems by Braaksma
[6] and Ramis and Sibuya [31] in order to prove multisummability of the formal solutions of the
system (when the coefficients are convergent). In Section 5.1 we define the analogous Ramis-
Sibuya form for a pair (X,T'), where X is a formal vector field and T is a formal invariant curve
of X, and in Section 5.3 we prove that any pair (X,T') can be reduced to Ramis-Sibuya form by
means of a finite number of blow-ups with smooth centers and ramifications, all of them adapted
to I'. This result is essentially a consequence of Turrittin’s theorem once we associate to (X,T’) a
system of n — 1 formal meromorphic ODEs after some initial punctual blow-ups.

Then, concerning the reduction of a pair (F,T’) to Ramis-Sibuya form, we use a result by
Binyamini [5] that guarantees that an adequate iterate F™ of F is the time-1 flow of a formal vec-
tor field X, a so-called infinitesimal generator, which will allow to obtain a reduction of (F™,T) to
Ramis-Sibuya form from the corresponding one for (X, I'). In order for this construction to work
the condition F = exp(X) is not sufficient. We need the biholomorphism and the vector field to
share some additional geometrical properties; for instance, the invariant curve I' must be also
invariant for X. We devote Section 4 to showing the geometrical nature of the correspondence
between local biholomorphisms and infinitesimal generators. Moreover, we determine whether
X is a geometrical infinitesimal generator of exp(X) (Theorem 4.15). The condition depends only
on the eigenvalues of the linear part DX of X at the origin.

Using these results, in Section 5.4 we accomplish the reduction of the pair (F™, I'). The fact that
we are replacing F by an iterate presents no problem for the proof of Theorem 1: if S is a stable
manifold of F composed of orbits asymptotic to the invariant curve I', then Ukmz‘olF k(S) is also
stable for F. Moreover, the blow-ups and ramifications considered in the reduction preserve the
property of asymptoticity of the orbits to the formal curve. Thus, for the proof of Theorem 1, we
may assume that (F,T') is already in Ramis-Sibuya form.

d T TTOT XFHTO9TT

sy woxy

dny) suonIpuo) pue sWa, Ayl 29§ *[£Z0Z/01/0€] U0 Areiqry aurjuQ LI ‘BIS OIYQ ANSIdATUN RIS OIYQ Aq LHHZ [ SWd/Z [ [ 101 /10p/wo Kafim’

2-SULIY WO Ka[1v A:

p

np!

95UD1] SUOWWOL) 9A1EAI) d[quar|dde Ay Aq PALIGAOS AIE SIIIILIT V() 98N JO SO 10} AIEIQIT JUITUQ) KIAY UO (:



280 | LOPEZ-HERNANZ ET AL.

Finally, in Section 6 we prove Theorem 1 when (F,T) is in Ramis-Sibuya form. The family of
stable manifolds in the statement is associated to the family of the g attracting directions of the
restricted formal diffeomorphism F|(x) = x — x9! 4+ O(x29*1). In fact, if # is such an attracting
direction, the Ramis-Sibuya form allows to separate the y-variables in two groups, depending
only on the restriction of the polynomial matrix D(x) + x9C to #. Dynamically, each of these
groups corresponds either to a saddle or to a node behavior along the orbits that converge to the
origin tangentially to #. The dimension of the stable manifold associated to # will then be equal
to the number of node variables plus one. The proof of the existence of those stable manifolds is a
generalization of the corresponding one in [22], inspired by Hakim’s construction in [19] (see also
[2] by Arizzi and Raissy). In particular, they are obtained as fixed points of an adequate continuous
map. Instead of using Banach fixed point theorem as in [18, 19, 23] or [22], we use Schauder fixed
point theorem, which simplifies significantly the technical computations of the proof. The lack of
uniqueness in Schauder’s theorem will be compensated by an easy alternative argument.

2 | FORMAL INVARIANT CURVES, ASYMPTOTIC ORBITS, AND
BLOW-UPS

In this section we introduce the main definitions and properties concerning a formal invariant
curve I' of a formal vector field X or a biholomorphism F and the behavior of both F and I" under
punctual blow-ups. The content of this section is just a generalization to higher dimension of what
can already be found in [22] for dimension two. We include it for the sake of completeness and to
fix notations.

First, let us consider invariance by formal vector fields. An (irreducible) formal curve at 0 € C"
is a prime ideal T of the ring @, = C[[x,, ..., x,,]] such that the quotient ring @, /T has dimen-
sion one. It is determined by a formal parameterization y(s) = (¥;(8), ..., ¥,,(s)) € (sC[[s]]D" \ {0}
so that g(y(s)) =0ifand only if g € T. Let X € X(c",0)be a singular formal vector field. More
precisely, once we choose coordinates x = (xy, ..., X,,), We write X as

X = al(x) + az(x)— +--4a (x)
n
where a; (x) =X (x ) € O, satisfies a; (O) = 0. The multiplicity of X, denoted by v(X), is the mini-
mum of the orders of the series a;, Wthh is independent of the chosen coordinates. The singular

locus of X is the ideal Sing(X) C (9n generated by the series a4, ..., a,,.
Recall that a formal curve T is invariant for X if X(I') C T. In terms of a parameterization y(s)
of T, invariance is equivalent to the existence of h,(s) € C[[s]] such that

X1y = (@G ()), ., an(y () = h, () (s). @

Notice that h,(s) = Oifand only if Sing(X) C I'and thus this property is independent of the param-
eterization (we say that I is contained in the singular locus of X). When T is invariant, we define
the restriction of X to I as the one-dimensional formal vector field

0

where y is an irreducible parameterization of I and h, (s) is defined by Equation (1). Actually
X|r can be defined intrinsically since X(I') C T implies that X defines a derivation of the ring of
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formal functions @, /T of I'. The multiplier 1 = h)’,(O) € C is called the inner eigenvalue of the
pair (X, T'). The tangent eigenvalue of (X, T'), denoted by A(T), is the eigenvalue of the differential
DyX corresponding to the tangent direction of I'. These eigenvalues are related by vAp = A(I),
where v is the multiplicity of T at 0.

A formal curve T is invariant for F € Diff(C",0) if hoF €T for any h € I'. Moreover, given
a parameterization y(s) of T, the invariance of T is equivalent to the existence of a series 6(s) €
Cl[[s]] with 8(0) = 0 and 6’(0) # 0 such that F o y(s) = y o 8(s). This series 6(s) can be seen as a
formal diffeomorphism in one variable, that is, 6(s) € ljif\f(C, 0). Its class of formal conjugacy is
independent of the chosen parameterization y(s) and any representative of this class is called the
restriction of F to I" and denoted by F|.

If T is invariant for F, the multiplier A = (F|)'(0) € C* does not depend on 8(s) and is called
the inner eigenvalue of the pair (F,T). Notice that this number is preserved under reparameteri-
zations. On the other hand, the tangent eigenvalue A(T') of (F,T) is the eigenvalue of DyF corre-
sponding to the tangent direction of I'. It is easy to check that

(Ap)” = AD), 2
where v is the multiplicity of I' at 0. In particular, we have A = A(I') when I' is non-singular.

Definition 2.1. Let I be a formal invariant curve of F € Diff(C", 0) and let A be the inner eigen-
value. We say that I is hyperbolic attracting if |Ap| < 1, and that T is rationally neutral if Ap is a
root of unity.

Consider a germ of biholomorphism F € Diff(C",0). Denote by 7 : C* — C" the blow-up of
C" at the origin and by E = 7~1(0) the exceptional divisor. The transformed biholomorphism
F = 771 o F o 7r extends to an injective holomorphic map in a neighborhood of E in C” such that
F(E) = E. We have moreover that F| is the projectivization of the linear map D,F in the identi-
fication E ~ Pg‘l and hence fixed points p € E for F correspond to invariant lines of DyF. Such
a point p is a first infinitely near fixed point of F and the germ F, of F’ at p is the transform of F
at p. Blowing-up repeatedly, we define sequences {py};, of infinitely near fixed points of F and
corresponding transforms F, , where p, = 0.

A formal curve T is also determined by its sequence of iterated tangents {q }yo, defined by:
go =0and, for k > 1, if 7;,  is the blow-up at g;_,, the point g; € ”;kl_l(‘Ik—ﬂ corresponds to
the tangent line of the strict transform of I at g, _,. The formal curve I’ is invariant for F if and
only if the sequence of iterated tangents of T is a sequence of infinitely near fixed points of F (see
[22]).

Note that the inner eigenvalue is invariant under blow-up and hence the condition of I' being
hyperbolic attracting or rationally neutral is stable under blow-ups.

Given a formal curve T at 0 € C", a stable non-trivial orbit O = {a, = F¥(a,)} of a diffeomor-
phism F € Diff(C",0) is asymptotic to T if, being {q;} the sequence of iterated tangents of T,
the following holds: if 7; : M; — C" is the blow-up at the origin then limy_, , 77 Yay) = qq; if
T, : My — M is the blow-up at g, then lim,_,,, 75" o 77" (a;) = q,; and so on. Notice that if
such an orbit exists then I is invariant for F, since in this case any iterated tangent g, of I must
be an infinitely near fixed point of F.

We remark that our definition of asymptoticity to a formal curve I corresponds to the standard
one of having I" as “asymptotic expansion.” For instance, if ' is non-singular and we consider
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a parameterization of the form y(s) = (s, h(s)) € C[[s]]" in some coordinates (x,y) € C X C"1,
with h(s) = Y72, h;s/, then a non-trivial orbit O = {(x;, y))} satisfies lim;_, 77! (%, yi) = ¢4
if and only if lim, ., yi /X = h;. Then we obtain lim,_, , 7;" o 77! (x,, yi) = g if and only if

lim, _, W = h, and so on. Therefore O is asymptotic to T if and only if for any N € N we
k
have
Y —Ivh(x) _
AL TN T e
k

where Jy denotes the N-jet. This implies ||y, — Jyh(x )l < (1411l + DIx; [N+ for some k >
ko(N).

3 | HYPERBOLIC ATTRACTING CASE

In this section we prove Theorem 1 in the case where the formal curve is hyperbolic attracting.
More precisely, we prove Proposition 2 in the introduction that we recall next for convenience.

Proposition 3.1. Consider F € Diff(C",0) and let T be an invariant formal curve of F. Assume that
T is hyperbolic attracting. Then T is a germ of an analytic curve at the origin and a representative of
T is a stable manifold of F that eventually contains any orbit of F asymptotic to T.

Proof. Let {q;}»o be the sequence of iterated tangents of T. Notice that it suffices to prove the
statement for F;, and I'; at any point g;, where F_is the transform of F’ at g; and I’y is the strict
transform of I at g;.. Notice that the curve I" has a Puiseux parameterization by the local parame-
terization theorem (cf. [17, Volume II, Section D, Theorem 10]) and hence I can be desingularized
by a sequence of punctual blow-ups. Thus, we can assume that T" is non-singular. Let 1 = A(T")
be the tangent eigenvalue of (F, '), which coincides with the inner eigenvalue A since I is non-
singular. Set spec(DyF) = {1, u,, ..., 4, }. An easy computation shows that the eigenvalues of the
linear part of F; atgq, are givenby {4, u,/4, ..., i, /A}. Moreover, 4 is still the tangent eigenvalue of
the pair (Fq1 ,I';) since the inner eigenvalue is preserved under blow-up. Repeating this argument,
it follows that, for each k, the eigenvalues of the linear part of F_at g are {4, u, JAK, o, JARY
Now, assume that k is large enough so that |[1| <1 < |,uj|/|l"| for any j = 2,..., n. Then, by the
Stable Manifold Theorem, we obtain that I'; is the stable manifold of F_at g;, hence an analytic
curve. Moreover, using Hartman-Grobman theorem, we have that the unique orbits of Fqk that
converge to g, are those which are eventually contained in I'y. 1

Remark 3.2. From the theory of one-dimensional dynamics, we have that the hyperbolic attracting
case is the only one for which there is a stable set whose germ is an analytic curve at the origin
(cf. [22]).

4 | INFINITESIMAL GENERATOR OF A BIHOLOMORPHISM

In this section, we recover a result due to Binyamini [5] that guarantees that for any local biholo-
morphism F € Diff(C", 0) there exists a formal vector field X such that the time-1 flow exp(X) of
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the vector field is a non-trivial iterate F™ of F. We prove that this construction is “geometrically
significant” in the sense that the geometrical properties of F”* and X are related. For example, the
fixed point set of F™ coincides with the singular set of X. Moreover, the invariance of analytic sets
is preserved by this correspondence between diffeomorphisms and formal vector fields; indeed,
F™ preserves a germ of analytic set, or a formal analytic set, if and only if X does. In particular, if T
is a formal invariant curve that is periodic for F € Diff(C", 0), we will see that I is invariant by X.
This property will be crucial in Section 5 to obtain a reduction of the pair (F™, I') to Ramis-Sibuya
form from the corresponding one for (X, I).

4.1 | Preliminaries

The strategy to obtain a vector field X such that exp(X) = F™ for some m is a generalization to
the context of diffeomorphisms of the correspondence between the connected component of the
identity of a finite dimensional algebraic group and the Lie algebra of the group. This general-
ization is possible since the group Diff(C", 0) of formal diffeomorphisms, despite being infinite
dimensional, can be interpreted as a projective limit of finite dimensional algebraic groups. This
approach allows to define the algebraic closure m of the group (F) generated by F, its connected
component of the identity and its associated Lie algebra. The infinitesimal generators of iterates
of F are chosen in this Lie algebra. First, we introduce these ideas; further details can be found in
[24, 35] and [34].
Consider the normal subgroup N; of Diff(C", 0) defined by

N, ={F € Diff(C",0) : x;oF —x; € m""' V1 < j<n},

where m is the maximal ideal of the ring O, = C[[x,, ..., X,,]] of formal power series. It is the
subgroup of formal diffeomorphisms that have order of contact at least k + 1 with the identity
map. We denote by D, the group Diff(C",0) /N of k-jets of formal diffeomorphisms. Given F €
Diff(C", 0), we can uniquely associate to F the element
F, m/mk+1 N m/mk+1

f + mk+1 — f oF + mk+1 (3)
of the linear group GL(m/m**!) which only depends on the class of F in Dj. In this way we
can interpret D as a subgroup of GL(m/m**1). Moreover, it is a (finite dimensional) algebraic
matrix group since {F; : F € Diff(C", 0)} coincides with the group of automorphisms of the C-
algebra m/m¥*1 (cf. [35, Lemma 2.1]). The Lie algebra L, of{F, : Fe D/i?f(C”,O)} is the Lie
algebra of derivations of the C-algebra m/m¥*! for any k > 1. Moreover, L, can be identified
with Z(C",0) /K where x(c",0) is the complex Lie algebra of singular formal vector fields (i.e.,
derivations of the C-algebra m) and K, ={X € x(c",0) : X(m) C mk+1},

The natural projections 7y ; : Dy, — D;and (dmy )14 - L, — L, when k > [ define inverse sys-
tems and the group Diff(C",0) (respectively the Lie algebra £(C",0)) can be identified with
the projective limit of the groups Dj, (respectively the Lie algebras L;) for k > 1. We denote by
Ty - Diff(c",0) — Dy and dr;, : 2(C",0) — L, the natural maps that send the projective limits
onto their factors.
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Definition 4.1. Given a subgroup G of lji?f(C”, 0), we denote by G|, the Zariski closure of 77, (G)
and by Gy, the connected component of the identity of Gy for k > 1. Then we define

G =1im G = {F € Diff(C",0) : 7,(F) € Gy Vk € N}

and
G, = lim Gy o =1{F € Diff(C",0) : m(F) € Gy Vk € N}

as the Zariski closure (or pro—algebrcﬂc\ closure) of G and its connected component of the identity,
respectively. Given a subgroup G of Diff (C",0), we say that it is pro-algebraic if G = G. We define
the Lie algebra g of G as

g=limg, ={X € £(C",0) : dm(X) € g, Yk €N},
where g, is the Lie algebra of G, for k > 1.
Remark 4.2 [24, Proposition 2]. The Lie algebra g of G satisfies

g={X € £(C",0) : exp(tX) € G Vt € C},

where exp(tX) is the time-t flow of X, that is, the formal diffeomorphism that satisfies, for any
geon,,

oo

go exp(tX) = Z thjj!(g)’

Jj=0
where X%(g) = g and X/(g) = X(X/~1(g)) for j > 1.

In the two following results we summarize several properties of the finite dimensional setting
that generalize to the infinite dimensional one and provide a criterion that allows to identify pro-
algebraic groups of formal diffeomorphisms.

Proposition 4.3. Let G be a subgroup of Diff(C", 0). We have

@) 50 is a finite index normal pro-algebraic subgroup of G [35, Proposition 2.3 and Remark 2.9].
(ii) Any finite index subgroup of G is pro-algebraic and contains Eo [34, Lemmas 2.3 and 2.1].
(iii) 50 is generated by exp(g) [24, Proposition 2]. In particular exp(tX') belongs to 60 foranyt € C
andany X € g.

Proposition 4.4 [35, Lemma 2.4]. Assume that H,, is an algebraic subgroup of Dy and r, (H).) C H,
foranyk > 1> 1. Then {iEH « is pro-algebraic.

Let us remark that a pro-algebraic subgroup G of Diff(C",0) can be expressed in more than
one way in the form I(EH « With the conditions of Proposition 4.4. Indeed, if G = l(iEH « then

Gy = m(G) is included in H; but they do not coincide in general.
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4.2 | Construction of an infinitesimal generator

In this section we define infinitesimal generators of formal diffeomorphism and show that
for any F € Diff(C",0) there exists an index m such that F has an infinitesimal generator
(Binyamini [5]). Before doing so, let us study the relation between the Lie algebra of (F) and the

group (F),.
Lemma 4.5. Let F € Diff(C",0). Then (?)0 = exp(g) where g is the Lie algebra of@.

Proof. Analogously as for linear algebraic groups, since (F) is abelian, its Zariski closure m is
also abelian [24, Lemma 1] and then g is an abelian Lie algebra [24, Proposition 3]. Since Eo is
generated by exp(g) by Proposition 4.3, we have exp(g) C Eo- Moreover, any element L of EO
is of the form

L =exp(X;)o .. o exp(X,,) = expX; + - +X,,))
where X1, ...,X,, € g. The last equality holds since g is abelian. O

Definition 4.6. Given a formal diffeomorphism F € D/if\f(C”,O), a formal vector field X €
X(C",0) is an infinitesimal generator of F if X belongs to the Lie algebra of (F) and F = exp(X).

Theorem 4.7 [5, Corollary 7]. Consider F € ]ji?f(C”, 0). There exists m € N such that F™ has an
infinitesimal generator.

Proof. Since mo is a finite index normal subgroup of m by Proposition 4.3, there exists m € N
such that F € (F),. The result is a consequence of Lemma 4.5. O

The existence of infinitesimal generator is well known for unipotent formal diffeomorphisms,
see, for example, [15] or [25] for the one-dimensional case.

Lemma 4.8 [21, Theorem 3.17]. Let F € Diff(C", 0) be a formal diffeomorphism whose linear part is
unipotent, that is, spec(DyF) = {1}. Then there exists a unique nilpotent X € x(c",0) (e, a formal
vector field X with spec(DyX) = {0}) such that F = exp(X).

Remark 4.9. The formal vector field X in Lemma 4.8 belongs to the Lie algebra of m (see [24,
Lemma 1]), that is, X is an infinitesimal generator of F.

4.3 | The index of embeddability

Given a formal diffeomorphism F € ljif\f(C", 0), we define the index of embeddability in a flow of
F as the minimum of the indexes m € N such that F"" has an infinitesimal generator. We denote
it by m(F), or simply by m when F is implicit. Observe that if spec(DyF) = {1} then m(F) = 1, by
Remark 4.9. Note also that, by Lemma 4.5, m(F) is the minimum m such that F" € mo- The
following remark allows to calculate the index of embeddability of F and its iterates.
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Remark 4.10. Let F € Diff(C",0) and r € Z*. Observe that each coset F/ (F") is a pro-algebraic
set, that is, a projective limit of algebraic sets, since (F") is pro-algebraic. Moreover, since (F)
is abelian, we have that the set U;;(I)F J(FTY is a pro-algebraic group and then (F) = U;;(l)F J(FTY.

Therefore, (F") is a finite index subgroup of m and m/ (FT) is a cyclic group generated by the
class of F. Analogously (F)/(F"), is cyclic, we just need to replace U;;(l)F J(Fr) with Uj.;l FI(FT),

above where s satisfies F* € Wo- In particular, we obtain m(F) = |m : EOL
It is clear that (F"), C ﬁo- Since (F") is a finite index subgroup of ﬁ and (F"), is a finite
index subgroup of (F") (Proposition 4.3), we deduce that Wo is a finite index subgroup of E
This implies mo C (F"), by Proposition 4.3 and hence mo = (F")o-
By definition m(F") is the smallest positive integer m’ such that F” m g (F")o = mo- In par-
ticular, we obtain m(F") = m(F)/gcd(m(F),r) and F" has an infinitesimal generator if and only
if m(F) divides r.

On the other hand, the construction of ﬁ implies that the group Dom of linear parts of the
elements of (F) is equal to (DyF), where the Zariski closure of the group (D,F) is considered in
GL(n, C), and we have

() : (F)ol = I{DoF) : (DyF),,

(see [35, Proposition 2.3]). As a consequence, the value of m(F) = |(DyF) : (DO—F)Ol depends only
on DyF. We recall the computation of |[(DyF) : (DyF),| for the sake of completeness in order to
see that it depends only on the eigenvalues of DyF.

Given a matrix A € GL(n, C), it admits a unique multiplicative Jordan decomposition of the
form A = AA, = A,A, where A, A, € GL(n,C), A, is diagonalizable and A, is unipotent,
that is, spec(A4,,) = {1}. Since @ is isomorphic to (A;) X (4,) and (A,) is always connected,
we get

(A) = (A)y & (A,) = (A),.

Up to a linear change of coordinates, we can suppose A, = diag(4,, ..., 4,), where spec(A) =
1 (C*)" - C* of the

.....

to-one correspondence between algebraic subgroups of (C*)" and subgroups of characters (see [27,
Theorem 3.2.3.5]). Indeed given a subgroup H of the group of characters, the set G = n, c;Ker(y)
is an algebraic subgroup of (C*)" such that H = {y : G C Ker(y)}. As a consequence of the defi-
nition of the correspondence, we deduce

G, = {diag(uy, ... pt,) * W oy =1Y(my, ..., m,) € S;}
where
Sy ={my,...m)ez" : A" A" =1} (4)

is the set of resonances of D, F.
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The Lie algebra g, = {diag(v,, ...,v,,) : diag(e", ...,e") € G,} of G, is given by
g, = {diag(vy,...,v,) : mu; + ... + m,v, =0VY(my,...,m,) € S;}. Q)

Let S;I be the intersection of Z" with the Q-vector space generated by S;. Notice that we can replace

S; with S/’1 in Equation (5). Since 5/1,0 = exp(g;), we have

G o = {diag(uy, .., py) © 1" ooty = 1¥(my, ..., m,) € S}}.

By construction, we get

my

S ={my,...m,) e 7" : 4

.., is a oot of unity}.

Moreover, R; = {/1;"1 Ay (my, ., my) € S’ }is a finite subgroup of S, S; is a finite index sub-
group of §’, and

1G4 = Gaol = 1S, = Sil = IRyl
Hence, we obtain m(F) = IS;1 2 S;l = |R;| if spec(DyF) = {4, ..., A,}-

Remark 4.11. Consider F € Diff(C",0) and let m be the index of embeddability of F. Since the
group R; associated to F™ is the trivial group, every eigenvalue of D F™ that is a root of unity is
indeed equal to 1.

Remark 4.12. Assume that spec(DyF) = {1, ...,4,,} and S; = {0}, that is, the eigenvalues have no
resonances. Then m(F) = 1.

4.4 | Characterization of the infinitesimal generator

It is not clear, from Definition 4.6, whether a formal vector field X such that F = exp(X) is an
infinitesimal generator of F. Let us show that infinitesimal generators are determined by their
linear parts.

Proposition 4.13. LetF € ﬁif\f(C",O). Then

(i) X € Z(C",0) is an infinitesimal generator of F if and only if F = exp(X) and DX isin the Lie
algebra of the matrix group (DyF).

(ii) Thereis a bijective correspondence X — DX between infinitesimal generators of F and matrices
M in the Lie algebra of (D,F) such that exp(M) = D,F.

Proof. We denote by G the group (F) and by g the Lie algebra of G, which is abelian by [24,
Proposition 3]. Let us remark that G, (see Definition 4.1) can be identified with (D,F) and hence
g, can be identified with the Lie algebra of (D F).

Consider M € GL(n, C) such that M € g, and exp(M) = DyF. Let us show that there exists
X € g such that exp(X) = F and DyX = M. Since 7y : 7, (G) — m,(G) is surjective, so is ) ; :

d T TTOT XFHTO9TT

SUONIPUOD) PUE SULIA L, Y} S *[€20T/01/0€] U0 Areiqi auruQ LI 1§ 01y ANsIaAiu a1g o £q Lz [swid/g[ [ 1°01/10p/wod Kaia

dny,

puz-sw)/woo Kajia A;

5UDI'] SUOWWO,) 9A1EaI) d[quat|dde Ay Aq PALIGAOS AIE SIIILIE V() 98N JO ST 10§ ILIQIT U S[IAY UO (SUOIP



288 | LOPEZ-HERNANZ ET AL.

Gy — Gy and hence (dmy g © g — ¢ is also surjective for all k > I. As a consequence, the map
dm : ¢ — gy is surjective for any k > 1. Thus there exists Y € g such that DY = M. The formal
diffeomorphism F’ = F o exp(—Y) is clearly tangent to the identity and belongs to G. There exists
a unique formal vector field Z with vanishing linear part such that F’ = exp(Z) by Lemma 4.8.
Notice that Z belongs to the Lie algebra of (F’) by Remark 4.9 and hence to g since m C ﬁ
Since g is abelian, it follows that

F =exp(Z)o exp(Y) = exp(Y + Z)

whereY + Z € gand Dy(Y + Z) = D,Y = M. Therefore the correspondence defined in (ii) is sur-
jective.

We claim that if X € ¥(C",0),Y € g, DX = D,Y,and exp(X) = exp(Y) = F then X = Y. The
claim implies that the correspondence in (ii) is injective.

Assume the claim is proven. The necessary condition in property (i) is clear. Let us show the
sufficient condition in (i). Since the correspondence in (ii) is surjective, there exists Y € g such
that DY = DyX and F = exp(Y). Now the claim implies X = Y and hence X belongs to g and is
an infinitesimal generator of F.

Let us show the claim. Since F = exp(X), we get F,. X = X. We define

Hk = {L S Dk . Jk(L*X) :JkX}

It is an algebraic subgroup of D, since the condition J; (L, X) = J;X can be expressed as a finite
number of algebraic equations in the coefficients of the Taylor series expansion of L of degree less
than or equal to k for any k > 1. Clearly, nk’l(H ) C H, is satisfied for all k > [ > 1. We have then
that the group

H=limH, ={L € Diff(C",0) : L,X = X}

is a pro-algebraic subgroup of Diff(c", 0) by Proposition 4.4. Notice that G is a subgroup of H and
thus G is also a subgroup of H. Since Y € g, we obtain exp(tY) € G C H by Proposition 4.3 and
hence exp(tY),X = X for any t € C. This implies [X, Y] = 0. We have

Id=FoF ! =exp(X)o exp(—Y) = exp(X — Y)

where we used [X, Y] = 0 in the last equality. Since D,(X —Y) = 0, the vector field X — Y is the
unique nilpotent vector field whose exponential is the identity map, thatis, X — Y = 0. O

Definition 4.14. Let X € (C",0) with spec(DyX) = {uy, ..., 4, }. We say that X is not weakly
resonant if there is no (m,, ..., m,,) € Z" such that Z;’zl mju; € 2miQ*.

Similar, but slightly different, conditions of absence of weak resonances have appeared in the
literature when trying to solve the equation exp(X) = F where F and DX are fixed ([33, 41]).
Next, we characterize the formal vector fields that are infinitesimal generators.

Theorem 4.15. Let X € X(C",0) with spec(DyX) = {vy, ..., U, }. Then X is an infinitesimal gener-
ator of exp(X) if and only if X is not weakly resonant.
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Proof. Let F = exp(X). The formal vector field X is an infinitesimal generator of F if and only
if DX is in the Lie algebra of (D,F) by Proposition 4.13. Let DyX = S + N be the additive Jor-
dan decomposition of DX as a sum of a semisimple and a nilpotent linear operators that com-
mute. Assume that S is diagonal up to a change of basis. Notice that DyF = exp(S)exp(N) is the
multiplicative Jordan decomposition of DyF. Denote by g, g5, and g, the Lie algebras of m,
(exp(S)), and (exp(N)), respectively. It is well known that ¢ = g5 @ g, and gy is the complex vec-
tor space generated by N [27, Sections 3.2.2, 3.2.4 and 3.3.7]. Moreover, since all the elements of
gs (respectively g,) are semisimple (respectively nilpotent), g is abelian, and the additive Jordan
decomposition is unique, we deduce that g (respectively g,) is the set of semisimple (respectively

nilpotent) elements of g. As a consequence, DX is in the Lie algebra of (D,F) if and only if S is
in the Lie algebra of (exp(S)). Notice that

S = diag(vy, ...,v,) and exp(S) = diag(4,,...,4,,),
where 1; = ei for 1 < j < n. Since /1;"‘ .../121" = ¢MUit-+Mln we deduce
S, ={my,...,m,) ez : muy, + ...+ myv, €2miZ}

where S is defined in Equation (4). Recall that g = g; is given by Equation (5). It is clear that if
X is not weakly resonant then S € gg.

Suppose S € gg. Let (imy, ..., m,,) with Z;‘zl m;v; € 27iQ. Up to multiplication by a non-zero
integer, we can assume Z;‘zl m;v; € 2miZ. This implies /1;"1 ..A4," = 1and hence (my, ..., m,) €
S,. We deduce that Z?zl m;v; = 0 by the description of gs. I

In the following proposition we prove that the infinitesimal generator is unique only in the
unipotent case. This is the reason justifying why infinitesimal generators have been considered
exclusively for unipotent diffeomorphisms in the literature.

Proposition 4.16. Consider F € Diff(C", 0) such that m(F) = 1. The infinitesimal generator of F
is unique if and only if F is unipotent. Otherwise, F has infinitely many infinitesimal generators.

Proof. The uniqueness of the infinitesimal generator is equivalent to the uniqueness of the
infinitesimal generator of diag(4,,...,4,) in the group of diagonal matrices where spec(D,F) =
{41, - s 4,.}. Let us recall that the conditions m(F) = 1, m = mo and S; = S:l are equivalent (see
Section 4.3). Given an infinitesimal generator diag(y,, ..., u,,) of diag(4,, ..., 4,,), the infinitesimal
generators of diag(4,, ..., 4,,) are the matrices of the form diag(u, + 27ik,, ..., u,, + 2mik,) where
ki, ..., k, are integer numbers such that m,k; + --- + m,k, = Oforany (m,, ..., m,,) € S;. The sys-
tem of equations has either a unique solution, if the rank of Sjl is equal to n, or infinitely many
solutions otherwise. Notice that the rank of S;L isequal ton ifand only if S/’1 = Z" and this condition

is equivalent to A; = -+ = 4, = 1 since S; = Sﬁ. As a consequence F has a unique infinitesimal
generator if F is unipotent and infinitely many infinitesimal generators otherwise. O
4.5 | Geometrical properties of the infinitesimal generator

In this section, we prove that if a diffeomorphism F has an infinitesimal generator X, then F and X
have the same formal analytic invariant sets (ideals). Recall that an ideal I C @n is invariant for a
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diffeomorphism F € Diff(C",0)ifI o F C I, and is invariant for a formal vector field X € x(c",0)
ifX(I)cl.

Proposition 4.17. Given an ideal I C O,), the set
I, = {F € Diff(C",0) : IoF C I}
is a pro-algebraic group. Moreover, it satisfies I; = {F € Diff(C",0) : IoF =1}

Proof. In order to show that 7 is pro-algebraic, we will use Proposition 4.4. The ideal I is of the
form I = (fy,..., f,,,) since C[[x, ..., x,,]] is noetherian. We define

Hy={F€D, : fjoFel+m! V1< j<m

Itis clear that 7y ;(Hy) C H; for any k > [ > 1. The inclusion Z; C lim H, is obvious. Any element
F of D) can be 1nterpreted as the kth jet of a local dlffeomorphlsm Hence the power series f; o F

is of the form Z . x xl" where every a . is a polynomial in the coefficients of the
,,,,, 11,...,1,, i1 5emslpy

Taylor series expansmn of F at the origin. The condition f;o F € I + mk+1 s satisfied if and only
; J
1le'1+...+i,1<k @,
of the form

xil xi{’ belongs to the complex vector space V), generated by the polynomials

Jk(xi1 ...x,i{’fj) where i) + - +i, <kand1<j<m.

The property J, (f j oF ) € V, is equivalent to a linear system of equations on the coefficients
. withi; + < k by elementary linear algebra. Therefore the condition J, (f; o F) € V)
is equlvalent toa system of polynomial equations in the coefficients of F. Hence H is an algebraic

subset of D, .
We denote by I, the natural projection of I in m/m*+!, The definition of H, implies

Hk Z{FEDk . F(Ik) CIk},

(see Equation (3)). Since F defines an element of GL(m /m**1) and m /m**1 is finite dimensional,
it follows that

As a consequence H, is a subgroup of D, and hence H, is an algebraic subgroup of D, for any

k>1.
Finally, let us show I; = I(EH «- By definition, we have

limHy = {F € Diff(C",0) : IoF + m ! =1 + m**1 vk > 1}.
Since nl‘f’zl(J + mK*1) = J for any proper ideal J of C[[x, ..., X,,]] by Krull’s intersection theorem,

we deduce l(iEHk = {F e Diff(C",0) : I oF = I} and hence l(iEHk C 1;. Since I; C l(iEHk, we
obtain l(iEH « = I;. Therefore I; is a pro-algebraic group by Proposition 4.4. O
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Proposition 4.18. Given a formal curve T, the group
It ={Fel;: (FI)(©0) =1
is pro-algebraic.

Proof. Let y(t) = (y,(t),...,¥,(t)) be an irreducible parameterization of I'. We denote J,y(t) =
(uyt?, ..., u,t”) where v is the multiplicity of I'. We define the auxiliary group

J = {F € Diff(C",0) : (uy, ..., u,) € ker(D,F — Id)}

that is clearly pro-algebraic. It is straightforward to check out the inclusion If C J. Since the
intersection of pro-algebraic groups is pro-algebraic [35, Remark 2.7], we obtain that 7 = Ip N J
is a pro-algebraic group containing IIC. In order to show that ZIC is pro-algebraic, consider the
morphism of groups

A Iy > c*
F v (Flp)(0).

Notice that the tangent value A(T) is equal to 1 for any element of 7. Using the relation between
the tangent and the inner eigenvalues given in Equation (2), we deduce that the image of A is
contained in the group of roots of unity of order v. Therefore If is a finite index subgroup of 7.
and hence pro-algebraic by Proposition 4.3. [

The next results are consequences of the above proposition and the general properties of pro-
algebraic groups.

Proposition 4.19. LetF € Diff(C",0) and letI C O, be an ideal. Suppose that there exists r € Z*
such that I is invariant for F". Then (F), C 1. Moreover, ifI = T is a formal curve and (F"|-)'(0) is
a root of unity then (F), C TJ.

Proof. Since I; is pro-algebraic, we obtain (F") C ;. Since mo = (F"), by Remark 4.10, we get
(F), C I;. If I = T is a formal curve and (F"|)'(0) is a root of unity then we can replace r with a
multiple to obtain (F"|)'(0) = 1. The same proof shows (F), C Ili. O

Proposition 4.20. Let F € Diff(C",0) and let m be the index of embeddability of F. Let X be an
infinitesimal generator of F™. Given an ideal I of ©,, the following properties are equivalent:

(1) Iisinvariant for X;
(2) Iisinvariant for F™;
(3) I isinvariant for a non-trivial iterate of F.

Proof. The implications (1) = (2) and (2) = (3) are clear. Assume that (3) holds. We have
exp(tX) € (F), for any t € C by Proposition 4.3. Since (F), C I; by Proposition 4.19, we obtain
exp(tX) € I; for any t € C. Thus I is invariant for X. O
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As a consequence of Proposition 4.20, we recover the following result of Ribén:

Corollary 4.21 [32]. Let F € Diff (C2, 0) and let m = m(F) be its index of embeddability. Then there
exists a formal m-periodic curve of F.

Proof. The diffeomorphism F™ has an infinitesimal generator X. The formal version of Camacho-
Sad’s theorem [7] provides a formal invariant curve I that is invariant by X. Thus I is invariant

by F™. ]

Proposition 4.22. LetF € Diff(C",0) and let T be a formal curve. Suppose that there existsr € Z*
such that T is invariant for F" and (F"|)'(0) is a root of unity. Let X be an infinitesimal generator
of F™, where m is the index of embeddability of F. Then the inner eigenvalue of (X,T) is equal to
0. In particular, the tangent line of T is contained in the kernel of the linear part DX of X at the
origin.

Proof. Proposition 4.19 implies mo C If and hence exp(tX) € If forany ¢ € C, thatis, the inner
eigenvalue of the pair (exp(¢X),T’) is equal to 1 for any ¢. Let y(s) be an irreducible parameteri-
zation of I'. We have that exp(tX)(y(s)) is of the form y o ¢,(s) where ¢,(0) = 0 and ¢;(O) =1 for
any t € C. Since X(y(s)) = o °aff © ;=0 it follows that the multiplicity of the right-hand side is at
least v(y) + 1 and thus v(X|) = v(X(y(s))) — v(y'(s)) > 2. Since v(X|) > v(y(s)), any non-zero

tangent vector v of T" at 0 is in the kernel of DyX. O

4.6 | Examples of diffeomorphisms possessing a formal invariant
curve

Corollary 4.21 provides a formal periodic curve for any F € Diff (C2,0). This is no longer true for
dimension greater than 2. More precisely, there exist nilpotent analytic vector fields X € 2(C3,0)
with no formal invariant curve by a theorem of Gémez-Mont and Luengo [16]. Then the diffeo-
morphism exp(X) has no formal periodic curve by Proposition 4.20.

In this section we apply our results about infinitesimal generators to obtain conditions that
guarantee the existence of a formal periodic curve in dimension n = 3.

A formal codimension 1 foliation 7, in (C3,0) is determined by a non-zero 1-form

w = aldxl + azdxz + a3dX3, al, az, (13 S (93,

satisfying the integrability condition w A dw = 0. Two 1-forms w and o’ define the same foliation
if there exists f € K; \ {0} such that w = fw’ where Kj is the field of fractions of ©,. We say that
F,, has a formal integrating factor if there exists f € K; \ {0} such that d(%) =0.

Proposition 4.23. Let F € Diff (C3,0). Suppose that either

(1) there exists a foliation F, with no formal integrating factor such that F*w A w = 0 or
(2) thereexists g € O; \ C such that goF = g.

Then F™ has a formal invariant curve, where m is the index of embeddability of F.
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The two cases are of different nature. Namely, in case (1) we are requiring that F preserves a
foliation with “poor” integrability properties whereas in case (2) we are asking F to preserve the
“fibers” of g.

Lemma 4.24. Suppose that the hypotheses of Proposition 4.23 are satisfied. Set w = dg in case (2).
Then w(X) = 0 for any infinitesimal generator X of F™.

Proof. Assume that we are in case (1). Analogously as in Proposition 4.17, we can show that the
group

1, ={L € Diff (C3,0) : L*w A w = 0}
is of the form lim H;, where
P
Hk = {L S Dk . Jk(LyCU) = Jk(hkco) for some hk S @3}

is an algebraic subgroup of Dy and 7} ;(H) C H, for all k > I > 1. Therefore 7, is pro-algebraic
by Proposition 4.4. We deduce that E is contained in 7, and hence exp(tX)*w A w = 0 for any
infinitesimal generator X of F” and any t € C by Proposition 4.3. As a consequence the Lie deriva-
tive Lyw satisfies Lyw A w = 0. This implies either that w(X) = 0 or that w(X) is a formal integrat-
ing factor of w (see [12, Chapitre III, Proposition 1.3]). Since the latter possibility is excluded by
hypothesis, we obtain w(X) = 0.

Assume that we are in case (2). The group

1, :{LGD/if\f(C3,0) :goL =g}

is of the form l(iEHk, where H,, = {L € Dy, : J;(goL) = J,g}is an algebraic subgroup of D, and
7 (Hy) C Hyforall k > [ > 1. Arguing as in the previous case, we obtain g o exp(tX) = g for any
infinitesimal generator X of F™ and any ¢t € C. We get w(X) = dg(X) = X(g) = 0. O

Proposition 4.23 is an immediate consequence of Lemma 4.24 and next result.

Proposition 4.25. Let X € £(C3,0). Consider a formal codimension 1 foliation F,, such that
w(X) = 0. Then X has a formal invariant curve.

This result is due to Cerveau and Lins [11, Proposition 3] for holomorphic foliations and vector
fields. We just adapt their proof to the formal setting.

Proof. If  is a formal differential form or a formal vector field, we denote by Sing(cr) the ideal
of its coefficients in ;. We can suppose that the coefficients of w have no common factor up
to divide w by the gcd of such coefficients. In other words we have codim(Sing(w)) > 2. We can
assume dim(Sing(X)) = 0, otherwise the result is trivial. Moreover, this implies w(0) = 0 since
otherwise the foliation F,, is equal to ¥, up to a formal change of coordinates and dx(X) = 0
implies X = b(x,y,z)d,, + c(x,y, z)d, and then dim(Sing(X)) > 1.

Denote 7 = ix(dx A dy A dz). The property w(X) =0 is equivalent to w A7 = 0. We claim
codim(Sing(w)) # 3, otherwise we can apply the de Rham-Saito lemma [36] to show that the
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2-form 7 is of the form w A 6 (the result works both in the formal and analytic settings). We have
Sing(w A 8) = Sing(n) = Sing(X).

Hence dim(Sing(w A 6)) = 0. There exists k € N such that if o', 8’ are formal 1-forms such that
Jew =Jw" and J; 0 = J, 6’ then dim(Sing(w’ A 8")) = 0. In particular, we get dim(Sing(J,w A
J0)) = 0. This provides a contradiction since it is known that the codimension of the singular set
of the exterior product of two germs of holomorphic 1-form has codimension less than or equal to
2 if it is singular at (0,0,0) (see [26, Lemma 3.1.2]).

We deduce codim(Sing(w)) = 2 and hence Sing(w) is a formal curve. Let us remark that since
w(X) = 0, the curve Sing(w) is invariant by X. O

5 | REDUCTION TO RAMIS-SIBUYA FORM

In this section, we show that a pair (F,T), where F is a diffeomorphism and T is a rationally
neutral formal invariant curve of F not contained in the set of fixed points of a non-trivial iterate
of F, can be reduced, up to iterating F, to a pair (F,T’) in Ramis-Sibuya form. First, we perform
such a reduction in the context of formal vector fields. Next, we use the results in Section 4 to
adapt the reduction to diffeomorphisms.

5.1 | Ramis-Sibuya form for formal vector fields

Definition 5.1. Let X be a singular formal vector field at 0 € C" and let I be a formal invariant
curve of X. We say that the pair (X, I') is in Ramis-Sibuya form (RS-form for short) if T is non-
singular and there exist analytic coordinates (x,y) at 0 € C" for which T’ is transversal to the
hyperplane x = 0 and such that X is written as

X = xI* 1A + x50 4 xq“A(x,y))% + (D) + xIC)y + xI*1B(x, y)) % ©)

where g > 0,1 € C*, b € C, A(x,y) € C[[x,y]], B(x,y) € C[[x,y]]""! and

(i) D(x) is a diagonal matrix of polynomials of degree at most g — 1 (equal to 0 if ¢ = 0) and C
is a constant matrix,
(ii) D(x) + x9C # 0,
(iii) D(x) commutes with C.

The polynomial vector field Ax4+! 6% + (D(x) + qu)y% is called the principal part of (X,T) in
the coordinates (x,y).

Notice that g + 1 is the multiplicity of the restricted vector field X | and thus the integer q =
q(X,T)iswell defined for the pair (X, ') and is independent of the coordinates. On the other hand,
if the multiplicity of X is »(X) = v + 1 then v < q and v coincides with the order at x = 0 of the
polynomial matrix D(x) + x9C. Thus, the number p = p(X,I') = g — v > 0, called the Poincaré
rank of the pair (X, T), is also independent of the coordinates.
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Remark 5.2. Assume that (X, T') is in RS-form, written as (6) in coordinates (x,y).

(a) Tisnot contained in the singular locus of the vector field X.

(b) Let I > 1 be the order of contact of I with the x-axis, that is, I' admits a parameterization
(s,7(s)) € C[[s]]" where the minimum order of the components of 7(s) is equal to l. Then the
invariance condition implies that the order in x of any component of the vector X(y)(x,0) €
C[[x]]" ' is at least [ + v.

(c) If g > 1 then, after a change of variables of the form X = ax where a? = —A4, we may assume
that 4 = —1.

(d) Denote by Q;(x), ..., Q;(x) the different polynomials in the diagonal of the matrix D(x) and,
up to reordering the y-variables, write

D(x) = diag(Ql(x)Inl’ ey Ql(x)Inl)-

The property [D(x), C] = 0 implies that C is block-diagonal C = diag(C', ..., C!) where C/ has
size n;. After a linear change of variables of the form y = Py, we may assume that the blocks
of the matrix C are in Jordan canonical form.

Let us justify our choice of the terminology in Definition 5.1. After dividing the vector field in
(6) by x? times a unit, we can associate it to a system of n — 1 formal ODEs

xPly" = (D(x) 4+ xPC + O(xP*))y + O(xP+1),

where D(x) = D(x)/Ax” and C is a constant matrix. Such a system has a singular point at x = 0
with Poincaré rank equal to p (unless possibly for g = p = 0 if C = 0). Moreover, the properties
assumed for the polynomial matrix D(x) + xPC are essentially those considered in the work of
Ramis and Sibuya [31], devoted to proving multisummability of the formal solution y = 7(x),
where (x, 7(x)) is a parameterization of T, in the case where the coefficients of the system are con-
vergent.

5.2 | Blow-ups and ramifications along an invariant curve

LetX € X (C",0) be a singular vector field and let I be a formal invariant curve of X not contained
in the singular locus of X.

A germ of holomorphic map ¢ : (C",0) - (C",0) will be called a permissible transformation
for the pair (X, T') if it is of one of the following types:

1. The germ of a holomorphic diffeomorphism.

2. Let Z be a germ of non-singular analytic submanifold at 0 € C" which is invariant for X (mean-
ing that X(g) € I(Z) for any g € I(Z), where I(Z) denotes the ideal of holomorphic germs van-
ishing on Z) and such that the tangent line of I is transversal to Z. Let 7, : M — U be the
blow-up with center Z and let p € 7751(0) be the point corresponding to the tangent of I'. Then
there is an analytic chart 7 of M at p so that ¢ is the germ of 7,7~! at 0 € C". We will say that
Z is a permissible center and that ¢ is a permissible blow-up.

3. The curve I' is non-singular, there are analytic coordinates z = (z, ..., z,)) at 0 € C" such that
Z = {z, = 0} is invariant for X and transversal to I" and ¢ is the map ¢(z) = (zll, Z5, .. s Z,) fOr
some | € N, ,. We will say that ¢ is a permissible I-ramification (with center Z).
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In the last two cases, the non-singular hypersurface Ey = ¢~1(Z) is called the exceptional divisor
of ¢. For convenience, E, = {0} in the case where ¢ is a diffeomorphism. Notice that a permissible
transformation ¢ is a local diffeomorphism at every point in the complement of E.

The following result is quite well known (see for instance [8] for the three-dimensional case).
We include a proof for the sake of completeness.

Proposition 5.3. Let ¢ : (C",0) — (C",0) be a permissible transformation for (X, T'). There exist
a unique formal curve T at 0 € C" such that ¢*T C T (where $*T ={go¢ : g € I'}) and a unique
formalvector field X at0 € C" such that $,X = X. Moreover, X is singular and has T as an invariant
curve. In addition, the multiplicities of the restrictions satisfy v(X I7) = v(X|r). We will call XandT
the transforms of X and I by ¢, respectively.

Proof. The case where ¢ is a germ of a diffeomorphism is clear.

Suppose that ¢ is a permissible blow-up with center Z. Consider analytic coordinates z =
(24,25, ..., Z,) so that the tangent line of T is tangent to the z;,-axisand Z = {z; = z, = --- = z, = 0}
where t = codim Z (thus I(Z) is generated by z, ..., z;). We may write ¢ : (C",0) — (C",0) as

d(z) = (21,212, e » 2124, Z 415 - > Zp)- @)

Let y(s) = (1(s), ..., ¥,(s)) € C[[s]]" be an irreducible parameterization of I in the coordinates z.
Then v(T) = v(y,(s)) < v(y j(s)) for j = 2,...,n, where v denotes the order in s. Also,

AONAO]
71(3), o 71(8)

7(s) = (h(s), ,ym(s),...,yn(s)) e c[s)" ®)

is a parameterization of a formal curve T which satisfies ¢*I" C T. The uniqueness of T can be
seen as follows: if 7(s) = (7,(s), 7,(5), ..., 7,,(s)) is a parameterization of another formal curve T
satisfying ¢*T' C T then we will have that ¢ o 7(s) is another parameterization of I and necessarily
¢ o 7(s) = y(a(s)) where a(s) € C[[s]]. Using the expression of ¢ and Equation (8) one shows that
7(s) = 7(co(s)) and thus T = T.

Write X = Y1 al-(z)%. Since T is invariant and not contained in the singular locus of X,
we have that the vector Xlly(s) € C[[s]]" is a non-zero multiple of ¥’(s) and hence v(a; (y(s))) <
v(a j(y(s))) for j=2,..,n.S0a j(z) cannot contain a monomial of the form cz;, with ¢ # 0, for
Jj =2,...,n. On the other hand, the condition of Z being invariant implies that, for j =1, ...,¢,
a j(z) € I(Z) and hence a j(qb(z)) is divisible by z;. Using these two properties, the vector field
X =3, a,(z)<= defined by

i

a;(¢(2)) — z;ja,(¢(2)) for iz 2 . f-
- , J=2,.,8 ©
[7pt]a;(z) = a;(¢(2)), forje{l,t+1,..,n}

is formal and singular at 0, and it is the unique that satisfies ¢, X = X. Since T'is invariant for X,
we get X|,(g) = h(s)y'(s) for some h(s) € C[[s]] and one obtains that X l75) = h(s)y'(s), proving
that T is invariant for X and that v(X|z) = »(X|p).
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Assume now that ¢ is a permissible [-ramification, written in some coordinates z as ¢(z) =
(zll, Z5,..., Z,). Consider a parameterization of T of the form y(s) = (s, ¥5(8), ..., 7,,(s)) in these coor-
dinates (recall that, from the definition of permissible ramification, T is non-singular). Then

7(8) = (3,72(), .., 7,(s)) € C[[s]]" (10)

is a parameterization of a formal curve T satisfying ¢*T' c T. Uniqueness of I' comes from the
property of I' being non-singular: I' is generated by the series z; — y;(z,) for j = 2,..., n and thus,
if T is a formal curve such that $*I" c T, then 7(s) is a parameterization of I.

On the other hand, being Z = {z; = 0} invariant for X, if we write X = "' | al-(z)% then we
have a,(z) = z,a,(z), where a,(z) is a formal series. The (singular) formal vector field X defined

by

L COR

l oz, ~

satisfies ¢, X = X. Since I is invariant and not contained in the singular locus of X, X lys) =
h(s)y’(s) for some h € C[[s]] with »(h) > 1. We obtain that T is invariant for X and

V(X |p) = v(XIp) + (X |p) = DA = 1) > v(X[p)
as a consequence of X |5, = [71s" " h(s)7(s). O

It is worth to notice that Proposition 5.3 remains true, except for the uniqueness of the curve T'
satisfying ¢*T' C T, if the condition of I being non-singular in the definition of permissible rami-
fication is removed (consider, for example, the curve I' = (y? — x3) at (C2,0) and ¢(x, y) = (x2,y)
where we can choose I' = (y — x3) or I = (y + x?)).

Remark 5.4. Observe that the expression of the transform of a vector field by a permissible trans-
formation is finitely determined in the following sense. Let ¢ be a permissible transformation for
(X,T) with center Z. Then, for any N € N, there exists N’ € N such that, if Y is another formal
vector field for which Z is invariant and Jy Y = J/ X thenJy Y = Jy X, where X, Y are the trans-
forms of X, Y by ¢, respectively. Although we do not require Y to have I as an invariant curve, the
transform Y is well defined in Proposition 5.3 once we have that the center Z of ¢ is invariant for
Y.

5.3 | Reduction of a vector field to Ramis-Sibuya form

Let X be a formal singular vector field at (C",0) and let I' be a formal invariant curve of X not
contained in the singular locus of X. In this section we show that the pair (X, T’) can be reduced
to Ramis—Sibuya form by permissible transformations.

A sequence of permissible transformations for (X,T’) is a composition

®=¢op_j0..0¢ :(C",0)—(C",0)
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such that ¢, is a permissible transformation for (X,I") and, for j = 1,...,1 — 1, (X s r j) is the trans-
form of (X;_;,T';_;) by ¢; and ¢;,, is a permissible transformation for (X;,T’;). The last pair
(X;,T;) will be called the transform of (X,T') by ®. We also define the total divisor of ® as the

set Eg = (o0 ... © ¢2)‘1(E¢1), which is a normal crossing divisor at 0 € C".

Theorem 5.5. Let X be a formal singular vector field at 0 € C" and let ' be an invariant formal
curve of X not contained in the singular locus of X. Then there exists a sequence ® of permissible
transformations for (X, T') such that the transform of (X, T') by ® is in Ramis-Sibuya form.

A composition @ as in the statement will be called a reduction of (X,T’) to RS-form.

Theorem 5.5 is not a completely new result in the theory of reduction of singularities of vector
fields or in the theory of systems of meromorphic ODEs with irregular singularity. It contains in
particular a result of “local uniformization” of X (i.e., reduction to non-nilpotent linear part) along
the valuation corresponding to I (see Cano et al. [8, 10] or Panazzolo [28] for more information).
The particular expression of a vector field in RS-form, that requires more than a non-nilpotent
linear part, is obtained, once we associate to X a system of n — 1 meromorphic ODEs after some
initial blow-ups, from classical results in the theory of ODEs, generically known as Turrittin’s
Theorem: see Turrittin [37], Wasov [40], Balser [3], or Barkatou [4] (for linear systems with formal
coefficients), and Cano et al. [9] (for related statements for three-dimensional real vector fields).
Since we could not find a statement with the precise terms of Theorem 5.5 needed for our purposes,
we devote the rest of this section to provide a self-contained proof.

Let us describe the situation after a punctual blow-up. Let (x, y) be coordinates such that {x = 0}
is transversal to (the tangent line of) ' and let ¢ : (C",0) — (C", 0) be the blow-up of C" centered
at the origin (which is permissible for (X,T")). There is a constant vector £ € C"~! so that ¢ is
written as

$(x,y) = (x, x(y — ). )

We obtain the following properties:

(al) The transform of X by ¢ is written as X = x*®)~1X’ where E4 = {x = 0} and X is a formal
singular vector field. Thus v(X) > v(X) and the origin is again a permissible center for the
transform (X, T) of (X, I).

(a2) When & = 0, the exponent of x increases at least a unit in any monomial of the coefficient
X (x) with positive degree in the y-variables and in any monomial of the components of X(y)
with degree at least two in the y-variables, whereas the order of X (y)(x, 0) decreases in a unit.

From pre-RS form to RS form
To prove Theorem 5.5, it will be sufficient to prove that there exists a sequence W of permissible
transformations for (X, T') such that the transform X = ¥*X is written in some coordinates (x, y)

as

%= xq“u(x,y)% + (By(0) + (D(x) + xIC)y + O(xT*1y)) % (12)
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where 1(0, 0) # 0, By(0) = 0 and the transformed curve [ = P*T, together with g, D(x), C satisfy
the conditions of Definition 5.1.

Let us see how we can obtain RS-form from expression (12). Analogously as in Remark 5.2(b),
if y(x) = (x, 7(x)) is a parameterization of I and »(7(x)) > I then V(By(x)) = L. Thus, by a change
of variables of the form y = ¥ +Jy +27(x) we may assume that v(By(x)) > 2q + 3 and the first
2q + 2 iterated tangents of I' and of {y = 0} coincide. Taking into account the properties (al) and
(a2) above about the effect of a permissible punctual blow-up, we have that the composition ®
of the blow-ups at the first q + 1 iterated tangents of T is written as ®(x,y) = (x, x9*'y) and the
transform ®*X is written as in (12) with the extra hypothesis

u(x,y) = u(x,0) + 0(x?y), v(B,(x)) > q + 2.

Notice that the matrix D(x) + x9C has changed into D(x) + x9(C — (q + 1)u(0,0)I,,_,). If this
matrix vanishes, we consider ®(x,y) = (x, x4*%y) and ®*X is in the form (12) in which D(x) +
x49C changes into —x9u(0,0)I,,_; and v(By(x)) > q + 1. It remains to show that we can obtain
u(x,0) = u(0,0) + bx™2x(1L.a) 1 O(x9+1). The series u(x,0) is already in the required form for
q = 0. For the case q > 1, it suffices to consider a polynomial change of coordinates of the form
X = x + P(x), with P(x) = a,x* + - + a,x9. This is the consequence of a classical result for one-
dimensional vector fields: if Y = x9*1v(x)d, is a vector field with v(x) = vy + vy X + -+, vy # O
and q > 1, we can kill all coefficients vy, ..., v,_; with a polynomial change of variables, tangent
to identity and of degree at most q.

A pair (X,T) in the form (12) will be called a pair in pre-RS-form. In the rest of this section, we
prove, to finish Theorem 5.5, that any pair (X,T') can be reduced to pre-RS-form by means of a
finite composition of permissible transformations.

q

Reduction to pre-RS form

First, performing the blow-ups at the infinitely near points of I and by resolution of singularities of
curves (see [39]), we can assume that I' is non-singular. Moreover, using property (al) above, there
is a system of coordinates (x, y) for which I' is transversal to {x = 0} and such that X = x°X, where
X is not divisible by x and e > »(X) — 1 (in particular {x = 0} is contained in the singular locus of
X ifv(X) > 2). Let y(x) = (x,7(x)) € C[[x]]" be a parameterization of I' in these coordinates and
write

- 0 o)
X = ,Y)— + b(x,y)—,
a(x,y)5~ +b(x,y) 3y
where a(x,y) € C[[x,y]]and b(x,y) € C[[x,y]]"!. Since Iis invariant and not contained in the
singular locus of X we obtain that a(y(x)) # 0.
Case X not singular
We analyze first the case where X is not singular at the origin. In this case, we have e > 1 and, since

I is the unique formal solution of X at 0 and it is transversal to {x = 0}, we must have a(0) = 1 # 0.
We may assume also that T is tangent to {y = 0}. After a new blow-up at the origin, and taking
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coordinates as in (11), the transform of X is written as
Y e—1 0 0
X=x X(A 4+ 0(x)=— + (—y + O(x))—|,
0x oy

which is in pre-RS-form (12) with ¢ = e — 1 > 0 and Poincaré rank p = 0.

Case X singular

Assume now that X is a singular formal vector field. Let r be the order of vector field X |, it is equal
to the order of the series a(y(x)). Notice that 1 < r < co. As in Remark 5.2(b), we can assume, up
to a polynomial change of variables of the form ¢,(x,y) = (x,y + Jy7(x)), that the order in x
of any component of b(x, 0) is at least 2r + 2. Let ¢ be the composition of the permissible blow-
ups with center at the first r + 1 iterated tangents of T', written as ¢(x, y) = (x, x"*'y). Taking into
account the effect, stated in property (a2), of a blow-up in the order with respect to x of the different
monomials of the coefficients of X and the invariance of X |r under blow-ups, we conclude that,
after the transformation ¢, the vector field X may be written as

X = x°|x"u(x, y)% + (c(x) + AX)y + x’@(x,y))% (13)

where e > 0,7 > 1, u(0,0) # 0, v(c(x)) > r + 1, A(x) € M,,_,(C[[x]]) and © € C[[x,y]]"*! has
order at least 2 in the y-variables. Moreover, we may assume also that A(0) # 0: if v(A(x)) > r then
x~(¢*1X is non-singular, a case already treated above; otherwise, if v(A(x)) < r we may rewrite
X asin (13) replacing e by e + v(A(x)) and r by r — v(A(x)) so that the new matrix A(x) satisfies
A(0) # 0.

Putr = s + 1 with s > 0. Notice that if s = 0 then X is already in the required pre-RS-form (12)
with g = e and Poincaré rank p = 0. We assume that s > 1. To the vector field X in (13) we can
associate the system of n — 1 formal meromorphic ODEs

My = ulx, y) 7N (e(x) + Ay + X" O(x,y)). (14)

We will use the following classical result, that we state more or less as it appears in the book of
Wasov [40].

Theorem 5.6 (Turrittin). Consider an m-dimensional system of formal linear ODEs
X*Hw' = Ax)w,  A(x) € M, (C[[x]D),

and assume that s > 1 and A(0) # 0. Then, after a finite number of transformations of the following
types

* Polynomial regular transformation

Lpy(x, w) = (x, P(x)w), P(x) € M,,(C[x]) with P(0) invertible.
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* Shearing transformation

Stk km)(x,w) = (x,diag(xkl, ey XEm YW, k; € Ny,.

* Ramification
R, (x,w) = (x*,w), a € Ny.
the system transforms into a system
xPHw’ = (D(x) + xPC + O(xP™)w,

where either p =0 and_E #0or p > 1, D(x) is a diagonal matrix of polynomials of degree at most
p — 1 commuting with C and D(0) # 0.

Polynomial regular transformations, shearing transformations, and ramifications, as defined
in Turrittin’s Theorem, will be called T-transformations. Except for the ramifications, they are
particular examples of gauge transformations of the system.

Remark 5.7. Note that a polynomial regular transformation does not change the number s (the
Poincaré rank of the system) and that a ramification R, multiplies it by . The effect of a shearing
transformation Sq . on the Poincaré rank depends on the parameters ky, ..., k,,, (and on the
orders of the entries of the system). Looking carefully at the proof of Theorem 5.6 (see, e.g., [40,
Section 19] or, alternatively, the proof in [4]), we may observe that each shearing transformation
in the process to prove Theorem 5.6 is chosen so that its application never makes the Poincaré
rank increase strictly.

We resume the proof of Theorem 5.5. Assume that X is written as in (13), that I' is non-singular
and transversal to x = 0 and let y(s) = (s, 7(s)) be a parameterization of I'. Consider the formal
change of variables y = § + 7(x), for which I' = {§ = 0}, and write X in the variables (x, y) as

3
oy

X [ e, 3+ 700) 2+ (A +x1160x,9)
where A(0) # 0 and O(x, ) = O(||¥||%). The system (14) associated to the vector field X becomes
XY = u(x, g + 7 (AR +xH10(x.9).
Apply Theorem 5.6 to the linear system
W = u(x, 7(x)) AW, 15)
associated to the formal vector field

_ e |yst+l = i A i
Y = x¢[x* ulx, 7(x)) Ix + A(x)w 3wl
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We get a composition ¥ of T-transformations converting (15) into a system with the prescribed
properties stated in Theorem 5.6. In terms of the associated vector field Y, if we write ¥(x,w) =
(xP, W, (x,w)), where § is the product of the orders of the ramifications involved in the process
and ¥, is polynomial in x and linear in w, we get

WY = B u(x, 7(xF))x” [xp“% + (B(x) +xPC + O(xP“))waiw] (16)

where v > 0 and p, D(x) and c satisfy the properties stated in Theorem 5.6. In fact, we have p +
v = f(e + ).

Lemma 5.8. W is a sequence of permissible transformations for (Y,{w = 0}).

Proof. This is clear for polynomial regular transformations and for ramifications. On the other
hand, a shearing transformation can be viewed as a composition of blow-ups. More precisely, con-

.....

transformation is ¢(x, w) = (x, x2w,, ..., x*rw,, w; 1, ..., w,). Put
n
= _ 6] o}
Y=x"°Y =qa,(x,w)— + ) a;,(x,w)—.
16 W) 3 22 (oWl

We obtain ¢*Y = a,(x, w)% + X, ay(x, w)% defined by

i

a;($0x, w) — k;xI " w;a, ($(x, w))
k; >
[7pt]a;(x, w) = aj(qb(x,w)),x forje{l,t+1,..,n}

a;(x,w) = for j =2,..,t;

Since the Poincaré rank does not increase by the shearing transformations in Turrittin’s process
(see Remark 5.7), the pull-back ¢*Y has coefficients in C[[x, w]] (with no poles). We deduce that
a, ..., a; belong to the ideal (x, w,, ..., w;). Therefore Z = {x = w, = ... = w, = 0} is invariant by
Y and the blow-up of Z is a permissible transformation. Then we consider the blow-up of {x =
0in r\kj>2{w ; = 0}. Analogously as above, it is a permissible transformation. By repeating this
process with centers of the form {x = 0} n nkj>d{w ; =0} for 1 < d < max(ky, ..., k;), we get that

any shearing transformation is a sequence of permissible transformations for (Y, {w = 0}), and
hence for (Y, {w = 0}). O

Notice that the pair (¥*Y, {w = 0}), where $*Y is given in (16), is in pre-RS-form. Let us show
how to reduce (X, T') to pre-RS-form from this property. For any m > 1, consider the diffeomor-
phism ¢, : (C",0) — (C",0) given by ¢,,,(x,y) = (x,y — J,,,7(x)). The transform X, = ¢* X is
written as

_ d d
X = X (XY + Do PG T2+ (6000 + A0y +2°410,,(63)) 3,

where A,,(0) #0, 0,,(x,y) =O0(|lyl|*) and c,,(x),A,,(x),0,,(x,y) converge, respectively to
0, A(x), O(x,y) in the Krull topology associated to the ideal (x) (also called the (x)-adic topology)
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when m — co. Moreover, the transform I',, = ¢7 T' has a parameterization (x, 7(x) — J,,,7(x))
that converges to (x,0) in the (x)-adic topology. Therefore, we get v(c,,(x)) > 2m + 1 (see
Remark 5.2). Consider the map ¢,,(x,y) = (x, x™y), a composition of punctual permissible blow-
ups for (X,,,,T,,). Let (X] , T ) be the transform of (X, T) by 3, 0 ¢,,,.

Taking into account formula (9) and property (a2) above, we get that the limit of X)’ = X} +
mW, where W = x*tSu(x, )7(x))y%, in the (x)-adic topology is equal to Y when m — o0. More-
over, the parameterization (x, (7(x) — J,,,,7(x))/x™) of (,,, o ¢,,,)*T converges to (x, 0) in the (x)-
adic topologywhen m — oo.Itis straightforward to check out that, since ¥ is a sequence of permis-
sible transformations for (Y, {w = 0}), there exists a neighborhood U of Y in the (x)-adic topology
such that ¥*Z is a formal vector field for any Z € U and the map Z — ¥*Z is continuous in U
where we consider the (x)-adic topology in both the source and the target.

In order to finish the proof of Theorem 5.5, it suffices to prove that if m is sufficiently
big then ¥ reduces (X] ,T’ ) to pre-RS-form: the map ¥ o, o ¢, will then reduce (X,T) to
pre-RS-form. Since lim,,_, , X/ =Y, ¥* is continuous at Y and ¥*(W) = T(X)W% for 7(x) =
xPEru(xF, 7(xP)), we deduce that W is a permissible transformation for (X’ , I ). The continuity
of ¥* at Y implies that the pair (¥*X ;n, e F;n) is in pre-RS-form where the matrix x’(D(x) + xPC)
in Equation (16) is replaced by

x"D(x) + xP*(C — mel,,_,)

where J,,,7(x) = cxP*” (recall that 7(x) has order 8(e + s) = p + v). Indeed, the above matrix

satisfies the conditions in Definition 5.1 for m >> 1. Theorem 5.5 is finished.

5.4 | Reduction of a biholomorphism to Ramis-Sibuya form

Consider a biholomorphism F' € Diff(C", 0) having a formal invariant curve I'. In this section we
use Theorem 5.5 and the results in Section 4 to obtain, up to iteration of F, a reduction of the pair
(F,T) to a form analogous to the Ramis-Sibuya form in Definition 5.1.

First, we need to adapt Proposition 5.3 to the context of flows.

Proposition 5.9. Consider F € Diff(C",0) with a formal invariant curve T and assume that
there exists a formal vector field X € Z(C",0) such that F = expX and T is invariant for X. Let
¢ : (C",0) = (C",0) be a permissible transformation for (X,T) and let (X,T) be the transform of
(X,T) by ¢. Then the diffeomorphism F = expX is analytic, satisfies o F = Fo¢ and has T as
invariant curve. We say that ¢ is a permissible transformation for (F,T) and that the pair (F,T) is
the transform of (F,T') by ¢.

Proof. 1f ¢ is a germ of a diffeomorphism, the result is clear.
Assume that ¢ is a permissible blow-up with center Z. Consider analytic coordinates z =

(21,25, ..., 2,) such that T' is tangent to the z;-axis, Z ={z; =z, = - =z, = 0} and ¢(z) =
(21,2129, ., 21245 Z441» - » Zy)- The condition ¢ o F = F o ¢ can be written as
2joF($@)
ifj=2,..,t

zjoﬁ(z)= z; 0 F(¢(2))’
zjoF(¢(z), ifje {1,t+1,..,n}.

d T TTOT XFHTO9TT

SUONIPUOD) PUE SULIA L, Y} S *[€20T/01/0€] U0 Areiqi auruQ LI 1§ 01y ANsIaAiu a1g o £q Lz [swid/g[ [ 1°01/10p/wod Kaia

dny,

puz-sw)/woo Kajia A;

5UDI'] SUOWWO,) 9A1EaI) d[quat|dde Ay Aq PALIGAOS AIE SIIILIE V() 98N JO ST 10§ ILIQIT U S[IAY UO (SUOIP



304 | LOPEZ-HERNANZ ET AL.

Since the tangent line of T is invariant for DyF, the series z; o F(z) has a monomial of the
form az,, with a # 0. Moreover, since Z is invariant for F, we have z; o F(z) € (zy, ..., z;) for
j=1,...,t. Therefore z, o F(¢(z)) =~zl(a + A(z)) with A(0) =0 and Z; o F(¢(z)) is divisible by
z, for j = 2,...,t. We conclude that F € Diff(C", 0). By construction, F is the unique formal dif-
feomorphism such that ¢ o F = F o ¢. We have also that F = exp X since X/(g o ¢) = X/(g) o ¢ for
any g € O, and any j > 1, and thus exp X also satisfies formally ¢ o exp X = F o ¢. Notice finally
that T is invariant for X by Proposition 5.3 and hence T is also invariant for F = exp X.

Assume now that ¢ is a permissible [-ramification, written in some coordinates z as ¢(z) =
(zll, Z5,...,Z,), thatis, Z = {z; = 0} is the center of ¢. As in the case of permissible blow-ups, we
have that the formal diffeomorphism F = exp X satisfies ¢ o F = F o ¢. This identity means

(20 F@) =2, 0 F$@); z;0F(2) = 2,0 F($(2)), ] = 2,.... 1.

On the other hand, since Z is invariant for F, we have z, o F(z) = z,(a + A(z)), with a # 0 and
A(0) = 0. We conclude that F € Diff(C", 0). The proof of the invariance of T by F is the same as
in the previous case. O

Remark 5.10. Assume that X is an infinitesimal generator of F in the sense of Definition 4.6.
Then, the transformed vector field X in Proposition 5.9 is an infinitesimal generator of F, since
being not weakly resonant is invariant by T-transformations. More precisely, given X € £(C",0)
with spec(DyX) = {1, ... , 4,,}, consider

RX) ={mu + ...+ myu, : my,...,m, € Q}.

It is easy to verify that R(X) = R(X) for regular transformations, ramifications, and blow-ups. It
also holds for shearing transformations since they are compositions of blow-ups.

The main result in this section is the following.

Theorem 5.11 (Reduction of a diffeomorphism to Ramis-Sibuya form). Let F € Diff(C",0) be a
germ of a diffeomorphism having a formal invariant curve T'. Assume that T is rationally neutral and
not contained in the set of fixed points of any non-trivial iterate of F. Let m be the index of embed-
dability of F. Then there exists a finite composition ® of permissible transformations for (F™,T') and
some coordinates (x,y) at0 € C x C"! so that, if (F™, T) is the transform of (F™,T) by @, then T is
non-singular and transversal to {x = 0} and F™ is written as:

— a7
y o F™(x,y) = exp(D(x) + xIC)y + O(x9*h),

{x o FM(x,y) = x — x9t1 4 bx24t1 4 O(x29+2)
whereq > 1, b € C, D(x) is a diagonal matrix of polynomials of degree at most q — 1, C is a constant
matrix, D(x) + x9C # 0, [D(x),C] = 0 and the order of contact of F with the identity coincides
with the order of the matrix D(x) + x9C plus one. In this case, we say that the pair (F™,T) is in
Ramis-Sibuya form.

Proof. By Theorem 4.7, the iterate F™ has an infinitesimal generator X € £(C",0). By Proposi-
tion 4.22, T is invariant for X and v(X|) > 2 (notice that I' is rationally neutral for any iterate of
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F). Moreover, I is not contained in the singular locus of X since, otherwise, I' would be contained
in the set of fixed points of F" = exp X. By Theorem 5.5, there exists a composition ® of finitely
many permissible transformations for (X,T) such that the transform (X,T) of (X,T) by @ is in
RS-form. Fix some coordinates (x,y) such that (X, T) is written as in Equation (6):

X = (A8 4 bx 4 002) £ 4 (D) + x10)y +0(x1*) %

Notice that g > 1 since v(X |) > 2 by Proposition 5.3. In particular, by Remark 5.2 we may assume
that 1 = —1. We conclude that the transform F = expX of F by ® is written as in Equa-
tion (17) with the required properties q > 1, D(x) + x9C # 0, D(x) diagonal of degree at most
g — 1 and [D(x),C] = 0. Let v be the order of D(x) + x9C. It remains to prove that the vector
yoFm —y e C{x,y}"! has order v + 1. If F™ is not tangent to the identity then Dyl::';’(o) =
exp((D(x) + x9C))|,—¢ # I,_;, Which implies v = 0 and the property holds. Suppose that F is
tangent to the identity. Then, by Remarks 4.9 and 5.10, X is the unique nilpotent vector field
such that F™m = exp X and we know that »(X) > 2since I = DOFT” = exp(Dof )and Do)? is nilpo-
tent. Using the formula for the exponential, we conclude that y o F" —y has order equal to
»(X) = v + 1, as wanted. O

To finish this section, we show that stable manifolds of F, as well as asymptotic orbits to T, are
preserved under a permissible transformation for (F, T'). Together with Theorem 5.11, this allows
us to assume that the pair (F,T’) is in Ramis-Sibuya form in order to prove Theorem 1 in the
(remaining) case where I is rationally neutral and not contained in the set of fixed points of any
iterate of F. Recall that to obtain Ramis-Sibuya form, we have first considered an iterate of F,
then performed some punctual blow-ups along I" and, once the transform of I' is non-singular,
some other permissible blow-ups with a center with a dimension possibly greater than 0 and
ramifications. Then, for our purposes, it is sufficient to consider the statement in the following
way.

Proposition 5.12. Let ¢ be a permissible transformation for (F,T') with center Z and exceptional
divisor Ey = ¢~1(Z). Assume that T is non-singular if the center Z has positive dimension. Consider
a representative ¢ . V — V such that F is defined in V and Z is an analytic smooth subvariety of V.
Let (F,T) be the transform of (F,T) by ¢. We have

(i) IfS c V is a stable manifold of F in V such that S N Ey = @ then S = ¢(S) is a stable manifold
of F in V. Moreover, if O C S is a F-orbit asymptotic to T then O = $(O) is a F-orbit asymptotic
toT.

(ii) If S C V is a stable manifold of F such that S N Z = @ and every F-orbit in S is tangent to T,
then S = ¢~1(S) is a stable manifold of F. Moreover, if O C S is a F-orbit asymptotic to T then
O = ¢~1(0) is a F-orbit asymptotic to T.

Proof. The two assertions concerning the stable manifolds are consequences of the fact that
¢ oF = F o ¢, together with the fact that ¢ is an isomorphism outside the divisor Ey. The asser-
tions concerning the asymptoticity of the orbits are immediate from the definition in the case
where ¢ is the blow-up at 0. In the other cases, we take coordinates z such that I' is parameterized
by y(s) = (s,75(8), ..., 7,(s)) and such that ¢ is either a ramification with respect to Z = {z; = 0}
or is written as in (7) in the case of a blow-up. Using the corresponding formulas (10) or (8) for a
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ramification of the transformed curve I’ (again non-singular), the result is a consequence of the
characterization of asymptoticity of orbits to a non-singular curve in terms of a parameterization
of the curve (see Section 2). O

6 | EXISTENCE OF STABLE MANIFOLDS

Consider a diffeomorphism F € Diff(C",0) and a formal non-singular invariant curve T such
that the pair (F,T') is in Ramis—Sibuya form, that is, there exist coordinates (x,y) = (x, Y5, ..., ¥,,)
at 0 € C" such that I' is transverse to x = 0 and such that F is written as

xoF(x,y) = x — x4t 4 bx?4*! 4 O(x?9*2)

y o F(x,y) = exp (D(x) + xIC)y + O(x™),

where g > 1, b € C and D(x) and C satisfy the properties of Theorem 5.11. Denote by k + 1 the
order of contact of F with the identity, which coincides with the order of D(x) + x9C plus one.
Note that 0 < k < g,andputp=q—k > 0.

We define the attracting directions of (F,T') as the ¢ = k + p half-lines {x € éR*}, where £K*+P =
1. Observe that, when I is convergent, these directions are the limits of the secant real lines pass-
ing through the origin and points in an orbit of the restricted diffeomorphism F|. € Diff(C, 0),
converging to 0. We classify the attracting directions of (F,T) as follows. Write D(x) + x9C =
xK(D(x) + xPC), where D(x) = 0 in case p = 0. In case p > 1, set

D(x) = diag(d,(x), ..., d, (x))

and, for any 2 < j<n, write d;(x) = Aj,vjx”f' + Aj,vjﬂx”frl +o+ Aj o xPTH A di(x) #0,
where v ;j is the order of d ; at 0. Given an attracting direction ¢ = éR* and j € {2, ..., n}, we say
that ¢ is a node direction for (F,I') in the variable y; if p > 1, d;(x) # 0 and

<Re <§k+”fAj,Vj ),Re <§k+”.f+1Aj,vj+1>, ..,Re (§k+p—1Aj,p_1)> <0

in the lexicographic order; otherwise, we say that it is a saddle direction for (F,T) in the variable
;. Note that, if p = 0, any attracting direction is a saddle direction in every variable.

The rest of this section is devoted to complete the proof of Theorem 1. After the results in Sec-
tion 3 and Theorem 5.11, it suffices to show the following theorem.

Theorem 6.1. Consider a pair (F,T") in Ramis-Sibuya form and let £ be an attracting direction
of (F,T). Let s — 1 > 0 be the number of variables for which ¢ is a node direction. Then, there exists
a stable manifold S, of F of dimension s in which every orbit is asymptotic to T' and tangent to
¢. More precisely, there exist a connected and simply connected domain S C CS with 0 € S and a
holomorphic map ¢ : S — C"5 such that, up to reordering the variables, the set

Sy ={(x,w,p(x,w)) ECXC' xC"™ : (x,w) €S}

satisfies the following properties:
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(i) S, is a stable manifold of F.
(ii) Every orbit{(x;,y;)} C S, is asymptotic to I and {x;} is tangent to £.
(i) If{(x;,y;)cCx C"Lisan orbit of F asymptotic to T such that {x i} has ¢ as tangent direction,
then (x;,y;) € S, for all j sufficiently big.

Choice of coordinates

Up to a linear change of coordinates in the x-variable, we may assume that # = R*. We can also
assume, without loss of generality, that £ is a node direction in the variables y,, ..., ¥, and a saddle
direction in the variables y, 1, ..., ¥, and that C is in Jordan normal form (see Remark 5.2).

Observe that we can increase the order of contact of I' with the x-axis by considering a polyno-
mial change of variables of the form (x,y) + (x,y — Jy¥(x)) where y(x) = (x, y(x)) is a param-
eterization of I'. Moreover, the matrices D(x) and C that appear in the expression of y o F are
preserved by such transformations. Note also that after a permissible punctual blow-up the trans-
formed pair (F,T) is again in Ramis-Sibuya form in usual coordinates (x,y) with y = xy as in
Section 5.3. Moreover, the matrix D(x) is invariant by blow-up whereas C is replaced by C +I,,_;.
Consequently, the saddle or node character of # = R* in each variable does not change and, by
Proposition 5.12, it suffices to prove Theorem 6.1 in the new coordinates (x, y). Therefore, taking
N sufficiently big and up to several punctual admissible blow-ups, if we put (x,y) = (x,w,z) €
C X C~! x C"* we can write F as

X oF(x,y) — f(X,Y) =x— xk+p+1 + bx2k+2p+1 + O(x2k+2p+2)
woF(x,y) = F,(x,y) = exp (xk <Bl(x) + xpCl))w + O(xk+P+hy
20 F(x,y) = Fa(x,y) = exp (x(D,x) + x7C, ) )z + OG0,

where b € C, Bl(x),l_)z(x), C;,C, are the corresponding blocks of D(x) and C (note that this
decomposition is guaranteed by the commutativity of D(x) and C, see Remark 5.2) and every
eigenvalue of C, has positive real part.

In fact, we will use coordinates for which I' has an arbitrarily big order of contact with the
x-axis. Fix m € N, with m > p + 2, and let y(x) = (x,y(x)) be a parameterization of I'. Consider
the polynomial change of variablesy — y™ =y —J,,,,_;¥(x). In these coordinates, the order of
contact of I' with the x-axis is at least p + m, and the invariance of I" implies that the order of
y™ o F(x,0) is at least k + p + m. Therefore, if we set (x,y") = (x,w",z") € Cx C>~1 x C"~S
we have

fle,y™) =x — xkHDHL | p2kt2p+l | O(x2k+2p+2)
F (x,y™) = exp <xk (1_)1(x) + xpC1>)wm + O(xk+PHLym|, xktptm)
Py y™) = exp (x5(D) 4 x2C, ) )2 + OGPy, b 40)

Write, as above, D(x) = diag(d,(x), ..., d,(x)), where d j(x) is a polynomial of degree at most
p—1forall 2<j<n, and set C, = diag(As4q p, -, App) + Ny, where A; , € C for all s +1 <
Jj < nand N, is a nilpotent matrix.
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For any 2 < j < n, write
. N . . p . Vj . Vj 1 cee . p
ej(x) 1=d;j(x)+A; ,x Ajy XTI+ Aj o X7+ + A X,

where V; is the order ofej at 0 and Aj’p =0for2<j<s Wesetk+ Mj as the order okaej(x) -
iIm[(xkej(x))(O)]. Note that u; = v;ifk +v; > lorifk + v; = 0and Re(4; o) # 0. Therefore, we
have that

Re (xkej(x)) =Re (A ]

. k+u; ) k+pi+1 4 . . k+p
X A X e+ A pX .

We define the first asymptotic significant order rj =r;(¢) of £ = R* in the variable yjasr;=
l; — uj, where u; < I; < pis the first index such that Re(A;; ) # 0 (note that [; is well defined for
all j because of the previous condition on the eigenvalues of C,).

Note that r; does not depend on m, and thatr; < k + p for all j: the inequality is clear if p = 0
ork + My = 1; otherwise, rp= 0 so it also holds.

Put r = max{r,, ...,r,}. For d,e, ¢ > 0, we define the set Ry.cas

Ry, ={x€C :|x| <gRex>0,—dRex) " <Imx < e(Rex)*'}.

Lemma 6.2. Set t = max{r, + U,,...,rs + s} < p. There exists a constant ¢ > 0 such that, if
d, e, e > 0 are sufficiently small, then for any x € Ry, we have

@) Re(xkdj(x)) < —c|x|k* forany2 < j <s.

(ii) Re(xkdj(x) + xk“’Aj,p) > c|x|*P foranys +1< j < n.

Proof. Let us prove (i), the proof of (ii) is analogous. Fix 2 < j < s. If r; = 0, we have that
Re(x*d;(x)) < Re(A;, x'H1)/2 < —¢;|x|**#

if d, e, € are sufficiently small, where —c; = Re(Aj,Mj)/3. If r; > 1, we have that k + y; > 1 and
we use the same argument of [22, Lemma 5.9], that we include for the sake of completeness. We
assume that Im(4; u,-) > 0; the other case is analogous. Using indeterminate coefficients we can

see that there exists a diffeomorphism p(x) = x + ¥\, p;x! such that

) ktwp; o . . k+p—1 _ 4. k+u;
AJ,ij I4 e+ Aj X —A]’ij(x) i,

with oy €Rif2<1<r; and Im(p,j +1) > 0. Hence, to prove the inequality in (i), it suffices to

show that Re(Aj,#jkaf”j) < —¢; |x|¥*7i*#i for some ¢; > 0 and for all x € p(Ry, ). It is easy to
show, using the fact that o, e Rfor2 <l <r s that for any a € R, the image under p of the curve

Imx = a(Rex)"i™!

is a curve of the form

C Imx = (a +Im(p, ,))(Re X)L

a *
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Then, since r > r;, we obtain that set p(R;, ) is contained, if ¢ is small enough, in a domain
enclosed by two curves of the type C, and C_;. If d is sufficiently small, then —d + Im(prj 1) >
0, s0 d'|x|"/ < argx < m/(2(k + u;)) for some d’ > 0 and for all x € p(Ry, ), if d, e, ¢ are small
enough. Then, we have

Re(Aj,#jxl”“f) =- Im(Aj’“j)|x|k+/‘f sin((k + ;) arg x)

< =Tm(A; x| sin((k + p)d’|x|"7)

o) Re(Aj#J_kar“j) < —cj|x|k+’j+/‘j, with ¢; = Im(Aj’Mj)(k +p)d’ /2, if d,e,e >0 are small
enough. This proves (i). O

Up to a linear change of coordinates z”* — Pz™, we can assume that the non-zero terms of the
nilpotent part N, of the matrix C, are all equal to ¢/2, where ¢ > 0 is the constant appearing in
Lemma 6.2.

Existence of the stable manifold

We prove here that for every m > p + 2 there exists a stable manifold S,,, of dimension s given by
a graph z" = ¢, (x,w™) over a domain of the form

Sm

Tee = 1(x,w™) € C x C7' i x € Ry, WM < Ix|™71}

whered, e, ¢ > 0. As we will see, these stable manifolds are essentially the same for different values
of m. In the proof, we can see that the contact of S, with I" increases with m. This will be key in
the proof of asymptoticity of the orbits inside each S,,

We consider the vector spaces C(Sm ,C" %) and (D(S’" , C"~%) of continuous and holomorphic
maps, respectively, from S’"  toC"™ § Wlth the compact open topology. Recall that since Sm s
a locally compact second countable space and C"~S is a complete metric space, C(Sm C" S) is
completely metrizable [13, p. 272].

‘We will use the following result, which is an application of Schauder-Tychonoff theorem and
is stated in [20, p. 15]. We include a proof for the sake of completeness.

Proposition 6.3. Given a continuous function L : Sl'i”e .~ Ry the set

H, = {qo € OST, .C") ¢ [lp)|l < L(x) for all (x, w™) € Sdes}
has the fixed point property; that is, every continuous map T : H; — H; has a fixed point.

Proof. The space C(Sm ,C"%) is locally convex for the compact-open topology and the set H; is
clearly convex and closed Moreover, by Montel theorem H; is sequentially compact, and hence
compactsince C(S', , C"™*) is metrizable. By Schauder-Tychonoff theorem (see [14]), every com-
pact convex subset of alocally convex linear topological space has the fixed point property and this
ends the proof. O
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‘We define

d,e,e d,e,c’ d,ec

H" = {qp € O(ST, ..C"%) 1 le(x, w™)|| < |x|™! for all (x, w™) € ST }

The stable manifold S,, will be given by the graph of a fixed point ¢,, of a convenient continuous
mapT : H7 "

. d,e.e deec’
Given p € Hé"e o we denote

fole, W™ = fx, W™, p(x,w™)), F (x,w™)=F(x,w", o(x,w™)).
Proposition 6.4. Ifd, e, e > 0 are sufficiently small, then forall p € Hl'i”e . and (x,w™) € S;”e . we
have that
(f(p(x, Wm), Fl,(a(x’ wm)) € nge,g'

Proof. Sincer < k + p, we can argue as in [22, Lemma 5.5], and we obtain that

fcp(nge,g) c Rd,e,s

if d, e, € are sufficiently small. Now, if p € H[' _ we have by Lemma 6.2 that

[P peowm)| ”wm(exp(xkl_)l(x)) + O(xk+P)) + O(xk+P+m)H
P L R N T

< w ) 0PI 4+ OGP + 10(k+p+1

<t PGP + 0G| 11+ 0G|+ oGP

llw™ |

|x|m—1

(1= c|x M + ORI 1 + 0P| + loGkTPH)|

<1—c|x|** 40k <1
for all (x,w™) € Sg’e o if d, e, € are sufficiently small. O

We consider 0 < € < 1 and fix d,e > 0 small enough so that Lemma 6.2 and Proposition 6.4
hold. Given ¢ € H(’i"e . and (xO,w(’)") € Szl"e o we denote

(xj,w;n) = <fq;(xj_1aW;n_l)’Fl,go(xj—l’W;n_1)>’ J > 1.

As in the classical one-dimensional case, there exists a constant K > 1 such that

|x0|k+p

1+ (k + p)jlxol<+p

;  k+p |k+p
JlLIEO(k+p)ij =1 and |x] <K

(18)
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forall (xy, w(') € S;"es andall j € N, soin particular (x j,wj’.") — Owhen j — oo. Therefore, ¢, €
HY, . is a solution of the equation

(e, w™), F (e, w™)) = Fy(x, W™, o, w™)) 19)

if and only if the set

S, = {(x,wm,cpm(x,wm)) L (e, w™) € ST }

d,e,c

is a stable manifold of F.
Setp = Owhenk > 1,andp = b — (p + 1)/2when k = 0 (recall that b is the coefficient of x?P*+1

in f(x,0)). We define
B 3 D,(x) + xPC,
E(x) = exp < / —xP+1(1 — pxP)dx>’

where the integral is a notation for a primitive of x~ (Pt — pxp)_l(ﬁz(x) + xPC,).

Lemma 6.5. Forany (x,y™,z™) € S(’i”e X {zm € C"5 ¢ ||Z™|| < |x|"™ '} with € sufficiently small,
we have o

E(O)E(f(x,w"™,2™)™" = exp(—x*(D,(x) + xPC,)) + O(x*+P+1),

Proof. We argue as in [23, Lemma 3.7]. Observe that, since 1_)2(x) is diagonal and commutes with
C,, E(x) is a fundamental solution of the linear system x? 1Y’ = —B(x)Y, where B(x) = (Bz(x) +
xPC,)(1 — pxP)~L. Put Q(x, z) = E(x + xP*1z). If we fix x and consider Q as a function of z then
it satisfies the (regular) system

0Q  —B(x + xP*tlz)

9z (1+xPz)Pt! a(x, 2).

On the other hand, we have Q(x, 0) = E(x) and thus

Q(x,z) = exp (—/Z Mdu)E(x)
0

(1 + xPu)p+1

(using again that D,(x) is diagonal and commutes with C,). Hence

E(E(x + xP*'z)™" = E()Q(x,2)™" = exp < / “ B+ x0T )
0

(1 + xPu)p+tl
The integrand in the equation above is an analytic function of (x, u) and may be written as

B(x + xPt1y)

1+ xPu)p+l B(x) — (p + DxPB(x)u + O(xP*1u, x*Pu?).
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Integrating, we obtain, for any z sufficiently small,
+1,4-1 p+1 ., +1,2 2p,3
E(X)E(x + xPTz)™ = exp| B(x)| z — Txpz + xPTz°A(x, z) + x“Pz°0O(x, z),

where A and © are analytic at the origin. The result follows using the expression of f(x,y™)
and taking into account that (x,y™) € S;”” x {1z < |x|™ 1}, and thus ||y™| < |x|P*!, since
m2zp+2. O

Lemma 6.6. If¢ > 0issmall enough and, givenp € H', , weputx; = fg,(xj_l,w]’."_l) and w]’." =
Fw(xj_l,wj’."_l)for any j > 1, then:

m

(i) Forany real numberl > k + p there exists a constant K; > 0 such that for any (xy, w,) € S tec

andany ¢ € H', we have

1 I—k—
D11 < Kl TP
Jj=0

(ii) Forany (x,, W) € nge,g andany ¢ € H;"‘e’g, we have ||E(x0)E(xj)‘1 || € 1foreveryj > 0.

Proof. Part (i) follows from Equation (18), as in [18, Corollary 4.3]. To prove part (ii), observe that
by Lemma 6.5

E(xg)E(x;)"! = exp <—x§(52(x0) + x§C2)> +6,(x0 W),

where |0,,(xo, W)l < M, |x0|%*+P+1 for any (xp,wy') € ST, andanyp € M , withsomeM; >
0 independent of ¢. We have that

exp <—xk(52(x) + xPC2)> = QeXp(—x’”PNz) — @[I _ xk+pN2 + O(xk+P+1)],
where
9 = diag (exp (—x"dy; () - xk+pAs+1,p)’ e €xp (=xFd,(x) — xk+PAn,p)).
Then, using Lemma 6.2 and the fact that all the non-zero terms of N, are equal to ¢/2, we obtain
HE(XO)E(xl)_IH <1-(c—- c/2)|x0|k+P +M2|x0|k+p+l <1

for all (xy, wy') € S;”e . if e > 0 is sufficiently small. We obtain the result writing E(x,)E(x j)‘l =

T1)-) EGeDE(x,) ™ O
Define

H(x,w™,z™) = z™ — E(X)E(f(x,w™,z™)"1F,(x,w™, z™).
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Using Lemma 6.5 we get
H(x,Wm, zm) — O(xk+p+1 ”ym”’ xk+p+m). (20)

Proposition 6.7. If ¢ > 0 is sufficiently small and we denote x; = fqo(xj_l,w;”_l) and w;" =

Fl,qo(xj—l’ )for any j = 1, where (x,, (’)") (S S(’j"e . and ¢ € Hc’i"e o then the series
Tp(xo, W) = Y ECeQ)ECe))  HOxj, WY, o, W)
Jj=0

is normally convergent and definesa map T : ¢ — T from Hm . to itself which is continuous for
the topology of the uniform convergence. Moreover, ¢ € H”‘ lS a ﬁxed point of T if and only if the
set {(x,w™, p(x,w™) : (x,w™) € Sm }ls a stable manlfold of F.

Proof. If o€ H’" e and  (xp, w") € S’" o then by Equation (20) we have that
||H(xj,w ,qo(xj,wm))ll M|x; |k+p+m for someM > 0, so by Lemma 6.6 we get

k
”Tgo(xo,w(’)")H <M Z |x; [kp+m
Jj=0

and the series is normally convergent by Lemma 6.6. Moreover we have that ||Te(x, w™)]|| <
MKy pymlx™ < [x]™ Life > 0is sufficiently small, so Ty € H’” .- Continuity of T follows from
the uniform convergence of the series with respect to ¢. Flnally, we rewrite

To(xo, wy') = E(xo) Y, [ECe) e Wit = By ) Fo (W) pCej wi)) |
j=0

= Pt W) = BGeo)EGey) ™ | (0, Wi, 9, i) = TepCey, Wi |-

From these two equalities it follows that ¢ is a fixed point of T if and only if ¢ satisfies the invari-
ance Equation (19), that is, if and only if the set {(x, w™, p(x,w™) : (x,w™) € S;"e E} is a stable
manifold of F. ” O

By Proposition 6.3, T has a fixed point ¢,,, € H;"e .- Hence, by Proposition 6.7, the set

= {0 W, @ (e W) (x, W) € ST,

is a stable manifold of F.

Stable manifold as a base of asymptotic convergence

Let us show that every orbit {(x;, y}")} of F which is asymptotic to I and such that {x;} has R* as
tangent direction is eventually contained in S,,. Since the order of contact of I' with the x-axis is
at least p + m, any orbit {(x j,y;.")} asymptotic to I' satisfies [ly"|| < |x; |[P+m=1 if j is sufficiently
large. Therefore, the result is a consequence of the following lemma.
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Lemma 6.8. Let {(xj,w]’.”, z;.”)} be a stable orbit of F such that {xj} has R* as tangent direction and
such that ||w;” I <lx; |'""=1 for all j sufficiently big. Then (x o w;”, z;.”) € S, for all j sufficiently big.

Proof. Since {x;} has R* as tangent direction, we obtain, arguing exactly as in [22, Lemma 5.8], that
Xj € Ry, if j is sufficiently big and hence (x j,w;”) € nge,g for all j > j,. Consider the change
of coordinates z™ — z™ — ¢, (x,w™), valid on S('i”e . X C". In the new coordinates the stable
manifold S, is given by 2 = 0 and hence F is written as

f(x,ym) =x— xk+p+1 + bx2k+2p+1 + O(x2k+2p+2)
Fi(x,y™) = exp <x" (1_)1(x) + xpcl>>wm + OGP [y |, xktpm)
F,(x,y™) = exp <xk (Bz(x) + xpc2>>zm + O(xXKPHL|IZm|)).
By Lemma 6.2 we obtain

k= k+p+1
IFyCeps Yl > (1 g 147 + OGP Y122 > 1127

forall j > j,, so we conclude that if z;.'; # 0 the orbit {(x;, wj'.”

Therefore, (xj,w]’.",z;”) € S, forany j > j,. O

, z;.")} cannot converge to the origin.

Remark 6.9. Note that Lemma 6.8 also implies that ¢,, is actually the unique fixed point of T in
m
de;c’

Asymptoticity of the orbits

To finish the proof of Theorem 6.1 it only remains to prove that every orbit in S,, is asymptotic to
I'. Observe that, since the order of contact of I" with the x-axis is at least p + m and the order of
contact of S,,, with the x-axis is at least m — 1, the order of contact of S,, with I is at least m — 1.
We will show that every orbit {(x i y;”)} C S,,, which has order of contact at least m — 1 with T,
is eventually contained in S, ;, and therefore its order of contact with I"is at least m. Applying
this argument recursively, we conclude that every orbit in S,,, is asymptotic to I".

Lemma 6.10. Fixe,d,e > 0 sufficiently small. Let {(x i er.n, z;.")} be a stable orbit of F such that
Xj €ERy, . and ||z;."|| < |xj|m_1 forall j. Then ||WJ’.”|| < %|xj|mfor all j sufficiently large.

Proof. By Lemma 6.2 we have

=~y k+p k+p+m
w ( exp(x*D, (x; O(x. ) O(x
w9 (eweiPice + 00 ) + oty |
21 1™ |x; = x;{+p+1 + O(sz.k+2p+1)|m
m
llw™|

k
< — (1 —clx; "t + O(x’f+t+1)) + oGPl
|xj| J J
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s e 1 . 1 1
for all j. This implies, since ¢t < p, that if ||wJ’.”|| < Ellem then ||wj’.’_1H|| < zlxjﬂlm. Therefore, to
prove the lemma it suffices to show that ||w]’." || < %lx ;| for some j. Suppose this is not the case,

so ||wj’."|| |x |™ for all j > 0. Then

wr W

Ll
<
241 1™ |x;|™

(1 _ Clxj|k+t n O(xj_c+t+1)>

for all j > 0, so we obtain that

IWF I w2
+1
J I I 1 _ Clxl|k+t + O(xlk+t+1))-
=0

\
™ S Txol™

Since lim;_, ,(k + p) jx;“p = landt < p, the product above converges to 0 when j — oo, contra-

dicting the fact that ||wj'.”|| > %|xj|m for all j. O

Consider an orbit {(xj,wjm,z;?“)}csm and consider the coordinates (x,y™*!)=

(e, w1, 2™ satisfying y™ =7 — (TP () =T 7(X)),  Where  y(s) = (s, 7(5))
is a parameterization of I'. By Lemma 6.10, ||wjf”|| < %|xj|m for all j sufficiently large, so

||w;"+1|| < 1|x-|m +M|x~|P+m for some M > 0 and for all j sufficiently large. Then, we get
that ||wm+1|| < |x;|™ for all j sufficiently large, since we can assume that p > 1 (otherwise
Wm+l m+1

the varlables w' do not appear). Therefore, by Lemma 6.8, (x;, i

enough. This shows that every orbit in S, is asymptotic to I".
This ends the proof of Theorem 6.1.

)€ S, if jis big
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