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Abstract
We set a framework for the study of Hardy spaces inherited by complements of analytic
hypersurfaces in domains with a prior Hardy space structure. The inherited structure is a
filtration, various aspects of which are studied in specific settings. For punctured planar
domains, we prove a generalization of a famous rigidity lemma of Kerzman and Stein. A
stabilization phenomenon is observed for egg domains. Finally, using proper holomorphic
maps, we derive a filtration of Hardy spaces for certain power-generalized Hartogs triangles,
although these domains fall outside the scope of the original framework.

1 Introduction

In this paper, we construct Hardy spaces for a class of domains, which includes the punctured
unit diskD∗ = D\{0} and the product domainD×D∗ as particularly simple, but enlightening,
examples. Although our class of domains is not biholomorphically invariant, it is possible to
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push the construction forward under certain biholomorphisms. This allows us to construct
Hardy spaces for the Hartogs triangle, H = {(z1, z2) ∈ C2 : |z1| < |z2| < 1}, and compute
the relevant Szegő kernels. In fact, this was the original motivation for this work. The Hartogs
triangle is of classical importance in several complex variables, see [29], and serves as an
important example of a singular domain since its boundary fails to be even locally graph-like
at one point. While H and its generalizations have received a lot of attention from the point
of view of the ∂-problem, e.g., [6,8,9,20,21], and Bergman spaces, e.g., [5,7,13–15,17,23],
Hardy spaces for H were considered for the first time only recently by Monguzzi in [22].
Independently of Monguzzi, we had constructed a different Hardy space for the Hartogs
triangle, and this discrepancy led us to recognize the central phenomenon of this paper.
Before we describe this phenomenon, we clarify the main terminology used in this work.

Since there is no unified notion of a Hardy space in the literature, we state here our
minimum criteria for using this term. A Hilbert space of functions H on the boundary of a
domain is deemed a Hardy space only if there is a reproducing kernel Hilbert space (in the
sense of Aronszajn in [1]) X of holomorphic functions on the domain such that

(a) functions in a dense subspace A ⊂ X admit boundary values in H, and
(b) this identification of A with a subspace of H is an isometry that extends to an isometric

isomorphism between X and H.

We note that in all the explicit examples in this paper, X is directly defined in terms of an
exhaustion procedure on the domain, see Sects. 2, 5, and 6. However, our general setting is
not conducive to this process, andX is only abstractly defined, for more details, see (3.1) and
subsequent paragraphs.

To describe the class of domains under consideration, we start with a domain " ! Cn

and a Borel measure ν supported on its boundary, b", that admits a Hardy space structure.
This structure is then inherited by domains that are obtained from " by removing analytic
hypersurfaces that are component-wise minimally defined, see Definition 3.10. We refer to
any such domain as a ‘hypersurface-deleted domain’, and denote it by"∗.We call this process
the ‘inheritance scheme’, and the pair (", ν) the ‘parent space’.

In a notable departure from the classical theory, it turns out that under appropriate assump-
tions on the parent space, any hypersurface-deleted domain is associated to a filtration of
Hardy spaces, as opposed to a single such space. This is due to the fact that functions holo-
morphic on "∗ can be singular along the deleted hypersurface, but all orders of singularities
cannot be captured in a single Hardy space, see the discussion at the beginning of Sect. 2.2.
We demonstrate via explicit examples that this filtration may or may not stabilize, depending
on the choice of ν and the deleted hypersurface.

1.1 Function-theoretic context

In [26], Poletsky and Stessin give a construction of Hardy spaces for hyperconvex domains
in Cn . We note that, while "∗ is pseudoconvex whenever " is, it is never hyperconvex. Our
construction therefore covers a new class of domains.

Note that this class of domains is however uninteresting from the point of view of Bergman
space theory, since the Bergman space for "∗ equals the Bergman space for ", see [24,
Proposition 1.14]. Additionally, our approach does not lead to meaningful Hardy spaces of
harmonic functions because b" is not, in general, a uniqueness set for harmonic functions on
"∗. For instance, if "∗ = D \ {0}, then Re z and Re 1

z are both harmonic on D∗ but coincide
on bD.
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Hardy spaces for a class of singular domains 2173

1.2 Boundary-based approach to Hardy spaces

The lack of a general exhaustion procedure to constructX shifts the burden of the construction
to the dense subspace A. In the classical setting of the unit disk, A is the disk algebra, i.e.,
the space of holomorphic functions onD that are continuous up to the boundary. If we extend
this definition verbatim to the punctured disk, since D∗ = D, it would lead to the same
Hardy space, which does not capture a significant class of holomorphic functions onD∗. Our
construction overcomes this issue. When (", ν) is the parent space, we consider A to be

A(", ν) := O(") ∩ C(" ∪ supp ν).

Moreover, for ("∗, ν), we work with subspaces of O("∗) ∩ C("∗ ∪ supp ν) which have
prescribed singularity along the deleted hypersurface. Under appropriate assumptions (see
Definition 3.5 for details), the L2(ν)-completion of A|supp ν is a reproducing kernel Hilbert
space on the domain in consideration. Hence, we call it a Hardy space and refer to its
reproducing kernels as a Szegő kernels.

We point out that there may be kernel functions c(z, ·) that have the reproducing property
for A, namely, for all z in the domain

F(z) =
∫

supp ν
F(w) · c(z, w) dν(w) ∀F ∈ A, (1.1)

but are not the Szegő kernel for the associated Hardy space. For instance, this is the case for
the Cauchy kernel of any smoothly bounded planar domain " (= D. Our boundary-based
approach is particularly suited to obtaining such boundary integral representation formulas.

1.3 Description of results

We first state conditions on the parent space (", ν) that lead to a Hardy space for ", see
Definitions 3.1 and 3.4. Then we provide the inheritance scheme that gives a filtration of
Hardy spaces for "∗, see Theorem 3.12. For each level of the filtration, we produce new
kernels that have the reproducing property (1.1). Moreover, we give a sufficient condition
for these kernels to agree with the Szegő kernels, see Proposition 3.14. We then proceed to
analyse the framework via some examples.

In Theorem 4.2, we consider simply connected planar domains with finitely many points
removed. For this class of domains, we formulate and extend a famous rigidity lemma of
Kerzman and Stein [18], i.e., if " ! C is simply connected then the Cauchy kernel on "

coincides with the Szegő kernel for " if and only if " is a disc. We next identify a family of
domains forwhich the filtration ofHardy spaces stabilizes. These are egg domains, sometimes
known as complex ellipsoids, inC2 fromwhich a single hyperplane has been deleted, and we
observe that the stabilization occurs at different levels depending on the choice of boundary
measure, see Theorem 5.1. Finally, we use proper holomorphic maps to transfer the filtered
Hardy space structure on D × D∗ to a class of non hypersurface-deleted domains, i.e., the
Hartogs triangle and its rational power generalizations that were first introduced in [13,14].
We also produce explicitly the Szegő kernels for these domains in Theorems 6.1 and 6.2.

1.4 Structure of this paper

In Sect. 2, we consider the punctured disk as this exemplifies the general construction of
the filtration of Hardy spaces. In Sect. 3, we provide the general framework and prove
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the main inheritance results. Section 4 is specialized to the setting of planar domains, for
which more explicit formulas can be proved by means of conformal mapping, along with the
aforementioned rigidity result. The egg domains are dealt with in Sect. 5, and D × D∗, the
Hartogs triangle and its rational power generalizations are treated in Sect. 6.

2 Motivating example

We consider the open unit disk D and the arc-length measure σS1 on bD as the parent space,
and the punctured disk D∗ := D \ {0} as the hypersurface-deleted domain. Using the basic
descriptions for the L2-Hardy space for the disk detailed in Sect. 2.1, we derive a filtration
of Hardy spaces for (D∗, σS1) in Sect. 2.2. Throughout this section, we omit σS1 from the
notation for the relevant function spaces.

2.1 Hardy Space for the unit disk

The classical L2-Hardy space H2(D) is the space of holomorphic functions on D that are
finite in the norm given by

‖F‖H2(D) := sup
0<r<1

(
1
2π

∫ 2π

0
|F(reiθ )|2 dθ

) 1
2

.

Note that for any F ∈ H2(D) with F(z) =∑∞j=0 a j z j , it follows that

‖F ||H2(D) =
( ∞∑

j=0

|a j |2
) 1

2

<∞.

This characterization facilitates the identification of H2(D) as a reproducing kernel Hilbert
space, by way of considering the inner product

〈F,G〉 := lim
r→1

1
2π

∫ 2π

0
F(reiθ )G(reiθ ) dθ for F,G ∈ H2(D),

and the evaluation operators F .→ F(z) for z ∈ D and F ∈ H2(D). Moreover, a truncation
of power series argument gives that the disk algebra A(D) = O(D) ∩ C(D) is a dense
subspace of H2(D). Next, the restriction to the boundary map from A(D) ⊂ H2(D) to
A(D)|bD ⊂ L2(bD) extends to an isometric isomorphism, up to a multiplicative constant,

' : H2(D) −→ A(D)|bDL2(bD)

F(z) =
∞∑

j=0

a j z j .→ '(F)(eiθ ) =
∞∑

j=0

a j ei jθ ,

where
∑∞

j=0 a j ei jθ is the representation of '(F) as its Fourier series. We call the clo-
sure of A(D)|bD in L2(bD) the Hardy space H2(D) for (D, σS1). Note that if we set X as
(H2(D), 1√

2π
||.||H2(D)) and A as A(D), then H = H2(D) satisfies the minimum criterion of

a Hardy space stated in the introduction.
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The Szegő kernel s for H2(D) may now be derived from the Cauchy integral formula for
F ∈ A(D), which says that

F(z) = 1
2π i

∫

bD

F(w)

w − z
dw = 1

2π

∫

bD

F(w)

1− zw
dσS1(w).

Since s is uniquely determined by such a reproducing property and the fact that s(z, .) ∈
H2(D) for z ∈ D, see Proposition 3.3, we have that

s(z, w) = 1
2π

1
1− zw

for z ∈ D, w ∈ bD.

2.2 Hardy spaces on the punctured disk

In an attempt to develop a Hardy space theory for the punctured disk, one might first consider
O(D∗) ∩ C(D∗). However, D∗ = D, so this approach would only lead to the rediscovery of
the Hardy space on the unit disk. One might also try to construct a Hardy space for D∗ by
considering the closure of

(
O(D∗)∩ C(D∗ ∪ bD)

)
|bD with respect to L2(bD). This fails, too,

as pointwise evaluation on this class of L2(bD)-functions is not bounded for any point inD∗.
To wit, consider the functions

Fk(z) :=
k∑

j=1

1
j z j

, k ∈ N.

Clearly, Fk ∈ O(D∗) ∩ C(D∗ ∪ bD) , while

‖(Fk)|bD‖L2(bD) ≤
√
2π




∞∑

j=1

j−2





1
2

<∞ ∀k ∈ N.

Since Fk(z) diverges as k → ∞ for any z ∈ D∗, it follows that the pointwise evaluation
operator is not a bounded operator on

((
O(D∗)∩C(D∗ ∪bD)

)
|bD , ‖.‖L2(bD)

)
for any point in

D∗. This failure stems from allowing holomorphic functions onD∗with essential singularities
at the origin. Thus,we allowpoles of prescribed order at the origin, that is, for k ∈ N0, consider
the following subset of O(D∗) ∩ C(D∗ ∪ bD)

Ak(D∗) =
{
F : D∗ ∪ bD −→ C : F(z) =

(
z−kG(z)

)
|D∗ for some G ∈ A(D)

}
. (2.1)

For each k ∈ N0 define H2
k(D∗) to be the closure of Ak(D∗)|bD with respect to L2(bD). It

immediately follows from z|bD (= 0 that

H2
k(D∗) =

{
f ∈ L2(bD) : f (z) = z−kg(z) for some g ∈ H2(D)

}
.

In particular, any function f ∈ H2
k(D∗) is represented by its Fourier series

∑∞
j=−k f̂ j ei jθ

where
∑∞

j=−k | f̂ j |2 <∞. Note thatH2
0(D∗) = H2(D),H2

k(D∗) ! H2
k+1(D∗) for any k ∈ N0,

and
⋃∞

k=0 H
2
k(D∗) is dense in L2(bD).

We can also derive the Szegő kernel sk for H2
k(D∗) directly from the Szegő kernel s for

H2(D). That is, for F ∈ Ak(D∗) given, let G ∈ A(D) such that F(z) = z−kG(z) for z ∈ D∗.
Then for z ∈ D∗, we get

zk F(z) = G(z) =
∫

bD
G(w)s(z, w) dσS1(w) =

∫

bD
wk F(w)s(z, w) dσS1(w).
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Thus, the kernel given by

sk(z, w) = wk

zk
s(z, w) = 1

2π
wk

zk(1− zw)
= 1

2π
1

(zw)k(1− zw)

exhibits the reproducing property for H2
k(D∗), and sk(z, .) ∈ H2

k(D∗) for all z ∈ D∗. Hence
sk is the Szegő kernel for H2

k(D∗).
Lastly, we remark that H2

k(D∗) satisfies the minimum criteria, laid out in Sect. 1, for a
space H to be called a reproducing kernel Hilbert space. Here A corresponds to Ak(D∗),
while X is the space H2

k(D∗) consisting of F ∈ O(D∗) which satisfy

‖F‖H2
k (D∗) := sup

0<r<1

(
r2k

2π

∫ 2π

0

∣∣∣F(reiθ )
∣∣∣
2
dθ

) 1
2

<∞.

It follows that

H2
k(D∗) =

{
F ∈ O(D∗) : F(z) = (z−kG(z))|D∗ for some G ∈ H2(D)

}
. (2.2)

Moreover, the Laurent series for any function in H2
k(D∗) is of the form

∑∞
j=−k a j z j with∑∞

j=−k |a j |2 < ∞. This implies that H2
k(D∗) is a Hilbert space. Furthermore, pointwise

evalution is bounded on H2
k(D∗). This follows from pointwise evalution being bounded on

H2(D), characterization (2.2), and the fact that z|D∗ (= 0. Thus, H2
k(D∗) is a reproducing

kernel Hilbert space. Finally,H2
k(D∗) andH2

k(D∗) can be seen to be isometrically isomorphic,
up to a constant factor, by mapping the j-th Laurent series coeffient of F ∈ H2

k(D∗) to the
j-th Fourier coefficient of F |bD for all j ≥ k.

3 Hardy spaces on hypersurface-deleted domains

The construction of the Hardy spaces for D∗ suggests a general inheritance scheme for
the construction of Hardy spaces for domains that are obtained by removing certain complex
hypersurfaces from a given domain. As in the case ofD∗ in Sect. 2, one starts with a domain"

and a boundary measure ν that together carry their ownHardy space structure.We henceforth
refer to such a pair (", ν) as a parent space.

We detail requirements on the parent space (", ν) in Sect. 3.1. In Sect. 3.2, we describe
the class of complex hypersurfaces that will be removed from " to produce the so-called
hypersurface-deleted domain "∗. The inheritance scheme is described in Sect. 3.3.

3.1 Requirements on the parent space

We consider a domain " ! Cn equipped with a finite Borel measure ν on its topological
boundary b". We denote the support of ν by T , and set

"T := " ∪ T .

We discuss some conditions that allow us to identify reproducing kernel Hilbert spaces of
holomorphic functions on " that admit boundary values on T for, at least, a dense subspace.

Definition 3.1 Let (", ν) be as above, and F be a family of complex-valued functions on
"T . Then F is said to be weakly admissible if and only if
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Hardy spaces for a class of singular domains 2177

(i) F |T ∈ L2(ν) for any F ∈ F , and
(ii) for any compact set K ⊂ ", there exists a CK > 0 such that

sup
{
|F(z)| : z ∈ K

}
≤ CK ‖F |T ‖L2(ν) for all F ∈ F .

If we further assume thatF is closed under subtraction, then each element ofF is uniquely
determined by its values along T .

We focus on the family of holomorphic functions given by

A(", ν) := O(") ∩ C("T ).

Note that A(", ν) is an algebra over C. It satisfies condition (i) in Definition 3.1 because
C(T ) ⊂ L2(ν) whenever ν is a finite Borel measure.

Definition 3.2 Let (", ν)be such thatA(", ν) isweakly admissible.Wedefine thepre-Hardy
space associated to (", ν) as

H2(", ν) := A(", ν)|T L2(ν)
,

where
A(", ν)|T :=

{
f : T → C, f = F |T for some F ∈ A(", ν)

}
.

Proposition 3.3, and the subsequent discussion, justifies the nomenclature introduced in
Definition 3.1. Note that despite the nonstandard terminology, the following proposition is
standard in functional analysis.

Proposition 3.3 Suppose thatA(", ν) is weakly admissible. Then for any z ∈ ", there exists
a unique bounded linear functional

Evz : H2(", ν)→ C

such that Evz(F |T ) = F(z) for any F ∈ A(", ν). Furthermore, there exists a unique
function s : "× T → C such that

(1) s(z, .) ∈ H2(", ν) for all z ∈ ", and
(2) Evz and s(z, .) are related through the integral representation given by

Evz( f ) = 〈 f (.), s(z, .) 〉L2(ν) =
∫

T

f (w)s(z, w) dν(w) for any f ∈ H2(", ν).

We refer to the function s as the Szegő kernel for H2(", ν).

Proof Note thatA(", ν)|T is a normed vector space when endowed with the norm for L2(ν).
The existence of Evz( f ) follows from the Bounded Linear Extension Theorem applied to
the evaluation F |T .→ F(z) for F ∈ A(", ν)|T . An application of the Riesz Representation
Theorem then yields the existence and uniqueness of s(z, .).

In the literature, Hardy spaces are considered as examples of reproducing kernel Hilbert
spaces on". Note thatH2(", ν) contains functions that a priori are defined only on T ⊆ b".
With an additional assumption onA(", ν),H2(", ν)may be identified with a function space
on ", and hence may be considered as a reproducing kernel Hilbert space on ".

To identify the appropriate function space on " for a given weakly admissible A(", ν),
we note first that Ev(.)( f ) is holomorphic on " for all f ∈ H2(", ν). This is obvious if there
exists an F ∈ A(", ν) such that F |T = f . It is also true for general f ∈ H2(", ν) because
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the uniform boundedness of the evaluation operators on compacta, see (ii) in Definition 3.1,
says that Ev(.)( f ) is the normal limit of holomorphic functions. Thus, the map

I : H2(", ν) −→ O(") (3.1)

f .→ F, where F(z) := Evz( f )

is well-defined. Denote by X(", ν) := I
(
H2(", ν)

)
⊂ O("). The injectivity of I can

be stated through a condition on certain Cauchy sequences in A(", ν). We formulate this
condition for general function spaces as follows.

Definition 3.4 Let (", ν) be as above, and F be a weakly admissible family of complex-
valued functions on "T . Then F is said to be strongly admissible if for any sequence
{Fn}n∈N ⊂ F for which {(Fn)|T }n∈N is Cauchy in L2(ν) and Fn → 0 uniformly on compacta
in " as n→∞, the sequence {(Fn)|T }n∈N converges to 0 in L2(ν) as n→∞.

Now suppose (", ν) is such that A(", ν) is strongly admissible. Then we may equip
X(", ν) with a reproducing kernel Hilbert space structure via I. This allows us to identify
H2(", ν)with a reproducing kernel Hilbert space on", and hencewe canmake the following
definition.

Definition 3.5 Let (", ν) be such that A(", ν) is strongly admissible. The Hardy space of
(", ν) is H2(", ν).

Wenote thatwe do not have an independent description ofX(", ν) in this general setting of
strongly admissible function spaces. However, in all the examples considered in this paper,
X(", ν) is independently described using an exhaustion-based approach, see the spaces
denoted by H2(.) in Sects. 2, 5 and 6.

Examples of (", ν) for which A(", ν) is strongly admissible include

(1) (", σ ), where" ⊂ C is a C1,α-smooth bounded domain, and σ is the arc-length measure
on b", see the discussion at the beginning of Sect. 4.

(2) (Dn, σS1 × ...× σS1), where σS1 is the arc-length measures of the unit circle in the j-th
coordinate, and T = (bD)n , and

(3) (", σ ), where " ⊂ Cn is a C2-smooth bounded domain, σ is the surface measure of b",
and T = b", see [30].

On the other hand, recall from Sect. 2.2 that A(D∗, σS1) is not even a weakly admissible
subspace of L2(bD, σS1). Conditions analogous to weak and strong admissibility, albeit in a
broader context, were identified in [1, Theorem p. 347]. An example is also given therein to
demonstrate the inequivalence of the two conditions, see [1, p. 349].

3.2 Requirements on the hypersurface

We first recall some standard notions from analytic geometry. Let K ! Cn be a bounded set.

Definition 3.6 Denote by O(K ) the set of equivalence classes of

{( f ,ω) : ω is an open neighborhood of K and f : ω→ C is holomorphic}
modulo the equivalence relation ( f1,ω1) ∼ ( f2,ω2) if and only if there is an open neigh-
borhood ω ⊂ ω1 ∩ ω2 of K such that f1|ω = f2|ω. The equivalence class of ( f ,ω) will be
denoted simply by f , which we call the germ of an analytic function on K . Note that O(K )

forms a ring under multiplication and addition.
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Hardy spaces for a class of singular domains 2179

Definition 3.7 Let ω ⊂ Cn be an open set. A closed subset V of ω is an analytic variety in
ω if for any z ∈ ω there exists a neighborhoodU (z) ⊂ ω such thatU (z)∩ V is the common
zero set of some nontrivial f1, . . . , fk ∈ O(U (z)) for some k ∈ N. We say that V is a locally
principal variety in ω if k may be chosen equal to 1 for any z ∈ ω.

Definition 3.8 Define V (K ) to be the set of equivalence classes of

{(V ,ω) : ω is an open neighborhood of K , V ! ω is a locally principal variety inω}

modulo the equivalence relation (V1,ω1) ∼ (V2,ω2) if and only if there is an open neigh-
borhood ω ⊂ ω1 ∩ ω2 of K such that V1|ω = V2|ω. The equivalence class of (V ,ω) will be
denoted simply by V , which we call the germ of an analytic hypersurface in K .

We next focus on the situation when K = " for " ! Cn is a domain. Note that the
zero set of any nontrivial f ∈ O(") gives rise to an element V ∈ V ("), but not every
element in V (") arises this way. If V ∈ V (") is indeed the zero set of a single f ∈ O("),
then V is called principal and such an f a defining function for V . A principal germ V
is called minimally defined if it admits a defining function f ∈ O(") such that, whenever
U ⊂ " is an open set (in the relative topology) and g ∈ O(U ) vanishes onU ∩ V , then f |U
divides g in O(U ). We call such an f a minimal defining function of V in O("). It follows
from a standard argument that minimal defining functions are unique up to non-vanishing
holomorphic factors. We state this as a lemma for easy reference.

Lemma 3.9 Let V be a minimally defined germ of an analytic hypersurface in ". Suppose
f , g ∈ O(") are two minimal defining functions of V . Then there is an h ∈ O(") such that
f = hg, and h does not vanish on ".

Finally, V ∈ V (") is said to be irreducible if it cannot be expressed as V1 ∪ V2 for
elements V1, V2 ∈ V (") distinct from V . Note that for any V ∈ V ("), there is an m ∈ N
such that V ∩ " = ∪mj=1(Vj ∩ "), where each Vj is an irreducible germ of an analytic

hypersurface in ", see [10, § 5.4].
Subsequently, we consider domains as follows.

Definition 3.10 Let " ! Cn be a domain. Let V ∈ V (") be a finite union of irreducible,
minimally defined germs of analytic hypersurfaces on ". Then

"∗ = " \ V
is called a hypersurface-deleted domain.

We now discuss some examples of hypersurface-deleted domains. In the planar case, if
" ! C is a domain and V ⊂ V ("), then "∩ V = {a1, ..., am} for some a1, ..., am ∈ " and
m ∈ N. It is immediate to see that f j (z) = z − a j is a minimal defining function of {a j } in
O("). Thus, " \ V = " \ {a1, ..., am} is a hypersurface-deleted domain.

A further class of examples, which includes bounded convex domains in Cn , is provided
by the following result. Note that the result implies that for such ", " \ V is a hypersurface-
deleted domain for any V ∈ V (").

Proposition 3.11 Let n > 1. Suppose " ! Cn is a domain such that " admits a Stein
neighborhood basis and H2(";Z) = 0. Then any irreducible V ∈ V (") is minimally
defined.
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Proof The proof is well-known. For the reader’s convenience, we highlight the main steps
of the argument. Recall that a Cousin II distribution on the compact set " is a collection
{(Uι, fι)}ι∈I , where {Uι}ι∈I is a (relatively) open cover of", and fι ∈ O(Uι)with fι|Uι∩U =
hι · f |Uι∩U for some nonvanishing hι ∈ O(Uι ∩U ). The hypothesis on " implies that,
given such a Cousin II distribution, there is an f ∈ O(") such that fι = hι · f |Uι for some
nonvanishing hι ∈ O(Uι), for all ι ∈ I , i.e., " is a Cousin II set, see [11].

Let V ∈ V (") be irreducible. Then V admits a local minimal defining function at each
point of V ∩ ", see [10, §2.8.]. By compactness and Lemma 3.9, there is a finite Cousin
II distribution, {Ui , fi }i∈{1,...,m}, such that fi is a minimal defining function of V ∩ Ui for
i ∈ {1, ...,m}. We claim that the Cousin II solution, f ∈ O("), for this distribution is a
minimal defining function of V in O("). First observe that f |Ui∩V = (h−1i · fi )|Ui∩V = 0
for i ∈ {1, ...,m}. Thus, f vanishes on V . Next, let U ⊂ " be a (relatively) open subset and
g ∈ O(U ) be such that g vanishes onU ∩V . Since each fi is minimal, it follows that each fi
divides g inO(U ∩Ui ). Furthermore, f |Ui divides fi inO(Ui ), in particular f |U∩Ui divides
fi in O(U ∩Ui ) for each i . Therefore f |U∩Ui divides g in O(U ∩Ui ). That is, f |U divides
g locally and hence in O(U ) since f and g are globally defined in U .

In general, if V ∈ V (") is principal, then any defining function f ∈ O(") of V is
minimal if and only if {z ∈ ω : det Df (z) = 0} is nowhere dense in V ∩ ω for some open
neighborhood ω of ", see [10, § 2.9]. Thus, by this criterion, " \ V , where V is an affine
hyperplane, is always a hypersurface-deleted domain.

3.3 The inheritance scheme

We first construct Hardy spaces for triples of the form (", ν, V ), such that

(i) " ! Cn is a domain, ν is a finite Borel measure on b",
(ii) V is an irreducible, minimally defined germ of an analytic hypersurface in ", and
(iii) " ∩ V (= ∅ and ν(T ∩ V ) = 0, where T = supp(ν).

The case of general hypersurface-deleted domains is discussed at the end of this subsection.
As before, "T = " ∪ T , "∗ = " \ V , and A(", ν) is as in Definition 3.1. We also set

T ∗ := T \V . Letψ ∈ O(") be a minimal defining function of V . Then for any non-negative
integer k, we consider the following subset of O("∗) ∩ C("∗ ∪ T ∗)

Ak("
∗, ν) :=

{
F : "∗ ∪ T ∗ → C : F = (ψ−kG)|"∗∪T ∗ for some G ∈ A(", ν)

and F |T ∗ ∈ L2(ν)
}
. (3.2)

Note that it follows from Lemma 3.9, that Ak("
∗, ν) does not depend on the choice of

minimal defining function of V . Hence, we make no reference to ψ in our notation and work
with a fixed choice of ψ for the purpose of our proofs.

We identifyAk("
∗, ν)with a function space on"∗∪T by extending its members trivially,

by zero, to T ∩ V , which is a measure-zero set. Then the space of boundary values of
Ak("

∗, ν), i.e.,
Ak("

∗, ν)|T =
{
F |T : F ∈ Ak("

∗, ν)
}

is a subspace of L2(ν). Note that as subspaces of L2(ν),Ak("
∗, ν)|T = Ak("

∗, ν)|T ∗ . This
allows us to speak of the notion of weak and strong admissibility for Ak("

∗, ν). The spaces
Ak("

∗, ν) always inherit the properties of weak and strong admissibility from A(", ν).
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Theorem 3.12 For (", ν, V ) satisfying (i), (i i) and (i i i) above, the following holds.

(1) If A(", ν) is weakly admissible, then so is Ak("
∗, ν) for any k ∈ N0.

(2) If A(", ν) is strongly admissible, then so is Ak("
∗, ν) for any k ∈ N0.

Proof For the proof of part (1), fix a k ∈ N0 and suppose thatA(", ν) is weakly admissible.
We need to show that for any compact set K ⊂ "∗, there exists a constant cK > 0 such that
the evaluation operators

Evz : Ak("
∗, ν) −→ C

F .→ Evz(F) := F(z), z ∈ K ,

are uniformly bounded on K . For that, let F ∈ Ak("
∗, ν). Then F = (ψ−kG)|"∗∪T ∗ for

someG ∈ A(", ν) and F |T ∈ L2(ν). SinceA(", ν) is weakly admissible and K is compact
in "∗, hence in ", it follows that there exists a constant CK > 0 such that

|Evz(G)| ≤ CK ‖G|T ‖L2(ν) ∀z ∈ K .

Therefore,

|Evz(F)| =
∣∣∣ψ−k(z)

∣∣∣ · |Evz(G)| ≤ CK

∣∣∣ψ−k(z)
∣∣∣ ‖G|T ‖L2(ν) ∀z ∈ K .

Since K ⊂ "∗, ψ is continuous and nonvanishing on K , and ν(V ∩ T ) = 0, there exists a
constant C̃K > 0 such that

|Evz(F)| ≤ C̃K ‖G|T ‖L2(ν) = C̃k

∥∥∥(ψk · F)|T
∥∥∥
L2(ν)

∀z ∈ K .

As ψ |T is bounded and F |T ∈ L2(ν), there is a constant cK such that

|Evz(F)| ≤ cK ‖F |T ‖L2(ν) .

This concludes the proof of part (1).
To prove part (2), let k ∈ N0 and suppose that A(", ν) is strongly admissible. Let

{(Fn)}n∈N ⊂ Ak("
∗, ν) be a sequence such {Fn |T }n∈N is Cauchy in L2(ν) and Fn −→

0 uniformly on compacta in "∗. Then for any n ∈ N, Fn = (ψ−kGn)|"∗∪T ∗ for some
Gn ∈ A(", ν). Therefore,

‖(Gn − Gm) |T ‖L2(ν) =
∥∥∥(ψk · Fn − ψk · Fm)|T

∥∥∥
L2(ν)

.

Since ψ is bounded on T , it follows that {(Gn)|T }n∈N is a Cauchy sequence in L2(ν).
Furthermore,A(", ν) is weakly admissible, and so for any compact set K ⊂ ", there exists
a constant CK > 0 such that

|Gn(z)− Gm(z)| ≤ CK ‖(Gn − Gm)|T ‖L2(ν) ∀z ∈ K ,

i.e., {Gn}n∈N converges uniformly on compacta in". Thus, there exists aG ∈ O(") such that
Gn(z) −→ G(z) for all z ∈ " as n→∞. However, for z ∈ "∗,Gn(z) = ψk(z)Fn(z) −→ 0
as n → ∞. Therefore, G(z) = 0 for all z ∈ "∗. This implies that G ≡ 0 on ", and
Gn −→ 0 uniformly on compacta in ". Since A(", ν) is strongly admissible, it follows
that (Gn)|T −→ 0 in L2(ν) as n →∞. This in turn implies that (Fn)|T −→ 0 in L2(ν) as
n→∞. Thus, Ak("

∗, ν) is strongly admissible.

We are now set to define the central objects of this discussion.
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Definition 3.13 Let (", ν) be such that A(", ν) is weakly admissible and k ∈ N0. The k-th
pre-Hardy space H2

k("
∗, ν) is the closure of Ak("

∗, ν)|T in L2(ν). If A(", ν) is strongly
admissible, we call H2

k("
∗, ν) the k-th Hardy space of (", ν, V ).

Note that
A0("

∗, ν) = A(", ν)|"∗∪T ∗ ,
i.e., A0("

∗, ν) does not lead to a new space. Furthermore,

A0("
∗, ν) ⊆ A1("

∗, ν) ⊆ · · · ⊆ Ak("
∗, ν) ⊆ . . . , (3.3)

and, for any - ∈ N0, the spaces ψ-Ak("
∗, ν) :=

{
ψ- · F : F ∈ Ak("

∗, ν)
}
satisfy the

inclusions
ψ-Ak("

∗, ν) ⊆ Ak−-("
∗, ν) whenever - ≤ k. (3.4)

The collection {H2
k("

∗, ν)}k inherits these properties. That is, H2
0("

∗, ν) = H2(", ν). Fur-
thermore,

H2
0("

∗, ν) ⊆ H2
1("

∗, ν) ⊆ · · · ⊆ H2
k("

∗, ν) . . . , (3.5)

as well as

ψ-H2
k("

∗, ν) ⊆ H2
k−-("

∗, ν) whenever - ≤ k. (3.6)

Applying Proposition 3.3 to Ak("
∗, ν), we see that H2

k("
∗, ν) possesses a Szegő kernel

sk for any k ∈ N0. Moreover, the Szegő kernel s for H2(", ν) generates a family of kernels
with the reproducing property for H2

k("
∗, ν).

Proposition 3.14 Let (", ν) be such that A(", ν) is weakly admissible. Let ϕ ∈ A(", ν)

be such that ϕ = hψ where ψ is a minimal defining function of V and h ∈ A(", ν) is
nonvanishing on "T \ V . Then

ck,ϕ(z, w) := ϕk(w)

ϕk(z)
s(z, w), z ∈ "∗, w ∈ T (3.7)

has the reproducing property for H2
k("

∗, ν). Moreover, if h is nowhere vanishing on "T and
|ϕ| is constant on T , then ck,ϕ is the Szegő kernel for H2

k("
∗, ν) for all k ∈ N0.

Proof Let k ∈ N0 and F ∈ Ak("
∗, ν). Then there is a G ∈ A(", ν) such that F =

(ψ−kG)|"∗∪T ∗ and F |T ∈ L2(ν). Since hkG ∈ A(", ν), it follows that for any z ∈ "∗

F(z) = ϕ−k(z)ϕk(z)F(z) = ϕ−k(z)hk(z)G(z) = ϕ−k(z)
∫

T

hk(w)G(w) s(z, w) dν(w).

Thus,

F(z) =
∫

T

F(w) ck,ϕ(z, w) dν(w) for any z ∈ "∗.

The reproducing property of ck,ϕ forH2
k("

∗, ν) then follows from the density ofAk("
∗, ν)|T

in H2
k("

∗, ν) with respect to L2(ν).
It remains to show that if h is nonvanishing on "T and |ϕ| equals some constant c ≥ 0

on T , then ck,ϕ(z, .) ∈ H2
k("

∗, ν) for any z ∈ "∗. Note first that c (= 0 since neither h nor
ψ vanish on T ∗. Thus, as an aside, observe that ϕ does not vanish on T and, in particular,
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V ∩ T = ∅. Since s(z, .) ∈ H2
k(", ν) for any z ∈ ", it follows that there exists a sequence

{Sn(z, .)}n∈N such that Sn(z, .) ∈ A(", ν) for all n ∈ N and
∥∥s(z, .)− Sn(z, .)|T

∥∥
L2(ν)

−→ 0 as n→∞, ∀ z ∈ ".

This, and the fact that ϕk(.)ϕ−k(z) is bounded on T for any fixed z ∈ "∗, implies that
∥∥ck,ϕ(z, .)−

(
ϕk(.)ϕ−k(z)Sn(z, .)

)
|T
∥∥
L2(ν)

−→ 0 as n→∞, ∀ z ∈ "∗.

To see that ϕk(.)ϕ−k(z)Sn(z, .) is in Ak("
∗, ν) for any z ∈ "∗, we first note

ϕk(w) = c2kϕ−k(w) ∀ w ∈ T .

It then suffices to show thatϕ−k(.)Sn(z, .) is inAk("
∗, ν) for any z ∈ "∗. Since h ∈ A(", ν)

is nonvanishing on "T , it follows that h−k(.)Sn(z, .) ∈ A(", ν). Thus, by the definition of

Ak("
∗, ν), it remains to show that

(
ψ−k(.)h−k(.)Sn(z, .)

)
|T is in L2(ν). This membership

holds because ψ · h = ϕ is a nonvanishing continuous function on T . This concludes the
proof of ck,ϕ being the Szegő kernel for H2

k("
∗, ν).

Remark 3.15 Note that replacing the Szegő kernel forH2(", ν) in (3.7) with any other kernel
with the reproducing property for H2(", ν), yields yet another family of kernels with the
reproducing property for H2

k("
∗, ν).

We briefly discuss the especially favorable situation when V ∩ T = ∅. In this case the
requirement that F |T ∗ ∈ L2(ν) in the definition of Ak("

∗, ν) is redundant. Moreover, the
containment relations in (3.3) and (3.5) are strict, i.e.,

A-("
∗, ν) ! Ak("

∗, ν) and H2
-("

∗, ν) ! H2
k("

∗, ν), when - ≤ k, - ∈ N0,

and those in (3.4) and (3.6) are equalities, i.e.,

ψ-Ak("
∗, ν) = Ak−-("

∗, ν) and ψ-H2
k("

∗, ν) = H2
k−-("

∗, ν), when - ≤ k, - ∈ N0.

Theorem 5.1 provides examples of (", ν, V ) that exhibit the dual phenomenon, i.e., the
containments (3.5) stabilize to equalities, while the containments in (3.6) are strict.

In the classical construction, the Hardy space H2(", ν) is a module over the algebra
A(", ν). This phenomenon cannot percolate to H2

k("
∗, ν) as, in general, Ak("

∗, ν) is not
even an algebra. However, when V ∩ T = ∅, the union⋃∞k=0 Ak("

∗, ν) is a filtered algebra
over C since

Ak("
∗, ν) ·A j ("

∗, ν) ⊆ Ak+ j ("
∗, ν), j, k ∈ N0.

The space
⋃∞

k=0 H
2
k("

∗, ν) is then a filtered module over this filtered algebra since

Ak("
∗, ν) · H2

j ("
∗, ν) ⊆ H2

k+ j ("
∗, ν), j, k ∈ N0.

Wenow consider the general case, i.e., V = V1∪· · ·∪Vm , where each Vj is an irreducible,
minimally defined germ of an analytic hypersurface in ". Let ψ j ∈ O(") be a minimal
defining function of Vj , j ∈ {1, . . . ,m}. Then ψ = ψ1 · · · · · ψm ∈ O(") is a minimal
defining function of V . One could proceed as in Definition 3.2 using ψ . However, this
approach leads to an incomplete picture of the relevant spaces as each irreducible germ can
independently yield a one-parameter family of spaces. For instance, consider the example
"∗P at the beginning of Sect. 4, and compare the spaces in (4.1) to the above definition where
all the factors of ψ would appear with the same exponent.
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To remedy this issue we proceed inductively. We write

"∗- = " \ (V1 ∪ · · · ∪ V-) , - ∈ {1, . . . ,m},
and define Ak("

∗
1, ν) as in Definition 3.2 for k ∈ N0. For - ≥ 2, consider multi-indices

k = {k1, . . . , k-} and k′ = {k1, . . . , k-−1} with k j ∈ N0, and define

Ak("
∗
-, ν) :=

{
F : "∗ ∪ T ∗ → C : F = (ψ

−k-
- G)|"∗∪T ∗ for some G ∈ Ak′("

∗
-−1, ν)

and F |T ∗ ∈ L2(ν)
}
.

The inductive nature of this definition allows for the iterated application of Theorem 3.12
and Proposition 3.14. In particular, if (", ν) is such thatA(", ν) is strongly admissible, then

H2
k("

∗, ν) := Ak("∗m, ν)|T
L2(ν)

(3.8)

is a reproducing kernel Hilbert space on " for any k = Nm
0 , and we call it the k-th Hardy

space of (", ν, V ).

4 Planar domains

In this section, we apply the scheme described in Sect. 3.3 to hypersurface-deleted planar
domains. Note that the case of the punctured disk is covered in Sect. 2.2.

Recall that any hypersurface-deleted planar domain may be written as

"∗P = "\P, P = {p1, ..., pm} ⊂ ",

see Definition 3.10 and the subsequent discussion. We henceforth refer to "∗P as an m-
punctured domain. Here, we consider " ! C of class C1,α for α ∈ (0, 1), and the arc-length
measure σ on b" so that V ∩ supp(σ ) = ∅. Under these assumptions, A(", σ ) is strongly
admissible. This is because A(", σ ) ⊂ E2("), the classical Smirnov–Hardy space of ",
which is strongly admissible due to the existence of nontangential limits in L2(σ ), see [12,
Theorem 10.3 & Section 10.5]. In fact,A(", σ )|b" is dense in E2(")|b", see [12, Theorem
10.6 & Section 10.5]. Thus, the Hardy space H2(", σ ) coincides with the classical Hardy
space on ". Now we can either apply the inductive scheme of Sect. 3.3 or, equivalently,
consider the closure in L2(σ ) of the strongly admissible space of boundary values of

Ak("
∗
P , σ ) = {F ∈ O("∗P ) : (z − p1)k1 · ... · (z − pm)km F(z) ∈ A(", σ )} (4.1)

for k = (k1, ..., km) ∈ Nm
0 . Either construction gives a family of Hardy spaces{

H2
k("

∗
P , σ )

}
k∈Nm

0
such that

H2
k("

∗
P , σ ) ! H2

k′("
∗
P , σ ) whenever k j ≤ k j ′, j ∈ {1, ...,m}.

Note that each H2
k("

∗
P , σ ) is the space of L

2-boundary values of holomorphic functions on
" that have poles of orders at most k1, ..., km at p1, ..., pm , respectively. Applying Proposi-
tion 3.14 and Remark 3.15 iteratively, we obtain the following result.

Proposition 4.1 Let ϕ = (φ1, ...,φm) ∈ A(", σ )m, k = (k1, . . . , km) ∈ Nm
0 and ϕ±k =

φ
±k1
1 · ... · φ±km

m . Suppose each φ j vanishes only at p j , j = 1, ...,m. Suppose c(z, w) is a
kernel with the reproducing property for H2(", σ ). Then

ϕ(z)−k c(z, w)ϕ(w)k, z ∈ "∗P , w ∈ b",
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has the reproducing property forH2
k("

∗
P , σ ). Further, if each φ j has a simple zero at p j and

|φ j | is constant on b", then

ck,ϕ(z, w) := ϕ(w)k

ϕ(z)k
s(z, w), z ∈ "∗P , w ∈ b",

is the Szegő kernel for H2
k("

∗
P , σ ) for all k ∈ Nm

0 .

In addition to the Szegő kernel, we discuss a generalization of the Cauchy kernel for
H2
k("

∗
P , σ ), k ∈ Nm

0 . Recall that the classical Cauchy kernel

C(z, w) = 1
2π i

1
w − z

is a holomorphic function on C× C \ {z = w} such that

j∗
(
C(z, w)dw

)

dσ (w)

has the reproducing property for H2(", σ ), where j : b" → C is the inclusion map.
Applying Proposition 4.1 to this kernel, we obtain the following analog of the Cauchy integral
formula for m-times punctured domains

F(z) = 1
2π i

∫

b"

(w − p1)k1 · · · (w − pm)km

(z − p1)k1 · · · (z − pm)km (w − z)︸ ︷︷ ︸
=:2π i Ck(z,w)

F(w) dw

for F ∈ Ak("
∗
P , σ ) and z ∈ "∗P . We call Ck(z, w) the Cauchy k-kernel for m punctures.

Note that it is a meromorphic function onC×C\ {z = w}whose poles depend solely on the
location of the punctures. When written with respect to σ , the integral kernel in the above
formula is, in fact,

C"∗P
k (z, w) := Ck(z, w)γ̇ (w),

where w = γ (t) is the arc-length parametrization of b". It follows that C"∗P
k (z, w) has the

reproducing property forH2
k("

∗
P , σ ). In contrast to C

"∗P
k , the Szegő kernel, sk, ofH2

k("
∗
P , σ )

is, in general, not known explicitly. However, for simply connected ", Theorem 4.2 below
gives a formula for sk in terms of the Szegő kernel for H2(", σ ). It also shows that the two

kernels, sk and C"∗P
k , coincide if and only if "∗P is a disk punctured at its center. This rigidity

result extends the Kerzman–Stein Lemma ([18, Lemma 7.1]) to the case of m-punctured
domains.

Theorem 4.2 Let " ! C be a C1,α-smooth simply connected domain, and P =
{p1, ..., pm} ⊂ ". Let µ : "→ D be a biholomorphism with q j = µ(p j ), j = 1, ...,m.

(1) The Szegő kernel for H2
k("

∗
P , σ ) is given by

sk(z, w) = ϕ−k0 (z) s(z, w)ϕ−k0 (w), z ∈ "∗P , w ∈ b",

where, ϕ0 =
(
Mq1 ◦ µ, ...,Mqm ◦ µ

)
for Mq(ζ ) =

ζ − q
1− qζ

, (q, ζ ) ∈ D× D.

(2) C"∗P
k (z, w) = sk(z, w) for some k ∈ Nm

0 if and only if"∗P is a disk punctured at its center.
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To prove Theorem 4.2, we use the fact that the Szegő kernel s ofH2(", σ ) is S|"×b", where
S is the continuous extension of the Szegő kernel for E2(") to " × " \ {(z, z) : z ∈ b"}.
Note that S(z, w) = S(w, z) for z, w ∈ "×" \ {(z, z) : z ∈ b"}. The continuous extension
of the Szegő kernel for E2(") follows from three facts. Firstly, this is true for the classical
Szegő kernel SD of the disk. Secondly, the derivative of any biholomorphism β from " onto
D admits a continuous nonvanishing square root on ", see [26, Theorem 3.5]. And lastly, the
Szegő kernel for E2(") can be expressed in terms of SD and

√
β ′, see the transformation

law in [19, Lemma 5.3].

Proof of Theorem 4.2 Since µ extends continuously to ", we have that ϕ0 ∈ A(", σ )m .
Moreover, since |Mq | ≡ 1 on bD, and Mq only has a simple zero at q , the same is true of
each φ j on b" and at p, respectively. Thus, by Proposition 4.1, ck,ϕ0 is the Szegő kernel for
H2
k("

∗
P , σ ). Since Mq ◦ µ = (Mq ◦ µ)−1 on b", the first claim follows.

Next, observe that Sk(z, w) = ϕ0(z)
−kS(z, w)ϕ0(w)−k extends sk continuously to (" \

P)2 \ {(z, z) : z ∈ b"}, and Sk(z, w) = Sk(w, z). Thus, if C"∗P
k = sk, it must be that for

z, w ∈ b", z (= w,

C"∗P
k (S(z, w))− C"∗P

k (S(z, w)) = 1
2π i

e(S(z, w))

w − z

(
γ̇ (w)− 1

|e(S(z, w))|2
˜̇γ (z)

)
= 0,

(4.2)

where e(S(z, w)) = (w − p1)k1 · · · (w − pm)km

(z − p1)k1 · · · (z − pm)km
, and ˜̇γ (z) = γ̇ (z)

w − z
w − z

is the vector

obtained from reflecting γ̇ (z) in the chord determined byw and z. Thus, as in the proof of the
classical Kerzman–Stein Lemma, (4.2) implies that for any two distinct points z, w ∈ b",
the chord connecting w and z meets the boundary curve with the same angle at both points.
But this can only happen if b" is a circle [27], i.e., " = Dr (a) = {z ∈ C : |z − a| < r}
for some a ∈ C and r > 0. In this case |γ̇ (w)| = |˜̇γ (z)| for all z, w ∈ bDr (a), and so
|e(S(z, w))| ≡ 1 for z, w ∈ bDr (a). If k ∈ Nm

0 , this yields that |(w − p1) · · · (w − pm)| is
constant on bDr (a), which is only possible if P = {a}. 9:

Theorem 4.2 is stated only for simply connected domains because of the limited applica-
bility of Proposition 4.1. In particular, if " is multiply connected, then the conditions on φ j ,
assumed in Proposition 4.1,may not be attainable. For example, if" = {z ∈ C : 1 < |z| < 2}
and V = {a} for some a ∈ ", then there is no φ ∈ A(", σ ) that has a simple zero at a and is
such that |φ| ≡ C on b". This is because, owing to the argument and maximum principles,
N (ξ) := 1

2π i

∫
b"

φ′(w)
φ(w)−ξ dw is a continuous, integer-valued function on DC (0) and hence a

constant. If φ had a simple zero, then N ≡ 1 on DC (0), forcing φ to be a homeomorphism
between " and DC (0), which is impossible.

However, in the case when" is finitely connected, the Szegő kernel forH2
k("

∗
P , σ ) enjoys

a transformation law under biholomorphisms. The proof goes along classical arguments in [4,
Ch. 12] and [19, Lemma 5.3], after taking into account the boundary regularity of conformal
maps between C1,α-smooth domains, see [2, App. A].

Theorem 4.3 Suppose ", D ! C are C1,α-smooth domains, and µ : " → D is a biholo-
morphism. Then, for k ∈ Nm

0 ,

s
"∗P
k (z, w) =

√
µ′(z)

(
s
D∗µ(P)
k (µ(z), µ(w))

) √
µ′(w), z ∈ "∗P , w ∈ b",

where s
"∗P
k and s

D∗µ(P)
k denote the Szegő kernels for H2

k("
∗
P , σ ) and H2

k(D
∗
µ(P), σ ), respec-

tively.
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5 Hypersurface-deleted egg domains as examples of finite stabilization

In this section, we consider triples of the form
(
Ep, ν, {z2 = 0}

)
, p ∈ N, where

Ep =
{
(z1, z2) ∈ C2 : |z1|2p + |z2|2p < 1

}
, (5.1)

and the measure ν on bEp is either

(a) σ , the Euclidean surface area measure, or
(b) ωp , the Monge–Ampère boundary measure associated to the exhaustion function

ϕp(z1, z2) =
1
2p

log
(
|z1|2p + |z2|2p

)
.

Note that ωp is also the Leray–Levi measure associated to the defining function

ρp(z1, z2) =
2π
p

(
|z1|2p + |z2|2p − 1

)
.

In the case of the ball, or p = 1, the two measures coincide and H2(E1, σ ) = H2(E1,ω1). In
all other cases, H2(Ep, σ ) ! H2(Ep,ωp). We show that this discrepancy, owing to different
choices of measure, is amplified in the case of E∗p = Ep \ {z2 = 0}. Moreover, this setting
yields examples of nontrivially stabilizing filtrations of Hardy spaces.

For some context, note that H2(Ep, σ ) is the space of boundary values of the classical
Hardy space on Ep as defined by Stein in [30], while H2(Ep,ωp) is the space of boundary
values of the Poletsky–Stessin Hardy space associated to ϕp on Ep , see [25]. The latter spaces
have been studied by Hansson in [16], Şahin in [28], and Barrett–Lanzani in [3]. Later, we
encounter the limiting case of

(
Ep,ωp, {z2 = 0}

)
as p → ∞. To wit, if E∞ = lim

p→∞ Ep in

the Hausdorff metric, and ω∞ is the Monge–Ampère measure corresponding to the function

ϕ∞(z1, z2) = lim
p→∞ϕp(z1, z2) = logmax{|z1|, |z2|},

then E∗∞ = E∞\ {z2 = 0} is D × D∗ and ω∞ = σS1 × σS1 , see [25, § 4]. Since {z2 =
0} does not intersect supp(ω∞) = bD × bD, {H2

k(E
∗
∞,ω∞)}k∈N0 does not stabilize, and

z-2H
2
k(E
∗
∞,ω∞) = H2

k−-(E
∗
∞,ω∞) for - ≤ k. The behavior of this filtration is quite different

when p <∞.

Theorem 5.1 Let p ∈ N. Then {H2
k(E
∗
P , σ )}k∈N0 stabilizes at k = 0, i.e.,

H2
k(E
∗
p, σ ) = H2

0(E
∗
p, σ ), ∀k ∈ N0.

On the other hand, {H2
k(E
∗
P ,ωp)}k∈N0 stabilizes at k = p − 1, i.e.,

H2
0(E
∗
p,ωp) ! H2

1(E
∗
p,ωp) ! · · · ! H2

p−1(E
∗
p,ωp) = H2

k(E
∗
p,ωp), ∀k ≥ p.

Moreover, H2
0(E
∗
p,ωp) # z2H2

1(E
∗
p,ωp) # · · · # zk2H

2
k(E
∗
p,ωp) # · · · .

In order to proveTheorem5.1,we describe the relevantHardy spaces. Here, j : bEp → C2

denotes the inclusion map, and dc is the real operator i(∂ − ∂). Dropping the subscripts of
ϕp and ρp , we have that

ωp = j∗(dcϕ ∧ ddcϕ) = j∗(∂ρ ∧ ∂∂ρ)

(2π i)2
=
− det




0 ρz1 ρz2

ρz1 ρz1z1 ρz1z2
ρz2 ρz2z1 ρz2z2





π2|∇ρ| σ, on bEp,
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2188 A.-K. Gallagher et al.

where ρz j is the first order partial derivative of ρ with respect to z j , j ∈ {1, 2}, and ρz j zk is
the second order partial derivative of ρ with respect to z j and zk , j, k ∈ {1, 2}. For ease of
computation, we parametrize (bEp)∗ := bEp \ {(z1, z2) ∈ C2 : z1z2 = 0} as

ϑ : (s, θ1, θ2) .→
(
s

1
2p eiθ1 , (1− s)

1
2p eiθ2

)
, (s, θ1, θ2) ∈ (0, 1)× [0, 2π)2. (5.2)

Since bEp ∩ {z1z2 = 0} is a set of measure zero for both σ and ωp , we have that

L2(bEp, ν) ∼= L2 ((0, 1)× [0, 2π)2;ϑ∗ν
)
, ν = σ,ωp, (5.3)

via the map f .→ f |(bEp)∗ ◦ ϑ . It is easy to check that

ϑ∗dσ = 1
2p

√
(s)2−

1
p + (1− s)2−

1
p

s1−
1
p (1− s)1−

1
p

ds dθ1 dθ2 ≈
ds dθ1 dθ2

s1−
1
p (1− s)1−

1
p

, and

ϑ∗ωp = ds dθ1 dθ2.

Here, a(r) ≈ b(r) means that there are constants c,C > 0 such that cb(r) ≤ a(r) ≤ Cb(r)
for all r . For the sake of brevity, we drop all references to ϑ , use (s, θ1, θ2) as coordinates
on bEp , and abbreviate || f ||L2(bEp,ν) to || f ||ν . We now provide descriptions of the spaces
H2(Ep, σ ) and H2(Ep,ωp) in terms of L2-convergent series expansions.

Proposition 5.2 Let p ∈ N. Then

H2(Ep, σ ) =





∑

j,-≥0
a j,-s

j
2p (1− s)

-
2p ei( jθ1+-θ2) :

∑

j,-≥0
|a j,-|2β

(
j + 1
p

,
- + 1
p

)
<∞




 , (5.4)

H2(Ep,ωp) =





∑

j,-≥0
a j,-s

j
2p (1− s)

-
2p ei( jθ1+-θ2) :

∑

j,-≥0
|a j,-|2β

(
j
p
+ 1,

-

p
+ 1
)
<∞




 , (5.5)

where β(x, y) =
∫ 1
0 sx−1(1− s)y−1ds is the Euler beta function. In particular,H2(E1, σ ) =

H2(E1,ω1), and H2(Ep, σ ) ! H2(Ep,ωp) when p > 1.

Proof We first prove (5.5). In view of (5.3), any f ∈ L2(bEp,ωp) may be written as

f (s, θ1, θ2) =
∑

( j,-)∈Z2

f̂ j,-(s) ei( jθ1+-θ2), (5.6)

where { f̂ j,-(s)}( j,-)∈Z2 are the Fourier coefficients of f (s, ., .), and
∑

( j,-)∈Z2 || f̂ j,-||2L2(0,1)
< ∞. Now, for F ∈ A(Ep,ωp), we may write

F(z1, z2) =






∑
j,-≥0 a j,- z

j
1z

-
2, if (z1, z2) ∈ Ep,

∑
j,-∈Z F̂j,-(s) ei( jθ1+-θ2), if (z1, z2) =

(
s

1
2p eiθ1 , (1− s)

1
2p eiθ2

)
∈ bEp,

where in Ep , the power series converges uniformly on compact subsets, and on bEp , the
series converges in L2(ωp). Next, for s ∈ (0, 1), F is continuous on the closed polydisk{
(z1, z2) ∈ C2 : |z1| ≤ s1/2p, |z2| ≤ (1− s)1/2p

}
. Hence,

F̂j,-(s) =
s

j
2p (1− s)

-
2p

(2π i)2
lim

r→1−

∫∫

|w1|2p=r(1−s)
|w2|2p=rs

F(w1, w2)

w
j+1
1 w-+1

2

dw1dw2 =
{
a j,-s

j
2p (1− s)

-
2p , j, - ≥ 0,

0, otherwise.
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Moreover,

∑

j,-∈Z
||F̂j,-||2L2(0,1) =

∑

j,-≥0

∫ 1

0
|a j,-|2s

j
p (1− s)

-
p ds =

∑

j,-≥0
|a j,-|2β

(
j
p
+ 1,

-

p
+ 1
)
<∞.

Thus, we obtain the characterization in (5.5) for a dense subspace. By taking L2(ωp)-limits
of sequences in A(Ep,ωp), the expansion for any f ∈ H2(Ep,ωp) can be established. The
argument for (5.4) runs along similar lines.

Now, sinceβ
(

j
p + 1, -

p + 1
)
≤ β

(
j+1
p , -+1

p

)
for all j, - ≥ 0, we have thatH2(Ep, σ ) ⊆

H2(Ep,ωp), with equality when p = 1. To show strict containment for any p > 1, we

consider the series f (s, θ1, θ2) =
∑

j,-≥0 a j,-s
j
2p (1− s)

-
2p ei( jθ1+-θ2), with

a j,- =
{

β(m+1,n+1)−1/2
mn , when j

p = m ∈ N, -
p = n ∈ N,

0, otherwise.

Then || f ||2ωp
= 4π2∑

j,-≥0 |a j,-|2β
(

j
p + 1, -

p + 1
)

= 4π2∑
m,n≥0(mn)−2 < ∞, but

since

|| f ||2σ ≈
∑

j,-≥0
|a j,-|2β

(
j + 1
p

,
- + 1
p

)
≥ c

∑

m,n≥1

1
m2n2

m1− 1
p n1−

1
p

(m + n)
2
p−2

,

f does not converge in L2(σ ).

Proof of Theorem 5.1 Fix a p ∈ N. First, we consider σ ≈ s
1
p−1(1− s)

1
p−1 ds dθ1 dθ2. It is

clear that

z−k2

∣∣
bEp

= (1− s)−k/2pe−ikθ2 ∈ L2(bEp, σ ) ⇐⇒ k < 1.

Now suppose there is a g ∈ H2
1(E
∗
p, σ ) \ H2

0(E
∗
p, σ ). Then

(i) g ∈ L2(Ep, σ ) \ H2
0(E
∗
p, σ );

(ii) (z2g)|bEp = ∑
j,-≥0 a j,-s

j
2p (1− s)

-
2p ei( jθ+-φ) with

∑
j,-≥0 |a j,-|2β

(
j+1
p , -+1

p

)
<

∞.

Writing g =∑ j,-∈Z ĝ j,-(s) ei( jθ1+-θ2), we obtain from
(ii) that

ĝ j,- =
{
a j,-+1, if j ≥ 0, - ≥ −1
0, otherwise.

Thus,

||g||2σ ≈
∑

j≥0
|a j,0|2

1∫

0

s
j+1
p −1ds
1− s

+
∑

j,-≥0
|a j,-+1|2β

(
j + 1
p

,
- + 1
p

)
,

which is finite only if a j,0 = 0 for all j ≥ 0, and
∑

j,-≥0 |a j,-+1|2β
(

j+1
p , -+1

p

)
< ∞. In

that case, g ∈ H2
0(E
∗
p, σ ), which contradicts

(i). Thus, H2
1(E
∗
p, σ ) = H2

0(E
∗
p, σ ). A similar argument shows that H2

k(E
∗
p, σ ) = H2

0(E
∗
p, σ )

for all k ∈ N0.
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In the case of ωp = ds dθ1 dθ2, we have that

z−k2 |bEp = (1− s)−k/2pe−ikθ2 ∈ L2(bEp,ωp) ⇐⇒ k < p.

Thus, z−k2 ∈ H2
k(E
∗
p,ωp) \ H2

k−1(E
∗
p,ωp) as long as k ≤ p − 1. For k ≥ p, we may argue,

as in the case of σ above, that H2
k(E
∗
p,ωp) = H2

0(E
∗
p,ωp).

Finally, we show that H2
k−1(E

∗
p,ωp) # z2H2

k(E
∗
p,ωp) for any k ∈ N0. In view of the

stabilization, when k ≥ p, it suffices to show that H2
p−1(E

∗
p,ωp) # z2H2

p−1(E
∗
p,ωp). This

is clear since z−(p−1)2 ∈ H2
p−1(E

∗
p,ωp), but z

−p
2 /∈ L2(bEp,ωp). For k < p, let

f (s, θ1, θ2) =
∑

m≥0
(m + 1)−

k
2p
(
s

1
2p eiθ1

)mp
, and

h(s, θ1, θ2) =
(
(1− s)

1
2p eiθ2

)−(k−1)
f (s, θ1, θ2).

Since, for any fixed r > 0, β (m + 1, r) ∼ (m + 1)−r as m →∞, we have that

|| f ||2ωp
=
∑

m≥0
(m + 1)−

k
p β (m + 1, 1) "

∑

m≥0
m−1−

k
p <∞.

Thus, zk−12 h = f ∈ H2
0(E
∗
p,ωp). Moreover,

||h||2ωp
=
∑

m≥0
(m + 1)−

k
p β

(
m + 1, 1+ 1

p
− k

p

)
"
∑

m≥0
m−1−

1
p <∞.

Thus, h ∈ H2
k−1(E

∗
p,ωp). But ||z−12 h||2ωp

# ∑
m≥0 m

−1 is not finite. Thus, there is no

g ∈ H2
k(E
∗
p,ωp) such that z2g = h. That is, h ∈ H2

k−1(E
∗
p,ωp) \ z2H2

k(E
∗
p,ωp). 9:

Remark 5.3 The egg domains Ep may be endowedwith other natural boundarymeasures. For
example, in [3,Def. 43], the authors consider the family ofmeasures

{
ντ = f |L |1−τ σ

}
τ∈[0,1]

on bEp , where f is any positive continuous function on bEp , and

|L | = −4|∇ρ|−3 det
(

0 ρzk
ρz j ρz j zk

)

1≤ j,k≤2

for any defining function ρ of Ep . The measures σ and ωp correspond to ν1 ( f ≡ 1) and
ν0 ( f = |∇ρp|2/4π2), respectively. It is also worth noting that the Fefferman hypersurface
measure on bEp is precisely ν2/3 ( f ≡ 1). Analogous computations can be carried out to
obtain explicit descriptions of the spaces H2

k(E
∗
p, ντ ). Note, in particular, that the filtration

corresponding to the measure ντ stabilizes at k = @p(1−τ )+τA−1, where @·A is the ceiling
function.

6 Hartogs triangles: an application

We construct filtered modules of Hardy spaces for certain power-generalized Hartogs tri-
angles. This family of domains was first introduced in [13,14]. Specifically, we consider
domains of the form

Hm/n := {(z1, z2) ∈ C2 : |z1|m < |z2|n < 1}, m, n ∈ N, gcd(m, n) = 1,
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Hardy spaces for a class of singular domains 2191

where T = bD×bD is endowed with the product measure σT := σS1 ×σS1 . AlthoughHm/n
is not a hypersurface-deleted domain, it is a proper holomorphic image of the hypersurface-
deleted domain D× D∗ via

7m/n : (z1, z2) .→ (zn1z
n
2, z

m
2 ).

Note that 7m/n maps T to T, and 7∗m/n : f .→ f ◦7m/n induces an isometric isomorphism
from L2 (T, σT) onto a closed subspace of L2(T, σT). Thus, we can deduce the Szegő kernels
for Hm/n from those for D × D∗. To do this, we first treat the case of D × D∗ in Sect. 6.1.
In Sects. 6.2 and 6.3, we treat the case of the standard and the power-generalized Hartogs
triangles, respectively. As done in Sect. 2, we omit the measure σT from the notation for the
relevant functions spaces. Moreover, we use polar coordinates (θ1, θ2) on T.

6.1 Hardy spaces onD × D∗

We construct theHardy spaces forD×D∗ by executing the inheritance scheme in Sect. 3.3 for
the triple (D2, σT, {z2 = 0}). To implement the scheme, consider, for k ∈ N0, the following
subset of O(D× D∗) ∩ C

(
(D× D∗) ∪ T

)

Ak(D× D∗) =
{
F : (D× D∗) ∪ T→ C : F(z1, z2) =

(
z−k2 G(z1, z2)

)
|(D×D∗)∪T

for some G ∈ A(D2) = O(D2) ∩ C(D2
T)
}
.

For each k ∈ N0, set H2
k(D× D∗) to be the closure of Ak(D× D∗)|T in L2(T).

As in the case ofD andD∗, a precise description of these spaces in terms of Fourier series
expansions can be given as follows. For k ∈ N0,

H2
k(D× D∗) =





∑

( j,-)∈Z2

f̂ j,- ei( jθ1+-θ2) ∈ L2(T) : f̂ j,- = 0, if max{ j, - + k} < 0




 .

(6.1)
Moreover, the Szegő kernel sk for H2

k(D × D∗) can be obtained by applying the Cauchy
integral formula for D2 to zk2F(z1, z2) for F ∈ Ak(D× D∗). This yields

sk(z, w) = 1
(2π)2

1
(z2w2)k(1− z2w2)(1− z1w1)

, z ∈ D× D∗, w ∈ T. (6.2)

We briefly note that in order to verify that H2
k(D × D∗) indeed satisfies the minimum

criterion for being a Hardy space, we may take X to be

H2
k(D× D∗) :=

{
F ∈ O(D× D∗) : ||F ||H2

k (D×D∗) <∞
}
,

where

||F ||H2
k (D×D∗) := sup

0<s,r<1



 r2k

4π2

2π∫

0

2π∫

0

|F(seiθ1 , reiθ2)|2 dθ1dθ2





1
2

,

with norm, a constant multiple of, ||.||H2
k (D×D∗).
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6.2 The standard Hartogs triangle

For the sake of exposition, we first consider,

H = H1/1 = {(z1, z2) ∈ C2 : |z1| < |z2| < 1},
for which 7 = 71/1 is, in fact, a biholomorphism. This map allows us to describe both a
boundary-based construction and an exhaustion-based construction of Hardy spaces for H.
We are primarily interested in the former approach.

For k ∈ N0, let

Ak(H) =
{
F ∈ O(H) ∩ C(H ∪ T) : zk2F(z1, z2) is bounded at (0, 0)

}
,

and H2
k(H) be the closure of Ak(H)|T in L2(T). As in the case of D∗ and D × D∗, we can

describe these spaces and their Szegő kernels explicitly.

Theorem 6.1 Let k ∈ N0. Then

H2
k(H) =





∑

( j,-)∈Z2

f̂ j,- ei( jθ1+-θ2) ∈ L2(T) : f̂ j,- = 0, if max{ j, - + j + k} < 0




 .

(6.3)
In particular, the filtration {H2

k(H)}k∈N0 does not stabilize. Moreover,

sk(z, w) = 1
4π2

(z2w2)
−(k−1)

(z2w2 − z1w1)(1− z2w2)
, z ∈ H, w ∈ T, (6.4)

is the Szegő kernel for H2
k(H).

Proof Fix a k ∈ N0. Our proof relies on the fact that 7∗ : F |T .→ (F ◦ 7)|T is an
isometric isomorphism betweenAk(H)|T andAk(D×D∗)|T in the L2(T)-norm. The isom-
etry follows from an integration by substitution argument. For the isomorphism, note that
F ∈ Ak(H) if and only if the function (z1, z2) .→ zk2F(z1z2, z2) is holomorphic on D×D∗,
bounded on a neighborhood of {z2 = 0}, and continuous up to T. This is true if and only if
zk2F(z1z2, z2) = G(z1, z2)|D×D∗ for some G ∈ A(D2). In other words, F |T ∈ Ak(H)T if
and only if (7∗F)|T ∈ Ak(D×D∗)|T. Now, 7∗ extends to an isometry between H2

k(H) and
H2
k(D× D∗) which, in terms of Fourier expansions, is given by

7∗ :
∑

( j,-)∈Z2

f̂ j,- ei( jθ1+-θ2) .→
∑

( j,-)∈Z2

f̂ j,- ei( jθ1+( j+-)θ2).

The characterization in (6.3) now follows from that of H2
k(D× D∗) in (6.1).

Finally, for any F ∈ Ak(H), the reproducing property of the Szegő kernel sD×D
∗

k for
H2
k(D× D∗) applies to 7∗F ∈ Ak(D× D∗). We obtain that

F(z) =
∫

T
(7∗F)(w) sD×D

∗
k

(
7−1(z),7−1(w)

)
dσT(w), z ∈ H, w ∈ T.

Now, a straightforward computation yields the reproducing property of sk as defined in (6.4).
It is also clear that sk(z, ·) ∈ Ak(H) for any z ∈ H.

We briefly discuss an exhaustion-based construction of Hardy spacesH2
k(H), k ∈ N0, for

H, which in the case of k = 1 is the space constructed by Monguzzi in [22]. For k ∈ N0, let

H2
k(H) =

{
F ∈ O(H) : ||F ||H2

k (H) <∞
}
,
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where

||F ||H2
k (H) := sup

0<s,r<1



 r2k

4π2

2π∫

0

2π∫

0

∣∣∣F(rseiθ1 , reiθ2)
∣∣∣
2
dθ1 dθ2





1
2

.

Rather than establish a direct isometric isomorphism, up to a factor, between H2
k(H) and

H2
k(H), we argue that 7∗ : F .→ F ◦ 7 is an isometric isomorphism between H2

k(H) and
H2

k(D×D∗). From the proof of Theorem 6.1, we know that 7∗ is an isomorphism between
Ak(H) andAk(D×D∗). Since these spaces are dense in the respectiveH2-spaces, it suffices
to show that7∗ is an isometry from (Ak(H), ||.||H2

k (H)) to (Ak(D×D∗), ||.||H2
k (D×D∗)). This

is a standard computation, by way of integration by substitution.

6.3 The (rational) power-generalized hartogs triangles

We now consider the general case of Hm/n . For k ∈ N0, define

Ak(Hm/n) =
{
F ∈ O(Hm/n) ∩ C(Hm/n ∪ T) : zk2F(z1, z2) is bounded at (0, 0)

}
.

Let H2
k(Hm/n) be the closure of Ak(Hm/n)|T in L2(T). As in the case m = n = 1, using

7∗m/n , we see that

H2
k(Hm/n) =





∑

( j,-)∈Z2

f̂ j,- ei( jθ1+-θ2) ∈ L2(T) : f̂ j,- = 0, if max{ j, nj + ml + mk} < 0




 .

Next, we use the map 7m/n to compute the Szegő kernel for H2
k(Hm/n).

Theorem 6.2 Let m, n ∈ N with gcd(m, n) = 1. Set

Pm,n(a, b) =
m−1∑

r=0

(a)r (b)n−B
nr
m C, (a, b) ∈ C2.

Then, for k ∈ N0,

sk(z, w) = 1
4π2

(z2w2)
−k Pm,n (z1w1, z2w2)

((z2w2)n − (z1w1)m) (1− z2w2)
, z ∈ Hm/n, w ∈ T, (6.5)

is the Szegő kernel for H2
k(Hm/n).

In order to prove Theorem 6.2, we need the following two lemmas. The proofs are straight-
forward applications of integration by substitution and partial fraction decompositions, so
they are omitted.

Lemma 6.3 Suppose f ∈ C(bD). Then
∫

|ζ |=1
ζ n−1 f (ζ n) dζ =

∫

|z|=1
f (z) dz. (6.6)

More generally, if n ∈ N, a ∈ C \ S1, and a1, ..., an denote the nth-roots of a (counting
multiplicity). Then

n∑

j=1

(∫

|ζ |=1

f (ζ n)

ζ − a j
dζ

)
= n

∫

|w|=1

f (w)

w − a
dw. (6.7)

123



2194 A.-K. Gallagher et al.

Lemma 6.4 Let b ∈ C \ {0} and b1, ..., bm denote the mth-roots of b (counting multiplicty).
Then

m∑

-=1

bn-
(x − bn- )(y − b-)

=
mbn+1

m−1∑
p,q=0

cp,q x p yq

(xm − bn)(ym − b)
,

where

Proof of Theorem 6.2 For any k ∈ N0, sk , as defined in (6.5), satisfies sk(z, ·) ∈ Ak(Hm/n)

for all z ∈ Hm/n . Thus, it suffices to show that sk has the reproducing property forH2
k(Hm/n).

Since |z2|
∣∣
T ≡ 1, by Proposition 3.14, we only need to prove this for k = 0.

Recall that 7m/n(ζ1, ζ2) = (ζ n
1 ζ n

2 , ζ
m
2 ) maps D× D∗ onto Hm/n . Given F ∈ A0(Hm/n)

and z = (z1, z2) ∈ Hm/n , let z11, ..., z1n and z21, ..., z2m denote the nth-roots and mth-roots
of z1 and z2, respectively, so that F(z1, z2) = F(zn1 j , z

m
2-) for any 1 ≤ j ≤ n and 1 ≤ - ≤ m.

Thus,

F(z1, z2) =
1
mn

m∑

-=1

n∑

j=1

(F ◦7m/n)

(
z1 j
z2-

, z2-

)
.

We apply the Cauchy integral formula for D2 to (F ◦7m/n) ∈ A0(D× D∗) = A(D2), and
obtain the following sequence of arguments.

(2π i)2mnF(z1, z2) =
m∑

-=1

n∑

j=1

∫∫

T

(F ◦7m/n)(ζ1, ζ2)(
ζ1 − z1 j

z2-

)
(ζ2 − z2-)

dζ1 dζ2

=
m∑

-=1

∫

|ζ2|=1




n∑

j=1

∫

|ζ1|=1

F(ζ n
1 ζ n

2 , ζ
m
2 )

ζ1 − z1 j
z2-

dζ1



 dζ2

(ζ2 − z2-)

ζ1ζ2 .→ξ=
m∑

-=1

∫

|ζ2|=1




n∑

j=1

∫

|ξ |=1

F(ξn, ζm
2 )

(
ξ − ζ2

z1 j
z2-

) dξ



 dζ2

(ζ2 − z2-)

(6.7)= n
m∑

-=1

∫

|ζ2|=1




∫

|w1|=1

F(w1, ζ
m
2 )

(
w1 − ζ n

2
z1
zn2-

) dw1



 dζ2

(ζ2 − z2-)

= n
∫∫

T

F(w1, ζ
m
2 )

−w1

(
m∑

-=1

zn2-
(ζ n

2
z1
w1
− zn2-)(ζ2 − z2-)

)

dw1 dζ2.

Now, by Lemma 6.4 (with x = ζ n2 z1
w1

, y = ζ2 and b = z2), we have that

123



Hardy spaces for a class of singular domains 2195

(2π i)2mnF(z1, z2) = mn
∫∫

T

F(w1, ζ
m
2 )

−w1





zn+1
2

m−1∑
p,q=0

cp,q
(

ζ n2 z1
w1

)p
ζ
q
2

ζmn
2 (

zm1
wm
1
− zn2 )(ζ

m
2 − z2)




dw1 dζ2

= mn
∫∫

T
F(w1, ζ

m
2 )





ζm−1
2

m−1∑
p,q=0

(
z

np+1+q
m

2 cp,q

)
(z1w1)

p(z2ζ
m
2 )

(n+1)− np+q+1
m

(
(z2ζ

m
2 )

n − zm1 w
m
1

)
(ζm

2 − z2)




dw1

w1
dζ2,

where cp,q are as in (6.8) (with b = z2). Applying (6.6) in the ζ2 variable, we get

(2π i)2F(z1, z2) =
∫∫

T
F(w1, w2)

∑m−1
p,q=0 c̃p,q (z1w1)

p (z2w2)
n+1− np+1+q

m

(zn2w
n
2 − zm1 w

m
1 )(1− z2w2)

dw1

w1

dw2

w2
,

where

This settles our claim, once we observe that

m−1∑

p,q=0

c̃p,q (a)p (b)n+1− np+1+q
m =

m−1∑

r=0

(a)r (b)n−B
nr
m C = Pm,n(a, b).

9:

In view of our minimum criterion for a Hardy space, we end this subsection with an
exhaustion-based definition of Hardy spaces for Hm/n . For k ∈ N0, let

H2
k(Hm/n) =

{
F ∈ O(Hm/n) : ||F ||H2

k (Hm/n)
<∞

}
,

where

||F ||H2
k (Hm/n)

:= sup
0<s,r<1



 r2k

4π2

2π∫

0

2π∫

0

∣∣∣F(r
n
m s

1
m eiθ1 , reiθ2)

∣∣∣
2
dθ1dθ2





1
2

.

6.4 Lp-regularity of the Szego” projection

We briefly remark on the L p-mapping properties of the projection operator induced by the
Szegő kernel sk for H2

k(Hm/n), k ∈ N0, m, n ∈ N, gcd(m, n) = 1. In [22], Monguzzi shows
that when k = m = n = 1, the densely defined operator

Sk : L2(T) ∩ L p(T) → H2
k(Hm/n) (6.8)

f .→ Sk f :=
(
z .→

∫

T
f (w) · sk(z, w) dσT(w)

) ∣∣∣
T

extends to a bounded operator from L p(T) to L p(T) for any p ∈ (1,∞). This is done by
realizing S1 as a Fourier multiplier operator on the 2-dimensional torusT. As a generalization
of this fact, we note that Sk is the Fourier multiplier operator
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f (eiθ1 , eiθ2) =
∑

( j,-)∈Z2

f̂ j,- ei jθ1ei-θ2 .→
∑

( j,-)∈Z2

c( j, -) f̂ j,- ei jθ1ei-θ2 , f ∈ L2(T),

where, using the convention that sgn(0) = 0,

c( j, -) = 1+ sgn( j + 1)
2

· 1+ sgn(nj + ml + mk + 1)
2

, ( j, -) ∈ Z2.

Then, by the same argument, (6.8) extends to a bounded operator from L p(T) to L p(T),
1 < p <∞.

The Szegő projections considered above do not exhibit the irregularity properties of the
Bergman projection, see [7,14], because the underlying Hardy spaces are supported only on
the distinguished boundary of the domain. It is possible that if one considers Hardy spaces
supported on the full boundary of the domain, then a stronger connection with the Bergman
projection will emerge.
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