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Abstract

We set a framework for the study of Hardy spaces inherited by complements of analytic
hypersurfaces in domains with a prior Hardy space structure. The inherited structure is a
filtration, various aspects of which are studied in specific settings. For punctured planar
domains, we prove a generalization of a famous rigidity lemma of Kerzman and Stein. A
stabilization phenomenon is observed for egg domains. Finally, using proper holomorphic
maps, we derive a filtration of Hardy spaces for certain power-generalized Hartogs triangles,
although these domains fall outside the scope of the original framework.

1 Introduction

In this paper, we construct Hardy spaces for a class of domains, which includes the punctured
unit disk D* = D\ {0} and the product domain ID x D* as particularly simple, but enlightening,
examples. Although our class of domains is not biholomorphically invariant, it is possible to
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push the construction forward under certain biholomorphisms. This allows us to construct
Hardy spaces for the Hartogs triangle, H = {(z1, z2) € C2:|z1] < |z2] < 1}, and compute
the relevant Szegd kernels. In fact, this was the original motivation for this work. The Hartogs
triangle is of classical importance in several complex variables, see [29], and serves as an
important example of a singular domain since its boundary fails to be even locally graph-like
at one point. While H and its generalizations have received a lot of attention from the point
of view of the 5—problem, e.g., [6,8,9,20,21], and Bergman spaces, e.g., [5,7,13-15,17,23],
Hardy spaces for H were considered for the first time only recently by Monguzzi in [22].
Independently of Monguzzi, we had constructed a different Hardy space for the Hartogs
triangle, and this discrepancy led us to recognize the central phenomenon of this paper.
Before we describe this phenomenon, we clarify the main terminology used in this work.

Since there is no unified notion of a Hardy space in the literature, we state here our
minimum criteria for using this term. A Hilbert space of functions $ on the boundary of a
domain is deemed a Hardy space only if there is a reproducing kernel Hilbert space (in the
sense of Aronszajn in [1]) X of holomorphic functions on the domain such that

(a) functions in a dense subspace .A C X admit boundary values in §), and
(b) this identification of A with a subspace of §) is an isometry that extends to an isometric
isomorphism between X and ).

We note that in all the explicit examples in this paper, X is directly defined in terms of an
exhaustion procedure on the domain, see Sects. 2, 5, and 6. However, our general setting is
not conducive to this process, and X is only abstractly defined, for more details, see (3.1) and
subsequent paragraphs.

To describe the class of domains under consideration, we start with a domain Q € C"
and a Borel measure v supported on its boundary, »<2, that admits a Hardy space structure.
This structure is then inherited by domains that are obtained from 2 by removing analytic
hypersurfaces that are component-wise minimally defined, see Definition 3.10. We refer to
any such domain as a ‘hypersurface-deleted domain’, and denote it by 2*. We call this process
the ‘inheritance scheme’, and the pair (€2, v) the ‘parent space’.

In a notable departure from the classical theory, it turns out that under appropriate assump-
tions on the parent space, any hypersurface-deleted domain is associated to a filtration of
Hardy spaces, as opposed to a single such space. This is due to the fact that functions holo-
morphic on * can be singular along the deleted hypersurface, but all orders of singularities
cannot be captured in a single Hardy space, see the discussion at the beginning of Sect. 2.2.
We demonstrate via explicit examples that this filtration may or may not stabilize, depending
on the choice of v and the deleted hypersurface.

1.1 Function-theoretic context

In [26], Poletsky and Stessin give a construction of Hardy spaces for hyperconvex domains
in C". We note that, while Q* is pseudoconvex whenever 2 is, it is never hyperconvex. Our
construction therefore covers a new class of domains.

Note that this class of domains is however uninteresting from the point of view of Bergman
space theory, since the Bergman space for Q* equals the Bergman space for €2, see [24,
Proposition 1.14]. Additionally, our approach does not lead to meaningful Hardy spaces of
harmonic functions because b<2 is not, in general, a uniqueness set for harmonic functions on
Q*. For instance, if Q* = D\ {0}, then Re z and Re % are both harmonic on D* but coincide
on bD.
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1.2 Boundary-based approach to Hardy spaces

The lack of a general exhaustion procedure to construct X shifts the burden of the construction
to the dense subspace .A. In the classical setting of the unit disk, A is the disk algebra, i.e.,
the space of holomorphic functions on ID that are continuous up to the boundary. If we extend
this definition verbatim to the punctured disk, since D* = D, it would lead to the same
Hardy space, which does not capture a significant class of holomorphic functions on D*. Our
construction overcomes this issue. When (€2, v) is the parent space, we consider A to be

A(R2,v) : = O(R) NC(L U suppv).

Moreover, for (2%, v), we work with subspaces of O(2*) N C(2* U supp v) which have
prescribed singularity along the deleted hypersurface. Under appropriate assumptions (see
Definition 3.5 for details), the L2(v)—cornpleti0n of Alsuppv is a reproducing kernel Hilbert
space on the domain in consideration. Hence, we call it a Hardy space and refer to its
reproducing kernels as a Szegd kernels.

We point out that there may be kernel functions c(z, -) that have the reproducing property
for A, namely, for all z in the domain

F(z) = / F(w)-c(z,w)dv(w) YF € A, (1.1)
supp v

but are not the Szeg6 kernel for the associated Hardy space. For instance, this is the case for
the Cauchy kernel of any smoothly bounded planar domain € # . Our boundary-based
approach is particularly suited to obtaining such boundary integral representation formulas.

1.3 Description of results

We first state conditions on the parent space (€2, v) that lead to a Hardy space for €2, see
Definitions 3.1 and 3.4. Then we provide the inheritance scheme that gives a filtration of
Hardy spaces for Q*, see Theorem 3.12. For each level of the filtration, we produce new
kernels that have the reproducing property (1.1). Moreover, we give a sufficient condition
for these kernels to agree with the Szeg6 kernels, see Proposition 3.14. We then proceed to
analyse the framework via some examples.

In Theorem 4.2, we consider simply connected planar domains with finitely many points
removed. For this class of domains, we formulate and extend a famous rigidity lemma of
Kerzman and Stein [18], i.e., if 2 &€ C is simply connected then the Cauchy kernel on 2
coincides with the Szeg6 kernel for €2 if and only if €2 is a disc. We next identify a family of
domains for which the filtration of Hardy spaces stabilizes. These are egg domains, sometimes
known as complex ellipsoids, in C> from which a single hyperplane has been deleted, and we
observe that the stabilization occurs at different levels depending on the choice of boundary
measure, see Theorem 5.1. Finally, we use proper holomorphic maps to transfer the filtered
Hardy space structure on D x D* to a class of non hypersurface-deleted domains, i.e., the
Hartogs triangle and its rational power generalizations that were first introduced in [13,14].
We also produce explicitly the Szeg6 kernels for these domains in Theorems 6.1 and 6.2.

1.4 Structure of this paper

In Sect. 2, we consider the punctured disk as this exemplifies the general construction of
the filtration of Hardy spaces. In Sect. 3, we provide the general framework and prove
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the main inheritance results. Section 4 is specialized to the setting of planar domains, for
which more explicit formulas can be proved by means of conformal mapping, along with the
aforementioned rigidity result. The egg domains are dealt with in Sect. 5, and D x D*, the
Hartogs triangle and its rational power generalizations are treated in Sect. 6.

2 Motivating example

We consider the open unit disk D and the arc-length measure og1 on b as the parent space,
and the punctured disk D* := I\ {0} as the hypersurface-deleted domain. Using the basic
descriptions for the L>-Hardy space for the disk detailed in Sect. 2.1, we derive a filtration
of Hardy spaces for (D*, og1) in Sect. 2.2. Throughout this section, we omit o1 from the
notation for the relevant function spaces.

2.1 Hardy Space for the unit disk

The classical L2-Hardy space H>(ID) is the space of holomorphic functions on ID that are
finite in the norm given by

1

1 2 ) 3
||F||H2(]D)) = Ssup <E/(‘) |F(re’9)|2 dG) )

O<r<l1

Note that for any F € H*(D) with F(z) = > oa 27, it follows that

o I
2 2
1 Fllem) = (Zla_,-l ) < 00.
=0

This characterization facilitates the identification of H>(ID) as a reproducing kernel Hilbert
space, by way of considering the inner product

2

1 J—
(F,G) = lim — F(re'?)G@rei®ydo  for F,G € H*(D),
r—12m 0

and the evaluation operators F +— F(z) forz € Dand F € H2(ID). Moreover, a truncation
of power series argument gives that the disk algebra A(D) = OD) N C (D) is a dense
subspace of H2(D). Next, the restriction to the boundary map from A(D) C H2(D) to
AD)|pp C L2(bD) extends to an isometric isomorphism, up to a multiplicative constant,

————— 12D
& : H2(D) —> AD)|pp-

o0 o0
F)=Y ajz/ > ®(F) ) =) ajel’
j=0 j=0

where Z(/)'ozo a jeij 9 is the representation of ®(F) as its Fourier series. We call the clo-

sure of A(D)|pp in L2(bD) the Hardy space $2(D) for (D, og1). Note that if we set X as
(H2(D), ﬁ II.ll22(py) and A as A(D), then § = §H*(D) satisfies the minimum criterion of
a Hardy space stated in the introduction.
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The Szeg6 kernel s for 7 (ID) may now be derived from the Cauchy integral formula for
F € A(D), which says that
1 F(w) 1 F(w)

F() = — dw = — —=d .
(Z) 2mi D W — 2 v 2w bDl—Zw Usl(w)

Since s is uniquely determined by such a reproducing property and the fact that s(z,.) €
532(]1))) for z € D, see Proposition 3.3, we have that

1

— — forz e D, w € bD.
2w 1 — zw

s(z, w) =

2.2 Hardy spaces on the punctured disk

In an attempt to develop a Hardy space theory for the punctured disk, one might first consider
O(D*) N ¢(D*). However, D* = D, so this approach would only lead to the rediscovery of
the Hardy space on the unit disk. One might also try to construct a Hardy space for D* by
considering the closure of ((’) M Ncd*u bIDJ)) 5 with respect to L2(bD). This fails, too,

|1
as pointwise evaluation on this class of L2 (bID))-functions is not bounded for any point in D*.

To wit, consider the functions
ko
Fi(z) == —, keN.
@) =) =
j=1
Clearly, Fr € O(D*) N C(D* U bD) , while

1

00 2
ICF) 2y < V21 | D 72| <oo VkeN.
j=1

Since Fi(z) diverges as k — oo for any z € D*, it follows that the pointwise evaluation

operator is not a bounded operator on ((O(D*) Nncd*u bID))) . Il ||L2(bJD>)) for any point in

D*. This failure stems from allowing holomorphic functions on D* with essential singularities
atthe origin. Thus, we allow poles of prescribed order at the origin, thatis, fork € Ny, consider
the following subset of O(D*) N C(D* U bID)

A (D) = {F :D*UbD — C: F(z) = (z_kG(z)) |p+ for some G € A(]D))} L@

For each k € Ny define Sj%(ID)*) to be the closure of Ay (ID*)|,p with respect to L2(bD). It
immediately follows from z|p # O that

H2(D*) = [f € L2(bD) : f(z) = z ¥ g(z) for some g € 52(113))] .

In particular, any function f € 3”3,% (D*) is represented by its Fourier series Z?o:_k fje’j o
where Y52 | fj1? < 00. Note that 53 (D*) = H2(D), H7(D*) C 974, (D*) forany k € N,
and (g2, H7(D*) is dense in L*(bD).

We can also derive the Szegd kernel s; for ﬁi(D*) directly from the Szegd kernel s for
$H%(D). That s, for F € A (D*) given, let G € A(D) such that F(z) = z7 %G (z) for z € D*.
Then for z € D*, we get

F(2) =G(z)=/ G(w)s(z, w) dasl(w)=f wk F(w)s(z, w) dogi (w).
bD bD

@ Springer
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Thus, the kernel given by

@ w) wk @ w) 1 wk 1 1
S W) = —]—985Z,w) = — — = — —— —
ki & 2 ZK(1 —zw) 27 (zw)* (1 — zw)

exhibits the reproducing property for Y),% (D*), and s¢(z, .) € 53,% (D*) for all z € D*. Hence
sk is the Szeg6 kernel for b%(D*).

Lastly, we remark that :?j,%(ID)*) satisfies the minimum criteria, laid out in Sect. 1, for a
space § to be called a reproducing kernel Hilbert space. Here A corresponds to Ay (D*),
while X is the space H,%(]D)*) consisting of F € O(D*) which satisfy

p2k 2
I F |12 = Sup (—/
07 O<r<l1 2 0

H%(]D)*) = {F € O(D*) : F(2) = (z ¥G(2))|p+ for some G € HQ(]D))}. (2.2)

i0 2 %
F@re'”)| do < 00.

It follows that

Moreover, the Laurent series for any function in H,% (D*) is of the form Z?i_k a jzj with
Z;i_k Ia.,-l2 < o00o. This implies that H%(D*) is a Hilbert space. Furthermore, pointwise
evalution is bounded on H,% (D*). This follows from pointwise evalution being bounded on
H2(D), characterization (2.2), and the fact that z|p= # 0. Thus, H% (D*) is a reproducing
kernel Hilbert space. Finally, H,% (D*) and Sﬁz (D*) can be seen to be isometrically isomorphic,
up to a constant factor, by mapping the j-th Laurent series coeffient of F € H,% (D*) to the
Jj-th Fourier coefficient of F|pp for all j > k.

3 Hardy spaces on hypersurface-deleted domains

The construction of the Hardy spaces for D* suggests a general inheritance scheme for
the construction of Hardy spaces for domains that are obtained by removing certain complex
hypersurfaces from a given domain. As in the case of D* in Sect. 2, one starts with a domain
and a boundary measure v that together carry their own Hardy space structure. We henceforth
refer to such a pair (€2, v) as a parent space.

We detail requirements on the parent space (€2, v) in Sect. 3.1. In Sect. 3.2, we describe
the class of complex hypersurfaces that will be removed from 2 to produce the so-called
hypersurface-deleted domain Q*. The inheritance scheme is described in Sect. 3.3.

3.1 Requirements on the parent space

We consider a domain Q2 € C" equipped with a finite Borel measure v on its topological
boundary 2. We denote the support of v by 7', and set

Qr =QUT.

We discuss some conditions that allow us to identify reproducing kernel Hilbert spaces of
holomorphic functions on €2 that admit boundary values on T for, at least, a dense subspace.

Definition 3.1 Let (€2, v) be as above, and F be a family of complex-valued functions on
Q7. Then F is said to be weakly admissible if and only if
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Hardy spaces for a class of singular domains 2177

(i) F|r € L?(v) forany F € F, and
(i1) for any compact set K C €2, there exists a Cg > 0 such that

sup{[F(2)| :z€ K} <Cxg|IFIrli2, forall FeF.

If we further assume that F is closed under subtraction, then each element of F is uniquely
determined by its values along 7.
We focus on the family of holomorphic functions given by

A(R2,v) = 0(Q) NC(Qr).

Note that A(S2, v) is an algebra over C. It satisfies condition (i) in Definition 3.1 because
C(T) C L*(v) whenever v is a finite Borel measure.

Definition 3.2 Let (€2, v) be such that A(2, v) is weakly admissible. We define the pre-Hardy
space associated to (€2, v) as
12
H(Q.v) = A
where
AR, V)| = {f :T — C, f=F|r forsome F € A(L2, v)}.

Proposition 3.3, and the subsequent discussion, justifies the nomenclature introduced in
Definition 3.1. Note that despite the nonstandard terminology, the following proposition is
standard in functional analysis.

Proposition 3.3 Suppose that A(S2, v) is weakly admissible. Then for any z € Q, there exists
a unique bounded linear functional

Ev, : YJZ(Q, v) - C

such that Ev,(F|r) = F(z) for any F € A(2,v). Furthermore, there exists a unique
Sfunction s : Q x T — C such that

(1) s(z,.) € H*(Q2, v) forall z € Q, and
(2) Ev, and s(z, .) are related through the integral representation given by

EVo(f) = (£(), 5z ) 12 = /f(w)s(z, w) dv(w) forany f € H*(Q.v).
T

We refer to the function s as the Szegd kernel for (2, v).

Proof Note that A(2, v)|7 is anormed vector space when endowed with the norm for L2(v).
The existence of Ev,(f) follows from the Bounded Linear Extension Theorem applied to
the evaluation F|r +— F(z) for F € A(2, v)|r. An application of the Riesz Representation
Theorem then yields the existence and uniqueness of s(z, .).

In the literature, Hardy spaces are considered as examples of reproducing kernel Hilbert
spaces on 2. Note that $%(2, v) contains functions that a priori are defined onlyonT C bhQ.
With an additional assumption on A(£2, v), H? (€2, v) may be identified with a function space
on €2, and hence may be considered as a reproducing kernel Hilbert space on 2.

To identify the appropriate function space on 2 for a given weakly admissible A(2, v),
we note first that Ev(( f) is holomorphic on  forall f € $%(2, v). This is obvious if there
exists an F € A(S2, v) such that F|r = f. Itis also true for general f € $%($2, v) because
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2178 A.-K. Gallagher et al.

the uniform boundedness of the evaluation operators on compacta, see (ii) in Definition 3.1,
says that Ev()(f) is the normal limit of holomorphic functions. Thus, the map

T:9%(Q,v) — O(Q) 3.1
f +— F, where F(z) :=Ev.(f)

is well-defined. Denote by X(Q,v) := Z ($*(Q,v)) C O(R). The injectivity of Z can
be stated through a condition on certain Cauchy sequences in A(€2, v). We formulate this
condition for general function spaces as follows.

Definition 3.4 Let (€2, v) be as above, and F be a weakly admissible family of complex-
valued functions on Q7. Then F is said to be strongly admissible if for any sequence
{Fulnen C F for which {(Fy,)|7},cn is Cauchy in L*(v)and F, = 0 uniformly on compacta
in Q as n — oo, the sequence {(F},)|r},cn converges to 0 in L?(v) asn — oo.

Now suppose (€2, v) is such that A(€2, v) is strongly admissible. Then we may equip
X(2, v) with a reproducing kernel Hilbert space structure via Z. This allows us to identify
$2(2, v) with a reproducing kernel Hilbert space on €2, and hence we can make the following
definition.

Definition 3.5 Let (€2, v) be such that A(£2, v) is strongly admissible. The Hardy space of
(2, v) is H2(Q, v).

‘We note that we do not have an independent description of X (€2, v) in this general setting of
strongly admissible function spaces. However, in all the examples considered in this paper,
X(2,v) is independently described using an exhaustion-based approach, see the spaces
denoted by H2(.) in Sects. 2, 5 and 6.

Examples of (€2, v) for which A(£2, v) is strongly admissible include

(1) (R2,0),where 2 Cc Cisa ¢1-?_-smooth bounded domain, and o is the arc-length measure
on b2, see the discussion at the beginning of Sect. 4.

(2) (D", 041 X ... X 0g1), Where o1 is the arc-length measures of the unit circle in the j-th
coordinate, and 7 = (bID)", and

3) (2,0),where 2 c C"isa C2-smooth bounded domain, o is the surface measure of b<2,
and T = b<2, see [30].

On the other hand, recall from Sect. 2.2 that A(D*, o¢1) is not even a weakly admissible
subspace of L2(bD, o1). Conditions analogous to weak and strong admissibility, albeit in a
broader context, were identified in [1, Theorem p. 347]. An example is also given therein to
demonstrate the inequivalence of the two conditions, see [1, p. 349].

3.2 Requirements on the hypersurface

We first recall some standard notions from analytic geometry. Let K € C" be a bounded set.
Definition 3.6 Denote by O(K) the set of equivalence classes of
{(f, ®) : wis an open neighborhood of K and f : w — C is holomorphic}

modulo the equivalence relation (f1, w1) ~ (f2, ®z) if and only if there is an open neigh-
borhood @ C w1 N w; of K such that fi|, = f2|,. The equivalence class of (f, w) will be
denoted simply by f, which we call the germ of an analytic function on K. Note that O(K)
forms a ring under multiplication and addition.
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Definition 3.7 Let w C C”" be an open set. A closed subset V of w is an analytic variety in
o if for any z € w there exists a neighborhood U (z) C w such that U(z) NV is the common
zero set of some nontrivial fi, ..., fi € O(U(z)) for some k € N. We say that V is a locally
principal variety in o if k may be chosen equal to 1 for any z € w.

Definition 3.8 Define ¥ (K) to be the set of equivalence classes of
{(V,w) : w is an open neighborhood of K, V' C w is a locally principal variety in w}

modulo the equivalence relation (V1, w1) ~ (V2, wy) if and only if there is an open neigh-
borhood @ C w; Nw; of K such that V|, = V»|,. The equivalence class of (V, w) will be
denoted simply by V, which we call the germ of an analytic hypersurface in K.

We next focus on the situation when K = Q for @ € C” is a domain. Note that the
zero set of any nontrivial f € O(Q) gives rise to an element V € 7 (), but not every
element in ¥ (Q) arises this way. If V € 7/(Q) is indeed the zero set of a single f € O(RQ),
then V is called principal and such an f a defining function for V. A principal germ V
is called minimally defined if it admits a defining function f € O() such that, whenever
U C Qs an open set (in the relative topology) and g € O(U) vanishes on U NV, then f|y
divides g in O(U). We call such an f a minimal defining function of V in O(Q). It follows
from a standard argument that minimal defining functions are unique up to non-vanishing
holomorphic factors. We state this as a lemma for easy reference.

Lemma3.9 Let V be a minimally defined germ of an analytic hypersurface inﬁ. Suppose
[ & € O(Q) are two minimal defining functions of V. Then there is an h € O(S2) such that
f = hg, and h does not vanish on Q.

Finally, V € ¥ (ﬁlis said to be irreducible if it cannot be expressed as Vi U V; for
elements Vp, Vo € ¥ (Q2) distinct from V. Note that for any V € ¥ (2), there isan m € N
such that V N Q = U’}’zl (V; N ), where each V; is an irreducible germ of an analytic
hypersurface in €, see [10, § 5.4].

Subsequently, we consider domains as follows.

Definition 3.10 Let Q € C" be a domain. Let V € ¥ 7(5) be a finite union of irreducible,
minimally defined germs of analytic hypersurfaces on 2. Then

Q=Q\V
is called a hypersurface-deleted domain.

We now discuss some examples of hypersurface-deleted domains. In the planar case, if
Q € Cisadomainand V C #(Q),then QNV = {ay, ..., ap} for some ay, ..., a, €  and
m € N. It is immediate to see that f;(z) = z — a; is a minimal defining function of {a;} in
O(Q). Thus, Q\ V = Q\ {ai, ...,an} isa hypersurface-deleted domain.

A further class of examples, which includes bounded convex domains in C”, is provided
by the following result. Note that the result implies that for such €2, '\ V is a hypersurface-
deleted domain for any V € 7(Q).

Proposition 3.11 Let n > 1. Suppose Q@ € C" is a domain such that Q admits a Stein

neighborhood basis and H*(Q;Z) = 0. Then any irreducible V. € ¥ (Q) is minimally
defined.
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Proof The proof is well-known. For the reader’s convenience, we highlight the main steps
of the argument. Recall that a Cousin 1T distribution on the compact set Q is a collection
{(U,, f)}ier,where {U,},cj is a (relatively) open cover of , and f, € O(U,) with fz|UmU, =
hy - f |Umu, for some nonvanishing /,, € O(U, N U,). The hypothesis on Q implies that,
given such a Cousin II distribution, there is an f € O(Q) such that f, = h, - f|y, for some
nonvanishing h, € O(U,), forall 1 € I, i.e., Q is a Cousin II set, see [11].

Let V e #(Q) be irreducible. Then V admits a local minimal defining function at each
point of V N Q, see [10, §2.8.]. By compactness and Lemma 3.9, there is a finite Cousin
II distribution, {U;, fi}ie(1,...,m}, such that f; is a minimal defining function of V N U; for
i € {l,...,m}. We claim that the Cousin II solution, f € O(Q), for this distribution is a
minimal defining function of V in O(). First observe that fluiny = (h;l - filluiny =0
fori € {1, ..., m}. Thus, f vanishes on V. Next, let U C Qbea (relatively) open subset and
g € O(U) be such that g vanishes on U N V. Since each f; is minimal, it follows that each f;
divides g in O(U N U;). Furthermore, f |y, divides f; in O(Uj;), in particular f|yny, divides
fi in O(U NU;) for each i. Therefore f|yny, divides g in O(U N U;). Thatis, f|y divides
g locally and hence in O(U) since f and g are globally defined in U'.

In general, if V € ¥(Q) is principal, then any defining function f € O(Q) of V is
minimal if and only if {z € @ : det Df(z) = 0} is nowhere dense in V N w for some open
neighborhood w of Q, see [10, § 2.9]. Thus, by this criterion, 2 \ V, where V is an affine
hyperplane, is always a hypersurface-deleted domain.

3.3 The inheritance scheme

We first construct Hardy spaces for triples of the form (€2, v, V), such that

(i) Q € C" is a domain, v is a finite Borel measure on b2, -
(ii) V is an irreducible, minimally defined germ of an analytic hypersurface in €2, and
(i) NV #Pand v(T NV) =0, where T = supp(v).

The case of general hypersurface-deleted domains is discussed at the end of this subsection.

As before, Qr = QU T, Q* = Q\ V, and A(L2, v) is as in Definition 3.1. We also set
T*:=T\V.Lety € O(Q) be aminimal defining function of V. Then for any non-negative
integer k, we consider the following subset of O(2*) N C(R* U T*)

A (2%, v) := [F SQ*UT* > C: F = (Y *G)|gwur+ for some G € A(Q, v)
and Flr+ € L*(n)}. 3.2)

Note that it follows from Lemma 3.9, that A (22*, v) does not depend on the choice of
minimal defining function of V. Hence, we make no reference to v in our notation and work
with a fixed choice of ¥ for the purpose of our proofs.

We identify Ax (2%, v) with a function space on Q*UT by extending its members trivially,
by zero, to T N V, which is a measure-zero set. Then the space of boundary values of
A (2%, v),ie.,

A(@* )| = {Flr 1 F € A(Q", )}

is a subspace of L2(v). Note that as subspaces of L2(v), Ax(Q*, v)|7 = Ax(*, v)|7+. This
allows us to speak of the notion of weak and strong admissibility for .4; (2%, v). The spaces
A (2%, v) always inherit the properties of weak and strong admissibility from A(S2, v).
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Theorem 3.12 For (2, v, V) satisfying (i), (ii) and (iii) above, the following holds.

(1) If A(2, v) is weakly admissible, then so is A (Q*, v) for any k € Ny.
(2) If A(2, v) is strongly admissible, then so is Ax(Q*, v) for any k € Ny.

Proof For the proof of part (1), fix a k € Ny and suppose that A(2, v) is weakly admissible.
We need to show that for any compact set K C Q*, there exists a constant cx > 0 such that
the evaluation operators

Ev, : A(Q",v) — C
F i+ BEv,(F):=F(), z€K,

are uniformly bounded on K. For that, let F € Ax(Q*, v). Then F = ('(/fikc)|Q*UT* for
some G € A(2,v)and F|7 € L%(v). Since A(Q, v) is weakly admissible and K is compact
in *, hence in £2, it follows that there exists a constant Cx > 0 such that

BV.(G)] = Ck GIrll 2 Yz K.
Therefore,
Ev.(F)| = [y * @] - 1Bv:(@)] = Ck [ @] IGIrl 2y V2 € K.

Since K C QF, ¥ is continuous and nonvanishing on K, and v(V N T) = 0, there exists a
constant Cx > 0 such that

[Ev.(P)| = Cx IGIrl 20 = o |- Pl |

Vze K.
L2(v)

As Y| is bounded and F|7 € L2(v), there is a constant cg such that
[Ev:(F)| < ck I FITl 20y -

This concludes the proof of part (1).

To prove part (2), let k € Np and suppose that A(€2, v) is strongly admissible. Let
{(F)lpen C Ar(22*,v) be a sequence such {F,|7},cy is Cauchy in L>(v) and F, —>
0 uniformly on compacta in Q*. Then for any n € N, F, = (W_an)m*uT* for some
G, € A(R2, v). Therefore,

1Gn = G Irl2y = | @ Fu = 9 Fulr|

L2

Since ¢ is bounded on T, it follows that {(G,)|r},cn is a Cauchy sequence in L2(v).
Furthermore, A($2, v) is weakly admissible, and so for any compact set K C 2, there exists
a constant Cg > 0 such that

|Gn(Z) - Gm(z)| <Cg ”(Gn - Gm)|T||L2(u) VzeKk,

i.e., {G, }nen converges uniformly on compacta in 2. Thus, there exists a G € O(£2) such that
Gn(z) — G(z)forallz € Qasn — oo.However, forz € Q*, G, (z) = 1//k(z)Fn(z) — 0
as n — o0. Therefore, G(z) = 0 for all z € Q*. This implies that G = 0 on 2, and
G, — 0 uniformly on compacta in 2. Since A(€2, v) is strongly admissible, it follows
that (G,,)|7 —> 0in L%(v) as n — oo. This in turn implies that (F,,)|7 —> O in L2(v) as
n — oo. Thus, A (2*, v) is strongly admissible.

We are now set to define the central objects of this discussion.
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Definition 3.13 Let (2, v) be such that A(L2, v) is weakly admissible and k € Ny. The k-th
pre-Hardy space 53,%(52*, v) is the closure of Ax(Q*, v)|7 in L2(v). If A(RQ, v) is strongly
admissible, we call 53%(52*, v) the k-th Hardy space of (2, v, V).

Note that
Ao(Q,v) = AR, v)|@+ur+,
i.e., Ap(2*, v) does not lead to a new space. Furthermore,
Ap(QF, 1) € AH(QF, ) €+ C A (R, 1) C .., (3.3)

and, for any ¢ € Ny, the spaces Y‘A(Q*,v) := {Y* F: F € A(Q*,v)} satisfy the
inclusions
YA, v) C Ar_e(Q2F,v) whenever £ < k. (3.4)

The collection {$7 (Q*, v)}x inherits these properties. That is, $3(Q*, v) = $H*(Q, v). Fur-
thermore,

H3(Q*,v) € HTQ*v) S S HHQ ) ..., 3.5)
as well as
YERT(Q, V) C H7_,(Q*,v) whenever ¢ <k. (3.6)

Applying Proposition 3.3 to A (2%, v), we see that 95,%(52*, V) possesses a Szegb kernel
s for any k € No. Moreover, the Szeg6 kernel s for H2(Q, v) generates a family of kernels
with the reproducing property for .6,%(52*, V).

Proposition 3.14 Let (2, v) be such that A(2, v) is weakly admissible. Let ¢ € A(2,v)
be such that ¢ = hyr where \ is a minimal defining function of V and h € A(2,v) is
nonvanishing on Qr \ V. Then

ot (w)
ok (2)
has the reproducing property for Sﬁi(Q*, v). Moreover, if h is nowhere vanishing on Qr and
|| is constant on T, then cy , is the Szegd kernel for 53%(9*, v) for all k € Ny.

Chplz, w) 1= s(z,w), zeQ*weT (3.7)

Proof Let k € Ny and F € Ay(RQ*,v). Then there is a G € A(£2,v) such that F =
(¥ ~%G)|q+ur+ and F|7 € L2(v). Since h*G € A(R, v), it follows that for any z € Q*

F() =" @¢" @ F () = ¢ @M )G = 07" @) [ w)Gw) s(z, w) dv(w).
T
Thus,
F(z) = / F(w) c,p(z, w)dv(w) forany z € Q.
T

The reproducing property of ¢, for fji (2%, v) then follows from the density of Ay (2%, v)|7
in f),%(Q*, v) with respect to L% ().

It remains to show that if /4 is nonvanishing on Q7 and |¢| equals some constant ¢ > 0

on T, then ¢t y(z,.) € ﬁ,%(Q*, v) for any z € Q*. Note first that ¢ # 0 since neither & nor
Y vanish on T*. Thus, as an aside, observe that ¢ does not vanish on 7' and, in particular,
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VNT =.Since s(z,.) € 5’,),%(9, v) for any z € €, it follows that there exists a sequence
{S,(z, )}nen such that S, (z,.) € A(2, v) for all n € N and

sz, ) = Su(z, )T | 12,y —> 0 as n— 00, VzeQ.
This, and the fact that (pk (.)ga_k (z) is bounded on T for any fixed z € Q*, implies that

ek (2. ) = (‘Pk()(ﬂ_k(Z)Sn(Z, -)) |T||L2(U) —> 0 as n— oo, VzeQF

To see that ok ()@ ~*(2)S,(z, .) is in AL (Q*, v) for any z € Q*, we first note

ok(w) = cFo*w)VweT.
It then suffices to show that<p*k(.)Sn (z,.)isin Ax(2*, v) forany z € Q*.Sinceh € A(L2, v)
is nonvanishing on Q7 it follows that A=%(.)S,(z, .) € A(, v). Thus, by the definition of
A (2%, v), it remains to show that (W‘k(.)h_k ()Sn(z, .)) |7 is in L%(v). This membership

holds because ¢ - h = ¢ is a nonvanishing continuous function on 7. This concludes the
proof of ¢ , being the Szeg6 kernel for 5’)%(9*, V).

Remark 3.15 Note that replacing the Szeg6 kernel for $2($2, v) in (3.7) with any other kernel
with the reproducing property for $%($2, v), yields yet another family of kernels with the
reproducing property for 56,%(9*, V).

We briefly discuss the especially favorable situation when V N 7 = (. In this case the
requirement that F|7« € L?(v) in the definition of A4;(Q*, v) is redundant. Moreover, the
containment relations in (3.3) and (3.5) are strict, i.e.,

A (Q%,v) © A(Q*,v) and $H7(Q*,v) € H7(Q*,v), whent <k, £ e Ny,
and those in (3.4) and (3.6) are equalities, i.e.,
YEAR ) = A (QF,v) and YIHF(QF, v) = 9 ,(QF,v), whent <k, £ € Np.

Theorem 5.1 provides examples of (€2, v, V) that exhibit the dual phenomenon, i.e., the
containments (3.5) stabilize to equalities, while the containments in (3.6) are strict.

In the classical construction, the Hardy space 552(9, v) is a module over the algebra
A(S2, v). This phenomenon cannot percolate to 53%(52*, v) as, in general, A (2%, v) is not
even an algebra. However, when V N T = (J, the union U/fio A (2%, v) is a filtered algebra
over C since

A(Q%,v) - Aj(QF, 1) C Ay j (2%, v),  j.k e Np.
The space U,fio .6%(&2*, v) is then a filtered module over this filtered algebra since
Ar(QF,0) - H3(QF,v) € 97, Q5 v), j ke No.

We now consider the general case, i.e., V = V1 U- - -UV,,, where each V; is anirreducible,
minimally defined germ of an analytic hypersurface in Q. Let v; € O(Q) be a minimal
defining function of V;, j € {1,...,m}. Then ¢ = ¥ - --- - ¥, € O(R) is a minimal
defining function of V. One could proceed as in Definition 3.2 using . However, this
approach leads to an incomplete picture of the relevant spaces as each irreducible germ can
independently yield a one-parameter family of spaces. For instance, consider the example
Q7 at the beginning of Sect. 4, and compare the spaces in (4.1) to the above definition where
all the factors of ¥ would appear with the same exponent.

@ Springer



2184 A.-K. Gallagher et al.

To remedy this issue we proceed inductively. We write
Q=Q\(ViU---UVy, Lefl,....m},
and define Ay (27, v) as in Definition 3.2 for k € Ny. For £ > 2, consider multi-indices
k={ky,...,k¢}and K = {kq, ..., k¢_1} with k; € No, and define
Ag (27, v) == [F Q*UT* - C: F = (W[kZGNQ*UT* for some G € Ap (Q2;_;, V)
and F|7* € Lz(v)} .
The inductive nature of this definition allows for the iterated application of Theorem 3.12
and Proposition 3.14. In particular, if (€2, v) is such that A(£2, v) is strongly admissible, then

7112
PR v) = Al (3.8)
is a reproducing kernel Hilbert space on 2 for any k = N{j, and we call it the k-th Hardy
space of (2, v, V).

4 Planar domains

In this section, we apply the scheme described in Sect. 3.3 to hypersurface-deleted planar
domains. Note that the case of the punctured disk is covered in Sect. 2.2.
Recall that any hypersurface-deleted planar domain may be written as

;:Q\P7 P:{pl»vpm}CQs

see Definition 3.10 and the subsequent discussion. We henceforth refer to Q7 as an m-
punctured domain. Here, we consider Q € C of class ' for o € (0, 1), and the arc-length
measure o on bS2 so that V N supp(c) = @. Under these assumptions, A(£2, o) is strongly
admissible. This is because A(Q, o) C E2(), the classical Smirnov—Hardy space of €,
which is strongly admissible due to the existence of nontangential limits in L%(c), see [12,
Theorem 10.3 & Section 10.5]. In fact, A(S2, 0)|pq is dense in E2(2)|pq, see [12, Theorem
10.6 & Section 10.5]. Thus, the Hardy space ﬁz(Q, o) coincides with the classical Hardy
space on 2. Now we can either apply the inductive scheme of Sect. 3.3 or, equivalently,
consider the closure in L2 (o) of the strongly admissible space of boundary values of

A(Qp,0) ={F € O(Q3) 1 (z— p)* - oo - (2 — pm) " F(2) € AR, 0)} 4.1
forzk = (k1,....kn) € N{. Either construction gives a family of Hardy spaces
{95, 0)}k€Ng such that

D (Qp,0) C Hp(Qp,0) whenever k;j <k;/, jefl,...m}.

Note that each 5')12((9* , o) is the space of L2-boundary values of holomorphic functions on
2 that have poles of orders at most k1, ..., k,, at py, ..., pm, respectively. Applying Proposi-
tion 3.14 and Remark 3.15 iteratively, we obtain the following result.

Proposition 4.1 Let ¢ = (1, ..., ¢m) € AR, 0)", k = (ki ..., kn) € NI and p*¥ =
¢>Tk1 et ¢$k”’. Suppose each ¢ vanishes only at p;, j = 1, ..., m. Suppose c(z, w) is a
kernel with the reproducing property for $*(Q2, o). Then

0@ Kez, w) o)X, ze Q% we b,
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has the reproducing property for ﬁi(Q* , 0). Further, if each ¢ has a simple zero at p; and
|¢ ;| is constant on b<2, then

p(w)k
(kK

is the Szegd kernel for j’)i(Q* ,o) forallk € Nj.

Ck,p(z, W) = s(z,w), z€Qp, webQ,

In addition to the Szeg6 kernel, we discuss a generalization of the Cauchy kernel for
fji(Q* ,0), k € Njj. Recall that the classical Cauchy kernel

1 1
e = o w—s

is a holomorphic function on C x C \ {z = w} such that
J*(Cz, wydw)
do (w)
has the reproducing property for $2(Q2, o), where j : b2 — C is the inclusion map.

Applying Proposition 4.1 to this kernel, we obtain the following analog of the Cauchy integral
formula for m-times punctured domains

1 (w—pkt-(w — pp)fn
F(i)=-— F(w)dw
271 Jpq (z — p* - (2 = pm)Pr(w — 2)
=:27i Cx(z,w)

for F e Ax(Q}.0) and z € Q7. We call Ck(z, w) the Cauchy k-kernel for m punctures.
Note that it is a meromorphic function on C x C\ {z = w} whose poles depend solely on the
location of the punctures. When written with respect to o, the integral kernel in the above
formula is, in fact,

Cf;(z, w) := Ck(z, w)y (w),

where w = y(t) is the arc-length parametrization of b<2. It follows that Cl? P(z, w) has the

reproducing property for ﬁi(Q* , 0). In contrast to Cl? P the Szeg6 kernel, sk, of ﬁi(Q* ,0)
is, in general, not known explicitly. However, for simply connected €2, Theorem 4.2 below
gives a formula for sy in terms of the Szeg6 kernel for $2(S2, o). It also shows that the two

kernels, sk and Cl? P, coincide if and only if Q% is a disk punctured at its center. This rigidity
result extends the Kerzman—Stein Lemma ([18, Lemma 7.1]) to the case of m-punctured
domains.

Theorem4.2 Let Q@ € C be a C"“%-smooth simply connected domain, and P =
{p1, ..., pm} C Q. Let u : @ — D be a biholomorphism with q; = u(pj), j =1,...,m.

(1) The Szegd kernel for 5612((9* ,0) is given by

sk(z.w) = 9 (2) s(z. w) e ¥ (W), z € Vp, w € bR,
{—q
1-g¢

(2) CI?P (z, w) = sx(z, w) for some k € Ni ifand only ifQ’;, is a disk punctured at its center.

(g, ¢) €D x D.

where, @ = (Mq] 0 Uy .oy My, o 1) for My () =
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To prove Theorem 4.2, we use the fact that the Szeg6 kernel s of H2(Q, o) is S|laxpa, where
S is the continuous extension of the Szegd kernel for EX )02 x Q\{(z,2) : z € b2}
Note that S(z, w) = S(w, z) for z, w € Q x Q\ {(z, 2) : z € b2}. The continuous extension
of the Szeg6 kernel for E2(S2) follows from three facts. Firstly, this is true for the classical
Szegd kernel SP of the disk. Secondly, the derivative of any biholomorphism g from €2 onto
D admits a continuous nonvanishing square root on Q, see [26, Theorem 3.5]. And lastly, the
Szeg6 kernel for E2(2) can be expressed in terms of ST and /B, see the transformation
law in [19, Lemma 5.3].

Proof of Theorem 4.2 Since ;1 extends continuously to 2, we have that @y € AR, o).
Moreover, since |M,| = 1 on bD, and M, only has a simple zero at ¢, the same is true of
each ¢; on bQ2 and at p, respectively. Thus, by Proposition 4.1, ck ¢, is the Szeg6 kernel for
5’)&(&2’;, o). Since My o = (My o )1 on bR, the first claim follows.

Next, observe that Sk (z, w) = @((z)~ kS(z, w) @o(w) 7K extends sk continuously to (€2 \
P)’\ {(z,2) : z € b2}, and Sk (z, w) = Sk(w, z). Thus, 1fC = sy, it must be that for
Z,weE b,z #w,

@ @ _ L eSG@w) (.~ 1 —\ _
G P (S(z,w)) = C 7 (S(z, w)) = w2 (y(w) oSG, w))|2)/(z)) =0
4.2)
(w— p)* - (w — py)*n —~

where e(S(z, w)) = f is the vector
Z

—w —
e e 7O = VG
obtained from reflecting y (z) in the chord determined by w and z. Thus, as in the proof of the
classical Kerzman—Stein Lemma, (4.2) implies that for any two distinct points z, w € b<2,
the chord connecting w and z meets the boundary curve with the same angle at both points.
But this can only happen if b2 is a circle [27],i.e., 2 =D, (a) ={z € C: |z —a| < r}

for some a € C and r > 0. In this case |y (w)| = |y(z)] for all z, w € bD,(a), and so
le(S(z, w))| = 1 for z, w € b, (a). If k € N, this yields that [(w — p1)--- (w — pp)] is
constant on bID, (a), which is only possible if P = {a}. O

Theorem 4.2 is stated only for simply connected domains because of the limited applica-
bility of Proposition 4.1. In particular, if € is multiply connected, then the conditions on ¢,
assumed in Proposition 4.1, may not be attainable. For example,if Q = {z €e C: | < |z| < 2}
and V = {a} for some a € €2, then there is no ¢ € A(S2, o) that has a simple zero at @ and is
such that |¢>| C on bQ This is because, owing to the argument and maximum principles,
N(E) = 27” be ? (w dw is a continuous, integer-valued function on D¢ (0) and hence a
constant. If ¢ had a 51mple zero, then N = 1 on D¢ (0), forcing ¢ to be a homeomorphism
between €2 and D¢ (0), which is impossible.

However, in the case when 2 is finitely connected, the Szegd kernel for ﬁi (2%, o) enjoys
a transformation law under biholomorphisms. The proof goes along classical arguments in [4,
Ch. 12] and [19, Lemma 5.3], after taking into account the boundary regularity of conformal
maps between C!"“-smooth domains, see [2, App. A].

Theorem 4.3 Suppose Q, D € C are C'*-smooth domains, and v : Q@ — D is a biholo-
morphism. Then, for k € N,

sz w) = V@) (sf O (), M(w))> i), zeQpwebe,

where sl?” and s, Duce) denote the Szegd kernels for .62 (%, 0) and .62 (D*
tively.

L(P)’ o), respec-
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5 Hypersurface-deleted egg domains as examples of finite stabilization

In this section, we consider triples of the form (8 oV, {22 = O}), p € N, where
£ ={(z1,22) € C*: |11 PP + |22 < 1}, (5.1)
and the measure v on b&), is either

(a) o, the Euclidean surface area measure, or
(b) w, the Monge—Ampére boundary measure associated to the exhaustion function

1
¢p(z1,22) = T log (1211*” + |z217) .

Note that w), is also the Leray-Levi measure associated to the defining function
2w 2 2
pp(z1,22) = " (Iz1177 4+ |z21? = 1)

In the case of the ball, or p = 1, the two measures coincide and 5’32(51, o) = 5’)2(81, w1). In
all other cases, ~9’,)2(5 . 0) C 532(8 p» @p). We show that this discrepancy, owing to different
choices of measure, is amplified in the case of £ = £ \ {z2 = 0}. Moreover, this setting
yields examples of nontrivially stabilizing filtrations of Hardy spaces.

For some context, note that .62(5 p»0) is the space of boundary values of the classical
Hardy space on £, as defined by Stein in [30], while H2(E p» @p) is the space of boundary
values of the Poletsky—Stessin Hardy space associated to ¢, on £, see [25]. The latter spaces
have been studied by Hansson in [16], Sahin in [28], and Barrett-Lanzani in [3]. Later, we
encounter the limiting case of (Sp, wp,{z2 = 0}) as p — oo. To wit, if 5 = pli_)moo Epin

the Hausdorff metric, and ws is the Monge—Ampere measure corresponding to the function
Poo(21,22) = lim @, (21, 22) = logmax{|zi], |22]},
p—>00

then &% = &\ {z2 = 0} is D x D* and we = o1 X og1, see [25, § 4]. Since {z, =
0} does not intersect supp(ws) = bD x bD, {ﬁ%(é’;“o, ®oo) JkeN, does not stabilize, and
zﬁ.‘r’),% (&L wxo) = Sﬁ,%i 1(E%,» woo) for £ < k. The behavior of this filtration is quite different
when p < oo.

Theorem 5.1 Let p € N. Then {$}(E5. 0)ken, stabilizes atk = 0, i.e.,
Hi(Ep, 0) = H3(ER, 0), Yk € No.
On the other hand, {5’)%(8}“,, wp)}keN, Stabilizesatk = p — 1, i.e,
DES p) C N (Epwp) S -+ C 921 (Eh. wp) = NEES wp), Yk = p.
Moreover, f_)%(f*,wp) ) 1253%(5*,0)1,) 2---2 ng)i(g;,wp) DRT

In order to prove Theorem 5.1, we describe the relevant Hardy spaces. Here, j : b€, — c?
denotes the inclusion map, and d¢ is the real operator i (3 — d). Dropping the subscripts of
¢p and pp,, we have that

O ,(le l‘rZZ

B —det | pz; P21z P2z

e - J*(@p A 90p) Par Pty Pesis
o — o AddCo) = _ o, onb&y,
p=J"dpnddp) i)} 72Vl !
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where p;; is the first order partial derivative of p with respectto z;, j € {1, 2}, and p;;z, is
the second order partial derivative of p with respect to z; and zx, j, k € {1, 2}. For ease of
computation, we parametrize (b&p)« := b&p \ {(z1,22) € C?: 712 =0} as

1 . 1 .
9 (s,01.6y) > (sTl’elel, (1— s)ﬂe’QZ), (5.01.6) € (0. 1) x [0.2m)%.  (52)
Since bE;, N {z1z2 = 0} is a set of measure zero for both ¢ and w,, we have that
L*(bEp, v) = L2 ((0, 1) x [0,270)% 0*V), v =0, wp, (5.3)

viathe map f = flwpe,), o ¥. Itis easy to check that

1 » 1— ds d6, do
\/(S) +( S) dsd@ldezw 1 19 1d0 .

20 (1) SR =)'
¥ wp = ds db, d@z.

¥*do = and

Here, a(r) ~ b(r) means that there are constants ¢, C > 0 such that cb(r) < a(r) < Cb(r)
for all r. For the sake of brevity, we drop all references to #, use (s, 01, 62) as coordinates
on b&p, and abbreviate || f|z2 £,v) 1O |1 £1ly. We now provide descriptions of the spaces

.62(8 p,0) and 5’32(5 p» @p) in terms of L2—convergent series expansions.

Proposition 5.2 Let p € N. Then

o . i+1 £4+1
92(Ep.o) =1 a 087 (1 — 5)77 U+ D lajelB <i i) <oop, (54)
j. >0 7,620 p P

D Epwp) =1 Y a,—,gsz'*’}:u )T el 0 ) > lajel®B (i +154 1) <00, (5.5)
Jj.£=0 7, £=0 P P
where B(x, y) = f] s*7L(1 = )Y~ ds is the Euler beta function. In particular, 92(E,0) =
H2(E1, w1), and H*(Ep, 0) € HH(Ep, wp) when p > 1.
Proof We first prove (5.5). In view of (5.3), any f € Lz(bé',,, p) may be written as

fls,00,00) = Y fiuls) Ut (5.6)

(j,0ez?

where {fj (s)}(j peze are the Fourier coefficients of f (s, ., .), and Z(, 0ez? ||f] el?
< o0. Now, for F € A(E), wp), we may write

L2(0,1)

- .
> 2047.621%5, if (z1, 22) € &p,

F(z1,22) = =~ o . 1
er 22) 3 ez Fie(s) UM if (21, 20) = (s Wit (1—s)%e ) e be,,

where in £, the power series converges uniformly on compact subsets, and on b&), the
series converges in Lz(wp). Next, for s € (0, 1), F is continuous on the closed polydisk
{(z1,22) € C? ¢ |z1] < 5127, |z5] < (1 — 5)!/2P}. Hence,

y VR
szp(l—s)zp lim // F(wi, wz) ldwzz{amﬂp(]_s)zp’ je=0,
r%]’

Fio(s) =
j.e(s) = T ari? ;+1 wh! 0, otherwise.

[wi[?P=r(1-s)
[wa 2P =rs

@ Springer



Hardy spaces for a class of singular domains 2189

Moreover,
j 14
Z ||FJZHL2(OI) Z / lajel? sp(lfs)pds Z laj ¢*B <7+1,f+1> < 00
VR4 Jj.£=0 Jj. =0 P p

Thus, we obtain the characterization in (5.5) for a dense subspace. By taking L% (w p)-limits
of sequences in A(E,, wp), the expansion for any f € ﬁz(Ep, wp) can be established. The
argument for (5.4) runs along similar lines.

Now, since <% +1, % + 1) <8 (%, %) forall j, £ > 0, Wehavethatf)z(f,'p, o) C
ﬁz(S,,, wp), with equality when p = 1. To show strict containment for any p > 1, we

g Lo .
consider the series f (s, 01,62) = Y y=0 ;.05 (1 — 5)77 ! UOHD) with

mn

—12 .

M, when L =meN, £ =neN,

aje = P P
0, otherwise.

Then |1 /112, = 472, 1g la;.c B (é +1,E ¢ 1) = 472 Y, _o(mn)™2 < oo, but

since
-1 51

. 1—=
j+1 €41 1 m »rn »
A1~ ) laj.e*B (—p ) =e D a5

2
j, =0 m,n>1 m=n (m—+n)r

f does not converge in L(c).

1 1
Proof of Theorem 5.1 Fix a p € N. First, we consider o ~ 57! (1— s)F_1 ds d6) do,. It is
clear that

3 e, = (L= 5) 2P € L2(bE), 0) = k< 1.

Now suppose thereis a g € .6%(5*, o)\ 56(2)(5*, o). Then

(@) g € LXEp.0) \ H3(EL 0);

i) 28)he, = X ez005e8% (1 =) B0 with ¥, g lajoPp (5L, EL) <
Q.

Writing g = 3 4z &j.0(s) e’V ) we obtain from

(ii) that
g = e ifj>0,¢=-1
I 0, otherwise.
Thus,
14 1L
’ J
lgli2 ~ Z|a,o|2/ S 3 gl /3( )
j=0 j.£=0 p

which is finite only if a; o = 0 for all j > 0, and Z, 0 14j. 1128 (JH Z#) < o0o.In

that case, g € j'jo (&%, o), which contradicts
(i). Thus, ﬁ%(ﬁ*, o) = 53(2)(8*, o). A similar argument shows that .6%(8*, o) = 53(2)(5*, o)
for all £k € Ny.
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In the case of w, = ds d6 d,, we have that
5 e, = (L= s) K22 € L2(bE,, w,) <= k < p.
Thus, z;k € 5'3%(5*, wp) \.6%71(5*, wp) aslong ask < p — 1. For k > p, we may argue,
as in the case of o above, that 56,%(8*, wp) = :6%(5*, wp).
Finally, we show that 5%71(8*, wp) 2 zgﬁ’)i(é‘*, wp) for any k € Np. In view of the
stabilization, when k > p, it suffices to show that 56%71 (&5, wp) 2 szli,l (5;‘,, wp). This

is clear since z, ¥~ € 971, wp),butz, " ¢ L*(bEp, wp). Fork < p, let

k 1 . mp
Fls,61,60) = (m+1)7% (sﬂelel) . and

m=>0
L s —(k=1)
W5 01,60 = (1 =9)7e™) 7 f(s,61,60).
Since, for any fixedr > 0, 8 (m + 1,r) ~ (m + 1)™" as m — oo, we have that

12, = m+ D 7 Bm+ 1D Y m™' 7 < oo

m>0 m=>0

Thus, zé_lh =fe 3’3(2)(8*, w)). Moreover,

1, = Yo+ 1075 (m 114 = 5 S S <o

m=>0 m=>0

Thus, h € 53,%_1(5*,(1)1,). But IIZQ_lhIICZUP P Zmzo m~! is not finite. Thus, there is no
g € HF(ES, wp) such that yg = h. That is, h € H;_, (£}, ) \ 298 (ES, wp). a]

Remark 5.3 The egg domains £, may be endowed with other natural boundary measures. For
example, in [3, Def. 43], the authors consider the family of measures { v = f|.Z| I-14 }

. .. . . €[0.1]
on b€y, where f is any positive continuous function on b€, and

1L = —4|Vp| 3 det< 0 r )

2 P2z ) 1<j k<2
for any defining function p of £,. The measures o and w, correspond to v; (f = 1) and
vo (f =1Vpp |2 /47?), respectively. It is also worth noting that the Fefferman hypersurface
measure on b€, is precisely v2;3 (f = 1). Analogous computations can be carried out to
obtain explicit descriptions of the spaces ﬁ%(é’ * vr). Note, in particular, that the filtration
corresponding to the measure v, stabilizes atk = [p(1 —7)+ 1] — 1, where [-] is the ceiling
function.

6 Hartogs triangles: an application

We construct filtered modules of Hardy spaces for certain power-generalized Hartogs tri-
angles. This family of domains was first introduced in [13,14]. Specifically, we consider
domains of the form

Hyjn = {(z1,22) € C* : [21]" < |z2|" < 1}, m,n €N, ged(m,n) = 1,
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where T = bID x bID is endowed with the product measure o := o1 X og1. Although H,,
is not a hypersurface-deleted domain, it is a proper holomorphic image of the hypersurface-
deleted domain D x D* via

Om/n : (21, 22) = (223, 25).

Note that ©,,/, maps T to T, and O}, n’ f = f o®y/, induces an isometric isomorphism

from L2 (T, o) onto a closed subspace of L3(T, o). Thus, we can deduce the Szegb kernels
for H,;,/, from those for D x ID*. To do this, we first treat the case of D x D* in Sect. 6.1.
In Sects. 6.2 and 6.3, we treat the case of the standard and the power-generalized Hartogs
triangles, respectively. As done in Sect. 2, we omit the measure o from the notation for the
relevant functions spaces. Moreover, we use polar coordinates (61, 6,) on T.

6.1 Hardy spacesonD x D*

We construct the Hardy spaces for ID x D* by executing the inheritance scheme in Sect. 3.3 for
the triple (]D)Z, oT, {z2 = 0}). To implement the scheme, consider, for k € Ny, the following
subset of O(D x D*) N C((D x D*) UT)

A x D% = [F: @xDHUT > C: Fa1, 22) = (53* 621, 22)) lwpour
for some G € A(D?) = O(Dz) N C(ID)% } .

For each k € Ny, set ﬁ,%(D x ID*) to be the closure of Ay (D x D*)| in L2(T).
As in the case of D and D*, a precise description of these spaces in terms of Fourier series
expansions can be given as follows. For k € Np,

RO xD*) =1 > fjp U e LX) : fj, =0, if max{j,€+k} <0
(j.O)eZ?
6.1)
Moreover, the Szeg6 kernel s for 53,% (D x D*) can be obtained by applying the Cauchy
integral formula for D? to zéF (z1, 22) for F € Ay (D x D*). This yields

1 1

R eDxD*,weT. 6.2
Q)2 o)k — ) — oy’ - Y (62)

Sk (z, w) =

We briefly note that in order to verify that f),%(]D) x D*) indeed satisfies the minimum
criterion for being a Hardy space, we may take X to be

H2(D x D¥) 1= {F € O x D) : I Fllygppe) < oo} ,

where ]
r2k 2w 2w . e 2
||F||H§(DXD*) = 0<Ssu;P<1 47?// |F(se'™, re'™)|“d61doy |
' 00

with norm, a constant multiple of, ||'||Hf (DxD*)*
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6.2 The standard Hartogs triangle

For the sake of exposition, we first consider,
H=Hi1 = {(z1.22) € C*: |z1] < |22 < 1},

for which ® = @y is, in fact, a biholomorphism. This map allows us to describe both a
boundary-based construction and an exhaustion-based construction of Hardy spaces for H.
We are primarily interested in the former approach.

For k € Ny, let

A(H) = [F € O(H) NCHUT) : X F (21, z5) is bounded at (0, 0)] :

and 5%(]1—]1) be the closure of Ay (H)|T in L%(T). As in the case of D* and D x D*, we can
describe these spaces and their Szeg6 kernels explicitly.

Theorem 6.1 Let k € Ny. Then

SR =1 Y fiee VTR e LXT): fj =0, if max{j, £+ j+k} <0
(j.0)ez?
(6.3)
In particular, the filtration {573%(]1—]1)}/@\10 does not stabilize. Moreover,
— N—(k—1)
sk(z, w) = KoL) zeH, weT, (6.4)

472 (zawa — 2101 (1 — 22W2)
is the Szegd kernel for Sﬁ% (HD).

Proof Fix a k € Ny. Our proof relies on the fact that ®* : F|p +— (F o ®O)|r is an
isometric isomorphism between Ay (H)|T and Ay (D x D*)|r in the L?(T)-norm. The isom-
etry follows from an integration by substitution argument. For the isomorphism, note that
F e Ay (H) if and only if the function (z1, z2) — zéF(ng, 77) is holomorphic on D x D*,
bounded on a neighborhood of {z> = 0}, and continuous up to T. This is true if and only if
zéF(lez, 22) = G(z1, 22)|pxp* for some G € A(D?). In other words, F|r € Ay (H)r if
and only if (@*F)|T € Ay (D x D*)|1. Now, ®* extends to an isometry between f)%(H) and
ﬁ%(ID) x D*) which, in terms of Fourier expansions, is given by

e - Z fj,eei(jeﬁmﬂl—) Z J?j,éei(j91+(j+l)92)'
(j,AE)EZ2 (j,Z)EZ2

The characterization in (6.3) now follows from that of 56,% (D x D*) in (6.1).

Finally, for any F e A (H), the reproducing property of the Szeg6 kernel s2*2" for
.6%(]1)) x D*) applies to @*F € Ax(D x D*). We obtain that

F(z) = / @ F)(w) s2*P" (071 (2), ® ! (w)) dor(w), ze€H,weT.
T

Now, a straightforward computation yields the reproducing property of s; as defined in (6.4).
It is also clear that si (z, -) € Ag(H) for any z € H.

We briefly discuss an exhaustion-based construction of Hardy spaces H,% (H), k € No, for
HI, which in the case of k = 1 is the space constructed by Monguzzi in [22]. For k € No, let

HAH) = {F € O(H) : [|Fllyg ) < oo],
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where 1
2

O<s,r<l

2 27
2k 5
r i0) . i6
||F||H,§(H) ‘= sup ﬁ//‘F(rse Lre'”?)| d6,do,
4
00

Rather than establish a direct isometric isomorphism, up to a factor, between H? (H) and
$H2(H), we argue that ®* : F > F o O is an isometric isomorphism between H],%(H) and
H% (D x D*). From the proof of Theorem 6.1, we know that ®* is an isomorphism between
Ar(H) and Ay (D x D*). Since these spaces are dense in the respective H2-spaces, it suffices
to show that ®* is an isometry from (A (H), ||'||H§(1HI)) to (A (D x D*), ||.] IH%(DXD*)). This
is a standard computation, by way of integration by substitution.

6.3 The (rational) power-generalized hartogs triangles

We now consider the general case of H,, /,. For k € Ny, define
A yyn) = [F € Oy /n) NCHyy/, UT) - zéF(m, z2) is bounded at (O, 0)] .

Let ﬁ%(Hm/n) be the closure of Ay (H,,/,)|T in L*(T). As in the case m = n = 1, using

(Ch Jn» We see that

D) =4 Y fiee VTR e L2(T) 2 £ =0, if max{j,nj+ml+mk} <0¢.
(j.0ez?
Next, we use the map ©,,/, to compute the Szeg6 kernel for f)%(]l-]lm /n)-

Theorem 6.2 Let m, n € N with ged(m, n) = 1. Set
m—1 )
Punla,b) = (@ )" Ul (a,b)eC
r=0

Then, for k € Ny,

L (Z2w2)_k Pm,n (z1wy, 22w7)
472 ((z2w2)" — (1w ™) (1 — z2wa)’

is the Szegd kernel for 56,% (Hypa ).

se(z, w) = z € Hpypm, weT, (6.5)

In order to prove Theorem 6.2, we need the following two lemmas. The proofs are straight-
forward applications of integration by substitution and partial fraction decompositions, so
they are omitted.

Lemma 6.3 Suppose f € C(bD). Then
/ ¢ de = f)dz. (6.6)
lg1=1 lzl=1

More generally, ifn € N, a € C\ S', and ay, ..., a, denote the n"-roots of a (counting
multiplicity). Then

n

e N f(w)
Z </| 761;) =n /|w\=1 — dw. 6.7)

o V=16 —dj
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Lemma 6.4 Letb € C\ {0} and b, ..., by, denote the m™-roots of b (counting multiplicty).
Then

m—1
anrl Pvq
m > CpgXx™Yy

i p,q=0
— (x— b")(y bo) " —b")(y" —b)

where

0, if np+1+q%0(modm),
(6.8) Cpq = np+leg

b=, if np+1+q=0(modm).

Proof of Theorem 6.2 For any k € Ny, s¢, as defined in (6.5), satisfies sy (z, -) € Ax(Hy/n)
for all z € Hi;, /. Thus, it suffices to show that s has the reproducing property for 55]% (Hypn)-
Since |z | |T = 1, by Proposition 3.14, we only need to prove this for k = 0.

Recall that ©,,/,(¢1, $2) = (¢1'¢y, ¢5") maps D x D* onto H,, /. Given F e Ag(H/n)
and z = (z1, 22) € Hyp, let 211, ..., 214 and 221, ..., 22, denote the n'M-roots and m™-roots
of z; and z7, respectively, so that F(z1, z2) = F(zlj , Zze) foranyl < j <nandl < ¢ <m.

Thus,
F(z1,22) = Z Z(F © Om/n) ( Jzz)

Zl/l

We apply the Cauchy integral formula for D? to (F 0 ©,,/,) € Ao(D x D*) = A(D?), and
obtain the following sequence of arguments.

F Om n
QrimnF(z1.20) = ZZ/ (Fo ° /)(Cl $2) ey de
=1 j=1 - 222 (62 — 220)
F n f'l, m d
— Z/ f (§1 gzzlgz)dé‘l o
ol=1 =1 & — 2t (&2 — z20)

j= 220

El(zHS F(&", §2m) dg
d
Z/z\ 1 /E\ 1 (e — ’U> 5 (&2 — z20)

©6.7) / / F(wi, §5") dé
= n § dwq
= Jel=t \ S =1 (w, —gE ) (&2 — 220)

F(wl {2 Z%
dw; dés.
// ( (&3 o= =256 — Zzz)) wae

Now, by Lemma 6.4 (with x = gi%, y = ¢ and b = z7), we have that
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m— no\D
m 5 Y g (gifll) &
@ni)?mnF(z1,22) = mn Flw, &7 P40
<2 T —w {mn(iiz'l)( m __ )
2 G —n)G

dwido

m—1 np+ltq _ gt
DY <22 " CP‘I) 21W1)P (2205) D

= mn // F(wi, &) Pzt — —do,
g (2 = uy) @' - ) w

where ¢ 4 are as in (6.8) (with b = z3). Applying (6.6) in the ¢, variable, we get

_ ~ . . np+1l+q
> 1: Cp.g (1W? (2w)" T dwy dw
@riYF(e1.20) = / / F(wy, wy) =2a=0 g ST 2272 S S
T (Zzwz — 3] wy )(1 — zow2) wp w2
where
m-l nptlig mzl
Z E;W (a)lﬂ (b)n+1— o — Z (a)r (b)n—L;J = Punla,b).
p4g=0 r=

This settles our claim, once we observe that

m—1 m—1

~ _ npt1+ _ynr
> Spg @P B =3 @ 0" = Paab).
p.q=0 r=0

m}

In view of our minimum criterion for a Hardy space, we end this subsection with an
exhaustion-based definition of Hardy spaces for H,, /,,. For k € Ny, let

H/%(Hm/n) = {F S O(Hm/n) : ||F||H]%(]H[m/,,) < OO} ’
where
1
2% 2w 2w ) 2
[1F 32 = swp [ ‘F(r%s%eio' re'®)| dodo,
Hk(Hm/n) ' 0<s.r<1 47'[2 ’
0 0

6.4 LP-regularity of the Szeg6 projection
We briefly remark on the L”-mapping properties of the projection operator induced by the

Szegé kernel s for S’Ji(Hm/,,), k € No,m,n € N, ged(m, n) = 1. In [22], Monguzzi shows
that when k = m = n = 1, the densely defined operator

Sk : LX(T) N LP(T) — 97 (Hyp/n) (6.8)
[ Sef = <Z > /Tf(w) - sk (2, w)dmr(w)) ‘T
extends to a bounded operator from L”(T) to L?(T) for any p € (1, 0o). This is done by

realizing S as a Fourier multiplier operator on the 2-dimensional torus T. As a generalization
of this fact, we note that Sy is the Fourier multiplier operator
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f(eiel, eiGg) _ Z fAj,Z el'j91ei202 — Z c(j, Z)fi,{ eij@] eil@z’ fe L2(T),

(j,0)ez? (j,b)ez?

where, using the convention that sgn(0) = 0,

. 14+sgn(j+1) 1+sgn(nj+ml+mk—+1) .
c(j, O) = - . (.0 e
2 2
Then, by the same argument, (6.8) extends to a bounded operator from L?(T) to L?(T),
1l <p<oo.

The Szegd projections considered above do not exhibit the irregularity properties of the
Bergman projection, see [7,14], because the underlying Hardy spaces are supported only on
the distinguished boundary of the domain. It is possible that if one considers Hardy spaces
supported on the full boundary of the domain, then a stronger connection with the Bergman
projection will emerge.
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