Parabolic Implosion

Han Peters and Liz Vivas

1. Introduction

In discrete dynamical systems one considers orbits of self-
maps f : X — X. More generally one can consider a fam-
ily of selfmaps f; : X — X, depending on one or more
parameters 4 € A. A central topic in dynamical systems is
the dependence of dynamical behavior on the parameter:
do small changes in 4 lead to wildly different dynamical
behavior? Or does the opposite hold: are all nearby maps
in some sense qualitatively similar?

The strongest form of qualitative similarity that one can
hope for is for nearby maps to be conjugate. The selfmap
fa, 18 structurally stable if for all nearby 4 ~ 1, the map f; is
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conjugate to fy; i.e, f = o fy, o ¢! for some invertible
selfmap ¢ : X — X. When this is the case we may also say
that the parameter value A, is structurally stable.

Structural stability is typically known to hold for sys-
tems that are hyperbolic, in the sense of being uniformly
expanding/contracting. If there is interference between ex-
panding and contracting behavior, or if there are invariant
sets on which the dynamical behavior is neutral, i.e., nei-
ther uniformly expanding nor contracting, then structural
stability may fail.

In one-dimensional complex dynamics structural stabil-
ity has been extensively investigated. An analytic family of
holomorphic maps f; is structurally stable near a parame-
ter A if and only if the Julia set of f; varies continuously
at Ay, a result due to Mané, Sad, and Sullivan [15]. Of
particular importance is the behavior near a parameter A
for which f;, has a parabolic cycle: a neutral periodic cycle
whose multiplier is a root of unity. These parameter values
are far from structurally stable. Paradoxically, the limit dy-
namical behavior of sequences f; forwhich 4 — 4, is quite
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well understood, and lies on the basis of many of the most
prominent results in the field.

In this note we will describe the phenomenon known
as “parabolic implosion” and sketch a proof of its occur-
rence. We will describe the role of parabolic implosion in
the proofs of several classical results in the field. We finish
by discussing the status of parabolic implosion in complex
dynamical systems in higher dimensions, and its relevance
for recent breakthroughs in the area.

2. Varying Julia Sets

For simplicity we will now only consider rational functions
f : € - C, where C stands for the Riemann sphere. The
Fatou set of f, which we denote by F(f), consists of all
z € C for which the family {f°"} is a normal family on an
open neighborhood of z, where we use f°" to denote the
nth iterate of f. Recall that a family of maps is said to
be normal if it is equicontinuous or, equivalently, by the
Arzela-Ascoli theorem, if it is precompact; i.e., every se-
quence has a uniformly convergent subsequence. The Julia
set J(f) is the complement of the Fatou set.

Many interesting dynamical phenomena (though cer-
tainly not all) already occur for the seemingly simple fam-
ily of quadratic polynomials. After conjugation with an
affine map, a quadratic polynomial can be reduced to the
form p.(z) = z? 4+ c. We describe three possible behaviors
of quadratic polynomials via the relative simple examples
c=0,c=-1,and c = 1/4.

When ¢ = 0 the Julia set of py(z) = z? is the unit circle.
The Fatou set consists of two connected components: the
basins of the attracting fixed points at 0 and co. A fixed
point is a solution of the equation z = p.(z). We say a
fixed point is attracting if |p.(z)| < 1, and repelling when
|pe(z)| > 1. When |p.(z)| = 1 we say that the fixed point z
is neutral. Since fixed points are solutions of the equation
p.(z) — z = 0, the implicit function theorem implies that
fixed points z with pz(z) # 1 depend locally analytically
on the parameter c.

For0 < r < 1 observe that the disk B(0, 7) := {|z—0| < r}
is mapped strictly inside itself by p,, and similarly for
B(oo,1) :={|z] > %}, the “disk” centered at co. This behav-
ior is stable under perturbations: for sufficiently nearby
f ~ Do (using the supremum on compacts norm for exam-
ple) both B(0,r) and B(eo, r) are still mapped strictly into
themselves; hence all orbits in each of these disks converge
to an attracting fixed point. It follows that the Julia set J;
varies continuously (in the Hausdorff metric, discussed be-
low) near p,y. Note that structural stability holds regardless
of whether we consider perturbations f in the class of qua-
dratic polynomials or in the class of rational functions.

When ¢ = —1 the Fatou set again consists of two attract-
ing basins: the basin of the attracting fixed point at oo, and
the basin of the attracting 2-cycle {0, —1}. The latter consists
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Figure 1. c = —1.

of countably many connected components (see Figure 1),
but regardless the above argument still holds, and the map
p_; is structurally stable.

1 .
When ¢ = Z the Fatou set once more consists of two

connected components: the basin of the attracting fixed
point at oo, and the basin of the parabolic fixed point z =
1/2; see Figure 2. A fixed point z = f(z) is called parabolic
if f'(z) is a root of unity. By considering a suitable iterate
one can always reduce to the case f'(z) = 1, a situation
already satisfied for the first iterate of py4.
Observe that we can write
2

pya(z) =z + (Z - %) ;

hence % is a double solution of the equation f(z) —z = 0.

This double solution splits up into two separate solutions
for ¢ # 1/4, which do not vary analytically at ¢ = 1/4. It
turns out that there exist arbitrarily small perturbations ¢ ~
1/4 for which the Julia set of p, is not a small perturbation
of J(py/a).

Figure 3 illustrates the dynamics of a conveniently cho-
sen perturbation p., with ¢ ~ 0.25 (the precise value of c is
0.250039 + 0.000000315817i; see Section 5 for details). The
constant c lies outside of the Mandelbrot set, which implies
that the Julia set is totally disconnected and the Fatou set
is a single connected component: the basin of infinity (see
section 6 for precise definitions). Observe that the outline
in the figure is almost identical to that of Figure 2, but the
large black component, the “parabolic basin,” has disap-
peared. In fact, the small black spots that are still visible
are faulty artifacts of the fact that the computer uses only
a finite number of iterates. The computer determines for
each chosen initial value whether the first 10, 000 points of
its orbit stay in a disk of given radius. If it does, the ini-
tial value is drawn in black; if not, the color of the initial
value depends on the number of iterates needed to leave
the disk.

Near each of the black spots one can clearly see yellow
spirals in what used to be the parabolic basin. The yellow
is contained in the Fatou set, but indicates the presence of
nearby points in the Julia set, referred to as embellishments.
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Figure 2. ¢ = i.

A consequence of the Lavaurs Theorem, discussed below,
is that the embellishments do not vanish for a certain se-
quence of ¢'s approaching 1/4, which implies that the Julia
set does not vary continuously near 1/4 and the map py/4
is not structurally stable.

It was proved by Mané, Sad, and Sullivan [15] that the
Julia set of p. varies continuously near ¢, € C if and only
if p, contains no neutral periodic points, i.e., periodic
points z = pé‘o (z) for which |(pf§0 )'(z)] = 1. For more
general families of rational functions, one should consider
“nonpersistent” neutral periodic points.

Instead of giving a precise definition of a persistent neu-
tral cycle, we give a trivial example demonstrating that a
neutral cycle does not need to be an obstruction to struc-
tural stability. Note that each map in the family g;(z) =
z + (z — d)? has a parabolic fixed point at the point d,
which of course does depend analytically on the param-
eter. The maps g4 are all conjugate to g, via the transla-
tions z —» z + d, and the Julia set therefore varies con-
tinuously. Persistent neutral cycles cannot occur for the
quadratic family {p.}.

3. Semicontinuity

Let us recall the topology on the set of compact subsets of
a metric space (X, d). Given two compact subsets A,B € X
we define

d(A,B) := sup inf d(a, b).
acA beB
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Figure 3. ¢ ~ 0.25.

We note that d(-, -) is not symmetric, and therefore not a
metric. To fix this we define

dy (A, B) := max{d(A, B),d(B,A)},

which is symmetric and known as the Hausdorff metric.
When we talk about the possible (dis)continuity of the Ju-
lia set, it is with respect to the topology induced by dp.
Denote by Comp(X) the set of compact subsets of X. A
map f : A - Comp(X) is upper semicontinuous at Ay if
d(f(A), f(1p)) = 0 when A — 4, and it is lower semicontin-
uous if d(f(1y), f(1)) > 0 when 1 — A,.

As illustrated in Figures 2 and 3, the Julia set does not
necessarily depend continuously on the parameter. How-
ever, the Julia set always depends lower semicontinuously.
To see this, we recall that repelling periodic points are
dense in the Julia set, a fact proved independently (and
with different proofs) by Julia and Fatou. Given a ratio-
nal function fj, we can therefore find a large but finite
set of repelling periodic points that are arbitrarily close to
each point in J(fy). Each of these finitely many periodic
points varies continuously by the implicit function theo-
rem, hence for f; sufficiently close to f; there are still re-
pelling periodic points close to any point in J(f;). Since
these perturbed repelling periodic points must lie in J(f}),
it follows that d(J(fy),J(f3)) is arbitrarily small.

We note that this argument does not imply that
d(J(f1),J(fp)) is small, which is not necessarily the case.
In fact, consider again the polynomial p;/4(z) = z* + 1/4,
and let wy be any point in the interior of the black set
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depicted in Figure 2. This black set, informally called the
“cauliflower,” is the filled Julia set K(p;,4), and its bound-
ary is the Julia set J(py/4). It turns out that there are arbi-
trarily small perturbations ¢ of 1/4 for which wy, € J(p,).
The set of all accumulation points of sets J(p.), as ¢ — 1/4,
is therefore equal to the black set K(p;,4), the cauliflower
region enclosed by J(p,,4). Informally we say that the Ju-
lia set of the parabolic function p;,, implodes under small
perturbations, a phenomenon referred to as parabolic im-
plosion. Note that it is not the Julia set that implodes; the
Julia set becomes larger. It is the connected component of
the Fatou set (the cauliflower) that implodes.

In order to obtain a better understanding of the implo-
sion phenomenon we will introduce two additional con-
cepts: Fatou coordinates and the Lavaurs Theorem.

4. Fatou Coordinates
Key ingredients in our understanding of the dynamics near
a parabolic fixed point, and thus necessary for understand-
ing parabolic implosion, are the so-called Fatou coordi-
nates, sometimes referred to as Leau-Fatou coordinates.
While the description holds for maps that are only lo-
cally defined, for simplicity we will consider a polynomial
f of degree at least 2 with a parabolic fixed point. Without
loss of generality we may assume that this fixed point is
the origin; hence we can write the Taylor series expansion

f@)=z+az% +a3z> + .
Since we assumed that the degree of f is at least 2, there
exists a minimal k > 1 for which ay,; # 0. The number k
is referred to as the order of the parabolic fixed point. Let us

first consider the case k = 1. By conjugating with a linear
map we may then assume that f is of the form

f@=z+22+azz>+---.

Observe that for r > 0 small enough the open disk B(—r, r),
whose boundary contains the origin, is mapped into it-
self by f. All the orbits in this disk converge to the ori-
gin, tangentially to the negative real axis. The disk B(—r,r)
is called a parabolic petal. For a set U C C, we write
f~™(U) = {z € C; f"(z) € U}. The set of all points whose
orbits land in the petal,

U @erm,
neN

is called the parabolic basin, denoted by B. Note that the
petal is not unique, but the basin is; it does not depend on
r.
Conjugating f on the petal with the change of coordi-
nates u = —l, we obtain a map of the form
z

uu+1+r(u),

defined on the half-plane Re(u) > zl’ where |r(u)| — 0 as
r
u — oo. Leau and Fatou proved that we can further change
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coordinates to obtain the map
u—-u+1.

By pulling back the change of coordinates by the dynamics,
we can extend the change of coordinates holomorphically
to the entire parabolic basin, obtaining a map ¢ : By —
C satisfying the Abel functional equation:

(pfof)2) =9s(2) + 1.

We refer to ¢ as the incoming Fatou coordinate. By consider-
ing the inverse map, which is only locally defined, we can
define ¢¢-1, a transformation that maps an outgoing petal
B(r,r) to roughly a left half-plane, and conjugates f~! to a
translation by —1. The transformation ¢ -1 cannot be glob-
ally extended, since f~! is not globally defined. However,
the inverse of g1, which we will denote by 3y : C — C,
can be extended by use, of the forward dynamics of f to
a globally defined map, the outgoing Fatou coordinate. The
map ¥y satisfies the following Abel equation:

bp(Z+1) = fotpp(2).

(Here we use the variable Z to indicate we are working now
with the inverse map of ¢.)

For a polynomial with a parabolic fixed point, both ¢
and 9 are surjective.

For parabolic points of higher order k > 2 we can simi-
larly define k parabolic petals, each with its corresponding
parabolic basin and incoming Fatou component. By con-
sidering the inverse map one can also define k outgoing
Fatou coordinates. Consider Figure 4 for an illustration of
the distinct parabolic basins for a parabolic fixed point of
order 3.

For fixed points of a polynomial p with derivative a root
of unity we can instead consider a suitable iterate of p in
order to reduce to the case of derivative 1. The same trick
can be used for parabolic periodic cycles.

We conclude this section by introducing the Lavaurs
maps, which will play a vital role in the next section. We
restrict our attention again to a polynomial f with a par-
abolic fixed point of order k = 1, and denote the cor-
responding incoming and outgoing Fatou coordinates by
¢r and ;. Let « € C and denote by 7, the translation
z — z + a. The Lavaurs map of phase « is defined by

Lag i=9Protyopy.
We remark that £, y maps the parabolic basin B surjec-
tively to the entire complex plane C. The discussion in this
section holds just as well for rational functions, except that
in that case the image £, ¢(By) avoids at most a single

point in the Riemann sphere € = C U {o0}.

5. Lavaurs Theorem

Let f be a rational function with a parabolic fixed point
at the origin, given locally by a power series expansion
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Figure 4. Parabolic fixed point of order 3.

f(z) = z+ z* + 0(z®). We are interested in an analytic
one-parameter family of rational functions containing f,
for which the parabolic fixed point is nonpersistent. We
consider the specific one-parameter family given by

@) = f(z) + ¢
fore e C.

Theorem 1 (Lavaurs). Let @ € C, and consider two sequences
N, € N and ¢; € C satisfying

T
N-Z-a
§

as j —» oo. Then
(fsj)ONj = Lo
where the convergence is locally uniformly on B.

For a complete proof of the theorem above, the reader
can consult the paper by Shishikura [17].

We can now explain the choice of the map f used to
generate Figure 3. Given any a € C we can forany N € N
choose ¢ such that the equation

v
N—-——=a
€

is satisfied, i.e., € = /(N — o). The Julia set of f; equals the
Julia set of f2N. Hence for large N we iterate in effect a very
small perturbation of £, on By, with the understanding
that any orbit landing well outside of B will converge to
infinity under iteration of f,. For generating Figure 3 we
used f = p14, a = 2i, and N = 500, which gives

f.(z) = z% 4 0.250039 + 0.000000315817i.
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Figure 5. ¢ ~ 0.25,N = 100.

The picture is generated by iterating f. 10,000 times. Note
that this corresponds to iterating £, ¢ only 20 times, a
rather small number, which explains the occurrence of the
faulty black spots. If for the sake of comparison we use the
same function f and phase «, but use N = 100, then we
get

f.(z) = z% + 0.250986 + 0.0000394469i.

Generating the computer picture for the same 10,000 iter-
ates, which now corresponds to the considerably larger 100
iterates of £ y, gives Figure 5. We note that the illustra-
tion is almost identical to Figure 3, except that the black
spots are no longer visible. Even though N = 100 gives a
less accurate approximation of £,, the computer picture
generated by iterating 10,000 times provides a better illus-
tration for the dynamical behavior of £,.

Let us end this discussion by indicating why the Lavaurs
Theorem implies parabolic implosion. Choose z € Bjy.
We wish to show that there exist arbitrarily small perturba-
tions f; of f for which there are points in the Julia set J(f;)
arbitrarily close to z.

Write {, = ¢(2), and let {; € C be such that 3#(¢;) =
w € dBy. Weleta = §; — ¢, and for N € N we define
en = /(N —a). We recall that with these choices of ey the
maps fg}f,\’ converge to L ¢ uniformly on compact subsets
of By. Further observe that

La’f(Z) = ¢f 0T, 0 (Pf(Z) =we an C Jf.

Now let U be an arbitrarily small open neighborhood of z.
It follows that £, ((U) gives a neighborhood of w; hence
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by uniform convergence f(U) still contains a fixed neigh-
borhood V of w for N sufficiently large. Now recall that
the dependence of the Julia set on the parameter ¢ is lower
semicontinuous. Hence for €y small (which corresponds
to N large), the Julia set J(f;, ) must intersect V. Invariance
of the Julia set implies that J(f;, ) must intersect U for N
sufficiently large.

Since the above holds for any z € B, we have indicated
a proof, using the Lavaurs Theorem and properties of the
Fatou coordinates as givens, of the following general result:

Theorem 2 (Parabolic implosion). Let f = f;, be a rational
function with a parabolic fixed point at the origin, written locally
as f(z) = z + z* + O(z*). Denote the parabolic basin by By

and by Ff its closure. Let {f;} be an analytically varying one-
parameter family of rational functions for which the parabolic
fixed point is not persistent. Then

By () Iw-

6>0 |A|<d

Thus in general the Julia set varies lower semicontinuously but
not continuously at fq.

Note that for the quadratic polynomial f = p;,, we ac-
tually obtain an equality here, due to the fact that the com-
plement of B, . equals the basin of infinity. In general
this will not be the case.

6. Extensions and Applications
of the Lavaurs Theorem

In this section we turn our focus to the family of qua-
dratic polynomials. By conjugating with affine transforma-
tions the family of quadratic maps can be parametrized by
pc(z) = z* + ¢ with complex parameter c. A crucial role
in the dynamics of rational functions is played by the or-
bits of critical points, i.e., points where the derivative van-
ishes. These are exactly the points where the function is
not locally invertible. For the polynomial p. the orbit of
the unique critical point z = 0 is therefore of singular im-
portance. If this critical orbit is bounded, the Julia set is
connected, while if the critical orbit is unbounded, the Ju-
lia set is completely disconnected and therefore a Cantor
set. This dichotomy motivates the definition of the set

M :={c : {p¢(0)}nen bounded},

known as the Mandelbrot set. Note that the characteriza-
tion in terms of the critical orbit is useful for computer
illustrations, such as Figure 6.

Let us make a few more comments regarding the Man-
delbrot set, without being too precise. First, whereas the
Mandelbrot set is defined in terms of quadratic polynomi-
als, it turns out to be a universal object; that is, it arises
whenever one studies parameter spaces of rational maps.
It is thus a central object in complex dynamical systems,
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Figure 6. Mandelbrot set.

and has been studied in great detail. One of the first re-
sults regarding the Mandelbrot set is that it is connected
(see Douady and Hubbard [9]). Still open, and considered
one of the main open problems in the field, is whether the
Mandelbrot set is locally connected.

The boundary of the Mandelbrot set is exactly equal to
the set where the dynamics of p, is not structurally stable.
It is referred to as the bifurcation locus. It turns out that
there is a strong relationship between the boundary of the
Mandelbrot set near a parameter ¢, and the Julia set of the
parameter J, , an observation that will be important for
the discussion below. Compare for example the bound-
ary near ¢ = 0.25 illustrated in Figure 7 to the Julia set
depicted in Figure 2. This relationship is one of the many
intricate reasons why understanding the dynamics of qua-
dratic polynomials is so closely related to understanding
the boundary of the Mandelbrot set, and vice versa.

A beautiful result obtained by Shishikura [18] (see also
McMullen for another proof [16]) gives the existence of
parameters ¢ for which the Julia set J,, has Hausdorff di-
mension equal to 2. Note that 2 is the largest possible
dimension for any subset of C, trivially assumed by sets
with interior. The fact that such naturally occurring sets J,,
without interior can have dimension 2 may come as a sur-
prise. Moreover, a consequence of the relationship hinted
at above is that the boundary of the Mandelbrot also has
Hausdorff dimension 2.

More recently Buff and Cheritat [7] proved that Julia
sets of quadratic polynomials can have positive Lebesgue
measure, which is considerably stronger than having
Hausdorff dimension 2. The relationship between the

VoLuME 67, NUMBER 8
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Figure 7. Zooming in on ¢ = 0.25.

Mandelbrot set and Julia sets is however not strong enough
to deduce the same result for the boundary of the Mandel-
brot set. See the results of Avila and Lyubich [3] for further
discussion regarding Hausdorff dimensions and measures
occurring for quadratic polynomials.

The strategy of Shishikura’s proof is to construct qua-
dratic polynomials with Hausdorff dimension arbitrarily
close to 2. These polynomials will have a fixed point with
multiplier a close to some exp(27ip/q) with suitable in-
tegers p and q. Shishikura then constructs a hyperbolic
subset (with Hausdorff dimension close to 2) of the Julia
set. The main tool for constructing the hyperbolic set and
estimating its dimension is the theory of parabolic bifurca-
tions. The result follows after taking an appropriate limit.

7. Parabolic Implosion in Higher Dimensions

In recent decades there has been significant interest in the
dynamics of polynomial and rational maps in several com-
plex variables. Compared to the deep existing theory of
one-dimensional systems, our current understanding of it-
eration problems in several variables remains poor. We
wish to point out that this is not entirely our fault: it has
become clear that intricate new phenomena arise in higher
dimensions, phenomena that make a rigorous analysis of
the systems much more complicated.

An example of the difficulties that arise in higher dimen-
sions already occurs when trying to find the right analogue
of the Lavaurs Theorem. For example, the correct inter-
pretation of parabolic cycles, central in our earlier discus-
sion, is not at all clear in higher dimensions. In dimen-
sion n, the Jacobian derivative at a fixed point will typically
have n distinct eigenvectors, with corresponding eigenval-
ues. Any number of those eigenvalues could be roots of
unity. What makes the situation even more complicated is
that resonance phenomena are guaranteed to occur when
one eigenvalue is a root of unity, and they can also occur
even when no eigenvalue is a root of unity.
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For the simplest generalization of a parabolic fixed
point, exactly one eigenvalue is assumed to be 1, while
all other eigenvalues have norm strictly greater than 1 (or
equivalently, strictly smaller than 1, since these systems are
locally invertible). We call such fixed points semiparabolic.
Some of the bifurcation phenomena that can occur for
semiparabolic fixed points have recently been described
by Bedford, Smillie, and Ueda [5], who proved a two-
dimensional generalization of the Lavaurs Theorem. The
analogues of parabolic petals and Fatou-Leau coordinates
for semiparabolic of order-1 fixed points were constructed
earlier by Ueda [20].

A general goal in dynamical systems, closely related to
the stability problem discussed earlier, is to describe the
dynamical behavior of “typical” systems. An early attempt
was formulated in Smale’s Program. Smale suggested that
hyperbolic systems, which should be seen as the simplest
possible systems, are open and dense. Although Smale’s
Program did not survive long in the real setting (it was
proven to be false in the early 1970s, amongst others by
Smale), the density of hyperbolicity remains open for fam-
ilies of one-dimensional polynomials, and is generally
thought to hold true for the quadratic polynomials.

In higher dimensions density of hyperbolicity is known
to be false; a first construction is due to Buzzard [8]. Buz-
zard proved that there exist open sets in the complex pa-
rameter space of polynomial automorphisms, all of which
have homoclinic tangencies, i.e., tangencies between stable
and unstable manifolds of a saddle fixed point. Such tan-
gencies prevent hyperbolicity; hence persistent tangencies
show that hyperbolicity is not dense.

Motivated by these results one might wonder if there is
a larger set of dense automorphisms that can still be un-
derstood relatively well. Palis suggested that the parame-
ters with homoclinic tangencies might be dense inside the
maps that are persistently nonhyperbolic. Although the
Palis Program also turned out to be false in greater gen-
erality, it remains unsettled for the family of polynomial
automorphisms of C2.

In [10] Dujardin and Lyubich proved a density property
for parameters with nonpersistent homoclinic tangencies
in the bifurcation locus for families of polynomial auto-
morphisms of C? with nontrivial dynamics. Their result re-
lies in an essential way on implosion techniques for semi-
parabolic fixed points of arbitrary order of contact.

At the other extreme, one can consider as generaliza-
tions of parabolic fixed points the case where all general-
ized eigenvalues are equal to 1. The most studied case is
that of maps tangent to the identity. The existence of petals
and Fatou-Leau coordinates for such maps has been stud-
ied in classical papers [1, 11], a description that has recently
been completed in [13]. The (dis)continuity of the dynam-
ics near a tangent to the identity parameter has recently
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been considered by Bianchi [6], who proved a version of
the Lavaurs Theorem. Using this generalization, Bianchi
proves the discontinuity of the filled Julia set for perturba-
tions of so-called regular polynomials.

Yet another example of a phenomenon that occurs only
in higher dimensions is that of wandering Fatou components.
A Fatou component is a connected component of the Fa-
tou set. A Fatou component is mapped exactly onto a Fa-
tou component, and the layout of these components to-
gether with the action of the map paints an insightful com-
binatorial picture of the dynamics. For rational functions
in one complex variable, Sullivan [19] showed that each Fa-
tou component is preperiodic. The possible periodic Fatou
components have been precisely described in the works of
Fatou, Siegel, and Herman: The action of the map on an in-
variant component either attracts all orbits to a given fixed
point (attracting if it lies in the interior, parabolic if it lies
on the boundary) or induces a circle action.

In higher dimensions there has been significant
progress in describing invariant Fatou components [4, 14],
but it was recently shown that there can exist wandering do-
mains [2]. Astorg, Buff, Dujardin, Peters, and Raissy have
used parabolic implosion to prove the existence of a wan-
dering Fatou component in two dimensions [2]. Based
on an idea of Lyubich, they use parabolic implosion tech-
niques on families of polynomial skew products to con-
struct wandering domains. More precisely, the idea is to
combine slow convergence to an invariant parabolic fiber
and parabolic transition in the fiber direction, to produce
orbits shadowing those of a Lavaurs map.

The new phenomena arising in higher dimensions cre-
ate important challenges for the years to come. Obtaining
a more thorough understanding of the behavior near par-
abolic parameters will form an important step in tackling
these challenges.
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