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NON-AUTONOMOUS PARABOLIC BIFURCATION

LIZ VIVAS

(Communicated by Filippo Bracci)

Abstract. Let f(z) = z+z2 +O(z3) and fε(z) = f(z)+ε2. A classical result
in parabolic bifurcation in one complex variable is the following: if N − π

ε → 0

we obtain (fε)N → Lf , where Lf is the Lavaurs map of f . In this paper
we study a non-autonomous parabolic bifurcation. We focus on the case of
f0(z) = z

1−z . Given a sequence {εi}1≤i≤N , we denote fn(z) = f0(z) + ε2n.

We give sufficient and necessary conditions on the sequence {εi} that imply
that fN ◦ . . . f1 → Id (the Lavaurs map of f0). We apply our results to prove
parabolic bifurcation phenomenon in two dimensions for some class of maps.

1. Introduction

The theory of parabolic bifurcation has been extensively studied in one dimension
starting with the pioneering work of Lavaurs and Douady, as well as Shishikura [4,
6,9]. In recent years, parabolic bifurcation has been explored in several dimensions;
Bedford, Smillie, and Ueda studied semiparabolic bifurcations [3] and Bianchi [2]
studied parabolic bifurcations for a class of maps in C2. Also the recent works of
Dujardin and Lyubich [5] and Astorg et al. [1] have shown applications to new
phenomena in several dimensions using higher dimension parabolic bifurcations.

In this article we propose to study parabolic bifurcation in two dimensions by
considering non-autonomous sequences of one dimensional Möbius maps. Let us
recall the result in one dimension and explain our result.

The following is a classical result by Lavaurs [6].

Theorem 1 (Lavaurs). Let f be defined in a neighborhood V of the origin and
be of the form f(z) = z + z2 + O(z3). Consider the perturbation of f as follows:
given ε > 0 let fε(z) := f(z) + ε2. If we take a sequence of number Nε such that
Nε − π

ε → 0, then we obtain the following:

(fε)
Nε → Lf ,

where Lf is the Lavaurs map of f .

In this paper we study the following question.

Question. Let f be defined in a neighborhood V of the origin and be of the form
f(z) = z+z2 +O(z3) as above. Consider different perturbations of f as follows: fix
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2526 L. VIVAS

N > 0 then given εk = εk(N) > 0 let fk(z) := f(z) + ε2k. Under which conditions
on ε1, ε2, . . . , εN do we obtain:

fN ◦ fN−1 ◦ . . . f2 ◦ f1 → Lf ,(1)

where Lf is the Lavaurs map of f?

When (1) holds we say that “non-autonomous bifurcation” holds for f .

In this paper we focus in the case of f(z) = z
1−z and prove a sufficient and

necessary condition on the sequence {εk}1≤k≤N as follows.

Theorem 2. Fix N large. Consider {εk}, 1 ≤ k ≤ N a sequence such that:

εk =
π

N
+

α(k)

N2
(2)

(each α(k) might depend on N) such that α(k) are bounded and α(k)+α(N − k) =
O(1/N). Let fk(z) := z

1−z + ε2k. Then we have:

fN ◦ fN−1 ◦ . . . f2 ◦ f1 → Id(3)

for all z ∈ K, where K is a compact subset of C.

We call this result “non-autonomous bifurcation” for a Möbius transformation,
since in this case the Lavaurs map of f is simply the identity. We prove also that
the condition is necessary (see Section 2.4).

Remark 1. In order to prove our main result we use the theory of orthogonal
functions. This is to our knowledge the first time that we have a connection to this
field. More importantly, we only use a particular version of a general estimate for
orthogonal polynomials. We believe that the general version of this theorem must
have its corresponding bifurcation version. See Section 5 for more details.

The structure of the paper is as follows. In the next section we set the notation
as well as our theorems and the proofs. In Section 3, we give examples of sequences
that satisfy the conditions. In Section 4 we apply our results to prove parabolic
bifurcation for specific families of maps in two dimensions. In the last section, we
formulate some questions and remarks.

2. Non-parabolic bifurcation

We give a sequence of positive real numbers ε1, ε2, . . .. Consider the following
functions:

fk(z) = fεk(z) =
z

1 − z
+ ε2k

for k ≥ 1. Set
Fn = fn ◦ fn−1 ◦ . . . f2 ◦ f1.

We prove the following technical version of our theorem. We see at the end of
this section how Theorem 3 implies Theorem 2.

Theorem 3. Fix N large. Consider {εk}, 1 ≤ k ≤ N a sequence such that:
∣∣∣∣∣

N∑

k=1

(
π2

N2
− ε2k

)
sin (kπ/N)2

sin(π/N)2

∣∣∣∣∣ <
A

N
(4)
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NON-AUTONOMOUS PARABOLIC BIFURCATION 2527

and
∣∣∣∣
π2

N2
− ε2k

∣∣∣∣ <
A

N3

for all 1 ≤ k ≤ N and a fixed constant A independent of N . Then:

|FN (z) − z| < C/N

for all z ∈ K, where K is a compact subset of C and some C independent of N .

(Note that when εk = ε = π/N then the conditions on the theorem are satisfied
trivially. The conclusion that limN→∞(fε)N (z) = z is a particular case of the
classical bifurcation theorem in one dimension.)

Fix N ≥ 1. Since each fn is a Möbius transformation, then we can compute the
specific formula for Fk by computing the product of the matrices related to each.
Then

(5) Fk(z) =
Akz + Ck

Bkz + Dk
;

then: (
Ak Ck

Bk Dk

)
=

(
1 − ε2k ε2k
−1 1

)(
Ak−1 Ck−1

Bk−1 Dk−1

)
.

Lemma 1. Set tk = 2 − ε2k the trace of each matrix above. Consider the sequence
p0 = 0, p1 = 1 and q0 = 1, q1 = 1 and for k ≥ 1:

pk+1 = tkpk − pk−1,(6)

qk+1 = tkqk − qk−1.

Then for any n ≥ 1 we have:

An = pn+1 − pn, Cn = qn − qn+1,

Bn = −pn, Dn = qn.

Proof of Lemma 1. It follows directly using induction. !

Although the following statement is, as mentioned above a particular case of the
general parabolic bifurcation in one variable, we redo the proof here as a preparation
step for the proof of Theorem 3.

Lemma 2. Fix N . Suppose that all εi = ε and the condition:

N − π/ε → σ.

Then FN (z) → z
1−σz . When σ = 0 we obtain FN (z) → Id.

Proof. The equation (6) is a generalization of the classical Chebyshev polynomials.
Note that the classical Chebyshev polynomial corresponds to the case of the same
εi, that is, the classical parabolic bifurcation on one variable. Indeed, if we have all
εi = ε and ti = x = 2 − ε2, then it’s well known that:

pk =
sin(kθ)

sin(θ)
and qk =

sin(kθ) − sin((k − 1)θ)

sin(θ)
,
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2528 L. VIVAS

where x = 2 cos(θ). When x = 2 − ε2, then θ = ε + O(ε3). Suppose N − π/ε → σ.
In that case N − π/ε− σ = oN (1) and we can write θ = π

N + πσ
N2 + o

(
1

N2

)
. Then

pN =
sin(Nθ)

sin(θ)
=

sin
(
π + πσ

N + o
(

1
N

))

sin
(
π
N + πσ

N2 + o
(

1
N2

)) = −σ + oN (1),

pN+1 =
sin((N + 1)θ)

sin(θ)
=

sin
(
π + π+σπ

N + O
(

π0N (1)
N

))

sin
(

π
N + πoN (1)

N2 + O
(

1
N3

)) = −1 − σ + oN (1),

and similarly pN−1 = 1−σ+oN (1), which translated to the element of our matrix:

AN = DN = −1 + oN (1), BN = σ + oN (1), CN = oN (1).

Therefore, when N → ∞, AN = DN → −1, BN → σ, CN → 0 so FN (z) →
z

1−σz . !

As it is clear from the proof of the lemma above, if we have estimates on pN and
qN , then we immediately have the estimates for AN , BN , CN , DN .

All our theorems on the non-autonomous case will deal with the case σ = 0 (also
known as the phase 0 case) for ease of notation. Similar conditions as equation (4)
can be displayed for the case σ (= 0, but they are cumbersome. We include a note
about this in the last Section 2.4.

2.1. Orthogonal polynomials. We review here some facts about orthogonal poly-
nomials. We use the following lemma from [8].

Lemma 3. Consider the sequence p0 = 0, p1 = 1 and for k ≥ 1:

pk+1 = (x + ak)pk − pk−1.(7)

Let x = 2 cos(θ); then we have the following equality:

sin(θ)pn(x) = |φn| sin(nθ − arg(φn)),(8)

where φn = 1 + δn = 1 +
∑n−1

j=1 ajpjeijθ for n ≥ 2 and φ1 = 1.

For simplification we will use the following terminology for the classical Cheby-
shev polynomials U0 = 0, U1 = 1 and for k ≥ 1, Uk+1 = xUk − Uk−1. In that case
Uk = sin(kθ)/ sin(θ) for x = 2 cos(θ).

Lemma 4. Consider the following two sequences:

p0 = 0,p1 = 1, pk+1 = (x + ak)pk − pk−1, k ≥ 1,

U0 = 0,U1 = 1, Uk+1 = xUk − Uk−1, k ≥ 1.

Let x = 2 cos(θ). Suppose there exists ε > 0 and m ∈ N such that the sequence {ai}
satisfies:

m−1∑

j=1

|ajpj | ≤ ε sin(θ);(9)

then

|pn − Un| ≤ ε

for all 1 ≤ n ≤ m.
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Proof. We use equation (8):

sin(θ)pn(x) = sin(nθ)(1 + Re(δn)) − cos(nθ)Im(δn),

sin(θ)pn(x) = sin(nθ) + sin(nθ)Re(δn) − cos(nθ)Im(δn),

sin(θ)(pn − Un) = −Im(δne−inθ).

Recall that δn =
∑n−1

j=1 ajpjeijθ; then |δn| ≤
∑n−1

j=1 |ajpjeijθ| =
∑n−1

j=1 |ajpj | <
ε sin(θ) and we immediately obtain the desired result. !
2.2. Proof of Theorem 3. We are ready now to prove Theorem 3. Fix N > 0
large. We use the lemmas referred to above with the following choices: x = 2 cos(θ)
where θ = π

N ; then we have explicit values and estimates for Ui for all i in terms of
N . In particular |Ui| ≤ 1

sin(θ) ≤ 2N
π ≤ N . Our goal is to prove that under certain

conditions on ak, then pn and Un are very close to each other.

Lemma 5. Fix N > 0. Let x = 2 cos(θ) where θ = π
N . Given a sequence {ai} for

1 ≤ i ≤ N , suppose there exists a fixed C > 0 constant such that

|ai| ≤
C

N3
≤ 1

2N2
;(10)

then we have |pi − Ui| < 2C for 1 ≤ i ≤ N + 1.

Proof. From the proof of the last lemma we have

1

N
|pn − Un| ≤ | sin(θ)||pn − Un| ≤ |δn| ≤

n−1∑

j=1

|ajpj |.

We use induction: the property is obvious for i = 1. Assume the bound holds for
i ∈ [1, n − 1]; then for i = n ≤ N + 1 we have

n−1∑

j=1

|ajpj | ≤
n−1∑

j=1

|ajUj | + 2C
n−1∑

j=1

|aj |

≤ N
n−1∑

j=1

|aj | + 2C
n−1∑

j=1

|aj |

≤ (N + 2C)(n − 1)
C

N3

≤ (N + 2C)
C

N2
.

Then
1

N
|pn − Un| ≤ (N + 2C)

C

N2
,

|pn − Un| ≤ (N + 2C)
C

N
= C +

2C2

N
≤ C + C = 2C,

which concludes the proof. !
Proposition 1. Fix N . Let x = 2 cos π

N . Suppose that
∣∣∣∣∣

N∑

k=1

akU2
k

∣∣∣∣∣ ≤
C

N
and |ak| ≤ C

N3
(11)
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2530 L. VIVAS

for all 1 ≤ k ≤ N and a fixed constant C independent of N . Then:

|pN | ≤ C ′/N, |pN+1 + 1| ≤ C ′/N

for some C ′ independent of N .

Proof. We use (8) for θ = π/N :

sin(θ)pN = |φN | sin(Nθ − arg(φN ))

= |φN | sin(π − arg(φN ))

= |φN | sin(arg(φN )) = Im(φN ) = Im(δN )

= a1p1 sin(θ) + a2p2 sin(2θ) + . . . + aN−1pN−1 sin((N − 1)θ).

Then

|pN | =
1

sin(θ)
|a1p1 sin(θ) + a2p2 sin(2θ) + . . . + aN−1pN−1 sin((N − 1)θ)|

= |a1p1U1 + a2p2U2 + . . . + aN−1pN−1UN−1|

≤ |a1U
2
1 + a2U

2
2 + . . . + aN−1U

2
N−1| + 2C

N−1∑

i=1

|aiUi|

≤ C

N
+ 2C

C

N3
N2 =

C ′

N
.

Similarly for pN+1 we have:

sin(θ)(pN+1 − UN+1) = −Im(δN+1e
−iπ−iθ) = Im(δN+1e

−iθ),

where

δN+1 =
N∑

k=1

akpkeikθ;

then

e−iθδN+1 =
N∑

k=1

akpkei(k−1)θ

so

Im(δN+1e
−iθ) =

N∑

k=1

akpk sin((k − 1)θ)

and we obtain:

pN+1 − UN+1 =
N∑

k=2

akpkUk−1.

Using the fact that
∣∣∣
∑N

k=1 akU2
k

∣∣∣ < C
N implies that

∣∣∣
∑N

k=1 akUkUk−1

∣∣∣ < C′′

N and

with the same idea that for pN we obtain

|pN+1 − UN+1| = |pN+1 + 1| <
C ′

N
.

!

We are almost done proving Theorem 3, however, we still need analogue bounds
for qn.
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Lemma 6. Consider the sequences p0 = 0, p1 = 1 and q0 = 1, q1 = 1 and for k ≥ 1:

pk+1 = tkpk − pk−1,

qk+1 = tkqk − qk−1.

Then

qk = pk − p̃k−1,

where the sequence p̃k is given by the conditions p̃0 = 0, p̃1 = 1 and for k ≥ 1 we
have

p̃k+1 = tk+1p̃k − p̃k−1.

Proof. The proof follows immediately by writing down qk − pk and checking the
corresponding initial conditions. !

Using the same idea and estimates for pN we have the following.

Proposition 2. Fix N . Let x = 2 cos π
N . Suppose that

∣∣∣∣∣

N−1∑

k=1

ak+1U
2
k

∣∣∣∣∣ ≤
C

N
and |ak| ≤ C

N3
(12)

for all 1 ≤ k ≤ N and a fixed constant C independent of N . Then:

|p̃N | ≤ C ′/N, |p̃N−1 − 1| ≤ C ′/N

for some C ′ independent of N .

Proof. The proof is exactly the same as the proof of Proposition 1; the only differ-
ence pertains to the shifted terms which involve the a′

is. !

We are ready now to combine all the lemmas above and finish the proof of
Theorem 3.

We give a sequence {εk} such that:
∣∣∣∣∣

N∑

k=1

(
π2

N2
− ε2k

)
sin (kπ/N)2

sin(π/N)2

∣∣∣∣∣ <
A

N

and ∣∣∣∣
π2

N2
− ε2k

∣∣∣∣ <
A

N3

for all 1 ≤ k ≤ N and a fixed constant A independent of N . Notice that we can
write this in terms of x = 2 cos(π/N) and ak = tk − x where tk = 2 − ε2k, so we
obtain: ∣∣∣∣∣

N∑

k=1

akU2
k

∣∣∣∣∣ <
B

N

and

|ak| <
C

N3

for all 1 ≤ k ≤ N . Using Lemma 1 and Propositions 1 and 2, we see that AN =
DN = −1 + O(1/N) and BN = CN = O(1/N), which translating back into FN

implies that FN (z) → Id when N → ∞.
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2532 L. VIVAS

2.3. Proof of Theorem 2. All that is left to prove is that the conditions on εk in
Theorem 2 are satisfied for Theorem 3. Given εk such that

εk =
π

N
+

α(k)

N2
,

where α(k) are bounded, we immediately have:
∣∣∣∣
π2

N2
− ε2k

∣∣∣∣ <
A

N3
.

Also
π2

N2
− ε2k =

−2πα(k)

N3
+ O

(
1

N4

)
.

Therefore

S =

∣∣∣∣∣

N∑

k=1

(
π2

N2
− ε2k

)
sin (kπ/N)2

sin(π/N)2

∣∣∣∣∣

=

∣∣∣∣∣∣

[N/2]∑

k=1

(
−2π(α(k) + α(N − k))

N3
+ O

(
1

N4

))
sin (kπ/N)2

sin(π/N)2

∣∣∣∣∣∣
.

Since we have the condition α(k) + α(N − k) = O(1/N) we have

S =

∣∣∣∣∣∣

[N/2]∑

k=1

O

(
1

N4

)
sin (kπ/N)2

sin(π/N)2

∣∣∣∣∣∣
<

C

N4
.[N/2].N2 =

C ′

N
,

where we are using the trivial bounds on each sin (kπ/N)2

sin(π/N)2 < N2 and adding the N/2
factors. We have that both conditions of Theorem 3 are satisfied and the conclusion
follows.

2.4. Conditions are necessary. The conditions in Theorem 2 on {εk}, 1 ≤ k ≤ N
are

εk =
π

N
+

α(k)

N2
,(13)

where α(k) are bounded and α(k) + α(N − k) = O(1/N).
Note that the autonomous case N − σ − π

ε → 0, or equivalently ε = π
N + πσ

N2 +
o(1/N2), implies the convergence to the phase σ Lavaurs map of z/(1 − z) which
is precisely z/(1 − σz). So clearly α(k) bounded is not enough to conclude the
convergence of the perturbations by ε.

It might be tempting to suppose that the following conditions on α(k):

N∑

k=1

α(k) = O(1)

which is satisfied when α(k) +α(N − k) = O(1/N) is enough to prove the result in
Theorem 2. We prove below that this is not the case.

Lemma 7. There exists {εk}, 1 ≤ k ≤ N a sequence such that:

εk =
π

N
+

α(k)

N2
,
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where α(k) are bounded and
∑N

k=1 α(k) = O(1). However the condition (4) below
is not satisfied:

∣∣∣∣∣

N∑

k=1

(
π2

N2
− ε2k

)
sin (kπ/N)2

sin(π/N)2

∣∣∣∣∣ <
A

N
.

Proof. Fix N even for simplicity. We use the following choice for each α(k):

α(k) =

{
4k/N − 1 when 1 ≤ k ≤ N/2,

0 when N/2 + 1 ≤ k ≤ N,

that satisfies the condition
∑N

k=1 α(k) = O(1). However when we compute
∣∣∣∣∣

N∑

k=1

(
π2

N2
− ε2k

)
sin (kπ/N)2

sin(π/N)2

∣∣∣∣∣ =

∣∣∣∣∣

N∑

k=1

(
2πα(k)

N3
+ O

(
1

N4

))
sin (kπ/N)2

sin(π/N)2

∣∣∣∣∣

=

∣∣∣∣∣∣

N/2∑

k=1

(
2π(4k/N − 1)

N3

)
sin (kπ/N)2

sin(π/N)2

∣∣∣∣∣∣
+ O

(
1

N

)
∼ 2π

∣∣∣∣∣∣

N/2∑

k=1

(
(4k/N − 1)

N3

)
k2

∣∣∣∣∣∣

+ O

(
1

N

)
∼ O(1)

and therefore the hypotheses of Theorem 3 are not satisfied. !

Numerical experiments using the choice of α(k) above do show that pk (→ 0 and
therefore fN ◦ fN−1 ◦ . . . f2 ◦ f1 (→ Id.

Remark 2. A similar condition as the one in (4) can be formulated for phase σ,

however, the condition is equivalent to
∣∣∣
∑M

k=1

(
π2

M2 − ε2k

)
sin (kπ/M)2

sin(π/M)2

∣∣∣ < A
M for M =

N − [σ].

3. Special examples

3.1. Perturbations of the autonomous case.

Theorem 4. Fix N > 0 and a sequence of positive real numbers {εk, 1 ≤ k ≤ N}
satisfying the following condition:

εk =
π

N
+ A

(
− 1

N2
+

2k

N3

)
+ O

(
1

N3

)

for 1 ≤ k ≤ N , and a constant A independent of N . Then we have that the following
holds:

FN = fN ◦ fN−1 ◦ . . . f2 ◦ f1 = z +
B(z)

N
,

where fk(z) = fεk(z) = z
1−z + ε2k for k ≥ 1.

Proof. Note that

ak = 2 − ε2k − 2 cos
( π

N

)
=

π2

N2
− ε2k + O(1/N4)

and given the condition on εk we have therefore that

ak =
2Aπ

N

(
1

N2
− 2k

N3

)
+ O

(
1

N4

)
; |ak| ≤ C ′

N3
.
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2534 L. VIVAS

Also ∣∣∣∣∣

N∑

k=1

(
2 − ε2k − 2 cos

π

N

) sin (kπ/N)2

sin(π/N)2

∣∣∣∣∣ =

∣∣∣∣∣

N∑

k=1

akU2
k

∣∣∣∣∣

=

∣∣∣∣∣∣

&N/2'∑

k=1

(ak + aN−k)U2
k

∣∣∣∣∣∣
,

where we use Uk = UN−k. Since

ak =
2Aπ

N4
(N − 2k) + O

(
1

N4

)
;

then ak + aN−k = O
(

1
N4

)
therefore
∣∣∣∣∣∣

&N/2'∑

k=1

(ak + aN−k)U2
k

∣∣∣∣∣∣
≤ C ′

N

and both conditions of Theorem 3 are satisfied. !
Example 1. Given m ∈ N, consider the following sequence:

εk =
π

2
√

m2 + k
(14)

for 1 ≤ k ≤ 2m + 1 = N . Then N − 1 = 2m and:

εk =
π√

(N − 1)2 + 4k
=

π

N

(
1 − (2 − 4k/N)

N
+

1

N2

)−1/2

=
π

N
− π(2k/N − 1)

N2
+ O(1/N3).

So we have |ak + aN−k| < C
N4 for all 1 ≤ k ≤ N ; equivalently, Theorem 4 with

A = −π applies.

Example 2. Given m ∈ N, consider the following sequence:

εk =
π

2
√

4m2 + 2k
(15)

for 1 ≤ k ≤ 4m + 2 = N . Then, a similar computation as above shows that:

εk =
π√

16m2 + 8k
=

π√
(N − 2)2 + 8k

=
π

N
− 2π(2k/N − 1)

N2
+ O(1/N3)

and we can apply Theorem 4 again.

3.2. Very close perturbations.

Theorem 5. Fix N > 0 and a sequence of positive real numbers {εk, 1 ≤ k ≤ N}
satisfying the following condition:

∣∣∣εk − π

N

∣∣∣ ≤
C

N3

for a constant C independent of N . Then we have that the following holds:

FN = fN ◦ fN−1 ◦ . . . f2 ◦ f1 = z +
A(z)

N
,

where fk(z) = fεk(z) = z
1−z + ε2k for k ≥ 1.
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Proof. Note that

ak = 2 − ε2k − 2 cos
( π

N

)
=

π2

N2
− ε2k

and given the condition on εk we have therefore that

|ak| ≤ C ′

N4
.

So both conditions on Theorem 3 are satisfied. Indeed, the second condition is
clear, and the first one follows since each sine term is bounded by 1 above. Then

∣∣∣∣∣

N∑

k=1

(
2 − ε2k − 2 cos

π

N

) sin (kπ/N)2

sin(π/N)2

∣∣∣∣∣ =

∣∣∣∣∣

N∑

k=1

ak
sin (kπ/N)2

sin(π/N)2

∣∣∣∣∣

≤

∣∣∣∣∣

N∑

k=1

ak
1

sin(π/N)2

∣∣∣∣∣

≤
∣∣∣∣N

C ′

N4

4N2

π2

∣∣∣∣

<
A

N
.

!
Example 3. Given N ∈ N, consider the following sequence:

εk =
π

(N3 + k)1/3

for 1 ≤ k ≤ N . Then

εk =
π

N

(
1 +

k

N3

)−1/3

∼ π

N
− πk

3N4
+ O

(
k2

N7

)
.

Then Theorem 5 applies and we have the result for this specific choice of εk.

4. Bifurcations for two dimensional maps

Much of this work was inspired by the recent paper by Astorg, Buff, Dujardin,
Peters, and Raissy [1] on bifurcations for a specific map on two dimensions. Let us
recall one part of their result. Given the map:

F (z, w) = (z + z2 + az3 +
π2

4
w, w − w2 + w3) = (fw(z), g(w))

they prove that the following holds: the sequence of maps F ◦2n+1(z, g◦n2

(w)) con-
verges locally uniformly to the map (Lf (z), 0). Here Lf is the Lavaurs map corre-
sponding to the map f where F (z, 0) = (f(z), 0).

We see now that by applying the same idea we can prove the following.

Corollary 1. For the map

H(z, w) =

(
z

1 − z
+

π2

4
w, w − w2 + w3

)
= (hw(z), w − w2 + w3)

the sequence of maps H◦2n+1(z, g◦n2

(w)) converges locally uniformly to the map

(z, 0). As a consequence, the sequence (H◦n2

)n≥0 converges locally uniformly to
(πz, 0) on C × Bg, where πz is the projection to the first coordinate and Bg is the
parabolic basin of g.
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Proof. Note that the wk term depends only on w0 (and not on z0). Denote by φg

the Fatou Coordinate for the map g that conjugates g to a translation by 1 in the
attracting basin Bg. Then we obtain φg(wk) = 1

wk
+ o(1) = φg(w0) + k. From this

it follows that wk = 1
k + O

(
1
k2

)
. Let wn2 = g◦n2

(w) and hj := hwj ; then:

H◦2n+1(z, g◦n2

(w)) = H◦2n+1(z, wn2) = (hn2+2n ◦ . . . ◦ hn2+1 ◦ hn2(z), wn2+2n+1),

where each hk(z) is as follows:

hk(z) =
z

1 − z
+

π2

4
wk =

z

1 − z
+

π2

4k
+ O

(
1

k2

)
.

If we rename f1 = hn2 , f2 = hn2+1, . . . , f2n+1 = hn2+2n, then:

hn2+2n ◦ . . . ◦ hn2+1 ◦ hn2(z) = f2n+1 ◦ . . . ◦ f2 ◦ f1(z)

and

fk(z) = hn2+k−1(z) =
z

1 − z
+

π2

4(n2 + k − 1)
+ O

(
1

n4

)
,

and we see that this reduces to our Example 1. Indeed, each εk is precisely chosen
to be so that ε2k = π2

4(n2+k−1) + O(1/n4). !

Now, we use Example 2 to prove that a similar construction applies when we
change the coefficient in front of the w term on the first coordinate.

Corollary 2. For the map

L(z, w) =

(
z

1 − z
+

π2

8
w, w − w2 + w3

)
= (lw(z), w − w2 + w3)

the sequence of maps L◦4n+2(z, g◦2n2

(w)) converges locally uniformly to the map

(z, 0). As a consequence, the sequence (L◦2n2

)n≥0 converges locally uniformly to
(πz, 0) on C × Bg, where πz is the projection to the first coordinate and Bg is the
parabolic basin of g.

Proof. The proof follows exactly as before. The εk in this case will be as chosen in
(15). !

5. Final remarks and questions

Remark 3. McMullen also studied bifurcations for general maps by focusing on
Möbius transformations in [7]. McMullen studied radial and horocyclic pertur-
bations of parabolic maps. These types of perturbations are ones for which no
parabolic implosion occurs.

Remark 4. Notice that our starting point for estimates was the estimate in Lemma
3. That lemma holds for more general Chebyshev generalized polynomials. Let us
expand a little more here. Suppose we are given the sequence p0 = 0, p1 = 1 and
pk = (x + ak)pk − bk

bk−1
pk−1. Then similar estimates (as in Lemma 3) are obtained

for this sequence. Notice that the case bk = 1 is the one studied here. However
the case of bk not necessarily equal to 1 also has similar estimates that will allow
us to conclude that pN and UN are O(1/N) distant from each other. Those more
general sequences correspond to more general matrix products, which in principle
would allow us to have parabolic bifurcations not only for additive perturbations
but also for multiplicative perturbations. We hope to study this case in the near
future.
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