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ABSTRACT. Let f(2) = 24+ 22 +0(22) and fc(z) = f(2) +€2. A classical result
in parabolic bifurcation in one complex variable is the following: if N — = — 0
we obtain (fe)V — Lf, where £y is the Lavaurs map of f. In this paper
we study a non-autonomous parabolic bifurcation. We focus on the case of
Jo(z) = 1Z5. Given a sequence {¢;}1<;<n, we denote fn(z) = fo(z) + €.
We give sufficient and necessary conditions on the sequence {¢;} that imply
that fy o...f1 — Id (the Lavaurs map of fo). We apply our results to prove
parabolic bifurcation phenomenon in two dimensions for some class of maps.

1. INTRODUCTION

The theory of parabolic bifurcation has been extensively studied in one dimension
starting with the pioneering work of Lavaurs and Douady, as well as Shishikura [4]
6,9]. In recent years, parabolic bifurcation has been explored in several dimensions;
Bedford, Smillie, and Ueda studied semiparabolic bifurcations [3] and Bianchi [2]
studied parabolic bifurcations for a class of maps in C2. Also the recent works of
Dujardin and Lyubich [5] and Astorg et al. [1] have shown applications to new
phenomena in several dimensions using higher dimension parabolic bifurcations.

In this article we propose to study parabolic bifurcation in two dimensions by
considering non-autonomous sequences of one dimensional Mobius maps. Let us
recall the result in one dimension and explain our result.

The following is a classical result by Lavaurs [6].

Theorem 1 (Lavaurs). Let f be defined in a neighborhood V' of the origin and
be of the form f(z) = z + 22 + O(2®). Consider the perturbation of f as follows:
given € > 0 let fo(2) = f(2) + €. If we take a sequence of number N, such that
N —Z =0, then we obtain the following:

(fe)Ne — £f>

where Ly is the Lavaurs map of f.
In this paper we study the following question.

Question. Let f be defined in a neighborhood V' of the origin and be of the form
f(z) = 2+ 224+ 0(2?) as above. Consider different perturbations of f as follows: fix
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N > 0 then given e = ex(N) > 0 let fi(2) := f(2) + €;. Under which conditions
on €1, €g,...,en do we obtain:

(1) Inofn-1o...fao f1 = Ly,

where L is the Lavaurs map of f7

When (1) holds we say that “non-autonomous bifurcation” holds for f.

In this paper we focus in the case of f(z) = % and prove a sufficient and

necessary condition on the sequence {ex}1<rp<n as follows.

Theorem 2. Fix N large. Consider {e;},1 <k < N a sequence such that:

T ak)

(2) €k = N N2

(each a(k) might depend on N) such that a(k) are bounded and a(k) + (N —k) =
O(1/N). Let fi(z) := 1% + €. Then we have:

(3) fNOfN_lo...fQOfl—)Id

for all z € K, where K is a compact subset of C.

We call this result “non-autonomous bifurcation” for a Mébius transformation,
since in this case the Lavaurs map of f is simply the identity. We prove also that
the condition is necessary (see Section [2.4]).

Remark 1. In order to prove our main result we use the theory of orthogonal
functions. This is to our knowledge the first time that we have a connection to this
field. More importantly, we only use a particular version of a general estimate for
orthogonal polynomials. We believe that the general version of this theorem must
have its corresponding bifurcation version. See Section [§] for more details.

The structure of the paper is as follows. In the next section we set the notation
as well as our theorems and the proofs. In Section 3, we give examples of sequences
that satisfy the conditions. In Section 4 we apply our results to prove parabolic
bifurcation for specific families of maps in two dimensions. In the last section, we
formulate some questions and remarks.

2. NON-PARABOLIC BIFURCATION

We give a sequence of positive real numbers €, €5,.... Consider the following
functions: ;
fu(z) = fa(2) = — + i
for £ > 1. Set

Fn:fnofn710~~~f20f1~
We prove the following technical version of our theorem. We see at the end of
this section how Theorem [3] implies Theorem [2

Theorem 3. Fiz N large. Consider {ex},1 <k < N a sequence such that:

k=1

A

@) X
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and

2 9
N2 k| S TNB

for all1 <k < N and a fixed constant A independent of N. Then:

|Fn(2) — 2| < C/N

<

for all z € K, where K is a compact subset of C and some C independent of N.

(Note that when €, = € = w/N then the conditions on the theorem are satisfied
trivially. The conclusion that limy_,o(f)V(2) = 2 is a particular case of the
classical bifurcation theorem in one dimension.)

Fix N > 1. Since each f, is a Mobius transformation, then we can compute the
specific formula for Fj by computing the product of the matrices related to each.

Then

Apz + Cy
5 F = =
( ) k(Z) BkZ + Dk k
then:

Ak Ck _ 1-— Gi Ei Ak—l Ck—l
By Dy -1 1 Br1 Dp1 )
Lemma 1. Set t, =2 — €i the trace of each matriz above. Consider the sequence
po=0,p1=1andqyo=1,¢1 =1 and for k > 1:
(6) DPk41 = tkPk — Pk—1,
Gk+1 = thQk — Qk—1-

Then for any n > 1 we have:

An = Pn+1 — Pn, Cn = dn — Qdn+1,
B, = —Dn, D, = Adn-

Proof of Lemma 1. It follows directly using induction. |

Although the following statement is, as mentioned above a particular case of the
general parabolic bifurcation in one variable, we redo the proof here as a preparation
step for the proof of Theorem [3l

Lemma 2. Fix N. Suppose that all ¢; = € and the condition:
N—7n/e = o.

Then Fn(z) — . When o =0 we obtain Fy(z) — Id.

_z
l—0oz
Proof. The equation () is a generalization of the classical Chebyshev polynomials.
Note that the classical Chebyshev polynomial corresponds to the case of the same
€;, that is, the classical parabolic bifurcation on one variable. Indeed, if we have all
¢ =€cand t; = =2 — €2, then it’s well known that:

sin(k6) __sin(k#) — sin((k —1)0)
sin(6) and g = sin(6) ’

Pk =
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2528 L. VIVAS

where z = 2cos(). When = = 2 — €2, then § = € + O(€®). Suppose N — /¢ — 0.
In that case N — 7/e — 0 = oy (1) and we can write = & + %% + 0 (5z). Then

_sin(Ng)  sin(m+ % +o(y)) -
PN = SIH(Q) a sin (l+ %_‘_O(NL)) = O'+0N(1)7
T4om 70N ( )
in((N 4 1)0 sin (7 4+ DT 4+ O On (1
(v 1) %) _ o

sin(#) sin( T TrON(l) +0 (%))

and similarly py—1 = 1 — o +on(1), which translated to the element of our matrix:
Ay =Dy =-1 +ON(1),BN =0+ ON(l),CN = ON(l).

Therefore, when N — oo, Ay = Dy — —1,By — 0,Cy — 0 so Fn(z) —

z_, |

l—0oz

As it is clear from the proof of the lemma above, if we have estimates on py and
qN, then we immediately have the estimates for Ay, By,Cn, Dn.

All our theorems on the non-autonomous case will deal with the case o = 0 (also
known as the phase 0 case) for ease of notation. Similar conditions as equation ()
can be displayed for the case o # 0, but they are cumbersome. We include a note
about this in the last Section 2.4.

1. Orthogonal polynomials. We review here some facts about orthogonal poly-
nomials. We use the following lemma from [g].

Lemma 3. Consider the sequence pg = 0,p1 =1 and for k > 1:
(7) Pr+1 = (T + ak)pr — Pr—1-

Let x = 2 cos(0); then we have the following equality:

(8) sin(0)pn (z) = |én|sin(nd — arg(¢én)),
where ¢, =1+ 6, —1—|—ZJ lajpj €% forn > 2 and ¢ = 1.

For simplification we will use the following terminology for the classical Cheby-
shev polynomials Uy = 0,U; = 1 and for &k > 1,Ui 1 = 2Uy — Ug_1. In that case
Uy = sin(k0)/ sin(0) for x = 2 cos(0).

Lemma 4. Consider the following two sequences:
po =01 = 1,ppt1 = (z + ar)pr — pr—1,k > 1,
U() = O,U1 = 1,Uk+1 = ,TUk — kal,k Z 1.

Let x = 2cos(f). Suppose there exists € > 0 and m € N such that the sequence {a;}
satisfies:

m—1

o) > lagp,| < esin(6):

then
‘pn - Un| S €
foralll <n<m.
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Proof. We use equation (8):
sin(0)p,(x) = sin(nd)(1 + Re(d,)) — cos(nd)Im(é,),
sin(0)p, (z) = sin(nd) + sin(nd)Re(d,,) — cos(nh)Im(d, ),
sin(0)(pn, — Uy) = —Im(5,e~"?).

Recall that 4, = Z;le ajpje’?; then |6, < Z?;ll lajpjei?| = Z;le lajpj| <
esin(f) and we immediately obtain the desired result. O
2.2. Proof of Theorem 3. We are ready now to prove Theorem 3. Fix N > 0
large. We use the lemmas referred to above with the following choices: x = 2 cos(6)
where 6 = &; then we have explicit values and estimates for U; for all 4 in terms of

N. In particular |U;| < sinl(e) < % < N. Our goal is to prove that under certain
conditions on ay, then p, and U, are very close to each other.

Lemma 5. Fiz N > 0. Let x = 2cos(0) where 6§ = &. Given a sequence {a;} for

1 <i < N, suppose there exists a fited C' > 0 constant such that
C 1

10 il < — < —=;

(10) |ai| < N3 = N2

then we have |p; — U;| < 2C for 1 <i < N +1.

Proof. From the proof of the last lemma we have

1 ' n—1
N|pn = Un| < [sin(0)||pn — Un| < |6 < Z |a;p;]-
j=1

We use induction: the property is obvious for 4 = 1. Assume the bound holds for
i € [1,n — 1]; then for i = n < N + 1 we have

n—1 n—1 n—1

D lagpil <D laUs[ +2C ) Jay]

j=1 j=1 j=1
n—1

n—1
<N aj|+20)  ajl
j=1 j=1

<V +20)n-1)<

N3
C
< (N + 2C)m.
Then ) o
—|py — < (N+20)—
C 2C?
which concludes the proof. O

Proposition 1. Fizx N. Let x = 2cos 1. Suppose that

(11)
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2530 L. VIVAS

for all 1 <k < N and a fized constant C independent of N. Then:
lpn| < C'/N,[pn41+ 1| < C'/N

for some C' independent of N.

Proof. We use (8) for § = 7T/N:

sin(0)py = [¢n[sin(NO — arg(on))
= [on] SIH(W — arg(on))
= |pn|sin(arg(dn)) = Im(¢n) = Im(dn)
= a1p1 sin(f) + agpasin(20) + ... + ay_1py—_1sin((N — 1)0).
Then
1 . . .
lpn| = mmlpl sin(f) 4+ agpasin(20) + ... + ay—1pn—1 sin((N — 1)6)]
= la1p1Us + aopaUs + ... +any_1pN—1Un—1]
N-1
< |a1U12 + a2U22 + ...+ aN,lU]%,71| +2C Z |aiUi|
i=1
C c’
<= 42 N2
=57t C N
Similarly for py;1 we have:
sin(0)(pn+1 — Un41) = —Im(dy 416" %) = Im(6n11e7%),
where
N .
Oni1 =Y axpre™®
k=1
then
. N .
e 5N = Z appre FH0
k=1
SO

N
m(dy e ) = Z arpr sin((k — 1)0)

and we obtain:

N
PN4+1 — Unt1 = ZakpkUkA.
k=2
Using the fact that |Y ;" axU;| < & implies that |Y,", apUpUr_1| < S and

with the same idea that for py we obtain

!

Ipn+1 — Unyi| = lpv+1 +1] < N

]

We are almost done proving Theorem 3, however, we still need analogue bounds
for q,,.
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Lemma 6. Consider the sequences pg = 0,p1 =1 and qo = 1,q1 = 1 and for k > 1:
Dk+1 = tkPk — Pk—1,
Qk+1 = UGk — Qr—1-
Then
Qk = Pk — Pk—1,

where the sequence py, is given by the conditions pg = 0,p1 = 1 and for k > 1 we
have

DPh+1 = tkt1DPk — Ph—1-

Proof. The proof follows immediately by writing down ¢ — pr and checking the
corresponding initial conditions. ]

Using the same idea and estimates for py we have the following.

Proposition 2. Fizx N. Let x = 2cos 1. Suppose that

N—1

S
k=1
forall1 <k <N and a fized constant C' independent of N. Then:
pn| < C'/N, [py—1 — 1| < C'/N

C

C

<

for some C" independent of N.

Proof. The proof is exactly the same as the proof of Proposition [I} the only differ-
ence pertains to the shifted terms which involve the als. |

We are ready now to combine all the lemmas above and finish the proof of
Theorem [3
We give a sequence {¢;} such that:

i 7r_2_ 5\ sin (km/N)? <é
Z\N2 ") Ssin(x/N)2 | TN
and

w2 9 A

N2 %k S s

for all 1 < £ < N and a fixed constant A independent of N. Notice that we can
write this in terms of z = 2cos(m/N) and aj, = t; — x where t; = 2 — €2, so we

obtain:
N
B
ZakU,f < N
k=1
and
C
|ak| < ﬁ

for all 1 < k < N. Using Lemma 1 and Propositions 1 and 2, we see that Ay =
Dy = =14+ O(1/N) and By = Cny = O(1/N), which translating back into Fi
implies that F(z) — Id when N — oc.
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2532 L. VIVAS

2.3. Proof of Theorem [2 All that is left to prove is that the conditions on €, in
Theorem [2 are satisfied for Theorem [Bl Given ¢, such that

o ak)
€ = N N2’
where a(k) are bounded, we immediately have:
w2 9 A
m — €L < m
Also
2
™ o —2ma(k) 1
m €L N3 + O m
Therefore
N 2 .
_ 5\ sin(kn/N)
5= kz <N2 €k> sin(w/N)?
[sz] ~2n(a(k) +a(N k) (1) sin(kn/N)?
= N3 N4 sin(mw/N)?
Since we have the condition a(k) + a(N — k) = O(1/N) we have
sz 0 sm(kﬂr/N) C IN/2LN Q’
N4 “sin(mr/N)2 SN N’

where we are using the trivial bounds on each % < N? and adding the N/2
factors. We have that both conditions of Theorem [3]are satisfied and the conclusion

follows.

2.4. Conditions are necessary. The conditions in TheoremPlon {e;},1 <k < N
are

7 alk)

N N2’

where a(k) are bounded and a(k) + a(N — k) = O(1/N).

Note that the autonomous case N — o — % — 0, or equivalently € = & + 3% +
o(1/N?), implies the convergence to the phase o Lavaurs map of z/(1 — z) which
is precisely z/(1 — 0z). So clearly a(k) bounded is not enough to conclude the
convergence of the perturbations by e.

It might be tempting to suppose that the following conditions on «(k):

(13) € =

which is satisfied when a(k) + (N — k) = O(1/N) is enough to prove the result in
Theorem [2l We prove below that this is not the case.

Lemma 7. There exists {ex},1 < k < N a sequence such that:
a(k)

™
GENT N
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NON-AUTONOMOUS PARABOLIC BIFURCATION 2533

where a(k) are bounded and Zszl a(k) = O(1). However the condition ) below
is mot satisfied:

A

( ? 2) sin (km/N)?2 4

N2~ %) “sin(r/N)2

Proof. Fix N even for simplicity. We use the following choice for each a(k):

k) — 4k/N =1 when 1 <k < N/2,
o when N/2+1 <k <N,

that satisfies the condition ZkN—1 a(k) = O(1). However when we compute

k=1
_ NZ/Q (277(4k/N— 1)) sin(k:w/N)Q o (l) . %" ((4k/N— 1)) "
= N3 sin(7/N)? N = N3
1
+0 (N) ~ O(1)
and therefore the hypotheses of Theorem 3 are not satisfied. ]

Numerical experiments using the choice of a(k) above do show that p; /4 0 and
therefore fy o fy_10...f20 f1 A~ 1Id

Remark 2. A similar condition as the one in () can be formulated for phase o,
h th dition i ivalent t M 72 2 sin (kn/M)? A for M =
owever, the condition is equivalent to [ ,~, ( 1= — €5 (/0T | < ar for M =

N — [o].

3. SPECIAL EXAMPLES
1. Perturbations of the autonomous case.

Theorem 4. Fiz N > 0 and a sequence of positive real numbers {ex,1 < k < N}
satisfying the following condition:

i ea( ) o )
Jor1 <k <N, and a constant A independent of N. Then we have that the following
holds:

Fn=fnofn-10...f20f1 :Z+¥v
where fi(z) = fe,(2) = 12

Proof. Note that

2 4 m 4
ak:2—ek—2cos(ﬁ) N2 — e+ O(1/N%)

and given the condition on €, we have therefore that
2Am 2k 0 1 < c’
o= (3= w) +O () ol < 55
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2534 L. VIVAS

Also
N . 9 N
e o\ sin (kr/N)*| 9
2(2 €k — 2c08 N) sin(m/N)? a ZakUk
k=1 k=1
LV/2]
=Y (an+an-n)U;|,
k=1

where we use U, = Un_}. Since

2Am 1

then ap, +an_p = O (ﬁ) therefore

ap =

[N/2] '
Z (ar +an_)UE| < N
k=1
and both conditions of Theorem [3] are satisfied. O
Example 1. Given m € N, consider the following sequence:
T
14 € = —
(14) P oVmE 1k
for1<k<2m+1=N. Then N — 1 =2m and:
. 5 <1 (2 4k/N) | 1)1/2
€ =—— = — —_— JR—
P J/IN-1214 N N N2
7w w(2k/N—1) 3
=N N2 + O(1/N”).

So we have |a; + an—_k| < % for all 1 < k < N; equivalently, Theorem M with
A = —m applies.

Example 2. Given m € N, consider the following sequence:

iy
15 = ——
(15) T oVaAm? + 2k

for 1 <k <4m+ 2 = N. Then, a similar computation as above shows that:

7 ™ m  2mw(2k/N —1) 3
o — _ = 2 L O(1N
P VTom2+sk J(N-22+sk N N2 /N

and we can apply Theorem [4] again.

3.2. Very close perturbations.

Theorem 5. Fiz N > 0 and a sequence of positive real numbers {ex,1 < k < N}
satisfying the following condition:

T C
_’<_
NI~ N3

€ —

for a constant C independent of N. Then we have that the following holds:

FN:fNOfN—lo---f20f1:Z+%7

where fir(z) = fe,(2) = 725 + € for k> 1.
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NON-AUTONOMOUS PARABOLIC BIFURCATION 2535

Proof. Note that
2

™ ™
a :2—62—2C0S(—) = — —
g k N) T Nz Ok
and given the condition on € we have therefore that
!/
|ak| S m

So both conditions on Theorem [3] are satisfied. Indeed, the second condition is
clear, and the first one follows since each sine term is bounded by 1 above. Then
N

in (kr/N)? N, sin (kn/N)?
92_¢2_9 1) % = Sl S A A
kZ:l ( T LY sin(m/N)? kz::lak sin(mw/N)?
al 1
< I
= ,;‘”“ sin(m/N)2
C" 4N?
S|V
< A
N
O
Example 3. Given N € N, consider the following sequence:
™
kT NE R

for 1 <k < N. Then

I O A S N
*TN N3 N~ 3Nt N7
Then Theorem [B] applies and we have the result for this specific choice of €.

4. BIFURCATIONS FOR TWO DIMENSIONAL MAPS

Much of this work was inspired by the recent paper by Astorg, Buff, Dujardin,
Peters, and Raissy [1] on bifurcations for a specific map on two dimensions. Let us
recall one part of their result. Given the map:

2

F(z,w) = (24 2° +az® + %w,w —w? +w’) = (fu(2), 9(w))

they prove that the following holds: the sequence of maps F°2"*1(z, e (w)) con-
verges locally uniformly to the map (£;(z),0). Here £ is the Lavaurs map corre-
sponding to the map f where F(z,0) = (f(2),0).

We see now that by applying the same idea we can prove the following.

Corollary 1. For the map

2

H(z,w) = (1 & +%w,w—w2—|—w3) = (hy(2),w — w? +w?)
—z

the sequence of maps H°2”+1(2,g°”2 (w)) converges locally uniformly to the map

(2,0). As a consequence, the sequence (HO”Q),LZO converges locally uniformly to

(72,0) on C x By, where 7, is the projection to the first coordinate and By is the

parabolic basin of g.
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2536 L. VIVAS

Proof. Note that the w;, term depends only on wy (and not on zp). Denote by ¢,
the Fatou Coordinate for the map g that conjugates g to a translation by 1 in the
attracting basin By. Then we obtain ¢4(wy) = ka +0(1) = ¢g(wo) + k. From this

it follows that wy, = ¢ + O (7z). Let w2 = g’ (w) and hj = hy,;; then:
HOM (2, gon2 (w)) = H?" (2, w,2) = (Rp2425 © ... 0 Bp2yq 0 hp2(2), Wn2yon41),

where each hy(2) is as follows:

z 2 z 2 1
h = —wp=——+—+0(=5].
AR e i g T (k2>
If we rename f; = hy,2, fo = hp2y1, ..., font1 = Rp249,, then:

hp24on0...0hp2110h,2(2) = fapg10...0 fao fi(z)

and

Fu() = s () = —— =0

RAE) = k12 = 4(n?2+k—1) nt)’

and we see that this reduces to our Example 1. Indeed, each ¢ is precisely chosen
2

to be so that ¢} = ;" p—y + O(1/n?). O

Now, we use Example 2 to prove that a similar construction applies when we
change the coefficient in front of the w term on the first coordinate.

Corollary 2. For the map
2

z ;
L(z,w) = (1_Z+%w,w—w2+w3) = (ly(2),w — w?* + w?)

the sequence of maps LO4”+2(z,g°2”2 (w)) converges locally uniformly to the map
(2,0). As a consequence, the sequence (L°2”2)n20 converges locally uniformly to
(74,0) on C x By, where 7, is the projection to the first coordinate and By is the
parabolic basin of g.

Proof. The proof follows exactly as before. The ¢ in this case will be as chosen in

@). O
5. FINAL REMARKS AND QUESTIONS

Remark 3. McMullen also studied bifurcations for general maps by focusing on
Mobius transformations in [7]. McMullen studied radial and horocyclic pertur-
bations of parabolic maps. These types of perturbations are ones for which no
parabolic implosion occurs.

Remark 4. Notice that our starting point for estimates was the estimate in Lemma
3. That lemma holds for more general Chebyshev generalized polynomials. Let us
expand a little more here. Suppose we are given the sequence py = 0,p; = 1 and
pr = (x4 ar)pr — b:flpk,l. Then similar estimates (as in Lemma 3) are obtained
for this sequence. Notice that the case by = 1 is the one studied here. However
the case of by not necessarily equal to 1 also has similar estimates that will allow
us to conclude that py and Uy are O(1/N) distant from each other. Those more
general sequences correspond to more general matrix products, which in principle
would allow us to have parabolic bifurcations not only for additive perturbations
but also for multiplicative perturbations. We hope to study this case in the near
future.
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