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1 Introduction
In this article, we investigate Fatou components for polynomial maps in two vari-
ables. More specifically, we fix our study in skew-product polynomial maps 
F(t, z) = (h(t), f (t, z)) with an invariant fiber, h(t0) = t0.

In a recent joint paper with Peters [7], we studied the geometrically attracting case, 
that is 0 < |h′(t0)| < 1 inspired by results of Lilov’s thesis. Lilov’s theorem [4] deals with 
the superattracting case, i.e., h′(t0) = 0.

In this article, we focus on the parabolic case. !at is, we study the dynamics close to 
the fixed fiber for the case when h′(t0) = 1. To put our result into context, let us explain 
the results of [4] as well as [7].

Consider a skew-product polynomial map F(t, z) = (h(t), ft(z)) such that h(t0) = t0, 
with the condition that there exists an open attracting basin A ⊂ Ct for t0, that is h(A) ⊂ A , 
limn→∞ hn(z) = t0 for all z ∈ A, where t0 ∈ A (where Ct = {(0, t), t ∈ C}). !en the only 
options for h′(t0) are the ones above, either the map h is superattracting, geometrically 
attracting or parabolic (up to an iterate). We want to investigate the dynamics of F on the 
set A× C. Since ft0 is a polynomial, by the non-wandering theorem of Sullivan [8], we 
know that all the one-dimensional Fatou components of ft0 are nonwandering (and in fact, 
pre-periodic). Under our conditions on the existence of A as above, each one-dimensional 
Fatou component of ft0 is therefore contained, or in the boundary, of a two-dimensional 
Fatou component of F. Lilov [4] proved that in the superattracting case all Fatou com-
ponents in A× C are eventually mapped onto one of these fattened pre-periodic Fatou 
components. As a consequence in the superattracting case, there are no wandering Fatou 
components in A× C. Lilov proved this by proving a stronger result, namely:

Abstract 
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!eorem (Lilov [4])  Let t1 ∈ A, and let D be an open one-dimensional disk lying in the t1-
fiber. !en the forward orbit of D must intersect one of the fattened Fatou components of ft0.

In a joint paper with Peters [7], we proved that this result does not hold in the geo-
metrically attracting case. More precisely, we prove the following:

!eorem (Peters [7])  !ere exist skew-product polynomial maps of the form 
F(t, z) = (αt, p(z)+ q(t)), where α < 1 and p and q are polynomials and a vertical holo-
morphic disk D ⊂ {t = t0} whose forward orbit accumulates at a point (0, z0), where z0 is 
a repelling fixed point in the Julia set of p.

!e proof of this theorem relies on a parametrization theorem for skew product maps 
where the map on the parameter fiber is attracting (similar to [3]).

A natural question is whether the same construction can be extended for skew-prod-
uct maps that are parabolic, or if as in Lilov’s case, all Fatou components in A× C are 
non-wandering. Fatou components on the attracting skew-product case have been 
explored also by Peters and Smit [6]. We prove in this article that, in the parabolic case, a 
similar construction can be done as in the case of geometrically attracting.

!e first step is to prove an analogous parametrization theorem for the parabolic case. 
Under an additional condition, we accomplish this and believe that this result can be 
useful, independently of the application given here. Let us state the additional condition 
and the parametrization theorem here.

Definition 1.1 We say F is a special parabolic skew product if F is of the form:

and each ft(z) is of the form:

for some α ∈ C∗.

!eorem (!eorem 2.4)  Let

where F is a special parabolic skew product as in Definition 1.1. !en there exists ε > 0 
and an open domain Vα,ε with the origin at its boundary such that

converges for t in Vα,ε. Even more, the limit φ is the parametrization of the unstable mani-
fold of f0, i.e.,

F(t, z) =

(
t

1+ t
, ft(z)

)
,

ft(z) = z + αz2 + α2z3 + O(|z|4, |tz|4)

F(t, z) =

(
t

1+ t
, ft(z)

)
,

φn(t) = π2F
n

(
αt

1+ (n+ 1)αt
,

t

1+ αnt

)

φ

(
t

1− αt

)
= f0(φ(t)).



Page 3 of 12Vivas  Complex Anal Synerg  (2018) 4:1 

After we prove this parametrization theorem, we use a similar strategy to the one in 
[7] to prove that in the parabolic case, forward orbits of one-dimensional disks D that 
lie above A do not necessarily intersect fattened Fatou components. !erefore, Lilov’s 
theorem is false in general for the parabolic case. Consequently, we see that the dynam-
ics inside the set A× C is more complicated in the parabolic case than in the superat-
tracting one. More explicitly, we prove that there exist wandering Fatou disks for skew 
parabolic maps. We deduce this by proving the following theorem:

!eorem (!eorem  3.5)  !ere exist skew-product maps of the form 
F(t, z) = ( t

1+t , ft(z)) where ft(z) = f (t, z) polynomial in two variables, and a vertical 
holomorphic disk D ⊂ {t = t1} for well chosen t1, whose ω-limit set contains the parabolic 
fixed point (0, 0) which is completely contained in the Julia set of f0.

!e organization of the paper is as follows: in the next section we prove the parametri-
zation theorem for parabolic skew product maps (!eorem 2.4). We first prove a result 
for maps in one dimension and use it to prove the result for skew-products. In Sect. 3, 
we construct parabolic skew product maps that have wandering Fatou disks (!eo-
rem 3.5). We also prove that our Fatou disks cannot be enlarged to Fatou components.

2  Parametrization of unstable manifolds of parabolic maps in one dimension
Given a parabolic map F(z) = z + akz

k + O(zk+1), ak != 0, k ≥ 2, the Leau–Fatou theo-
rem say that there exist k − 1 regions in which each point is attracted to the origin under iter-
ates by F, and also k − 1 regions in which the orbits are going towards the origin under the 
iterates of F−1 (see [5] for more details). We can think of these regions as stable and unstable 
manifolds of F. In each one of these regions is possible to find a Fatou coordinate, that is, a 
change of coordinates map φ such that F is conjugate to a translation. To find the change of 
coordinates φ, there is not in general an iterative process as it is the case for hyperbolic maps.

However, for a certain class of maps, the change of coordinates can be recovered using 
iterations of our parabolic map. Let us introduce a needed condition before we state and 
prove our theorem.

Definition 2.1 We say f is special, if f is of the following form:

for some α ∈ C∗.
!e condition of f being special is equivalent to f being formally conjugated to a trans-

lation h(z) = z − 1 in a whole neighborhood of the origin. It is well known that this for-
mal conjugacy is indeed holomorphic when we restrict to wedges for which the origin is 
a boundary point (see for example the appendix at [2]).

Our starting point is that this holomorphic conjugacy map restricted to the unstable 
manifold of f can also be recovered using appropriate iterates of f. Even more, we prove 
precise estimates on the rate of convergence of these iterates.

!eorem 2.2 Let f be special as in definition 2.1. Define:

f (z) = z + αz2 + α2z3 + O(z4),

φn(z) := f n
(

z

1+ αnz

)
.
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!en there exists ε > 0 such that φn converges to a map φ defined in 
Vα,ε = {z ∈ C, |αz − ε| < ε}, which is a parametrization of the unstable manifold of f:

Even more, if z ∈ Vα,ε, then

Proof First, we assume, α = 1 and prove the theorem for this case. We change coordi-
nates of f to infinity. Let ι(z) = 1/z. !en the map g = ι ◦ f ◦ ι is given by

We define the sequence ψn(w) = gn(w + n). Clearly φn = ι ◦ ψn ◦ ι. So proving conver-
gence for φn is equivalent to proving convergence for ψn. We consider the inverse map 
h of g. Close to infinity, we have h(u) = u+ 1+ O(1/u2). It is a classical result to prove 
that the sequence γn(u) = hn(u)− n is convergent when Re(u) > R′ for R′ large enough 
and that the limit γ (u) satisfies γ (u)+ 1 = γ (h(u)) (see for eg. !eorem  10.9 in Mil-
nor’s book [5]). Since γn ◦ ψn = Id, then we have that ψn converges to ψ on the image of 
γn, which contains a domain of the same form Re(w) > R. !en ψ(w) = g ◦ ψ(w + 1). 
!erefore, φn converges on the domain V = {|z − 1/2R| < 1/2R} and we obtain

which is equivalent to (1).
To obtain estimates on the speed at which the φn converges, we also look at the speed 

and estimates for the limit function γ. We have that

and by the estimates above, for R′ large and Re(u) > R′ then |h(u)− u− 1| < 1/2 since 
|h(u)− u− 1| = O(1/u2). Applying to the sum above: |γn(u)− u| < C

|u| −
C

|u+n/2|. !en 
the limit function satisfies |γ (u)− u| < C

|u|. Since the inverse of the limit of γn is the limit 
ψ of the sequence ψn, we also have the estimate

And now using φ = ι ◦ ψ ◦ ι, we obtain

Likewise, we can make exactly the same estimates for the differences. From

(1)φ

(
t

1− αt

)
= f (φ(t)).

|φn+1(z)− φn(z)| <
C ′|αz2|

(1+ n|αz|)2
<

C ′

n2|α|
.

g(w) = w − 1+ η(w) = w − 1+ O

(
1

w2

)
.

φ(z) = f ◦ φ

(
z

1+ z

)
,

γn(u) = u+

n−1∑

i=0

O

(
1

u2i

)

,

|ψ(w)− w| <
C

|ψ(w)|
<

C ′

|w|
.

|φ(z)− z| < C ′|z|2|φ(z)| < C ′′|z|3.

|γn+1(u)− γn(u)| <
C

|hn(u)|2



Page 5 of 12Vivas  Complex Anal Synerg  (2018) 4:1 

we obtain

For the general case α != 0, 1, apply the result above for the map f̃ (z) = αf (z/α) . 
We have φ̃n, as well as φ̃  with the estimates above corresponding to α = 1. Define 
φn(z) =

1
α φ̃n(αz) and φ(z) = 1

α φ̃(αz). It is immediate to see that these maps satisfy the 
equations above.

!is concludes the proof of the theorem.  !

Remark 2.3 Note that the theorem above indicates the speed at which the φn approach 
φ. If we would like a faster convergence, we need to prescribe higher orders of f (not only 
the cubic term). More explicitly, given any integer k > 0, there exists fk(z) = z + O(z2) 
polynomial of degree k vanishing at the origin, such that for any f = fk + O(zk+1) then

for |z| bounded in a region as above, where φ is the limit of the sequence φn and φn is 
defined as above.

Since we will be dealing with convergence for values of t in a domain as defined on 
!eorem 2.2, from now when we write Vα,ε we mean a domain like the one above:

where α != 0 and ε > 0 is as small as necessary. We also write Vε := V1,ε.
Now we are ready to prove an analogous theorem for a skew product type of map 

(t, z) → (g(t), ft(z)) where g(0) = 0, |g ′(0)| = 1 and each ft is special.
We see that F has an invariant fiber t = 0, and at this invariant fiber the action is given 

by the one-dimensional map f0(z). Under the given conditions, there exists an invariant 
manifold associated to f0 inside the fixed fiber. Our following theorem gives us a para-
metrization of this invariant manifold using iterates of F and projecting.

!eorem 2.4 Let F be a special parabolic skew product as in Definition 1.1 in Sect. 1. 
Let

!en {φn}n≥1 converges for t in a domain Vα,ε defined as in (2).
Even more, the limit φ gives a parametrization of the unstable manifold of f0:

Proof As in the one-dimensional case, we write F in a simpler form, by chang-
ing coordinates to infinity, now in both variables. As before, we can assume α = 1 
and the general result follows from a linear change of variables ρ(t, z) = (t,αz). Let 
(u,w) = I(t, z) = (1/t, 1/z). In these new variables,

|φn+1(z)− φn(z)| <
C|z|2

(1+ n|z|)2
.

|φ(z)− φn(z)| < O(1/nk).

(2)Vα,ε := {z ∈ C, |αz − ε| < ε},

φn(t) = π2F
n

(
αt

1+ (n+ 1)αt
,

t

1+ αnt

)
.

(3)φ

(
t

1− αt

)
= f0(φ(t)).

G(u,w) = I ◦ F ◦ I =
(
u+ 1, gu(w)

)
,
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where 1/gu(w) = f1/u(1/w) or ι ◦ gu ◦ ι = f1/u. We want to prove that the sequence

converges, where ti = t/(1+ (n+ i)t). Let u = ι(t) = 1/t then t = ι(u). Denote by 
ui := 1/ti = (n+ i)+ u. Proving convergence for φn is equivalent to proving conver-
gence for ψn = ι ◦ φn ◦ ι. It is easy to see that

From the following equation:

we see that proving convergence of the sequence ψn immediately implies (3).
As in one variable we see that gu(w) = w − 1+O(1/w2, 1/(uw2)). Denote

Denote R such that, for |w| > R and |u| > R, then |θu(w)| < A/|w|2 and dθu(w)dw < A/|w|3, 
where A is fixed.

We first choose R large enough so that for |w| > R, then |θu(w)| < 1/10. Clearly, we have that 
for any u: Re(gu(w)) > Re(w), and the domain W = {Re(w) > R} is invariant by gu. In this 
domain, we also have the easy estimates, for w ∈ W , |w| + 9/10 < |gu(w)| < |w| + 11/10, 
and therefore, |w| + 9k/10 < |gku (w)| < |w| + 11k/10.

Let us define:

and un,0 := u+ n. Comparing (4) and (6) we see that ψn(u) = un,n. Choose 
R′ > R+ A/R , then we have

Lemma 2.5 If  Re(u) > R′, then:

for 0 ≤ i ≤ n.

Proof !e proof follows easily by induction. For i = 0 the statement is trivial. Assume 
by induction it is valid for i ≤ k, where k ≤ n− 1. Using

and by induction, and equation (5) up to k for each term

we obtain the estimate for i = k + 1.  !
Recall the estimates after Eq. (5): |θu(w)| < A/|w|2 for |w| > R, |u| > R.

φn(t) = ftn ◦ . . . ft2 ◦ ft1

(
t

1+ nt

)

(4)ψn(u) = gu+2n ◦ . . . gu+n+2 ◦ gu+n+1(u+ n).

ψn+1(u) = gu+2(n+1) ◦ ψn(u+ 1),

(5)θu(w) := gu(w)− w + 1.

(6)un,i := gu+n+i ◦ . . . ◦ gu+n+1(u+ n), 1 ≤ i ≤ n,

Re(un,i) > R+ n− i

un,k+1 = un,0 − (k + 1)+

k∑

i=0

θu+n+i+1(un,i),

|θu+n+i+1(un,i)| <
A

|un,i|2
<

A

(R+ n− i)2
;
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Lemma 2.6 Let R < S < |x|, |y| and |u|, |v| > R. !en

Proof It follows easily from the definition of θu and from

where the first estimate follows from dθu(w)/dw = O(1/w3) and the second one from 
dθu(w)/du = O(1/u2w2).  !

Lemma 2.7 For 0 ≤ k ≤ n, let

!en

Proof We prove this by induction also. For k = 0 the inequality follows directly from 
the estimate on |θu+n+2(u+ n+ 1)|. We assume the estimate on Ci is valid for i ≤ k − 1 . 
Using the definition for un,k as in (6) we write un+1,k+1 = gu+n+k+2(un+1,k) and 
un,k = gu+n+k(un,k−1). !en

We use Lemmas 2.5, 2.6 and the estimate for i = k − 1 to prove that 
|un+1,k+1 − un,k | ≤ Ck where

Using

we see

From here, the estimate for i = k follows.  !
From Lemma 2.7 and recalling notation (4):

It is easy to go back to the t coordinate and obtain the following estimate:

|θu(x)− θv(y)| ≤ |x − y|

(
2A

S3

)
+ |u− v|

A

|u||v|S2
.

|θu(x)− θu(y)| ≤ |x − y|

(
2A

|x|3

)
and |θu(y)− θv(y)| ≤ |u− v|

A

|u||v||y|2
.

|un+1,k+1 − un,k | ≤ Ck .

Ck <
4A

(R+ k)2
.

un+1,k+1 − un,k = un+1,k + θu+n+k+2(un+1,k)− un,k−1 − θu+n+k(un,k−1).

Ck = Ck−1

(
1+

2A

(R+ n+ 1− k)3

)
+

2A

(R+ n+ k)2(R+ n− k)2
.

k∏

i=1

(
1+

2A

(R+ k + 1− i)3

)
∼ exp

k∑

i=1

2A

(R+ k + 1− i)3
<< exp(

A

R2
),

Ck ≤ 2C0 +

k∑

i=1

4A

(R+ k + i)2(R+ k − i)2
.

|ψn+1(u)− ψn(u)| <
4A

(R+ n)2
.
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where ε = 1/R, t ∈ Vε/2 = {|t − ε/2| < ε/2} and A′ is bounded by A, ε and the supre-
mum of φ in Vε.

We have

for t ∈ Vε. It is immediate to see that the limit φ satisfies (3). !is concludes the proof of 
!eorem 2.4.  !

So far, our map φ is only defined in the domain Vα,ε. We can extend φ to all of C 
using the functional Eq. (3). Let t ∈ C, t "= 0, for any t there exists N = N (t) such that 

t
1+αNt ∈ Vε,α. We define

It is easy to prove that φ(t) can also be defined in terms of the iterates of F, as follows. 
Assume for simplicity α = 1. Define

All the terms inside the parenthesis in the right hand side are well defined and we have 
good estimates for the differences for φn and φn+1. !en, we have

!en, for all t ∈ C, there exists a N = N (t), and a constant C = C(N ) such that

for any n ≥ N + 1.
It is well known that the range of φ is the whole complex plane C. See [5] for a proof.

3  Skew parabolic maps with Fatou disks
We use the parametrization theorem of the last section for a dynamical application. As 
explained in the introduction, we prove a theorem similar to the one in [7]. !at is, we 
prove that there exists some skew product parabolic maps that have wandering Fatou 
disks. Our construction, however, does not allow us to fatten the disks. We prove that 
statement at the end of this section. Let us recall the definition of Fatou disks following 
Ueda [9].

|1/φn+1(t)− 1/φn(t)| <
4A

(R+ n)2
⇒ |φn+1(t)− φn(t)| <

A′

(1+ nε)2
,

|φ(t)− φn(t)| <
A′

1+ nε

φ(t) := f N0

(
φ

(
t

1+ αNt

))
.

φN+n(t) := π2F
N

(
t

1+ (N + 2n+ 1)t
,φn

(
t

1+ Nt

))
, n ≥ 0.

φ(t) = lim
n→∞

φN+n(t).

(7)|φn+1(t)− φn(t)| < C
A

(1+ (n− N )ε)2

(8)and |φn+1(t)− φ(t)| < C
A

1+ (n− N )ε
,
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Definition 3.1 Let f : X → X be a holomorphic endomorphism of a complex mani-
fold X. A holomorphic disks D ⊂ X is a Fatou disk for f if the restriction of {f n} to the 
disk D is a normal family.

One-dimensional disks contained in the Fatou set of any map are clearly Fatou disks. 
However, we will prove that we cannot enlarge our Fatou disks into a Fatou component.

We need to add another couple of hypothesis to the ones in Definition 1.1. Since we 
want to construct Fatou disks, we will make then centered at z0, a critical point of f0 and 
not centered at 0 as the iterates used on the !eorem  2.4. We also add the condition 
α = 1 to simplify the computations. Let us put together those additional conditions on 
the following definition:

Definition 3.2 Let

be a special parabolic skew product map as in Definition 1.1 with α = 1. We say that F 
satisfies (‡) if the following conditions are satisfied:

  • !ere exists z0 != 0 a critical point of f0, such that ft(z0) = t for all t.
  • z0 a critical point of f0 of order at least 4.

!e following corollary is an immediate consequence of !eorem 2.4.

Corollary 3.3 Given F that satisfies (‡) as above, for any t define the iterates

!en the φn converges to the parametrization of the unstable manifold of f0

Proof We easily see that

and now we apply !eorem 2.4 with α = 1.  !

Example We give an explicit map for which condition (‡) is satisfied:

We have ft(z) = z + z2 + z3 + O(z4, z4t). !en z0 = −1, ft(z0) = t and z0 is a critical 
point of ft of order 4.

F(t, z) =

(
t

1+ t
, ft(z)

)

φn(t) = π2F
n+1

(
t

1+ nt
, z0

)
.

φ

(
t

1− t

)
= f0(φ(t)).

F

(
t

1+ nt
, z0

)
=

(
t

1+ (n+ 1)t
,

t

1+ nt

)
,

F(t, z) =

(
t

1+ t
, (z + 1)4(z − 3z2 + 7z3)+ t(1+ (z + 1)4(−1+ 4z − 10z2 + 20z3))

)
.
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Let t0 ∈ C be such that φ(t0) = z0. We refer to the complex lines {tn =
t0

1+ nt0
}, n ≥ 1 , 

as critical fibers.

Definition 3.4 We define the vertical disks Dn, n ≥ 1, as follows:

Note that t0 might not be contained in Vε. However, there exists N ′ = N (t0) such that 
t0

1+Nt0
 is in Vε, for N ≥ N ′. From now on, we restrict our estimates to the disks Dn, n ≥ N ′ .

Now we are ready to prove !eorem 3.5. Let us restate here:

!eorem  3.5 !ere exist skew-product maps of the form F(t, z) = ( t
1+t , ft(z)) 

where ft(z) = f (t, z) is a polynomial in two variables, and a vertical holomorphic disk 
Dm ⊂ {t = tm} whose ω-limit set contains the parabolic fixed point (0, 0) that is in the 
Julia set of f0.
Proof Consider a special skew product map that satisfies condition (‡). !en we will 
prove that the forward orbits of Dm accumulate at the point (0, z0), and therefore, we 
prove that for n sufficiently large, the forward orbits of the disks Dn all avoid the bulged 
Fatou components of F.

Note that t0 might not be in our domain Vε above. However, for a fixed N ′ = N (t0), we 
do have that t0

1+Nt0
 is in Vε, for N > N ′. !erefore, we can obtain all the estimates for iter-

ates of F after we iterate F, N ′ times.
We need the following lemma:

Lemma 3.6 Let (t, z) and (t, w), be such that t, z ∈ Vε and |w − z| < C
n3

. !en

where C is fixed independent of n.

Proof If z = 0, then we have

and recall that each ft is of the form ft(z) = z + z2 + O(z3). Let wk+1 = ftk (wk) and 
w0 = w. !en we have that at infinity

Our assumption implies |w| < C/n3, then |1/w| > n3/C, so when we apply n times our 
map ft, we have |1/wn| > |1/w0|− n(1+ K ), where K = O(1/n2). Going back to the 
original coordinates

Dn :=

{(
t0

1+ nt0
, z

)
| |z − z0| < n−3/4

}
.

|π2(F
n(t, z)− Fn(t,w))| < Cn2|z − w|,

|π2F
n(t,w))| = |ftn ◦ . . . ft(w)|

1

w1
=

1

w
− 1+ O(w).

|wn| <
1

|1/w0|− n(1+ K )
=

|w0|

1− n|w0|(1+ K )
< Cn2|w0|.
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When z != 0 then there exists n large so that |w − z| < C
n3

 implies w ∈ Vε. !en we have 
much stronger estimates than needed.  !

All we need to complete the proof of !eorem 3.5 is the following lemma.

Lemma 3.7 For n sufficiently large we have that

Proof First, we assume n > N ′ so that tn ∈ Vε. For the center, we use corollary 3.3:

and from Eq. (7) we have

for n large enough this inequality is satisfied. Now for the rest of the disk we use the last 
lemma. Let (tn, z0 + ρ) ∈ Dn, |ρ| < r(n). Since z0 is a critical point of order at least 4, 
then

where C is bounded independent of n. We use Lemma 3.6 for (t,w) = F(tn, z0 + ρ) and 
(t, z) = F(tn, z0) = (tn+1, tn), so

For n large we have the last inequality in the following line:

therefore, we obtain that for n large Fn+1(Dn) ⊂ D2n+1.  !
An immediate consequence of Lemma 3.7 is that for sufficiently large n ∈ N there 

exists a sequence of ln → ∞ so that Fln(Dn) → (0, z0) as ! → ∞, and the proof of !eo-
rem 3.5 is complete.  !

Lemma 3.8 !e disks Dn are Fatou disks for F.
Proof We need to prove that the sequence Fk restricted to each of the disks Dn is a nor-
mal family. We see that the t coordinate of each disk Dn is going to 0 and therefore stays 
bounded. For the z coordinate we have that the sequence {π2F

2k (n+1), k ≥ 0}. It is easy 
to see also that if (t, z) is such that |z| > R and |t| < 1 then Fn(t, z) → ∞. !en it follows 
that the entire second coordinate of the iterates of F must stay bounded. By Montel’s 
!eorem this implies that Fk is a normal family when restricted to each Dn. !

Remark 3.9 However, we see that we cannot enlarge our one-dimensional disks into 
domains of a polidisk shape. Assume that for each n, there exists a domain Bn = Un × Dn 
where Un is an open ball around each tn, that is Un = {|t − tn| < δn}. We will let δn vary 
for each n. Clearly, Dn ⊂ Bn. We will argue by contradiction; assume that there exists a 
sequence of δn > 0 so that Fn+1(Bn) ⊂ B2n+1 for n large enough.

Fn+1(Dn) ⊂ D2n+1.

Fn+1(tn, z0) = (t2n+1,φn(t0))

C
A

1+ (n− N ′)ε
= |φn(t0)− z0| < r(2n+ 1) = (2n+ 1)−3/4,

F(tn, z0 + ρ)− F(tn, z0) = (0, ρ4C),

∣∣∣π2

(
Fn+1(tn, z0 + ρ)− Fn+1(tn, z0)

)∣∣∣ < C ′n2|ρ|4.

C ′n2|ρ|4 < C ′n2r(n)4 = C ′n−1 < r(2n+ 1) = (2n+ 1)−3/4,
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Let (s, z0) ∈ Bn where 0 < |s − tn| < δn. By assumption Fn+1(s, z0) ∈ B2n+1, therefore, 
π2(F

n+1(s, z0)) ∈ D2n+1 which is equivalent to

We will see that this is not possible for any choice of δn.
We estimate L by below

For n large we have an estimate on the second term of the right hand side of (10):

For the first term on the right hand side of (10), we have:

where s′

1+ns′ = s or equivalently s′ = s/(1− ns). Since δ′n = |s − tn| #= 0, then 
δ′0 = |s′ − t0| #= 0. Back in (10)

which together with the bound (9) gives us a contradiction. !erefore, it is not possible 
to fatten the disks above. For a more recent result on open wandering domains for skew 
product maps see [1]. !eir technique, based on an idea of M. Lyubich, is to use para-
bolic implosion.
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