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Zh‘e Ohio State University, We study the existence of Fatou components on parabolic skew product maps. We

olumbus, O, USA focus on skew products in which each coordinate has a fixed point that is parabolic. As
in the geometrically attracting case, we prove that there exists maps F that have one-
dimensional disks that are mapped to a point in the Julia set of the restriction of f to an
invariant one-dimensional fiber. We first prove a linearization theorem for a one-dimen-
sional map, then for a parabolic skew product. Finally, we apply this result to construct
the skew product map described above.
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1 Introduction

In this article, we investigate Fatou components for polynomial maps in two vari-
ables. More specifically, we fix our study in skew-product polynomial maps
F(t,z) = (h(t),f (¢, z)) with an invariant fiber, /(¢y) = to.

In a recent joint paper with Peters [7], we studied the geometrically attracting case,
that is 0 < |/'(¢p)| < 1 inspired by results of Lilov’s thesis. Lilov’s theorem [4] deals with
the superattracting case, i.e., ' (¢g) = 0.

In this article, we focus on the parabolic case. That is, we study the dynamics close to
the fixed fiber for the case when #'(¢9) = 1. To put our result into context, let us explain
the results of [4] as well as [7].

Consider a skew-product polynomial map F(¢,z) = (h(t),f:(z)) such that h(ty) = ty,
with the condition that there exists an open attracting basin A C C; for , that is #(4) C A,
lim,,_, oo #"'(2) = to for all z € A, where ty € A (where C; = {(0,¢),t € C}). Then the only
options for 4'(#y) are the ones above, either the map / is superattracting, geometrically
attracting or parabolic (up to an iterate). We want to investigate the dynamics of F on the
set A x C. Since f;, is a polynomial, by the non-wandering theorem of Sullivan [8], we
know that all the one-dimensional Fatou components of f;, are nonwandering (and in fact,
pre-periodic). Under our conditions on the existence of A as above, each one-dimensional
Fatou component of f;, is therefore contained, or in the boundary, of a two-dimensional
Fatou component of F. Lilov [4] proved that in the superattracting case all Fatou com-
ponents in A x C are eventually mapped onto one of these fattened pre-periodic Fatou
components. As a consequence in the superattracting case, there are no wandering Fatou
components in A x C. Lilov proved this by proving a stronger result, namely:
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Theorem (Lilov [4]) Lett € A, and let D be an open one-dimensional disk lying in the t1-
fiber. Then the forward orbit of D must intersect one of the fattened Fatou components of f;,.

In a joint paper with Peters [7], we proved that this result does not hold in the geo-
metrically attracting case. More precisely, we prove the following:

Theorem (Peters [7]) There exist skew-product polynomial maps of the form
F(t,z) = (at,p(z) + q(t)), where o < 1 and p and q are polynomials and a vertical holo-
morphic disk D C {t = to} whose forward orbit accumulates at a point (0, zg), where zg is
a repelling fixed point in the Julia set of p.

The proof of this theorem relies on a parametrization theorem for skew product maps
where the map on the parameter fiber is attracting (similar to [3]).

A natural question is whether the same construction can be extended for skew-prod-
uct maps that are parabolic, or if as in Lilov’s case, all Fatou components in A x C are
non-wandering. Fatou components on the attracting skew-product case have been
explored also by Peters and Smit [6]. We prove in this article that, in the parabolic case, a
similar construction can be done as in the case of geometrically attracting.

The first step is to prove an analogous parametrization theorem for the parabolic case.
Under an additional condition, we accomplish this and believe that this result can be
useful, independently of the application given here. Let us state the additional condition
and the parametrization theorem here.

Definition 1.1 We say F is a special parabolic skew product if F is of the form:

t
1+t

F(t;Z) == ( ﬁ(z)>7
and each f;(z) is of the form:
fi@) =z + az® + o223 + 0(z|%, |tz|Y)

for some o € C*,

Theorem (Theorem 2.4) Let

F(t,2) = (l’fﬁ,ﬁ@)),

where F is a special parabolic skew product as in Definition 1.1. Then there exists € > 0
and an open domain V¢ with the origin at its boundary such that

t t
bu(t) = moF" : ,
1+ n+ Dot 14 ant

converges for t in Vy . Even more, the limit ¢ is the parametrization of the unstable mani-

fold of fo i.e.,

t
¢(1 —on,‘) =fo(d(®)).
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After we prove this parametrization theorem, we use a similar strategy to the one in
[7] to prove that in the parabolic case, forward orbits of one-dimensional disks D that
lie above A do not necessarily intersect fattened Fatou components. Therefore, Lilov’s
theorem is false in general for the parabolic case. Consequently, we see that the dynam-
ics inside the set A x C is more complicated in the parabolic case than in the superat-
tracting one. More explicitly, we prove that there exist wandering Fatou disks for skew
parabolic maps. We deduce this by proving the following theorem:

Theorem (Theorem 3.5) There exist skew-product maps of the form
F(t,z) = (l%rt, f:(2)) where fi(z) =f(t,z) polynomial in two variables, and a vertical
holomorphic disk D C {t = t1} for well chosen t1, whose w-limit set contains the parabolic
Sfixed point (0, 0) which is completely contained in the Julia set of fo

The organization of the paper is as follows: in the next section we prove the parametri-
zation theorem for parabolic skew product maps (Theorem 2.4). We first prove a result
for maps in one dimension and use it to prove the result for skew-products. In Sect. 3,
we construct parabolic skew product maps that have wandering Fatou disks (Theo-
rem 3.5). We also prove that our Fatou disks cannot be enlarged to Fatou components.

2 Parametrization of unstable manifolds of parabolic maps in one dimension
Given a parabolic map F(z) =z + zzkzk + O(zk“),ak # 0,k > 2, the Leau—Fatou theo-
rem say that there exist k — 1regions in which each point is attracted to the origin under iter-
ates by F, and also k — 1 regions in which the orbits are going towards the origin under the
iterates of F~! (see [5] for more details). We can think of these regions as stable and unstable
manifolds of F. In each one of these regions is possible to find a Fatou coordinate, that is, a
change of coordinates map ¢ such that F is conjugate to a translation. To find the change of
coordinates ¢, there is not in general an iterative process as it is the case for hyperbolic maps.

However, for a certain class of maps, the change of coordinates can be recovered using
iterations of our parabolic map. Let us introduce a needed condition before we state and
prove our theorem.

Definition 2.1 We say fis special, if fis of the following form:
f@) =z+az” +o?2® + 0(z*),

for some o € C*.

The condition of fbeing special is equivalent to f being formally conjugated to a trans-
lation 41(z) = z — 1 in a whole neighborhood of the origin. It is well known that this for-
mal conjugacy is indeed holomorphic when we restrict to wedges for which the origin is
a boundary point (see for example the appendix at [2]).

Our starting point is that this holomorphic conjugacy map restricted to the unstable
manifold of f can also be recovered using appropriate iterates of f. Even more, we prove
precise estimates on the rate of convergence of these iterates.

Theorem 2.2 Let fbe special as in definition 2.1. Define:

On(z) =f" <l—|—zanz>
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Then there exists € >0 such that ¢, converges to a map ¢ defined in
Vae =1{z € C, |az — €| < €}, which is a parametrization of the unstable manifold of f:

t
qs(l _at> =@ ). (1)

Even more, ifz € Vy o then

C'|az?| c’
< .
A+ nlaz))?  n?|af

|bnt1(2) — Pn(2)] <

Proof First, we assume, @ = 1 and prove the theorem for this case. We change coordi-
nates of fto infinity. Let ¢(z) = 1/z. Then the map g = ¢ o f o ¢ is given by

g(w):w—l+n(w):w—1+0<12>.
w

We define the sequence ¥, (w) = g”"(w + n). Clearly ¢, = ¢ o ¥, o .. So proving conver-
gence for ¢, is equivalent to proving convergence for v, We consider the inverse map
h of g. Close to infinity, we have h(x) = u + 1 + O(1/u?). It is a classical result to prove
that the sequence y, (1) = h" (1) — n is convergent when Re(x) > R’ for R’ large enough
and that the limit y () satisfies y () + 1 = y (h(n)) (see for eg. Theorem 10.9 in Mil-
nor’s book [5]). Since y,, o ¥, = Id, then we have that v, converges to ¥ on the image of
¥ which contains a domain of the same form Re(w) > R. Then ¥ (w) = g o ¥ (w + 1).
Therefore, ¢, converges on the domain V' = {|z — 1/2R| < 1/2R} and we obtain

¢><z>=fo¢(1iz>,

which is equivalent to (1).
To obtain estimates on the speed at which the ¢, converges, we also look at the speed
and estimates for the limit function y. We have that

n—1 1
V(1) = u+Zo<le :

i=0 i

and by the estimates above, for R’ large and Re(u) > R’ then |h(x) — u — 1| < 1/2 since
|h(u) — u — 1| = O(1/u®). Applying to the sum above: |y, (1) — u| < TZ\ - ch/m Then
I%\‘ Since the inverse of the limit of y,, is the limit

Y of the sequence ¥, we also have the estimate

the limit function satisfies |y (1) — u| <

o c’
< —.
yw)  wl

[ (w) —w| <

And now using ¢ =t o Y o (, we obtain
lp(2) —z| < C'lzlp(2)| < C"lz].

Likewise, we can make exactly the same estimates for the differences. From

| () — yu(m)| < <
Vn+1 Vn RO
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we obtain

Clz|?

[Pn11(2) — Pu(2)| < m

For the general case o # 0,1, apply the result above for the map f (2) = af (z/w).
We have ;5,;, as well as 5 with the estimates above corresponding to o = 1. Define
bu(z) = éqA);(az) and ¢(z) = éa(az). It is immediate to see that these maps satisfy the
equations above.

This concludes the proof of the theorem. O

Remark 2.3 Note that the theorem above indicates the speed at which the ¢, approach
¢. If we would like a faster convergence, we need to prescribe higher orders of f (not only
the cubic term). More explicitly, given any integer k > 0, there exists f;(z) = z + O(z%)
polynomial of degree k vanishing at the origin, such that for any f = f; + O(zf*1) then

lp(2) — pu(2)| < OA/n").

for |z| bounded in a region as above, where ¢ is the limit of the sequence ¢, and ¢, is
defined as above.

Since we will be dealing with convergence for values of ¢ in a domain as defined on
Theorem 2.2, from now when we write V,,  we mean a domain like the one above:

Vae :={z € C,|az — €| < €}, (2)

where « # 0 and € > 0 is as small as necessary. We also write V¢ := V..

Now we are ready to prove an analogous theorem for a skew product type of map
(t,z) — (g(8),f;(z)) where g(0) = 0, |g’(0)| = 1 and each f; is special.

We see that F has an invariant fiber £ = 0, and at this invariant fiber the action is given
by the one-dimensional map fy(z). Under the given conditions, there exists an invariant
manifold associated to fy inside the fixed fiber. Our following theorem gives us a para-
metrization of this invariant manifold using iterates of F and projecting.

Theorem 2.4 Let F be a special parabolic skew product as in Definition 1.1 in Sect. 1.
Let

t t
bu(t) = o F" "‘ , .
14+ (m+ Dot 14+ ant

Then {¢py}n>1 converges for t in a domain Vy ¢ defined as in (2).
Even more, the limit ¢ gives a parametrization of the unstable manifold of fy:

t
¢(1 —on,‘) =fo(é(®)). (3)

Proof As in the one-dimensional case, we write F in a simpler form, by chang-
ing coordinates to infinity, now in both variables. As before, we can assume a =1
and the general result follows from a linear change of variables p(¢,z) = (¢, az). Let
(u,w) = I(t,z) = (1/¢t,1/z). In these new variables,

Gu,w)=IoFol = (u—|— l,gu(w)),
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where 1/g,(w) = fi/,(1/w)ori o g, ot = fi,,. We want to prove that the sequence

&) =ft, 0. fr,0ft, (I—{—tnt)

converges, where t; =¢t/(1+ (n+i)t). Let u =1(¢) =1/t then ¢ = ((u). Denote by
u; :=1/t; = (n+ i) + u. Proving convergence for ¢, is equivalent to proving conver-
gence for ¥, = t o ¢, o 1. It is easy to see that

Yn(U) = Gut2n © - - - Gutn+2 © Gutnt+1(U + 7). (4)
From the following equation:
Yur1 (™) = guiam+1) © ¥n(u + 1),

we see that proving convergence of the sequence v, immediately implies (3).
As in one variable we see that g,(w) =w — 1 + O(l/wz, 1/(uw2)). Denote

0,(w) :=g,(w) —w+ 1. (5)

Denote R such that, for |w| > R and |u| > R, then |6,(w)| < A/|w|2 and % < A/|w|3,
where A is fixed.

We first choose R large enough so that for|w| > R, then|6,,(w)| < 1/10.Clearly, we have that
for any u: Re(g,(w)) > Re(w), and the domain W = {Re(w) > R} is invariant by g,. In this
domain, we also have the easy estimates, for w € W, |w| + 9/10 < |g,(w)| < |w| 4+ 11/10,
and therefore, |w| 4+ 9k /10 < |g§(w)| < |w| + 11k/10.

Let us define:

Upi = Guin+tiO -0 Guinr1(w+mn),1 <i=<n, (6)
and u,0:=u+n Comparing (4) and (6) we see that v,(u) =u,, Choose
R > R+ A/R, then we have

Lemma 2.5 If Re(u) > R/, then:
Re(uui) > R+n—i

forO<i<n

Proof The proof follows easily by induction. For i = 0 the statement is trivial. Assume
by induction it is valid for i < k, where k < n — 1. Using

k
U jeyr = tno — K+ 1)+ Y Oupnist (),

i=0
and by induction, and equation (5) up to k for each term

A
ni2 ~ R+n—02

1Oyt nit1(Wni)| <

we obtain the estimate fori = k + 1. O
Recall the estimates after Eq. (5):|6,(w)| < A/|w|? for |w| > R, |u| > R.
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Lemma 2.6 LetR < S < |x|,|yland|ul,|v| > R Then

2A
0u (%) — 6| < |x —yl (S3> +lu—v|

|l [v|S%

Proof It follows easily from the definition of 6, and from

10,(6) — 6, ()] < |x — |(2A) and [0,() — 6, < |u — v|]——
u W= e “ V= Iyl

where the first estimate follows from d6,(w)/dw = O(1/w®) and the second one from
do,(w)/du = O(1/u’w?). O
Lemma 2.7 For0 <k <un,let

|un+1,k+1 - un,kl =< Ck-
Then

4A

“S @y

Proof We prove this by induction also. For k = 0 the inequality follows directly from
the estimate on |6,4,42(u + n + 1)|. We assume the estimate on C; is valid for i < k — 1.
Using the definition for u,; as in (6) we write ;11 = Zutnth+2Unt1,k) and
Unk = Gu+n+k (Unk—1)- Then

Upt+1,k+1 — Upk = Upt+1,k + 9u+n+k+2 (un-i-l,k) — Upk—-1 — 9u+n+k(”n,k—1)'

We wuse Lemmas 2.5, 2.6 and the estimate for i=k—1 to prove that

ltty11,k+1 — Unk| < Cr where

24 ) 24

Cr=Cr|1 )
T 1( +(R+n+1—k)3 +(R+n+k)2(R+n—k)2

Using
k

H 1+$ ~ ex Zk:$<<ex (i)
DU TRk 1-07) TP S Rrkr1opp TR

we see
k
4A
Cr < 2C .
= °+; R+ K+ D R+ k)P
From here, the estimate for i = k follows. O

From Lemma 2.7 and recalling notation (4):

4.
(V1 (@) — ¥u(m)| < m

It is easy to go back to the ¢ coordinate and obtain the following estimate:



Vivas Complex Anal Synerg (2018) 4:1 Page 8 of 12

/

4A
11/¢nt1(t) = 1/n(D] < ———5 = |Pn1() = Pu(?)| < At no?

(R+ n)

where ¢ = 1/R, t € Vo = {|t — €/2| < €/2} and A’ is bounded by A4, ¢ and the supre-
mum of ¢ in V.
We have

/

o) — Pn(®)| < T4 ne

for t € V.. It is immediate to see that the limit ¢ satisfies (3). This concludes the proof of
Theorem 2.4. (]

So far, our map ¢ is only defined in the domain V, .. We can extend ¢ to all of C
using the functional Eq. (3). Let t € C,t # 0, for any ¢ there exists N = N (t) such that

t
TFaNt € Ve,a. We define

o) =1 <¢(1+2Nt>>

It is easy to prove that ¢ () can also be defined in terms of the iterates of F, as follows.

Assume for simplicity @ = 1. Define

L N t t
ON+n(t) = Mo F (1+(N+2n+1)t’¢n<1+Nt>>’ n>0.

All the terms inside the parenthesis in the right hand side are well defined and we have

good estimates for the differences for ¢, and ¢,,+1. Then, we have

@) = lim dn1n(D).

Then, for all ¢ € C, there exists a N = N (¢), and a constant C = C(N) such that

A

$ns1(®) = En O < € 55

d t) —o(t C——,

and [¢1(8) =B < C1— = N)e
foranyn > N + 1.

It is well known that the range of ¢ is the whole complex plane C. See [5] for a proof.

3 Skew parabolic maps with Fatou disks

We use the parametrization theorem of the last section for a dynamical application. As
explained in the introduction, we prove a theorem similar to the one in [7]. That is, we
prove that there exists some skew product parabolic maps that have wandering Fatou
disks. Our construction, however, does not allow us to fatten the disks. We prove that
statement at the end of this section. Let us recall the definition of Fatou disks following
Ueda [9].
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Definition 3.1 Let f : X — X be a holomorphic endomorphism of a complex mani-
fold X. A holomorphic disks D C X is a Fatou disk for f'if the restriction of {f”} to the
disk D is a normal family.

One-dimensional disks contained in the Fatou set of any map are clearly Fatou disks.
However, we will prove that we cannot enlarge our Fatou disks into a Fatou component.

We need to add another couple of hypothesis to the ones in Definition 1.1. Since we
want to construct Fatou disks, we will make then centered at zy, a critical point of fy and
not centered at O as the iterates used on the Theorem 2.4. We also add the condition
a = 1 to simplify the computations. Let us put together those additional conditions on
the following definition:

Definition 3.2 Let

F(t,2) = (lit,ft(z))

be a special parabolic skew product map as in Definition 1.1 with « = 1. We say that F
satisfies (#) if the following conditions are satisfied:

+ There exists zgp # 0 a critical point of fp, such that f;(zo) = ¢ for all ¢.
+ zpa critical point of fj of order at least 4.

The following corollary is an immediate consequence of Theorem 2.4.
Corollary 3.3 Given F that satisfies (¥) as above, for any t define the iterates

t
£ = F}’H-l , .
Pu(t) = mo (1+nt Zo)

Then the ¢, converges to the parametrization of the unstable manifold of f

t
¢ <l—t> = fo(o ().

Proof We easily see that

t t t
F 5, Z - ) ’
1+nt 1+n+ 1Dt 1+ nt

and now we apply Theorem 2.4 with @ = 1. (]

Example We give an explicit map for which condition (%) is satisfied:

t
F(t,z) = <1+t 4+ D*z-3224+72)+t(Q + z+ D*(~1+ 4z — 1022 + 20z3))>.

We have f;(z) =z + 22 4+ 23 + O(z%, z%t). Then zg = —1,f;(z0) =t and zp is a critical
point of f; of order 4.
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Lo

Let ty € Cbe such that ¢ (¢y) = zo. We refer to the complex lines {¢,, = e
nty

as critical fibers.

hn>1,

Definition 3.4 We define the vertical disks D,,, n > 1, as follows:

to —3/4
D, = , Z z—2z0l <m .
n {<1+nt0 ) [ ol

Note that £, might not be contained in V.. However, there exists N’ = N (¢) such that

1_:—']@% isin V,, for N > N’. From now on, we restrict our estimates to the disks D,, » > N’.

Now we are ready to prove Theorem 3.5. Let us restate here:

Theorem 3.5 There exist skew-product maps of the form F(t,z) = (I%H, f:(2))
where fi(z) = f(t,z) is a polynomial in two variables, and a vertical holomorphic disk
D,, C {t = t,,} whose w-limit set contains the parabolic fixed point (0, 0) that is in the
Julia set of fo.

Proof Consider a special skew product map that satisfies condition (¥). Then we will
prove that the forward orbits of D,, accumulate at the point (0,zp), and therefore, we
prove that for #n sufficiently large, the forward orbits of the disks D,, all avoid the bulged
Fatou components of F.

Note that f) might not be in our domain V, above. However, for a fixed N’ = N (¢), we

do have that %&m isin V,, for N > N’. Therefore, we can obtain all the estimates for iter-

ates of F after we iterate F, N’ times.
We need the following lemma:

Lemma 3.6 Let (%, z) and (t, w), be such thatt,z € Veand|w — z| < n% Then

|mo(E™(t,2) — F™(t,w))| < Cn?|z — w],

where C is fixed independent of n.

Proof Ifz =0, then we have

2 F" (&, W) = |fy, 0 ... fe(w)]

and recall that each f; is of the form f;(z) =z + 2> + O(z%). Let wiqq = f3, (wx) and
wp = w. Then we have that at infinity

1
— =——=14+0w).
w1 w

Our assumption implies |w| < C/n3, then |1/w| > n3/C, so when we apply # times our
map f;, we have [1/wy,| > [1/wg| — n(1 + K), where K = O(1/n?). Going back to the

original coordinates

3 1 __ Iwl
1L/wol —n(Q +K)  1— nlwol(1+K)

2
(Wl < Cn”|wol.
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When z # 0 then there exists # large so that|w — z| < n—cg implies w € V.. Then we have
much stronger estimates than needed. O

All we need to complete the proof of Theorem 3.5 is the following lemma.

Lemma 3.7 For n sufficiently large we have that

F"{(Dy) C Daps1.

Proof First, we assume n > N’ so that ¢, € V.. For the center, we use corollary 3.3:
F"™ Yty 20) = (tanr1, $n(t0)

and from Eq. (7) we have

A

Cm = |pu(to) — 20| < r@un+1) = @n+1)7%/4,

for n large enough this inequality is satisfied. Now for the rest of the disk we use the last
lemma. Let (4,20 + p) € Dy, |p| < r(n). Since zp is a critical point of order at least 4,
then

E(ty, 20 + p) — F(tn, 20) = (0, p*C),

where C is bounded independent of n. We use Lemma 3.6 for (¢, w) = F(t,,z0 + p) and
(t: Z) = F(tnr ZO) = (tn+l; t}’l); SO

\nz (F™ 20 + ) = F** 1ty 20) ) ] < C'n?lpl*.

For n large we have the last inequality in the following line:
Cr?lpl* < C'rilrim*=C'n ™ <r@2n+1) = 2n+1)7%4,

therefore, we obtain that for # large F "1(D,) C Doyrr. O

An immediate consequence of Lemma 3.7 is that for sufficiently large n € N there
exists a sequence of [, — oo so that Fl"(D,) — (0,20)as £ — oo, and the proof of Theo-
rem 3.5 is complete. O

Lemma 3.8 The disks D, are Fatou disks for F.

Proof We need to prove that the sequence FX restricted to each of the disks D, is a nor-
mal family. We see that the ¢ coordinate of each disk D, is going to 0 and therefore stays
bounded. For the z coordinate we have that the sequence {7y F Zk(”“), k > 0}. It is easy
to see also that if (¢, z) is such that |z] > R and |¢| < 1then F"(t,z) — oc. Then it follows
that the entire second coordinate of the iterates of F must stay bounded. By Montel’s
Theorem this implies that F¥ is a normal family when restricted to each D,,.[]

Remark 3.9 However, we see that we cannot enlarge our one-dimensional disks into
domains of a polidisk shape. Assume that for each », there exists a domain B, = U, x D,
where U, is an open ball around each ¢, that is U, = {|t — t,| < 8,}. We will let §,, vary
for each n. Clearly, D,, C B,. We will argue by contradiction; assume that there exists a
sequence of 8, > 0 so that F"*1(B,,) C By, 1 for n large enough.
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Let (s,z0) € B, where 0 < |s — t,| < §,. By assumption Frtl(s, z0) € By,.11, therefore,
7o (F"™*1(s,29)) € Dy, 1 which is equivalent to

L= |ma(F"™ ! (5,20) — 20l < 2n+ 1)~/ )

We will see that this is not possible for any choice of §,,.
We estimate L by below

L = |maF" (s, 20) — 20| > |m2F" (s, 20) — b (t0)| — |pu(to) — 2ol (10)
For n large we have an estimate on the second term of the right hand side of (10):
[pn(to) — 2ol = ¢u(to) — P (to)| < C'/n.

For the first term on the right hand side of (10), we have:

2" (s, 20) — $u(t0)| = Ipu(s") — pulto)| = Cls' — tol,

where %/m, =s or equivalently s =s/(1 —mns). Since &, =|s—t,] #0, then
o = |s" — to| # 0. Back in (10)

L = |maF" (s, 20) — 20| = C8y — C'/m,

which together with the bound (9) gives us a contradiction. Therefore, it is not possible
to fatten the disks above. For a more recent result on open wandering domains for skew
product maps see [1]. Their technique, based on an idea of M. Lyubich, is to use para-
bolic implosion.
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