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t-METASET: Task-Aware
Acquisition of Metamaterial
Datasets Through Diversity-
Based Active Learning

Inspired by the recent achievements of machine learning in diverse domains, data-driven
metamaterials design has emerged as a compelling paradigm that can unlock the potential
of multiscale architectures. The model-centric research trend, however, lacks principled
[frameworks dedicated to data acquisition, whose quality propagates into the downstream
tasks. Often built by naive space-filling design in shape descriptor space, metamaterial
datasets suffer from property distributions that are either highly imbalanced or at odds
with design tasks of interest. To this end, we present t-METASET: an active learning-
based data acquisition framework aiming to guide both diverse and task-aware data gen-
eration. Distinctly, we seek a solution to a commonplace yet frequently overlooked scenario
at early stages of data-driven design of metamaterials: when a massive (~O(10%)) shape-
only library has been prepared with no properties evaluated. The key idea is to harness
a data-driven shape descriptor learned from generative models, fit a sparse regressor as
a start-up agent, and leverage metrics related to diversity to drive data acquisition to
areas that help designers fulfill design goals. We validate the proposed framework in
three deployment cases, which encompass general use, task-specific use, and tailorable
use. Two large-scale mechanical metamaterial datasets are used to demonstrate the effi-
cacy. Applicable to general image-based design representations, t-METASET could boost
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1 Introduction

Metamaterials are artificially architectured materials that support
unusual properties from their structure rather than composition [1].
The recent advancements of computing power and manufacturing
have fueled research on metamaterials, including theoretical analy-
sis, computational design, and experimental validation. Over the
last two decades, outstanding properties and functionalities achiev-
able by metamaterials have been reported from a variety of fields,
such as optical [2], acoustic [3], thermal [4], and mechanical [5].
They have been widely deployed to applications in communica-
tions, aerospace, biomedical, and defense, to name a few [6].
From a design point of view, leveraging the rich designability in
hierarchical systems is a key to further disseminating metamaterials
as a versatile material platform, which not only realizes superior
functionalities but also facilitates customization and miniaturiza-
tion. There has been growing demand for advanced design
methods to harness the potential of metamaterials.

Data-driven metamaterials design (DDMD) offers a route to
intelligently design metamaterials. In general, the approach builds
on three main steps: data acquisition, model construction, and infer-
ence for design purposes. DDMD typically starts with a precom-
puted dataset that includes a large number of structure—property
pairs [7-11]. Machine learning model construction follows to
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learn the underlying mapping from structure to property, and some-
times vice versa. Then the data-driven model is used for design opti-
mization, such as at the “building block™ or unit cell level, and
optionally tiling in the macroscale as well when aperiodic designs
are of interest [12—15]. The key distinctions of DDMD against con-
ventional approaches are that (i) DDMD accelerates multiscale
design optimization via exploring the vast design space efficiently;
(ii) it has little restrictions on analytical formulations of design inter-
est; and (iii) some DDMD approaches enable on-demand design
without iterations, which pays off the initial cost of data acquisition
and model construction. Capitalizing on the advantages, DDMD
has reported a plethora of achievements for diverse design problems
in recent years [1,8—10,16-18].

Despite the recent surge of DDMD, rare attention has been given
to data acquisition and data quality assessment—the very first step
of DDMD. In data-driven design, data are a design element; a col-
lection of data points forms a landscape to be learned by a model,
which is an “abstraction” of the data, and to be explored by either
model inference or modern optimization methods. Hence, data
quality ends up propagating into the subsequent stages. Yet
the downstream impact of naive data acquisition is opaque to diag-
nose and thus challenging to prevent a priori [19]. Underestimating
the risk, common practice in DDMD typically resorts to a large
number of space-filling designs in the shape space spanned by the
shape parameters. This inevitably hosts imbalance—distributional
bias of data—in the property space [11,12,20,21] formed by the
property components. The downstream tasks involving a data-
driven model—training, validation, and deployment to design—
follow mostly without rigorous assessment on data quality in
terms of diversity, design quality, and feasibility, among others.
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Fig.1 An overview of t-METASET. Given a shape-only dataset, a compact shape
descriptor of microstructures is distilled by a generative model (e.g., variational
autoencoder). A sparse regressor (e.g., a Gaussian process) learns the
descriptor-property mapping in light of sparse observations. Harnessing the pre-
diction over unseen shapes, diversity sampling (e.g., determinantal point pro-
cesses) drives active learning through diversity and, optionally, task-related
quality metrics. Once evaluated, the observed batch refines the regressor. By
repeating this routine, t-METASET suppresses undesirable distributional bias

while boosting desirable one.

The practice overlooks not only data imbalance itself but also the
compounding ramification at the design stage, allowing both to
impede solid deployment of DDMD.

To this end, Chan et al. presented METASET [11] as a subset
selection framework that can identify small yet diverse subsets
from a fully evaluated database. Key idea is to evaluate the proper-
ties of all the designs a priori and then downsample a balanced
subset based on diversity metrics. Yet the approach lacks generality
of data acquisition for DDMD in that: (i) design evaluation could be
prohibitively expensive to build a massive (~O(10%) database with
all the data evaluated and (ii) diversity alone does not offer data cus-
tomization for specific design tasks.

To enhance the generality and efficiency of data acquisition for
DDMD, we propose fask-aware METASET (t-METASET) with
special attention to starting with sparse observations. Herein,
“task-aware” approaches rate individual data points based on the
utility for a given specific design scenario, rather than on distribu-
tional metrics (e.g., diversity) for general use. The proposed frame-
work handles data bias reduction (for generic use) and design
quality (for particular use) simultaneously, by leveraging diversity
and quality as the sampling criteria, respectively. We advocate
that (i) building a good dataset should be an iterative procedure
[22,23]; (ii) diversity sampling [24] can efficiently suppress the
property bias of multidimensional regression involved in most
DDMD methods [11]; (iii) property bias control significantly
improves fully aperiodic metamaterial designs, as shown by
recent reports [12-15]. Distinct from the existing work,
however, we primarily seek a solution to a commonplace—yet fre-
quently overlooked—scenario that designers face during data
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preparation: a large-scale shape dataset has been generated and
is about to be observed without evaluated observations at the
beginning.

Our t-METASET incrementally “grows” a high-quality dataset
that is not only diverse but also task-aware. Figure 1 illustrates a
schematic of the t-METASET procedure. The central ideas are (i)
to extract a compact shape descriptor from a shape-only dataset
by unsupervised representation learning, (ii) to sequentially
update a sparse regressor as a start-up “agent” under sparse obser-
vations, and (iii) to intelligently curate samples based on the predic-
tion of the regressor, and batch sequential sampling [24] building on
shape diversity, estimated property diversity, and user-defined
quality. Starting from a massive library of building blocks, the
active learning framework maneuvers the data acquisition so that
it can tailor the data distribution based on both diversity (for
generic use) and quality (for specific use) for given tasks.

In the context of DDMD, the intellectual contributions of
t-METASET are threefold:

o Starting without evaluated designs, t-METASET offers a prin-
cipled framework on how to build a diverse dataset during data
acquisition with rigorous metrics and a small amount of
heuristics;

e The framework provides a solution to property bias that both
existing and newly created metamaterial datasets are prone to.

e The proposed t-METASET can produce task-aware datasets
whose distributional characteristics can be tailored in response
to user-defined design tasks, while securing shape and prop-
erty diversity along the way.
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Fig.2 lllustration of D)5 [12]: (a) microstructure shape representation specific by thickness
of each bar group, (b) five instances of generated microstructures, (c) the resulting surfaces
of homogenized elastic modulus, (d) data distribution in parametric shape spaces w-w,
and w4-w3, and (e) data distribution in projected property spaces C{1—C, and C{1—C13

We argue the advantages of t-METASET are as follows: (i) scal-
ability, (ii) modularity, (iii) customizability to general or specific
tasks, (iv) freedom from restrictions on shape generation schemes,
(v) no dependency on domain knowledge, and (vi) by extension,
applicability over generic design datasets involving high-
dimensional images. t-METASET is validated via two large-scale
shape-only mechanical metamaterial datasets (containing 88,180
and 57,000 instances, respectively) that are built from different
ideas, without preliminary downsampling. The validation involves
three scenarios addressed by different sampling criteria: (i) only
diversity aiming at general use (e.g., global metamodeling
[25,26]), (ii) quality-weighted diversity aiming at task-aware use,
and (iii) shape—property joint diversity for tailorable use.

2 Property Bias: An Example of Lattice Mechanical
Metamaterials

Property bias prevails in existing metamaterial datasets. To
convey this point, we examine an example of a lattice-based 2D
mechanical metamaterial dataset. Lattice-based metamaterials
have been intensely studied due to their outstanding
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performance-to-mass ratio, great heat dissipation, and negative
Poisson’s ratio [1]. Wang et al. devised a lattice-based dataset
[12], to be called Dy, in this work. In the dataset, a unit cell (i.e.,
microstructure or building block) takes six bars aligned in different
directions as its geometric primitives (see Fig. 2(a)). All unit cells
can be fully specified by four parameters associated with the thick-
ness of each bar group. The shape generation scheme produces
diverse geometric classes (i.e., baseline, family, motif, basis, and
template), as displayed in Fig. 2(b). Each class exhibits different
topological features, which offer diverse modulus surfaces of
homogenized elastic constants (Ci;, Ciz, Ci3, Coa, Caz, Ci3)
(Fig. 2(c)). Figure 2(d) shows the nearly uniform sampling in the
parametric shape space Q,,=[0, 1]* used for data population. We
removed repeated instances where the entire domain is either
solid (vs =1) or void (v¢ =0); this explains why some regions in
Fig. 2(d) have no data points.

Now we look into the data distribution of D,,,. The near-uniform
sampling ensures good uniformity in the parametric shape space
(Fig. 2(d)). On the other hand, the corresponding property distribu-
tions in Fig. 2(e) show considerable imbalance, which epitomizes
that data balance in parametric shape space does not ensure the
same in property space. Such property imbalance is prevalent in
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many metamaterial datasets generated by space-filling design in
parametric shape space [11,20,21,27,28]. We claim that: (i) meta-
material datasets collected based on naive sampling in parametric
shape space are subject to substantial property bias
[11,20,21,27,28], and more importantly, (ii) this is highly likely
to hold true for datasets with generic design representations—
beyond parametric ones—as well [10,11,13,29,30]. The general
statement is, in part, grounded on the near-zero correlation
between shape similarity and property similarity in large-scale
metamaterial datasets (~O(10%)), consisting of microstructures rep-
resented as pixel/voxel, observed by Chan et al. [11]. Overlooking
the significant property imbalance, many methods assume that the
subsequent stages of DDMD can accurately learn and perform infer-
ence under such strong property imbalance, ignoring the com-
pounding impact of data bias [31].

In addition, diversity alone does not ensure successful deploy-
ment of DDMD for design purposes. Imagine a case where a
50k-size dataset with perfect uniformity has been prepared, yet
the region associated with a given design task (e.g., high
performance-to-mass ratio; high stiffness anisotropy; manufactur-
ability) happens to include a tiny portion of the dataset. This
implies, provided a design task has been prescribed, that (i) design-
ers would want to involve the utility of data points for the given
task, on top of diversity, during both data acquisition and evalua-
tion; (ii) it could be rather desirable to promote artificial data
bias toward a certain direction/area associated with the task.

Property bias is inevitable without supervision. Properties—a
function of a given shape—are unknown before evaluation. Obtain-
ing their values is the major computational bottleneck [19], not only
at the data preparation stage but also in the whole DDMD pipeline.
An undesirable yet prevalent case is: one evaluates all the shape
samples with time-consuming numerical analysis (e.g., finite
element method (FEM); wave analysis) and trains a model on the
data, only to end up with a property distribution that is severely
biased outside where one had planned to deploy the data-driven
model. To circumvent such unwanted scenarios, it is warranted to
monitor property distributions at early stages and maneuver the
sampling process in a supervised manner during data acquisition,
not after. As a solution, we propose t-METASET, a task-aware
data acquisition framework that tailors data distributions upon user-
defined design tasks.

3 Proposed Method

In this section, we walk readers through the three components of
the proposed t-METASET: shape descriptor (Sec. 3.1), sparse
regressor (Sec. 3.2), and diversity-driven sampling (Sec. 3.3).
Then the algorithm in its entirety is presented (Sec. 3.4).

3.1 Shape Descriptor. To exploit topologically free variations
of building block geometries, metamaterials design often involves a
high-dimensional geometric space (e.g., 50x50 pixelated 2D
designs equates a 50°-D space). Exploring the vast design space
is inefficient and not computationally affordable. Instead we wish
to reparameterize instances in the ambient space using a compact
yet expressive shape descriptor. The shape descriptor captures
essential topological features of metamaterial building blocks and
offers a low-dimensional design representation with an acceptable
compromise of expressiveness.

In the literature of DDMD, shape descriptors of building blocks
roughly fall into three categories: physical descriptors, spectral
descriptors, and data-driven descriptors. First, physical descriptors
represent a geometry based on geometric features of interest, such
as curvature, moment, angle, and shape context [32]. Hence, the
key advantage is high interpretability provided by the physical cri-
teria. For example, in DDMD, Chan et al. [11] employed the divi-
sion point-based descriptor [33], which recursively identifies
centroids of binary images at several granularity levels and concat-
enates the coordinates as the descriptor. Second, spectral descriptors
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exploit finite-dimensional spectral decomposition of ambient shape
space. Liu et al. [34] proposed a Fourier transform-based descriptor
as a topological encoding method for optical metasurfaces. The
spectral descriptor enjoys representational parsimony, reconstruc-
tion capability (inverse Fourier transform), efficient symmetry han-
dling, and a continuous latent space. Third, data-driven descriptors
exploit data-driven feature engineering. Wang et al. [10] employed
a variational autoencoder (VAE) [35] as a deep generative model
for DDMD. It was demonstrated that the latent representation
offers a compact shape similarity measure in light of given data,
facilitates blending across microstructures, and encodes interpret-
able geometric patterns.

As a data-driven model involving unsupervised representation
learning, VAE learns a compact latent representation that can be
used as a shape descriptor [35]. We advocate the VAE descriptor
as the shape descriptor of metamaterial unit cells based on two
aspects. First, VAE enjoys the parsimony of a low-dimensional
manifold, which is crucial to make a sparse regressor (Sec. 3.2)
have compact yet expressive predictors and to expedite the subse-
quent diversity-driven sampling (Sec. 3.3). Second, this work also
takes advantage of the distributional regularization imposed on
the encoder: the latent vectors are enforced to be roughly multivar-
iate Gaussian. The regularization enforces built-in scaling across
individual components of the latent representation, rendering
diversity-based sampling robust to arbitrary scaling.

Figure 3(a) depicts the shape VAE used in our study. The VAE
involves two key components, encoder £ and decoder G. Assuming
an input instance is given as a discretized image, the encoder
involves a set of progressively contracting layers to capture under-
lying low-dimensional features, until it reaches the bottleneck layer,
which provides the latent vector as z = E(¢(x, y)), where ¢(x, y) is
the signed distance field (SDF) of a binary microstructure image
I(x, y). The decoder, reversely, takes a latent variable from the infor-
mation bottleneck and generates a reconstructed image as
¢(x, y) = G(z). In formatting the shape instances, we prefer the
SDF representation to the binary one since (i) SDFs offer richer
local information (distance and sign) that unsupervised representa-
tion learning can exploit [36], and (ii) the continuous surface-based
representation tends to help generative models produce smoother
synthesized instances [37].

Now we briefly introduce key formulations of VAE. A VAE
assumes that given data have come from an underlying random
process specified by a latent variable z. Each instance ¢ and
latent variable z are viewed as a realization of the conditional distri-
bution py (¢lz) and prior distribution py(z), respectively, where @ is
the parameters that specify the distributions. The marginal likeli-
hood of a given instance ¢ reads:

logpe(¢) = KLIqy z|$)lIpeIh)] + LO, w: ) (€Y

where KL[-||-] is the Kullback—Leibler divergence, a nonnega-
tive distance measure between two distributions; g,,(zl¢) is the var-
iational posterior that is specified by the parameter y and
approximates the true posterior py(zlgp) to bypass the intractability
of the marginal distribution [35]; and £(-) is the variational lower
bound on the marginal likelihood. Usual practice for training is
to rearrange the equation and to maximize the evidence lower
bound:

L@,y ) = —KLIqy z|D)lIpeI#)] + Eq, cippllogPa(@l2)]  (2)

The first right-hand side term KL[-||-] involves the regularization
loss that enforces the latent variable z to be distributed as multivar-
iate Gaussian, while the second term denotes the reconstruction
loss. The approximated variational lower bound allows stochastic
gradient descent to be used for end-to-end training of the whole
VAE. For efficient training, standard VAE assumes the prior distri-
bution as pg(z) ~N(0,I) and the variational posterior as
Gy (@l2) ~ N(u, 6%), respectively, where the reparameterization
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trick [35] involves a stochastic embedding z’ as 7’ = u + 6®¢ with a
Gaussian noise £ ~ N(0, I). The training reduces to the following
optimization problem:

. 1 !/
min [-LO.y:; Pl = EZpo(cblz )

- % Y Ml +loge®) —6” —p’l  (3)

where |S| is the number of shape data.

Figures 3(b) and 3(c¢) report the VAE training results of each
dataset, 2D multiclass blending dataset (Dpx) [13], and 2D topol-
ogy optimization dataset (Drp) [38,39]. A concise description of
the datasets is presented in Sec. 4.1. The VAE architecture was
set based on that of Wang et al. [10]. The dimension of the latent
space is set as 10, with the tradeoff between dimensionality and
reconstruction error taken into account. The Adam optimizer [40]
was used to train the VAE with the following setting: learning
rate 107, batch size 128, epochs 150, and dropout probability
0.4. Each shape dataset is split into training set and validation set
with the ratio of 80% and 20%, respectively. In Figs. 3(b) and
3(c), each training history shows stable convergence behavior for
both training and validation. From the plots of SDF instances on
the right side, we qualitatively confirm good agreement between
the input instances (top) and their reconstruction (bottom), for
both training results.

3.2 Sparse Regressor. In t-METASET, a sparse regressor
enables active learning and task-aware distributional control
under epistemic uncertainty (i.e., lack of data). In Sec. 3.2.1, we
elaborate on why a Gaussian process (GP) is a good choice as the
sparse regressor and introduce key formulations of multi-output
GPs. Section 3.2.2 details roughness parameters of a GP and how
they are harnessed for sampling mode transition in t-METASET.

3.2.1 Gaussian Processes. We implement a GP regressor as
the “agent” of data acquisition in this work. The mission is to
learn the underlying structure—property mapping from sparse data

Journal of Mechanical Design

and to pass predictions over unseen shapes as p = GP(z) to batch
sequential sampling. In this study, the GP takes the VAE latent
shape descriptor as its input, which offers substantial dimension
reduction (50>-D —10-D in this work). We advocate a GP as the
sparse agent due to three key advantages: (i) model parsimony con-
gruent with sparse observations at early stages; (ii) decent modeling
capacity of nonlinear structure—property regression (i.e., z — p); and
(iii) roughness parameters as an indicator of model convergence, to
be used for sampling mode transition (detailed in Sec. 3.2.2).

Building on the advantages of the GP, our novel idea on
task-aware property bias control is to (i) construct an estimated
property similarity kernel L, (Sec. 3.3.1) from the GP_prediction
P=GP(z), as the counterpart of the shape kernel L;, and (ii)
employ conditional determinantal point processes (DPP) [24]—a
probabilistic approach to diversity modeling—on the estimated
property kernel L, to recursively sample a batch based on the
expected property diversity. The property kernel L, estimates prop-
erty similarity, prior to design evaluation, not only between train—
train pairs but also between train—unseen and unseen—unseen ones.
In this way, the sampler of t-METASET recommends a batch B
hinging on both estimated property diversity and shape diversity.
It is important to note that, at an incipient phase, we do not
rely on L,, as the predictive performance of a multivariate multi-
response GP (RP: — R, where D, is the property dimensionality)
trained on tiny data is not reliable. We determine the turning
point—when to start to respect the GP prediction— based on the
convergence history of a set of the GP hyperparameters: rough-
ness parameters (i.e., scale parameters).

As a background to the roughness parameters, we introduce key
formulations of GPs. A GP is a collection of random variables, any
of whose finite subset is distributed as multivariate Gaussian [41].
Given a set of observations, a GP with D, responses is fully spec-
ified by its mean and covariance functions as follows:

f~GPu), covz, 7)) 4)

where u(-) is the mean function; cov(-, -) is the covariance function;
fis a function viewed as a realization from the underlying distribu-
tion. For the multivariate input z and the multiresponse outputs p in
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our study, the covariance function reads: cov(z, Z)=X® rz, z'),
where X is the D, x D,, dimensional multiresponse prior variance,
® is the Kronecker product, and 7(-, -) is the correlation function.
In this work, we use the squared exponential correlation function
given as follows:

1z, 7)) = exp(—(z —2)0(z —2)) ®)
where © =diag(10“) and = [wy,..., a)DZ]T is the vector of
roughness parameters [42]. Given a dataset
D={(&,..-.2p.), P1»-.-.Pp,)}",» a point estimate of the

hyperparameters can be found through maximizing the Gaussian
likelihood function:

[ﬁ, S, ®]=arg min B log(det (X)) + % log(det(R))

B.Ew]
1 _
+550- 18R 0~ 1/3)} ©)
where 1 is an n x D), dimensional vector of ones, # =[f,..., ﬂD,,]T

is 1 x D, dimensional vector of weights, log(:) is the natural loga-
rithm, R is the nxn correlation matrix with (i, j)th element R;;
given as r(z;, z;) for i, j=1, ..., n, and det(-) is the matrix determi-
nant operation. In the aforementioned formulation of the likelihood,
we have assumed a constant prior mean function as 1. More
complex basis functions can be used to represent the prior mean
(e.g., linear, or quadratic); however, this is not advised as this infor-
mation is typically not known a priori and is likely to compromise
model accuracy when chosen incorrectly.

After approximation of the hyperparameters, the posterior predic-
tive distribution for an unobserved input z,,.,, can be obtained by
conditioning the prior distribution on the observed data D [43]. Spe-
cifically, the mean and the covariance of the posterior predictive dis-
tribution is given as follows:

ﬂ(znew) :ﬁ + "T(anv)R_l(P - lﬁ)
COV@Zner) = ZrGnews Znew) = T @ner )R P (Zpern)
+WIA"RT'1yW] (7

where r(z,,.,,) is an nx 1 dimensional vector whose ith element is
given as "Zpews ) for i=1, ..., n, W=1'-1"R7'r(z,.,,), and 1’
is a D, x 1 dimensional vector of ones.

3.2.2  Roughness Parameters. Informally speaking, roughness
parameters @ = [@y, . .. wDZ]T dictate fluctuation levels of responses
with respect to each predictor (each component of z in our study), in
light of given data. Bostanabad et al. [42] used the fluctuations of
roughness parameters with Eq. (5) and their estimated variance to
qualitatively determine if sufficient samples were collected during
GP training. Building on that, we monitor the roughness parameters
 and take the convergence of roughness parameters as a proxy for
model convergence. The roughness residual serves as the transition
criterion across sampling modes. We define the convergence crite-
rion involving the roughness residual metric A as follows:

ACHD = L ||w(r+l) _ w(r)”Z <z
D: 3)

(t= 1,---sl‘max)

where 7 is a threshold associated with the sampling mode transition.
At an early stage, the roughness residual exhibits a “transient” beha-
vior. As a stream of data comes in, the residual converges to zero,
implying a mild convergence of the GP. In this work, we set two
different values of threshold, namely, 7, and 7, where 7, >17,. We
assume each convergence criterion is met if the residuals of five
consecutive iterations are below the threshold. 7; is to identify a
mild convergence, indicated by the larger tolerance. Once met,
t-METASET initiates stage II, where estimated property diversity
serves as the main sampling criterion. Meanwhile, the smaller
threshold 7, is used to decide when to stop the GP update: as the
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size of training data accumulates, the variations of roughness
parameters get unnoticeable [42], whereas the computational cost
of fitting the GP rapidly increases as ~ O(/D”|*) due to the inver-
sion of covariance matrix R. We prioritize speed, at the modest cost
of prediction accuracy. Detailed implementation with the other
pillars is presented in Sec. 3.4. When reporting the results of
t-METASET, we will include the history of the residuals, in addi-
tion to that of diversity metrics.

3.3 Diversity-Based Sampling. In this section, we elaborate
on diversity-based batch sequential sampling. It maneuvers the
data acquisition, leveraging both the compact shape descriptor dis-
tilled by the VAE (Sec. 3.1) and iteratively refined prediction
offered by the GP agent (Sec. 3.2), from beginning to end of
t-METASET. Recalling the mission of t-METASET—task-aware
generation of balanced datasets—we advocate DPP-based diversity
sampling primarily based on three key advantages: (i) DPPs offer a
variety of practical extensions (e.g., cardinality constraint, condi-
tioning) that facilitate the active learning of t-METASET; (ii) the
probabilistic modeling from DPP captures the tradeoff between
diversity and quality; and (iii) importantly, DPPs are flexible in
terms of handling distributional characteristics in that most object-
driven sampling approaches [44] support either exploration (diver-
sity of input) or exploitation (quality of output), while DPPs do all
the combinations of diversity (input/output) and quality (shape/
property/joint) without restrictions. t-METASET builds on a few
extensions of DPPs. Section 3.3.1 presents fundamental concepts
related to DPP. Section 3.3.2 introduces conditional DPPs that are
key for DPP-based active learning and brings up the scalability
issue of massive similarity kernels. As a workaround, a large-scale
kernel approximation scheme is introduced in Sec. 3.3.3. Section
3.3.4 addresses how to accommodate the design quality into DPP,
which enables “task-aware” dataset construction.

3.3.1 Similarity and Determinantal Point Processes. In
general, an instance of interest could be represented as a vector x.
A similarity metric between items i and j can then be quantified
as a monotonically decreasing function of the distance in the
virtual item space as follows:

sij = T(h(x;, x;)) )

where s;; is the pairwise similarity between items i and j, h(-,-) is a
distance function, and T is a monotonically decreasing transforma-
tion (i.e., the larger a distance, the smaller the similarity is). One
way to represent all the pairwise similarities of a given set is to con-
struct the n X n similarity matrix L as L;;=s;;, where n =|Ll is the set
cardinality (i.e., dataset size). The matrix is often called a similarity
kernel in that it converts a pair of items into a distance measure (or a
similarity measure, equivalently). While any combinations of simi-
larity and transformation are supported by the aforementioned for-
malism, usual practice favors transformations that result in positive
semi-definite (PSD) kernels for operational convenience, such as
matrix decomposition. Following this, we employ Euclidean dis-

tance h(x;, x;) =,/ |lx; —xj||2 and the square exponential transfor-

mation. The resulting similarity kernel reads:

s — 3112
Ly=exp (M) (10)

2
207

where o is a length-scale parameter (i.e., bandwidth) that tunes the
correlation between items.

DPPs provide an elegant probabilistic modeling that favors a
subset composed of diverse instances [24]. They have been
employed for a variety of applications that take advantage of set
diversity, such as recommender systems [45], summarization
[46], and object retrieval [47]. The defining property of DPPs is
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expressed as follows:
pX = Ayxdet(L 1) (11)

where L 4 is a subset of a ground set L = Ly, indexed by A and p(X =
A) is the probability to sample .A. The property has an intuitive geo-
metric interpretation: det(A) is associated with the hypervolume
spanned by the constituent instances. If the catalog A includes
any pair of items that is almost linearly dependent on each other,
the corresponding volume would be nearly zero, making .4 unlikely
to be selected. De-emphasizing such cases, the DPP-based sampling
serves as a subset recommender that favors a subset of diverse
items. In this study, we set the batch size k to be constant at k=
10 using k-DPP [48] as follows:

det(Lg)
Z|B/\:k det(LB/)

where Lg denotes a submatrix indexed by the items that constitute a
batch, or subset, B € V.

pX=B)= (12)

3.3.2  Conditional Determinantal Point Processes. Our data
acquisition grows a dataset using active learning. At each iteration,
the similarity kernels should be recursively updated so that sam-
pling a new batch leverages the latest information of all evaluated
observations. This enables the sampler to (i) avoid drawing dupli-
cate samples that have been observed and (ii) promote samples
that are diverse not only within a given batch but also across a
sequence of batches [49]. In DPP, such a kernel update is supported
via conditioning a DPP on the instances observed so far. DPPs are
closed under conditioning operations; i.e., a conditional DPP is also
a DPP [49,50,51]. This implies that DPP-based sampling can be
iteratively applied to similarity kernels to achieve across-batch
diversity, as well as within-batch diversity [49]. Let 5 and V be
the batch and the ground set at the ith iteration, respectively.
Given the DPP kernel L” at that iteration, a recursive formula for
the conditional kernel L/ reads:

L6+ — ((Lm +Ig)g>_] —1 (13)

where B =V ~ B. Due to the cascaded matrix inversions involving
cubic time complexity, the equation does not scale well to the
large-scale kernels with instances ~0(10%. Furthermore,
t-METASET demands at least a few hundreds of conditioning.
Even just storing a 88, 180%-size similarity kernel for Dyo with
double precision takes up about 62 gigabytes. In brief, Eq. (13) is
intractable for large-scale similarity kernels of our interest.

3.3.3 Large-Scale Kernel Approximation. To circumvent the
scalability issue, we leverage large-scale kernel approximation
[52]. Recalling that we have employed the Gaussian similarity
kernel (Sec. 3.3.1), we harness the shift invariance (i.e., L(x, y) =
L(x —y)) by implementing random Fourier feature (RFF) [52] as
an approximation method. It builds on the Bochner theorem [53],
which states that the Fourier transform JF of a properly scaled
shift-invariant (i.e., stationary) kernel L is a probability measure
p(f) as follows:

Lie—y)= j P exp(f' & - y) df (14)
Q

where j is the imaginary unit ~/—1, p(f) = F[L(x —y)] is the
probability distribution, Dy (< n) is the feature dimension, and x,
yEQ. By setting ((x)=exp(jfx), we recognize that
L(x, y) = Ef[{r(x)C,(y)*], implying that {(x){(y)* is an unbiased
estimate of the kernel to be approximated. The estimate variance
is lowered by concatenating Dy (<n) realizations of {x). For a
real-valued Gaussian kernel L, the probability distribution p(f) is
also Gaussian, and {{x) reduces to cosine. Under all the
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considerations so far, Dy x n RFF becomes:

Vix)= \/Dzv[cos(f,’x +by).....cos(fp x +bp)]" (15)

where  {fi,....fo,} ¥ N(©,1) and ({(bi,..., bp,} 4 U[0, 2x].
Given an RFF V, the updated feature V' conditioned on a batch B
has the following closed-form expression [51]:

V' = VgZB(I - VE(VsVE) V) (16)

where the true kernel can be estimated via L~ V/(V)!. Now the
matrix inversions become amenable as the time complexity
decreases to O(|B|®) with |B] = k < n.

3.3.4  Quality-Weighted Diversity for Task-Aware Sampling.
Finally, we take into account user-defined quality, in addition to
diversity, to construct datasets that are not only balanced but also
task-aware. This study is dedicated to pointwise design quality,
where a pointwise nx 1 quality vector g(z, p) associated with a
design task serves as an additional weight to a feature V'. The result-
ing feature Dy x n matrix V" reads:

Dy
—_—
V' =1q@ p")qz p")1" oV’ (17)

where o denotes the Hadamard product (i.e., elementwise
multiplication).

The quality-weighted DPP sampling could seem similar to Baye-
sian optimization (BO) [44] in that (i) quality contributes to exploi-
tation given design attributes of interest, whereas diversity supports
exploration, and (ii) both use sequential sampling, taking GP as the
surrogate. We highlight their differences as follows: (i)
t-METASET does not take the uncertainty provided by the GP
regressor—at least under the current setup—as a sampling criterion;
(i) diversity is the main driver of the sequential DPP sampling,
whereas in BO, exploration (diversity) is ultimately a means for
exploitation (quality); (iii) t-METASET is primarily driven by pair-
wise DPP kernels, taking a pointwise quality as an option, whereas
BO is driven by a pointwise acquisition function; (iv) t-METASET
handles quality that accommodates distributional attributes of
shape, property, and even the combination of them, while for BO,
no acquisition functions have been proposed that explicitly consider
property distribution; (v) t-METASET has more flexibility in terms
of tailoring distributional characteristics, while standard BO ends up
biasing both shape and property distributions to reach the global
optimum of a black-box cost function. Quantitative comparisons
between t-METASET and BO would be an interesting topic but
is currently beyond the scope of this work, as ttMETASET can
only downsample out of |S| finite points in the VAE latent space,
whereas standard BO takes infinitely many continuous inputs into
account. The validation would be viable under the following exten-
sions: (i) the decoder of the VAE joins the t-METASET algorithm
to generate new shapes ¢(x, y) = G(z), not existing in the given
shape dataset S and (ii) continuous DPP [54] can be employed to
recommend diverse samples from a continuous landscape, learned
from the discrete data points provided by users. This is our future
work.

3.4 The T-METASET Algorithm. In this section, we detail
how to seamlessly integrate the three main components introduced:
(i) the latent shape descriptor from the shape VAE, (ii) a sparse
regressor as the start-up agent, and (iii) the batch sequential
DPP-based sampling that suppresses undesirable bias while enforc-
ing an intentional one. Visual illustration of t-METASET is pre-
sented in Fig. 4. Figure 4(a) shows a flow of t-METASET, whose
transition is determined by the roughness residual of the GP
agent. Given a shape only, Fig. 4(b) depicts the initialization of
t-METASET supported by VAE shape descriptor 3.1 and
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Fig. 4 A visual overview of t-METASET: (a) Sampling mode transition associated with the roughness residual r®. (b) Initial-
ization. The VAE is trained on the given shape-only dataset S. The latent variables are roughly distributed as multivariate
Gaussian. The latent representation is taken as the shape descriptor, whose concatenation forms the |S| x D, matrix, where
|S| is the shape set cardinality (~O(10%). RFF follows to extract a |S| x Dy-sized feature of shape feature to be used for the
DPP sampling based on shape diversity. (c) A simplified flowchart of stage Il. Details are stated in the main body. Stage |
shares the structure as stage Il but is driven only by shape feature (no step (iii)). Stage lll is equivalent to stage Il except for
the GP update (step (v)). The proposed data acquisition ends when user-defined termination criteria are met (e.g., maximum

iteration).

large-scale kernel approximations 3.3.3. The key sampling proce-
dure of t-METASET is illustrated in Fig. 4(c).

3.4.1 Initialization. Figure 4(b) illustrates the initialization of
t-METASET, which involves VAE training, latent shape descriptor,
and RFF extraction from the descriptor. The framework takes the
following input arguments: the shape-only dataset S composed of
SDF instances ¢(x, y), batch cardinality k, the ratio of property
samples in each batch €, and optionally a pointwise quality function
q(z, p) that reflects a design task if declared in advance. A shape
VAE is trained on S with the dimension of latent space D, which
is 10-D herein (Fig. 4(b)).

Then we draw the Dy x n-sized RFF V, (15) of the nxn shape
similarity kernel, L,. This feature is to be recursively updated by
conditioning on a series of collected batches. For initialization of
conditional DPPs over the shape feature, we follow the procedure
of Affandi et al. [49].

3.4.2 Stage I During stage I, the GP model’s roughness
parameter @ shows large fluctuation due to lack of data. The sam-
pling only relies on shape diversity because the property prediction
of the GP given unseen latent variables is not reliable yet. This stage
also can be viewed as initial exploration driven by the pairwise
shape dissimilarity—as an analog to initial passive space-filling
design—where |D| ~ O(10%) discrete data points are given as a
pool for sampling.

3.4.3 Stage II. Figure 4(c) provides an overview of stage II—
the core sampling stage of - METASET. As more data come in, the
roughness residual A” (Eq. (8)) approaches zero and becomes
stable. Provided that the roughness residual falls under the first
threshold 7, for five consecutive iterations, the t-METASET frame-
work assumes that the GP prediction is ready to be appreciated.
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t-METASET proceeds to the next sampling phase stage II, where
t-METASET harnesses the estimated property diversity, in addition
to shape diversity, as the main criterion. The key is to introduce the
RFF of the estimated property V), building on the GP prediction
P=GP@).

Now we detail each step described in Fig. 4(c). (i) Given a ratio of
property samples € in a given batch, the DPP sampler draws ek € N
instances from the property RFF V, based on property diversity,
weighted by task-related quality when a task is specified. (ii) The
rest of the batch is filled by (1 — &)k samples from the shape RFF,
to complement possible lack of exploration in the shape descriptor
space €2,. Herein, the shape RFF must be updated with respect to
batch B, first to reflect the latest information. Once sampled, the
shape feature is updated again with respect to the rest of the
shapes in Bj_, just selected, for the next iteration. (iii) The micro-
structures of the batch are observed by design evaluation—FEM
with energy-based homogenization [55,56] in this study—to
obtain the true properties (e.g., p={C;;, Ci2, C22}). (iv) The true
properties replace the GP prediction in the given batch BY. (v)
Then the evaluated batch updates the GP to refine the property pre-
diction as p® = GPY(z) for the next iteration. (vi) The refined pre-
diction demands the update of a new property RFF, as well as the
conditioning of it on the entire dataset D = | J74B? collected
so far. (vii) If a quality function ¢(z, p) over design attributes has
been specified, it can be incorporated into the latest property RFF
by invoking Eq. (17) to prompt a task-aware dataset.

3.4.4 Stage IlI. Stage III shares all the settings of stage II
except for the GP update. The main computational overhead of
stage II comes from GP fitting as it involves matrix inversion
with the time complexity ~ O(|D®|?). To bypass the overhead,
we stop updating the GP if the roughness residual falls under 7,
for five consecutive iterations. During stage III, our algorithm can
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Table 1 Dataset description

Diar [12] Dyix [13] Dro [39]
Cardinality 9,882 57,000 88,180
Shape primitive Bar SDF of basis unit cell N/A (used TO)
Shape population Parametric sweep Continuous sampling of basis weights and blending  Stochastic shape perturbation and iterative
sampling
Topological freedom Predefined Quasi-free Free
Property {C11, Ci2, Caa, Cy3, Co3, Ci3} {Ci1, Ci2, Ca2} {Ci1, Ci2, C2}
FEM discretization 100 x 100 50%50 50%50
FEM solver Energy-based homogenization [55,56]

quickly identify diverse instances from a large-scale dataset
(~0(10%), without the scalability issue. The main product of
t-METASET is a high-quality dataset D= = [ Jis B, which is
not only diverse but also task-aware.

4 Results

In this section, the results of t-METASET are presented. As
benchmarks, the two large-scale mechanical metamaterial libraries
[13,39] are used for validation. Data description on the two datasets
is provided in Sec. 4.1. We propose an interpretable diversity metric
in Sec. 4.2 for fair evaluation of t-METASET. To accommodate
various end-uses in DDMD, we validate t-METASET under three
hypothetical deployment scenarios: (i) diversity only for generic
use (balanced datasets; Sec. 4.3), (ii) quality-weighted diversity
for particular use (task-aware datasets; Sec. 4.4), and (iii) joint
diversity for tailorable use (tunable datasets; Sec. 4.5). Basic set-
tings include: batch cardinality as k= 10; property sample ratio
during stage II as £=0.8; the RFF size as Dy =3,000; maximum
iteration as fy.x =500; first and second threshold of roughness
parameters as 7, = 0.02 and 7, = 0.01, respectively; and iteration tol-
erance of roughness convergence as i,,;=5. Finally, we focus on
producing datasets with sizes of either 3,000 or 5,000 (i.e., fiax =
300 or 500, respectively).

4.1 Datasets. We introduce two mechanical metamaterial
datasets, in addition to D,,, to be used for validating
t-METASET: (i) 2D multiclass blending dataset (Dpx) [13] and
(i) 2D topology optimization dataset (Drp) [39]. Table 1 compares
key characteristics of the datasets. Figure 5 illustrates each dataset
and shape generation heuristic. Note that the purpose of involving
the two datasets is to corroborate the versatility of our
t-METASET framework, which can accommodate a wide range
of datasets born from different methods for different end-uses in a
unified way. What we aim to provide is quality assessment of
subsets within one of the datasets, not across them. In addition,
while all the datasets in the original references provide the homog-
enized properties, we assume in all the upcoming numerical exper-
iments that only the shapes are given, without any property
evaluated a priori. Dy is publicly available for download.’?

4.2 Diversity Metric: Distance Gain. We devise an interpret-
able diversity metric for assessing the capability of t-METASET
against benchmark sampling. In the literature of DDMD, Chan
etal. [11] compared the determinant of jointly diverse subsets’ sim-
ilarity kernels against those of iid replicates, following the usual
practice of reporting set diversity in the DPP literature [24] as the
metric to quantify the efficiency of the proposed downsampling.
We point out possible issues of using either similarity or determi-
nant for diversity evaluation: (i) similarity values s; depend on
data preprocessing; (ii) a decreasing transformation from
distance-to-similarity s;;=T7(h(x;, x;)) for constructing DPP

2hllps://idead.mech.northwestem.edu/research/software/
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kernels also involves arbitrary scaling, depending on the type of
associated transformation 7" and their tuning parameters (e.g., the
bandwidth o, of Gaussian kernels in Eq. (10)); and (iii) the raw
values of both similarity and determinant enable the “better or
worse” type comparison yet lack intuitive interpretation on “how
much better or worse.”

To this end, we propose a distance-based metric that is more
interpretable and less arbitrary. Given a dataset D, we compute
the mean Euclidean distance d of pairwise distances of attributes
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Fig. 5 lllustration on shape generation schemes of each
dataset: (@) Dyix [13]: example of blending the SDFs of basis
shapes and varying their volume fractions to produce new unit
cells and (b) Dro [39]: (left) an example of design evolution by
inverse topology optimization with respect to a target property
and (right) the stochastic shape perturbation applied to a given
microstructure
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(shape/property) as follows:

B | oo
dD)=— Z Z h(x;, x;)
DI =1 i=1

1
Dl D (18)

1
=552 2 I = xil
IDI" = =

Intuitively, the larger d(D) is, the more diverse D is. Since this mean
metric still depends on data preprocessing, as similarity does, the
key idea herein is to normalize d(D) with that of an iid counterpart
d(D;y) with the same cardinality |D;y| = | D] so that data prepro-
cessing does not affect it. To account for the stochasticity of iid real-
izations, we generate n,,, =30 replicates, take the mean of each
mean distance, and compute the relative gain hg as follows:

d(D)
=1 d((Diia))

hg = 19)

1

Nyep

where (D;;4); denotes the /th iid replicate with |(D;y),| = |D|. We
call the metric distance gain, as it relatively gauges how much
more diverse a given set is compared with a set of iid samples.
For example, the gain of 1.5 given a property set P implies
that the Euclidean distances between property pairs are 1.5 times
larger on average than those of P;; in the property space.
The proposed metric offers an intuitive interpretation based on
distance, avoids the dependency on both data scaling and
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distance-to-similarity transformation, and thus offers a means for
consistent diversity evaluation of a given dataset. In addition, the
metric generalizes to sequential sampling with hg) at the rth iteration
as well, allowing quantitative assessment across datasets at different
iterations (i.e., different sizes). Hence, we report all the upcoming
results based on the distance gain proposed.

4.3 Scenario I: Diversity Only. Figure 6 shows the
t-METASET results applied to Dy, only based on diversity. From
Fig. 6(a), we observe the evolution of the distance gain as a relative
proxy for set diversity at each iteration. At stage I, the proposed sam-
pling solely relies on shape diversity. The shape gain exceeds unity at
the early stage, meaning the exploration by t-METASET shows
better shape diversity than that of the iid replicates. Meanwhile, the
property diversity of t-METASET is even less than the iid counter-
part, and this is another evidence that shape diversity barely contrib-
utes to property diversity [11]. During this transient stage,
t-METASET keeps monitoring the residual of roughness parameters.
Figure 6(b) shows the history up to a few hundred observations; the
residuals with little data stay unstable, indicating large fluctuations of
the hyperparameters. The mild convergence defined by z; occurs at
the 19th iteration with 10x 19 =190 observations. This is approxi-
mately twice larger than the rule-of-thumb for the initial space-filling
design: D, x 10=100 [57]. Rigorous comparison between our pair-
wise initial exploration and space-filling design (e.g., Latin hyper-
cube sampling [58]) is the future work.

Once the first convergence criterion on the GP roughness @ is
met, t-METASET starts to respect the GP prediction and, by
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extension, the RFF of the estimated property DPP kernel as well.
During stage II, shape diversity decreases to less than unity. This
implies that pursuing property diversity compromises shape diver-
sity. After about 300 iterations, each gain seems to stabilize with
minute fluctuations and reach a plateau of about 1.3 for property
and 0.95 for shape, respectively. Beyond the maximum iteration
set as 500, we forecast that the mean of property Euclidean dis-
tances—the numerator of property gain—will eventually decrease
because (i) we have finite D70l =88, 180 shapes to sample from;
(ii) the property gamut 6!21(,’) at the t-th iteration incrementally
grows yet ultimately converges to the finite gamut as
891(,” - 69;, where 0Q denotes the property gamut of fully
observed Dr¢, which obviously exists yet is unknown in our scenar-
ios; (iii) adding more data points within the confined boundary 0€2j
would decrease pairwise distances on average. The convergence
behavior of the numerator of the property gain may possibly give
a hint to answering the fundamental research question in data-
driven design: “How much data do we need?”. In addition,
adjusting the batch composition—the ratio of property versus
shape—would lead to different results. The parameter study on &
is addressed and discussed in Sec. 4.5.

Figure 6(c) shows a qualitative view of the resulting property dis-
tributions. Figure 6(c) shows the data distribution in the projected
property space, whose property components have been standard-
ized. In the C1,—C}, space, the iid realization shows significant bias
on the southeast region near [-1<Cy;<1]x[-1.5<C,<1],
whereas only tiny samples are located on the upper region. Other
3,000-size iid realizations also result in property bias; local details
are different, but the overall trend of distributional bias is more or
less the same. On the other hand, the property distribution of
t-METASET shows significantly reduced bias in the property
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spaces, in terms of projected pairwise distances and the property
gamut 0L, as well.

4.4 Scenario II: Quality-Weighted Diversity (Task-Aware
Generation). Regarding task-aware acquisition of datasets, the
scope of this work is dedicated to pointwise quality, where the
task-related “value” of each observation is modeled based on a
score function. It can be a function of properties (e.g., stiffness
anisotropy), shape (e.g., boundary smoothness), or both
(stiffness-to-mass ratio). With proper formulation and scaling, the
quality function can be included in t-METASET as a secondary
sampling criterion. We present two examples, each of which
involves either (i) only property (Section 4.4.1) or (ii) both shape
and property (Sec. 4.4.2). All the results in this section assume
the maximum cardinality is fixed as | |4 B?”| = 3,000.

4.4.1 Task II-1: Promoting High Stiffness-to-Mass Ratio. Out-
standing stiffness-to-mass ratio is one of the key advantages of
mechanical metamaterial systems compared to conventional struc-
tures [1]. If lightweight design is of interest, users could attempt
to prioritize observations with high stiffness-to-mass ratios. We
take C;; as an example with an associated score g(-) formulated
as follows:

Cn

Vf+5

q1@.p)= (20)
where vy is the volume fraction of a given binary shape I(x, y)
implicitly associated with z, and § is a small positive number to
avoid singularity. Here, we use raw (not standardized) values of
Cy; to ensure that all the values are nonnegative. Note that the
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Fig.8 Task II-2 (stiffness anisotropy) result for D7o [39]. Each arrow indicates the distributional bias preferred by
the given task. The green dotted line denotes the subregion, where C,, = Cy4, least preferred by the given task:
(a) history of distance gains, (b) data distribution: (left) iid and (right) t-METASET with the quality of interest

(92), and (c) histogram of task-related quality (polar angle).

property p takes both (i) ground-truth properties from the finite
element analysis and (ii) predicted properties from the regressor
GP. To accommodate various datasets at different scales without
manual scaling, we standardize ¢, into g,’. Then it is passed to
the following Sigmoid transformation:

1

@0 = e (—2000)

@n

where a,(-) is the decreasing Sigmoid activation function. To
accommodate the design attributes associated with the quality func-

tion a;(q’), the RFF V,, of the property diversity kernel Lp has the
pointwise quality on board according to Eq. (17).

Figure 7 presents the result for Dy,;x. As indicated by the arrow,
the quality function aims to bias the distribution in the C;-v;space
toward the northwest direction. In Fig. 7(b), the resulting distribu-
tion of t-METASET shows an even stronger bias to the upper
region than that of the iid replicates, whereas the data points near
the bottom right gamut are more sparse. Figure 7(c) provides
even more intuitive evidence: t-METASET without the quality
function does not show distributional difference with the iid case.
In contrast, the quality-based t-METASET leads to the strongly
biased distribution—virtually opposite to the iid one—congruent
with the enforced quality over high stiffness-to-volume ratio.
Both plots corroborate that t-METASET can accommodate the pref-
erence of high stiffness-to-volume ratio, even when starting with no
property at all. Along the way, t-METASET addresses property
diversity as well, as indicated by the distance gain of property
that exceeds unity (Fig. 7(a)).
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4.4.2 Task 1I-2: Promoting High Stiffness Anisotropy. Prop-
erty anisotropy of unit cells is another key quality that mechanical
metamaterials could leverage to achieve strong directional perfor-
mances at system levels. With Syp, we attempt to deliberately
bias the property distribution toward strong elastic anisotropy
between C;; and Cp,. We devise the anisotropy index as an associ-
ated quality function:

|arctan (C»2/C1y) — /4]

0@ p) = P (22)

where E‘I and 62\2 denote the raw nonnegative elastic constants pre-
dicted by the GP model, without any normalization;
arctan (52\2/5;) € [0, z/2] is the polar angle in the C;;-Cy,
space; if isotropic (i.e., C;; = Cpy), the index is 0, whereas either
C/Cy 1 = 0% or C5,/C;| = o, the index goes to 1. By the defini-
tion, the quality function ranges within [0, 1]. Without further
scaling, we directly pass it to a monotonically increasing Sigmoid
activation:

1
20 = T exp(=20(() = 0.5)) @3)

Similar to the first example, a»(g») is incorporated into the RFF of
property through Eq. (17).

Figure 8 illustrates the result for Dy under the anisotropy prefer-
ence. The two arrows indicate the bias direction of interest: Samples
with isotropic elasticity on the line C,, =C};, denoted as the green
dotted line, are least preferred. From the scatter plot of Fig. 8(a),
the distribution of t-METASET exhibits clear bias toward the
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preferred direction compared to the iid case, while samples near the
isotropic line are sparse except near the origin. The trend is even
more apparent in the histograms of Fig. 8(b): both the results from
iid and vanilla t-METASET share a similar distribution in terms of
polar angle. In contrast, task-aware t-METASET exhibits a bimodal
distribution that is highly skewed to either O or z/2.

In Fig. 8(a), we recognize an interesting point that reveals the
power of t-METASET: unlike the other cases introduced, the shape
gain also exceeds unity at the plateau stage, at mild cost of the prop-
erty gain. Note that we did not enforce the framework to assign more
resources on shape diversity. The quality function g5(-,-) has been
defined over only the two properties C;; and C»,, not shape. Further-
more, during stage II, t-METASET can take only two samples from
shape diversity in each batch due to the setting £=0.8, commonly
shared by other cases that were introduced. This indicates that the
decent exploration in the shape space—the shape gain comparable
to the property gain during stage Il—is what +-METASET autono-
mously decided via active learning to fulfill the mission specified
by the given task. The result demonstrates the ability of
t-METASET to, given a large-scale dataset and on-demand design
quality, decide how to properly tradeoff distributional biases in
shape/property space, thereby efficiently addressing the design
goals without human supervision.

We emphasize that the two results came from the same algorith-
mic settings of t-METASET shared with the other cases, except for
the quality functions. Hence, the two case studies, investigated with
respect to different datasets and different quality functions, demon-
strate that t-METASET has fulfilled the mission: growing
task-aware yet balanced datasets by active learning.

4.5 Scenario III: Joint Diversity. The proposed - METASET
can tune shape-property joint diversity when building datasets.
Chan et al. [11] demonstrated that, given a fully observed dataset,
the DPP-based sampling method can identify representative
subsets with adjustable joint diversity [11]. It is grounded on the
fact that any linear combination of PSD shape and property
kernels can create a joint diversity kernel L;=(1 — &)L, + €L, that
is also PSD, where L, is a shape similarity kernel involving a
shape descriptor s. Yet the linear combination approach does not
apply to our proposed t-METASET, driven by the RFF V,
because the linear combination of the feature V does not guarantee
the resulting joint kernel to be PSD.

Instead, our framework tunes joint diversity by adjusting the
shape/property sampling ratio € of a batch. Figure 9 shows the param-
eter study over the batch composition € with respect to D, ,;, and Dy
with | U;’;“'f B?| =5,000. Both results manifest (i) better average
diversity in terms of Euclidean distances than that of the iid replicates
and (ii) the tradeoff between shape diversity and property diversity.
In addition, the results support the previous finding that the correla-
tion between shape diversity and property diversity is near-zero [11].
The substantial distinction of t-METASET lies in: We sequentially
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achieve the jointly diverse datasets, beginning from scratch in
terms of property. In addition, t-METASET allows users to dynami-
cally adjust € as well based on either real-time monitoring over diver-
sity gains or user-defined criteria. This capacity could possibly help
designers steer the sequential data acquisition at will, especially if
growing a large-scale dataset (~O(10%) is of interest, since applying
a single sampling criterion over the whole generation procedure
might not necessarily result in the best dataset for given design tasks.

4.6 Algorithm Efficiency. t-METASET is, in essence, a
decision-making procedure that selects a sequence of batches from
a given large pool of instances (~ O(10%)). Its scalability comes pri-
marily from the RFF-based kernel approximation and secondarily
from the compact 10-D shape descriptor distilled from the VAE train-
ing. To give readers a glimpse of the scalability of the proposed data
acquisition, Fig. 10 shows the history of wall time (i.e., elapsed real
time) per iteration for Dyp, where approximately 88k instances are
included. The test was run using a desktop with Intel(R) Xeon(R)
W-2295 CPU @ 3.00GHz, 18 cores/36 threads, RAM 256 Gb.

For each iteration, we look into the trend of the wall time based on
three key steps: (i) GP updating, (ii) DPP sampling, and (iii) RFF
updating. In the early stages, the incurred time for the GP update
escalates rapidly over the dataset size, dominated by the inversion
of covariance matrices. Once the second condition of roughness con-
vergence is met (A”) < 7,, denoted as “2nd” in Fig. 10), the improve-
ments of GP updates over new batches become marginal. The
sequential updates are then replaced by the preposterior analysis
[59], whose computational cost gradually increases as the cardinality
grows. Meanwhile, the conditional k-DPP for sequential diversity
sampling takes up a moderate portion of time at each iteration. At
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Fig. 10 Elapsed real-time measurement of a replicate of Do as a
function of dataset size. “1st” and “2nd” denote the sampling
transition points corresponding to the thresholds z; and 7,,
respectively.
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the start-up phase, the DPP sampling is performed only once per iter-
ation for the sampling based on shape diversity. As of stage II, DPP
sampling runs twice; once based on property diversity (which is
optionally weighted by quality), followed by the other based on
shape diversity. The incurred wall time shows little dependence on
cardinality |D?|, as its time complexity primarily depends on the
number of replicates in RFF (i.e., Dy). Finally, the main computa-
tional overhead of the t-METASET procedure involves updating
the RFF. In stage I, only the shape RFF is updated. Once the first con-
vergence of roughness parameters is met (A < ,; denoted as “lst”
in Fig. 10), the property RFF is calculated and updated. Thereafter,
every iteration involves (i) updating the shape RFF, (ii) constructing
a property RFF that mirrors the latest GP, and (iii) conditioning the
property RFF on the sample collected up to the current iteration.

5 Conclusion

We presented the task-aware METASET (t--METASET) frame-
work dedicated to metamaterials data acquisition congruent with
user-defined design tasks. Distinctly, t-METASET specializes in a
data-driven scenario that designers often encounter in early stages
of DDMD: a massive shape library has been prepared with no
properties observed for a new design case. The central idea of
t-METASET for building a task-aware dataset, in general, is to
(i) leverage a compact yet expressive shape descriptor (e.g., VAE
latent representation) for shape dimension reduction, (ii) sequen-
tially update a sparse regressor (e.g., GP) for nonlinear regression
with sparse observations, and (iii) sequentially sample in the shape
descriptor space based on estimated property diversity and estimated
quality (e.g., DPP) for distribution control over shape and pro-
perty. t-METASET contributes to the design field by: (i) proposing
a data acquisition method at early data-driven stages under
large epistemic uncertainty, (ii) sequentially combating property
bias, and (iii) accommodating task-aware design quality as well.
Starting without evaluated properties, all the results tested on two
large-scale metamaterial datasets (D,,;, and Drp) were automatically
achieved by t-METASET in three different scenarios without
human supervision. We argue t-METASET can handle a variety
of image-based datasets for design in general, by virtue of scalability,
modularity, task-aware data customizability, and independence from
both shape generation heuristics and domain knowledge.

Although the present scope of t-METASET is dedicated to meta-
materials, the framework is applicable to other material systems
where the structures, such as microstructure morphology, can be
quantified. Three exemplar scenarios in which t-METASET can
be deployed are provided here:

e A low-dimensional representation is prescribed by a designer.
This applies not only to metamaterials with an explicit param-
eterization (e.g., the lattice-type building block specified by
four parameters [12] in Sec. 2) but also to other systems
(e.g., quasi random organic photovoltaic cells represented
with a 2D spectral density function [60,61]).

¢ A mixed categorical and quantitative representation is given. A
key modification in t-METASET would be to replace the
vanilla GP with a latent variable Gaussian process [62]. An
example is the multiclass lattice metamaterial dataset in
Ref. [21]. Therein, any instance of a material is specified as
z=(c;, p)i € N), where the qualitative variable ¢; is the
class index of the lattice-type building blocks, and a quantita-
tive variable p is the volume fraction.

e No representation is given (the scenario of primary interest in
this work). Unsupervised representation learning can be har-
nessed, as has been employed in this work, to prepare a
compact yet expressive descriptor in light of a dataset.

Hence, we argue our framework can address other systems, such as
those represented by user-defined descriptors or by pixels/voxels,
beyond metamaterials. A possible issue, in particular when
dealing with a system with 3D volume elements (e.g., polymer
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nanocomposite), is that the dimensionality of a shape descriptor
could be too large for a vanilla GP to handle, even after dimension
reduction. Two workarounds for this case are as follows: (i)
employing extended GPs dedicated to high-dimensional data
[63,64] or (ii) using other surrogates with more modeling capability
(e.g., a moderately sized neural network).

The imperative future work is inference-level validation of dataset
quality, which aims to shed light on the downstream impact of data
quality at the deployment stage of data-driven models. Among a
plethora of such models, we are particularly interested in conditional
generative models [65,66] due to their on-the-fly inverse design
capability, which is expected to be highly sensitive to data quality
[67,68]. The validation would further demonstrate the efficacy of
t-METASET at the downstream stages of DDMD, in addition to at
the intuitive metric level we have shown. Moreover, we point out
two interesting topics to be explored: (i) the proposed diversity
gain as a termination indicator of data generation, which could
offer insight into “how much data?” (detailed in Sec. 4.3) and (ii)
quantitative comparison between the quality-weighted diversity
sampling (Sec. 3.3.4) presented in this work and BO [44,69].

Through producing and sharing open-source datasets,
t-METASET ultimately aims to (i) provide a methodological guide-
line on how to generate a dataset that can meet individual needs, (ii)
publicly offer datasets as a reference to a variety of benchmark
design problems in different domains, and (iii) help designers diag-
nose their dataset quality on their own. This lays a solid foundation
for the future advancement of data-driven design.
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