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Figure 1: Example screenshots from participants’ work with geospatial data. (A) PJ3 creates a choropleth map of Texas’ 2021
proposed electoral districts colored by majority racial demographic in Observable. (B) PJ7 combines satellite imagery, stream
data, and deforestation data in QGIS to identify illegal logging in southeast Alaska. (C) PE1 computes a Normalized Difference
Water Index of their analysis region in Google Earth Engine using multispectral imagery from the Sentinel-2 satellite.

ABSTRACT

Geospatial data is playing an increasingly critical role in the work
of Earth and climate scientists, social scientists, and data journalists
exploring spatiotemporal change in our environment and societies.
However, existing software and programming tools for geospatial
analysis and visualization are challenging to learn and difficult to
use. The aim of this work is to identify the unmet computing needs
of the diverse and expanding community of geospatial data users.
We conducted a contextual inquiry study (n = 25) with domain
experts using geospatial data in their current work. Through a
thematic analysis, we found that participants struggled to (1) find
and transform geospatial data to satisfy spatiotemporal constraints,
(2) understand the behavior of geospatial operators, (3) track geospa-
tial data provenance, and (4) explore the cartographic design space.
These findings suggest design opportunities for developers and
designers of geospatial analysis and visualization systems.
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1 INTRODUCTION

Geospatial data—data encoding the location and attributes of phe-
nomena on the Earth’s surface [59]—is growing in scale and accessi-
bility at a tremendous rate [61]. Researchers estimate that Earth ob-
servation satellites generate 80TB of new imagery daily [83]. Closer
to the surface, cheap, power-efficient sensors create massive vol-
umes of geolocated data measuring real-time environmental change
[40]. Additionally, crowdsourcing efforts like OpenStreetMap have
fostered an explosion in publicly available volunteered geographic
information [49, 78]. Geospatial data has long played a fundamen-
tal role in the research of geographers and cartographers. As this
data becomes more available, experts across a widening array of
domains are turning to geospatial analysis and visualization to ad-
dress challenges in climate change [17], public health [34], school
segregation [82], hazard modeling [98], and other areas.

Despite this expansion in the community of geospatial data
users, research has yet to explore the specific challenges domain
experts face in gathering, analyzing, and visualizing geographic
information. Many domain experts are self-taught in the theory of


https://orcid.org/0000-0001-9462-2123
https://orcid.org/0000-0003-0557-3580
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3544548.3581370
https://doi.org/10.1145/3544548.3581370
https://doi.org/10.1145/3544548.3581370
mailto:schasins@cs.berkeley.edu
mailto:peziegler@cs.berkeley.edu
https://doi.org/10.1145
https://doi.org/10.1145/3544548.3581370
mailto:schasins@cs.berkeley.edu
mailto:peziegler@cs.berkeley.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3544548.3581370&domain=pdf&date_stamp=2023-04-19

CHI 23, April 23-28, 2023, Hamburg, Germany

Vector Model
Renter-Occupied Units (%)
]
/]
e S - =
4 & "
2\ ¥ l‘-‘
g ! :
S e :
[o] g
() () i
(O] ShE ‘ A’y

a
[T

GEO_ID NAME OCC_UNITS | RENTER_OCC_UNITS
- 0500000US53033 King County, WA 900061 391715
0500000US02050 | Bethel CensusArea, AK | 4999 1989

0500000US41011 | Coos County, OR 27819 8810

0500000US06023 | Humboldt County, CA 54120 23359

Attributes

Parker Ziegler and Sarah E. Chasins

Raster Model

True color composite, Landsat-8 satellite
Mt. Rainier, WA, USA

30m Band4(R) 32 132

Band3(G) 43 125

Band2(B) 21 . 92

Figure 2: Geospatial data models. The vector model represents geographies as points, lines, and polygons. Geographies are
attached to tabular data via an attribute table. For example, in the choropleth map (left), U.S. counties encoded as polygons are
associated with housing data from the U.S. Census Bureau’s 2020 American Community Survey. The raster model partitions
space into a pixel grid. Each pixel has an attached value corresponding to the data attribute at that location. For example, in the
Landsat-8 satellite image of Mt. Rainier (right), each pixel is associated with an RGB value measuring light reflected off the

Earth’s surface.

geospatial data and the specialized Geographic Information System
software used to manipulate it. HCI researchers have found that
non-geographers struggle to use these systems because they require
familiarity with concepts and terminology from geography [43].
Some of these users have turned to programming as an alterna-
tive. While geospatial libraries are increasingly common in Python,
R, and JavaScript, domain experts must develop proficiency in at
least one of these general-purpose languages to benefit from these
abstractions.

Our research aims to investigate the computing needs of the
growing community of geospatial data users. Answering calls from
HClI researchers for increased collaboration with geography [46, 47],
we conducted a contextual inquiry study with 25 geospatial data
users from academia, industry, newsrooms, and the public sector.
Thematic analysis of observations and semi-structured interviews
revealed common challenges across five phases of participants’
work with geospatial data: data discovery, data transformation, anal-
ysis, analysis representation, and visualization. We observed that
participants had difficulty (1) finding and transforming geospatial
data to satisfy complex sets of spatiotemporal constraints, (2) under-
standing the behavior of geospatial operators, (3) tracking geospa-
tial data provenance, and (4) efficiently exploring the cartographic
design space, among other challenges. Our findings deepen our
understanding of requirements for supporting domain experts in
their work with geospatial data and suggest design opportunities
for geospatial analysis and visualization systems.

In summary, this paper makes the following contributions:

e A contextual inquiry study of 25 geospatial data users to
understand their computing needs

o A thematic analysis of challenges participants faced across
distinct phases of their work with geospatial data

o A set of design opportunities for geospatial analysis and
visualization systems

2 BACKGROUND
2.1 Geospatial Data

Geospatial data describes the location and attributes of phenomena
on the Earth’s surface [90]. It differs from tabular data in that it links
geometric representations of real-world geographies—referred to
as the geometry of the data—with attributes of those geographies
[59]. In this way, geospatial data connects information to place.

There are two models of geospatial data, distinguished by their
geometric representations (Figure 2):

(1) The vector model represents geographic features as points,
lines, and polygons, connecting tabular data to features via
an attribute table. For example, the U.S. Census Bureau’s
American Community Survey connects demographic esti-
mates to geographic areas (e.g., counties) modeled as poly-
gons [12].
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Figure 3: Examples of GIS software and programming environments for working with geospatial data. The QGIS project (left)
and Jupyter notebook (right) contain the same geospatial data, but users interact with this data differently in each tool.

(2) The raster model partitions geographic space into a pixel
grid. Each pixel corresponds to a portion of the Earth’s sur-
face depending on the spatial resolution of the raster. For
example, the Landsat-8 satellite collects data at 30m spatial
resolution, meaning each pixel in the raster represents a
30x30m area [84]. The value associated with a raster pixel
corresponds to the data attribute at that location.

2.2 Geographic Information Systems vs.
Programming Environments

Geographic Information Systems. A Geographic Information Sys-
tem (GIS) is a software system for “capturing, storing, querying,
analyzing, and displaying geospatial data” [14]. GISs represent
geospatial datasets as layers, which can be edited, combined, and
analyzed to generate new layers using built-in geospatial opera-
tors accessed via GUIs. Users visualize and interact with layers in
a spatial canvas that allows them to zoom, pan, style, and select
geographic features directly. In this way, GISs center interaction
with the geometry of geospatial datasets. Interaction with attributes
happens in secondary table views where users write SQL to query
and manipulate their data. Many GISs exist; our participants used

ArcGIS [30] and QGIS [4].

Programming Environments. In contrast to GIS software, pro-
gramming environments used to work with geospatial data center
interaction with the attributes of the data rendered as tables or
dataframes. This is especially true of computational notebooks
like Jupyter notebooks [79], R Markdown [85], and Observable
[74], which have been adopted by geospatial data users but are
not purpose-built for geospatial data. In these environments, users
write code to visualize and interact with the geometry of their data.

Rather than executing geospatial operators via GUISs, they rely on
APIs from geospatial analysis and visualization libraries. Newer
programming environments like Google Earth Engine [41] and Mi-
crosoft Planetary Computer [68] mix features from both GISs and
computational notebooks but are designed for particular forms of
geospatial analysis (e.g., remote sensing).

3 RELATED WORK

This section surveys findings from observational studies of geospa-
tial data users, empirical evaluations of GIS usability, and studies
exploring the needs of data scientists more generally.

3.1 Observational Studies of Geospatial Data
Users

Prior observational studies of geospatial data users have focused
on identifying GIS usability issues [22, 23, 91, 93]. Our work is
most similar to a workplace study of 21 GIS practitioners, which
used video recordings, semi-structured interviews, and usability
checklists to uncover recurrent participant challenges [23]. The
insights centered around error states, finding that GISs failed to pre-
vent common user errors, surfaced errors in difficult-to-understand
language, and provided insufficient guidance for correcting errors.
Additionally, they observed that non-expert GIS users relied on a
“local expert” to perform their analysis, also reported in [28, 37]. Our
study differs in two ways. First, we investigate how users interact
with geospatial data across tools other than GISs, including com-
putational notebooks, design software, and geospatial analysis and
visualization libraries. In fact, most participants (13/25, 52%) did not
use GIS software. Second, while [23] observed data transformation
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and analysis, we identified additional challenges related to data
discovery, analysis representation, and visualization.

Another closely related study observed non-expert GIS users
(social science faculty and computer science graduate students)
and identified data provenance tracking as a common struggle [93].
Participants’ GISs maintained no record of how outputs were gen-
erated, making it difficult to reproduce past analyses. Additionally,
modifying or retargeting existing maps at new data entailed reverse
engineering the original analysis through trial and error. Our study
extends our understanding of provenance needs by (1) identifying
frustrations with provenance features in modern GISs and (2) de-
scribing participants’ informal methods for tracking provenance
and reproducing past analyses.

3.2 Evaluating GIS Usability

Several studies have evaluated GIS usability using non-observational
qualitative methods, including expert task analysis [91], user sur-
veys [21], interviews [29], and screenshot analysis [44]. A task
analysis of seven GISs concluded that GIS software is challenging
to use because it (1) requires users to understand concepts from
multiple disciplines, including geography, cartography, statistics,
and databases, and (2) relies on domain-specific vocabulary and
concepts (e.g., “overlay,” “thematic layer”) that reflect the system
architecture rather than a user’s view of their work [91]. A survey
of 159 GIS users found respondents had difficulty understanding
and fixing errors, customizing the interface via provided macro
languages, and finding sufficient documentation to use GISs [21].
Other studies have employed quantitative methods such as in-
teraction logging [35, 95], controlled experiments [64, 80], and eye-
tracking [65, 66] to evaluate particular GIS interfaces. A controlled
experiment compared five interaction techniques for cross-layer
comparison and correlation [64]. Fechner and colleagues logged
interface interactions in a web-based GIS to understand how users
collaboratively create and edit geospatial datasets [35]. Unrau and
Kray provide a comprehensive survey of studies assessing the us-
ability of different GISs [94]. Rather than evaluating specific GIS
interfaces, our study focuses on challenges across various tools.

3.3 Needs of Data Scientists

Research on the needs of data scientists has identified struggles
with wrangling and aligning data from multiple sources [26, 71],
iterating on and maintaining analysis versions [54, 56], and editing
data collaboratively [57]. Data transformation and preparation have
consistently emerged as the most challenging phases of data sci-
entists’ work [42, 52]; practitioners must develop domain-specific
knowledge to identify patterns and anomalies in their datasets, han-
dle missing values, and combine data from differing sources and
temporal paradigms [71]. For geospatial data, ensuring that datasets
cover the target area and time range of analysis is essential [57].
Beyond data transformation, interviews, surveys, and formative
studies have revealed data scientists struggle to track iterations
of their analyses, often relying on informal versioning techniques
[54, 56]. We examine both challenges—data transformation and
version management—in the special case of geospatial data, high-
lighting areas of overlap and divergence with prior work on data
science more broadly.
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4 METHOD

To understand the challenges facing geospatial data users, we con-
ducted a contextual inquiry [51] study with 25 participants from
academia, industry, newsrooms, and the public sector using geospa-
tial data in their current work.

Participants and Recruitment. We recruited participants via social
media (Twitter, Meetup, Reddit, Slack), direct outreach to academic
departments, and the authors’ networks. We used a screening sur-
vey to select participants from multiple domains—including Earth
and climate science, the social sciences, and data journalism—with
varying years of prior experience working with geospatial data (Fig-
ure 4). Our aim with this design was to observe a wide range of user
challenges and identify those that recurred across a varied group,
revealing needs that transcend domain and expertise boundaries.
However, this study design favors breadth at the cost of depth; by
prioritizing participant diversity, we may have missed details of
challenges that arise only for experts, non-experts, or users in a
particular domain. Additionally, recruiting from social media and
personal networks runs the risk of creating a more homogeneous
participant pool that may not represent the broader community
of geospatial data users. Table 1 provides information about our
participants.

Consent and Compensation. Before participating in the study,
participants signed a consent form in accordance with our insti-
tutional review board. Participants received compensation in the
form of a $40 gift card or a $40 donation to a 501(c)(3) organization
of their choice.

Session Structure. Each study session consisted of a 50-70 minute
observation followed by a 15-20 minute semi-structured interview.
We conducted sessions remotely over Zoom and recorded them for
subsequent analysis. One participant opted out of recording; we
analyzed their session via written notes. During observation, we
asked participants to share their screen and narrate their thought
processes as they worked on a task of their choice related to gath-
ering, analyzing, or visualizing geospatial data. We intentionally
left the choice of task open for two reasons:

(1) Faithfulness to participants’ work. We aimed to study
the challenges participants face in their everyday work with
geospatial data. Researcher-designed tasks may not elicit the
challenges they typically encounter.

(2) Experience, domain, and tool diversity. Participants var-
ied widely in their prior experience working with geospatial
data, their domain of expertise, and the software and pro-
gramming environments they use to work with geospatial
data. Researcher-designed tasks might lead us to identify
erroneous needs that are artifacts of task design.

While the tasks we observed were more representative of partici-
pants’ actual work than researcher-designed tasks, our study design
does not give us insight into how representative they are of the
broader community of geospatial data users. Assessing the preva-
lence of our participants’ challenges will require further study.

During semi-structured interviews, we discussed specific obser-
vations from the session to confirm or refine our interpretations of
participant actions.
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ID Exp. (YEARS) DomAIN LANGUAGES Toots

PE1 13 Earth and Climate Science JavaScript Google Earth Engine

PE2 3-5 Earth and Climate Science R, Python Google Earth Engine

PE3 <1 Earth and Climate Science — QGIS

PE4 1-3 Earth and Climate Science Python Google Earth Engine, Jupyter, geemap
PE5 <1 Earth and Climate Science Python Jupyter, Google My Maps, Leaflet
PE6  5-10 Earth and Climate Science — ArcGIS

PE7 >10 Earth and Climate Science — QGIS

PE8  3-5 Earth and Climate Science Matlab -

PE9  5-10 Earth and Climate Science Python Jupyter, geopandas

PE10 1-3 Earth and Climate Science Python Jupyter, geopandas

PS1 1-3 Social Science — QGIS, Adobe Ilustrator

PS2  >10 Social Science — QGIS, Adobe Hlustrator

PS3 <1 Social Science Python QGIS, Jupyter, geopandas

PS4 13 Social Science R R Markdown, sf

PS5  5-10 Social Science — ArcGIS

PJ1 1-3 Data Journalism R R Markdown, Leaflet

PJ2 <1 Data Journalism — QGIS, VisiData

PJ3 5-10 Data Journalism JavaScript Observable, D3

PJ4 >10 Data Journalism Python Jupyter, geopandas

PJ5 5-10 Data Journalism JavaScript, CSS  QGIS, Adobe Illustrator, Adobe Photoshop, D3
PJ6 1-3 Data Journalism JavaScript QGIS, Mapbox

PJ7 3-5 Data Journalism Python Jupyter, Microsoft Excel, Tableau
PJ8 1-3 Data Journalism Python QGIS, Jupyter, geopandas

PO1  3-5 Other (Finance) — ArcGIS

PO2 5-10 Other (Computer Science) Python IPython, geopandas

Table 1: Participant characteristics. Throughout the rest of the paper, we use the participant IDs in the ID column to refer to
individual participants. Exp. (YEARS) refers to participants’ prior experience working with geospatial data, in years.

Number of Participants
Number of Participants

<1 1-3 3-5 5-10 >10 0o 1 2 3 4 5 6 7 8 9 10

Years of Experience Working with Geospatial Data Self-Assessed Skill Working with Geospatial Data

Figure 4: Participant experience and skill. Participants reported their years of prior experience working with geospatial data
(left) and their self-assessed skill level working with geospatial data on a scale of 1-10 (right).

Data Analysis. We conducted an inductive thematic analysis [10] top-level themes. The authors met weekly to refine the code hierar-
of video recordings of the observations and semi-structured inter- chy, splitting and merging open and axial codes based on discussion.
views using MaxQDA [89]. We started with an open coding phase We analyzed 29 hours of footage from 24 sessions and written notes
in which we associated short, descriptive sentences of participant from one unrecorded session.

behaviors with segments of the video recordings. We then grouped
these open codes into a hierarchy of axial codes and, eventually,
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5 FINDINGS

We organize our findings into five sections corresponding to distinct
phases of participants’ work with geospatial data: data discovery,
data transformation, analysis, analysis representation, and visual-
ization.

5.1 Finding Geospatial Data

Participants struggled to find geospatial data satisfying a complex
set of spatial and temporal constraints derived from their analysis
goals (PE1, PE2, PE3, PE4, PS4, PJ1, PJ2, PJ6, PO2). The most com-
mon constraint required that a dataset cover a specific geographic
area (PE1, PE3, PE4, PS4, PJ1, PJ6, PJ7). However, it was rare for par-
ticipants to find existing datasets tailored to their analysis regions.
More often, they reduced datasets collected for larger geographic
extents by clipping them to their study areas (PE3, PJ7) or filtering
out features based on attribute values (PE4, PES8, PE10, PS4). For
example, PE3 derived their dataset by clipping a global soil region
dataset to their study area and filtering the remaining features by a
soil type attribute. In other cases, data for an analysis region was
spread across multiple sources and had to be combined manually
(PJ1, PJ6). PJ6 traversed 45 pages of the California Air Resource
Board’s website to obtain the air monitoring boundaries for 15 com-
munities in their analysis region, which they then composed into a
single layer. These findings are consistent with prior observations
that geographic coverage affects dataset selection [57] and that
analysts combine datasets from disparate sources to meet analysis
requirements [36, 71].

Some constraints were related to geographic accuracy, which
occasionally varied across the analysis region. Accuracy inconsis-
tencies were especially pronounced in crowdsourced geospatial
datasets like OpenStreetMap (PE3, PS2, PO2). PO2 explained that
in poorly-surveyed areas, “you’ll get weird things where building
footprints don’t fall within block boundaries, or you’ll have weird
self-intersections ... that don’t semantically or geographically make
sense.” These issues were difficult to detect before analysis began
due to the size and detail of participants’ datasets. Some manually
inspected their data to identify and correct topological errors pre-
emptively (PE6, PO1), while others compared their data to satellite
imagery (PJ7) or Google Street View images (PJ1) to corroborate its
accuracy.

For Earth and climate scientists, constraints on spatial resolution,
temporal resolution, and occlusion characteristics of satellite im-
agery were critical—though difficult—to satisfy (PE1, PE2, PE4, PE8).
For example, PE1’s analysis of drought patterns in Chile required
them to filter Sentinel-2 [27] satellite images of their study area to
those captured during the dry season over a six-year period. Occlu-
sions like clouds, mist, and shadows skewed the analysis, prompting
them to implement additional image manipulation algorithms to
mask the affected pixels.

Participants had additional constraints related to:

o Cost (PE2, PE3) - Participants could only use freely-available
data.

o File Format (PE3, PJ7) — Participants needed data in formats
readable by their analysis tool.

e Programmatic Access (PE4, PS4) — Participants wanted to
query and access data via APIs.

Parker Ziegler and Sarah E. Chasins

Number of Participants

Data Data Data Visual.

Discovery Storage Transform.

Analysis

Stage of Work with Geospatial Data

Figure 5: Participant responses to the question, “What part
of your work or research with geospatial data feels most
difficult?” A plurality of participants (12/25, 48%) selected
data transformation, while 28% (7/25) selected analysis.

5.2 Transforming Geospatial Data

Transforming geospatial data was especially challenging for par-
ticipants, with a plurality (12/25, 48%) reporting this phase most
difficult (Figure 5). As PE6 noted, “The data doesn’t come all nice,
neat, and packaged ... The analysis process [can be] pretty thin
and bare compared to the preprocessing.”

5.2.1 Aligning Geospatial Datasets. Participants needed to align
datasets of differing spatial extents, spatial resolutions, temporal res-
olutions, and areal units to a shared spatial and temporal reference
(PE2, PE10, PJ3, PJ6, PJ8). This often required multiple transfor-
mations, including resampling, clipping, and spatial and temporal
aggregations. For example, PE2’s groundwater prediction model
used a combination of MOD16 global evapotranspiration data [86]
(8-day, 500m), PRISM climate data [20] (monthly, 4km), and USDA-
NASS land cover data [96] (yearly, 30m). To align these datasets
to a shared spatial and temporal reference, they implemented (1)
a resampling algorithm to transform rasters at finer spatial res-
olutions (30m, 500m) to the coarsest resolution (4km) and (2) an
algorithm to accumulate data collected at finer temporal resolutions
(8-day, monthly) to the coarsest resolution (yearly). Similarly, PE10
aligned observations from NASA’s GRACE satellite to predictions
from a land surface model. They created two “masks” in the form of
geopandas [38] GeoDataFrames to filter model predictions to the
geographic locations and timestamps for which they had ground
truth GRACE observations. In some cases, participants could not
align datasets without making approximations.

5.2.2 Topological Errors. Participants spent significant time cor-
recting the topology of their datasets (PE6, PE7, PS2, PO1, PO2).
Topological errors refer to violations of geometric invariants such as
unclosed polygons, overlapping adjacent polygons, or gaps between
adjacent polygons. Most participants identified topological errors
through time-consuming visual inspection in GISs or matplotlib
figures (PE7, PS2, PO1, PO2). PE6 used automated tools in ArcGIS
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9% American Indian or Alaska Native

4
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Figure 6: An example geospatial operator. The D1ssOLVE operator is used to group Census tracts in northern California by a
shared attribute (COUNTY). In addition to merging the geographic boundaries of Census tracts, DISSOLVE aggregates values in the
attribute table using an aggregation function (e.g., sum, first, etc.).

to find topological errors but explained that fixing these errors
required manual intervention.

5.2.3 Reducing Resolution to Improve Performance. Participants
faced a trade-off between using data with high geographic preci-
sion and spatial resolution and being able to analyze data efficiently
(PE3, PJ3, PJ4, PJ5). Greater precision and resolution require more
space to encode and, in turn, more compute to process. PE3 bal-
anced this trade-off by using a coarser resolution version of their
dataset (~340km) while iterating on an analysis, even though a
higher resolution version (~1km) was available. This allowed them
to experiment with multiple analysis approaches without incurring
the performance penalty of processing higher resolution data: “I'm
doing it at the lowest definition to just run through the workflow
first so I know what I'm doing. I'm probably going to pick a higher
definition later.” For journalists developing maps for the web, re-
ducing geographic precision minimized the amount of data loaded
over users’ network connections (PJ3, PJ4, PJ5). PJ3 and PJ4 used
MapShaper [9] to simplify the geometry of their vector datasets; in
PJ3’s case, simplification yielded a 98% decrease in the size of their
GeoJSON file.

5.24 Data Subsetting and Caching. Participants’ datasets were of-
ten so large that even analysis and visualization tools purpose-built
for this data lagged. “Just waiting for all this to ... [render]” (PO2)
was a common refrain among participants using both GISs and
computational notebooks. PE9, who used geopandas to analyze a
3-million point dataset in a Jupyter notebook, waited 50 seconds for
awithin operation to run. PJ2 ran an OVERLAP ANALYSIS in QGIS
between Census block groups and a collection of 2-mile buffers that
took six minutes to complete; a previous run using 10-mile buffers
“took like two hours.” Prior studies have observed GIS users’ frustra-
tions with system performance [21, 23], but we found participants
using programming environments shared these frustrations.
Some participants accelerated the analysis feedback loop by
subsetting data by spatial extent (PO1, PO2). For example, while
investigating a bug, PO2 filtered their dataset to features within a

subarea of their analysis region. This reduced matplotlib’s render-
ing time from five minutes to one second, allowing them to iterate
quickly on a fix. However, they cautioned that this strategy could
silence errors when applying the modified code to the full dataset:
“We’ll subset the entire data universe we’re trying to work with and
start developing what we think is a generalized tool. And then once
we run it on the large universe, we’ll find weird inconsistencies and
bugs.”

Participants also used past outputs as “waypoints” from which
they could rerun individual transformations without restarting
their entire pipeline (PE7, PJ2, PJ8). For example, PE7 organized the
outputs of each preprocessing stage in separate folders (“Level 1 -
USGS Product”, “Level 2 — Stacked”, “Level 3 - MESMA”, “Level 4 -
Shade Normalized”), explaining:

I think Levels 3 and 4 [are] where a lot of stuff is
going to change, where I might decide to change the
parameters or do it a little differently. And so what I
can do is just quickly [delete] this entire folder [Level
3] ... and it'll clean the slate. And then I'll go back
to Level 2, and I'll just rerun everything again from
Level 2 to get me to Level 3. ... It kind of speeds up
the process.

5.3 Analyzing Geospatial Data

For participants, developing geospatial analyses involved construct-
ing pipelines that applied many geospatial operators (in a particular
order) to input layers to produce target outputs. Geospatial oper-
ators transform both the geometries and attributes of geospatial
data, making it difficult to reason about their behavior. For example,
the D1ssOLVE operator merges the boundaries of geographic fea-
tures possessing a shared attribute value and combines attributes of
merged features using an aggregation function (e.g., sum) (Figure 6).
Constructing analysis pipelines required participants to have deep
knowledge of operators and their semantics as well as the ability
to inspect and debug generated outputs.
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Figure 7: Timeline of PE9’s attempts to identify geospatial operators. PE9 moved between tutorials, StackOverflow, and library
documentation to identify the correct geopandas operator and syntax to filter a GeoDataFrame of cell phone location records to
those falling within a polygon from a separate GeoDataFrame. They intermixed foraging for example code with testing candidate

operators for 16 minutes before arriving at a working solution.

5.3.1 Identifying Geospatial Operators. Participants struggled to
identify the correct operators to transform input layers into target
outputs (PE3, PE7, PE9, PS4, PJ4, PO2). Even an expert, PE7, noted
that distinguishing the behaviors of different geospatial operators is
challenging: “I can never remember the vector operations. There’s
like UN1ON and MERGE. COMBINE! I can never remember exactly
what they do. I know exactly what the output should look like in the
end; I'm just trying to figure out the tool that gets me that output.”
PE9 spent 16 minutes searching for a geopandas operator to filter
a point layer to locations falling within a specific polygon in a sepa-
rate layer. They experimented with programs using intersection
and sjoin before identifying a solution using within, reflecting: “I
feel like I spend a lot of time getting stuck on, like, very simple GIS.
It’s things like MERGE vs. JOIN, getting confused with which one
you want. Or SPATIAL JOIN vs. a regular JoIN. Sometimes just the
terminology can be confusing, and sometimes it’s not consistent
between QGIS and Arc[GIS] and geopandas.” The number of oper-
ators in GIS software and geospatial analysis libraries exacerbates
this challenge. For example, ArcGIS has over 200 operators in its
Spatial Analyst toolbox, ranging from bitwise operators to kriging
algorithms [31]. This is only one of its 41 toolboxes.

Alternative Expressions of Intent. Although participants struggled
to construct analysis pipelines, many could describe their intent in
other ways (PE7, PE9, PS4, PJ3, PJ4, PJ7, PJ8). Some used natural
language descriptions, either spoken aloud (PE7, PE9, PS4, PJ3, PJ4,
PJ7) or written as comments (PE8, PS4, PJ1, PJ4). For example, PJ4
phrased their intent as a question: “How many homicides did each
neighborhood have this year, and how did that compare to, like,
last year or the last five years, or something like that, right? ...
So now I'm doing the puzzle in my head, like, how am I gonna
get there?” They proceeded to write individual subgoals for each

analysis step in comments in their Jupyter notebook (e.g., “Spatially
join homicides to [neighbor]hoods”). Some participants interacted
directly with features in a map view to express their intent (PS4,
PJ7). PJ7 used their mouse to demonstrate in QGIS how they would
compute buffers around each line feature in their stream dataset,
then compute the area of overlap between these buffers and a raster
deforestation dataset. This would yield the total area of illegal
logging in their analysis region.

Code Foraging. When participants could not identify the cor-
rect operator for an analysis context, they resorted to foraging
for similar analysis examples on Google (PE3, PE7, PE9, PJ2, PJ4),
StackOverflow (PE9, PE10), in documentation (PE7, PE9, PS4, PJ4),
in online tutorials (PE3, PE7, PE9, PS3, PS4, PJ3, PJ8), in colleagues’
computational notebooks and source code (PE1, PE4, PE5, PS3, PJ3),
or in their own notebooks and source code (PE1, PE9, PE10, PS3, PJ3,
PJ4, PJ8). PE9 demonstrated nearly all of these behaviors, visiting
six online tutorials, six StackOverflow pages, and two pages of the
geopandas documentation to determine the first two operators to
use in their pipeline (Figure 7).

5.3.2  Understanding Geospatial Operator Semantics. Even when
participants could identify candidate operators, they struggled to
understand operator behaviors (PE3, PE7, PE8, PE9, PJ4, PJ8, PO2).
As PE7 and PE9 noted in Section 5.3.1, this is partly due to the
ambiguous naming of geospatial operators. Moreover, operator se-
mantics differ subtly across GISs and geospatial analysis libraries,
meaning “you do need some sort of specificity for doing the actual
[analysis]” (PS2) in a particular environment. For example, ArcGIS’s
MERGE combines vector layers of any geometric type—point, line,
or polygon—into a single layer [32], while its QGIS-equivalent,
MERGE VECTOR LAYERS, can only merge vector layers of the same
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geometric type [3]. geopandas merge inherits from pandas, ignor-
ing geometry altogether and performing a join on shared attributes
[39]. As this example illustrates, knowledge of geospatial operator
behavior in one tool rarely transfers to another.

Participants used diverse strategies to understand operator se-
mantics. We highlight two common techniques.

Output-Centered Hypothesis Testing. To test hypotheses about
candidate operators’ behaviors, participants ran operators, then
manually inspected generated outputs (PE1, PE3, PE7, PE9, PS1,
PJ4, PO2). For example, PE3 attempted to combine two single-band
rasters into one multi-band raster in QGIS, hypothesizing that the
MERGE operator might be appropriate for the task. After running
MERGE, they inspected the output raster and found that it was still
composed of a single band. They next examined pixel values of this
raster, noticing they were identical to pixel values of just one of
the input rasters. From this inspection, they inferred that MERGE
stitches together input rasters of differing geographic extents rather
than combining raster bands.

When testing candidate operators, participants focused on small
subsets of pixels or features and compared their values in input
layers to their corresponding values in outputs. Sometimes, selec-
tion of pixels or features was random (PE7, PS2, PO2). More often,
they selected parts of the output where unexpected behavior would
produce obviously incorrect values (PE1, PE3, PES8, PS1, PJ2, PJ3).
For example, PE1 computed a Normalized Difference Water Index
raster and checked the pixel values of a lake in the generated out-
put; if the algorithm succeeded, these values would be close to the
maximum value of one.

Observing Feature Count Changes. Many geospatial operations,
such as those that filter, intersect, or aggregate geographies, pro-
duce output layers containing a different number of features than
their inputs. Participants used changes in feature counts to assess
operator behavior, with the magnitude and direction of change
serving as proxies for correctness (PE9, PE10, PS1, PS4, PJ2, PJ3, PJ4,
PJ8). For example, PS4 checked the feature count of the dataframe
produced by an st_join operation: “This should only be 372 obser-
vations because each [Census] tract is unique, but instead test2
[the output dataframe] is 2790, which is implying that there is
something wrong.”

5.3.3  Visibility of Geometry in Programming Environments. Partici-
pants relied on examining the geometry of their data to understand
operator behavior and validate operator output. GISs center the ge-
ometry of geospatial data via a map view, a canvas that allows users
to pan, zoom, and inspect features and pixels directly. Conversely,
participants using programming environments had to write addi-
tional code to perform these interactions (PE8, PE10, PJ7, PJ8, PO2).
For example, PO2 wrote code to pan and zoom static matplotlib
figures to particular parcels in their OpenStreetMap dataset. This
involved a repetitive process of guessing the coordinates of bound-
ing boxes containing the parcels, updating a Python dictionary
encoding these coordinates, re-executing their code in IPython,
and re-rendering the matplotlib figures until they achieved the
desired view.
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Programming environments made rendering and interacting
with geospatial data challenging enough that, even when partici-
pants used them for analysis, they often moved their data to GISs
to “see” and “layer” (PJ6) it interactively (PE9, PJ2, PJ4, PJ6). PJ2
explained the immediate visibility of their data’s geometry in GISs
outweighed the performance benefits of code: “I'm working in
QGIS. I know that it’s slower than it would be to do it in PostGIS or
maybe even geopandas, and so I've considered switching to that.
But I'm still ... new enough that I need to kind of ‘see’ to make
sure my projections are right and stuff like that.” PJ4 performed
their analysis using geopandas in Jupyter but explained they would
visualize the results in QGIS: “Now I could try to visualize it here
with matplotlib and geopandas, but I know those things are ...
not interactive and so I'm like, ‘I gotta take this to QGIS.” These
findings extend prior work highlighting visual exploration and
cross-layer correlation as integral exploratory analysis techniques
for geospatial data users [29, 64]. Participants wanted visibility into
their data’s geometry not only to identify spatial patterns but also
to validate the correctness of their analyses visually.

5.4 Representing Geospatial Analyses

Participants sought to represent their analyses in reproducible,
shareable forms. While some GISs maintain a record of users’ geo-
processing operations, this record is not grouped by project or
user session, omits changes to layer symbologies, and is encoded
in formats like XML [33] or command-line expressions [1] that
participants did not otherwise use. As a result, participants using
GISs created informal program representations outside their GIS to
preserve information about analyses.

5.4.1 Reproducing Geospatial Analyses. Participants using GISs
had difficulty reproducing their geospatial analyses, either because
they struggled to remember the current analysis state (PJ7) or lacked
documentation on how they performed the analysis previously
(PJ5, PJ6). For example, PJ7 revisited a QGIS project to expand the
geographic extent of their analysis region but could not recall if
they had already clipped their layers to the new extent. They noted
they “come across that problem a lot of remembering where I was
and what I've done already.” Some participants tried to reverse
engineer their workflows from generated artifacts (PJ5, PJ6): “I'm
just looking through ... some of my previous [exported SVGs] to
remember what I did from here” (PJ5). Prior studies of geospatial
data users have similarly identified tracking data provenance as a
recurrent challenge [93].

Participants using GISs frequently relied on built-in history in-
terfaces to “backtrace” (PS1) operations they ran previously (PE3,
PS1, PJ2). For example, PE3 and PS1 used the RECENT menu in the
QGIS EXPRESSION EDITOR to recover syntax for SQL queries they re-
cently executed, using these as templates to repeat processing steps
with modifications. Likewise, PJ2 used the RECENTLY USED menu
in the QGIS PROCESSING TOOLBOX to rerun BUFFER and OVERLAP
ANALYsIS operations with new arguments. However, participants
explained these history interfaces are limited by how quickly they
become overloaded with stale information. PS1: “[I]f you do so
many analyses in Q[GIS] in a week, it all gets buried at the end of
the day. There’s, like, no way you can actually export that history,
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Figure 8: Informal program representations of geospatial analyses. (A) PS1 created a hand-drawn diagram using a custom
notational system to record operations, layer names, and debugging steps in their analysis pipeline. (B) PE1 recorded high-level
analysis steps, issues encountered during analysis, and code snippets in a Google Doc and Microsoft Word document. (C) PJ5
recorded step-by-step instructions for overlaying a GeoJSON file with a Sentinel-2 image across Sentinel Hub, QGIS, Photoshop,
and Illustrator. (D) PE3 used a Google Sheet to record information on data sources, their use in the analysis pipeline, and

arguments to pass to operators in QGIS.

which is why I think fundamentally it’s only good temporally for a
week at most.”

Participants using programming environments cited difficulty
tracking provenance as a core reason they avoid GISs (PE7, PE9,
PS4, PJ8). PE9 explained: “I don’t do any of my processing in [QGIS],
and mainly because I like that you can track what you did, the trace-
ability of doing it in Python. Versus, there’s like none of that if you
do it in QGIS. It’s like you use a plugin or a function, but there’s
no track record of it.” These participants could also more easily
recover information on the current analysis state. While converting
a Google Earth Engine pipeline to use imagery from a different
satellite, PE1 could not recall how much of this conversion they had
completed. To determine where to resume refactoring, they simply
ran the program: “I'm just gonna try running this and see what
happens because I can’t really remember where the part is that
I left off.” Additionally, participants using programming environ-
ments perceived their programs as inherently replicable, shareable
artifacts (PE1, PE2, PE7, PS4, PJ1, PJ3, PJ4). PE7: “If someone wants
to go back and look at my code—‘Oh, he got this shapefile from
here and this shapefile from here, and he’s pushing them together’

Whereas if you do that in Arc[GIS], you can’t really replicate that
workflow in the same way.”

5.4.2 Creating Informal Program Representations. Participants us-
ing GISs created informal program-like representations of their
analyses outside the software (PE3, PS1, PS2, PJ2, PJ5). Represen-
tations ranged from spreadsheets (PE3) to semi-structured text
documents (PE1, PS2) (Figure 8). PS1 created a hand-drawn dia-
gram using a custom notation based on the QGIS Graphical Modeler
[2]. Their diagram specified: the ordering of geospatial operators;
the arguments, input layers, and output layers of each operator;
attribute table modifications and validation steps to perform at
specific pipeline stages; and layers to symbolize in QGIS before
export to Illustrator. They also used color as a visual variable, dis-
tinguishing layers from operators using blue and gold dots.
Participants also used informal program representations to record
data acquisition, cleaning, analysis, and visualization steps spread
across multiple tools (PJ2, PJ5). For example, PJ5 used macOS Notes
to document a workflow for overlaying a GeoJSON atop a Sentinel-2
image, which involved moving data across Sentinel Hub, QGIS, Illus-
trator, and Photoshop. They recorded steps ranging from querying
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Figure 9: A selection of PJ5’s draft maps. (A) PJ5’s initial drafts combined choropleth and dot density symbologies in a single
map. (B) PJ5 created a gridded heat map (top) and used this style with a modified color scheme in a small multiples layout
(bottom). (C) PJ5 tried an alternate layout combining a heat map with a bar chart. These mockups also included a dropdown
allowing users to change the variable displayed on the map. The top and bottom mockups show two different UI states in

response to user interaction.

a specific Sentinel-2 image in Sentinel Hub to recomposing raster
tiles in Mlustrator. This degree of tool-hopping was common among
participants (PS1, PS2, PJ2, PJ5, PJ6, PJ7, PJ8), but all lacked au-
tomated tooling to track cross-system provenance. PJ7 explained:
“Y’know, when I'm jumping between QGIS and Python and, well,
we were just in Excel, and Tableau and Adobe Illustrator ... y’know,
commenting my code in Python doesn’t help me remember where
I was in Ilustrator.”

5.5 Visualizing Geospatial Data

Participants wanted to explore an expansive design space of carto-
graphic representations to visualize their analyses’ outputs. How-
ever, existing tools made this exploration difficult. Visualizing the
same data using different cartographic representations involved
starting the cartographic design process from scratch for each map
variant. Because the tools participants used for map design could
not always natively handle geospatial data, spatial information was
lost when cartographic work began.

5.5.1 Sketching Cartographic Variants. Participants wanted to vi-
sualize data using multiple cartographic representations to explore
the design space of possible maps and provide tangible artifacts for
collaborators to evaluate (PS2, PJ5, PJ6). PJ5 had over 20 “concept
drafts” of maps for one story, ranging from a gridded heat map to a
layout combining choropleth and dot density symbologies (Figure
9). One draft included a sequence of mockups showing how the
map would respond to a user changing the visualized variables via
dropdown menus. These drafts allowed PJ5 to explore cartographic

choices with editors: “I have several different versions where some-
one’s like, ‘What if this was a fullscreen map and the controls were
in the corner, or if this were a side-by-side map?’ Yeah, it’s predomi-
nantly thinking through what is the user experience and what kind
of information do we want the reader to be focused on.” PJ6 drafted
multiple choropleth maps for a story in QGIS and Mapbox Studio,
took screenshots of the maps in each tool, designed webpage lay-
outs around the screenshots in Figma, and copied the layouts into
a Google Doc for editors to provide comments. They noted that
prototyping in a combination of GIS and design software allowed
them to compare cartographic choices quickly and get feedback
“before I code anything.” While these drafts helped PJ5 and PJ6
explore the design space, they were not publication-ready. As a
result, both authored code for the chosen maps after the fact.

To create multiple map versions, participants went through their
entire visualization pipeline—spread across code, GISs, and design
software—for each variant (PJ5, PJ6). Several participants used PJ6’s
strategy of screenshotting draft maps in GISs (PS2, PE5) or the
browser (PJ5) to capture variants at intermediate stages. This al-
lowed them to record many versions distinguished by minor carto-
graphic differences (e.g., color scales, basemaps), even if changing
map styles was too time-consuming. PJ5 avoided repeating their
analysis and visualization process by creating synthetic layers in
some mockups: “If you look at those mocks, they’re not fully accu-
rate because I wasn’t able to do any of the data analysis [ wanted to
do. So it was more of my crude approximation, like, “‘Well, y’know,
if we allowed the user to mess with these filters, here’s kind of what
it would look like.”
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5.5.2  Geospatial Information in Design Software. Participants using
GISs for analysis rarely conducted cartographic work there; instead,
they moved their data into design software such as Illustrator or
Photoshop (PS1, PS2, PJ5, PJ7). This process involved transforming
data encoded in geospatial formats (e.g., GeoJSON, GeoTIFF) into
non-spatial formats (e.g., SVG, PNG). This transformation jettisons
the spatial information of the data, making it challenging to alter
analyses after beginning visualization work. Participants described
moving from GIS to design software as “crossing a rubicon” (PS2)
and “mapping without a net” (PJ5) because the transition broke
the link between features and their real-world geographies. For
example, PJ5 wanted to alter the brightness of a Sentinel-2 image
exported from QGIS to Photoshop while keeping it geographically
aligned to a GeoJSON exported separately to Illustrator: “If I crop
this by so much as a pixel, right, then it’ll no longer be accurate to
that geography ... But as long as this raster image and my Illustrator
SVG remain the same dimensions, then they will be accurate to one
another.”

Participants used a combination of strategies to avoid spatial
information loss when moving to design software. The most com-
mon was to avoid resizing a map after export from GIS (PS1, PS2,
PJ5), which guaranteed the preservation of spatial accuracy during
cartographic design. Participants also exported more data than they
planned to use to avoid re-exporting. PS1 maintained a layer group
in QGIS named “primary” to house all layers they believed could
be important for visualization because “I never know what I want
to end up exporting as an SVG into Hlustrator.”

6 DESIGN OPPORTUNITIES

Our findings suggest new research directions and design opportu-
nities for geospatial analysis and visualization systems.

6.1 Solving Geospatial Data Constraints

Opportunity 1. Participants struggled to find geospatial data satisfying
complex spatial and temporal constraints (Section 5.1). While many could
describe their constraints succinctly, satisfying them involved construct-
ing bespoke workflows to combine, align, and simplify their raw datasets
(Section 5.2). These challenges suggest an opportunity for tools that (1) of-
fer alternative programming abstractions to express data constraints and
(2) infer geospatial data queries and transformations from constraints.

Designers could take inspiration from constraint-based program-
ming systems, which have addressed similar problems in visualiza-
tion [70] and mathematical diagramming [99]. These systems allow
users to describe target outputs (e.g., charts, diagrams) via con-
straints expressed in domain-specific languages (DSLs). Compilers
then translate these programs into optimization problems for con-
straint solvers. In the geospatial setting, GeoSPARQL’s topology
vocabulary extension [18] provides an example of a constraint-
based system for enforcing topological invariants. Our findings
suggest that a constraint-based language for geospatial data could
allow users to compose additional constraints related to spatial
extent, geographic accuracy, spatial resolution, temporal resolution,
and occlusion characteristics.
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Many constraint-based languages are declarative—users describe
what a program should generate without specifying how. Declara-
tive DSLs have addressed domain experts’ needs in fields including
cloud infrastructure engineering [45], interactive graphics [48, 88],
and programmable biochemistry [77]. A declarative DSL for geospa-
tial data transformation could shift much of the burden of wrangling
to automated tooling. For example, we could imagine PE2 replac-
ing their resampling algorithm (Section 5.2.1) with an expression
defining the required spatial resolution of all input rasters; the lan-
guage implementation would be responsible for generating code to
perform the resampling. Prior programming languages work tar-
geted at geospatial data [5, 58] has focused on simplifying querying,
but our findings indicate that users need better abstractions for
transformation.

6.2 Assistive Tools for Constructing Geospatial
Analysis Pipelines

Opportunity 2. Participants could describe the target outputs of their
geospatial analyses but struggled to construct pipelines to produce them
(Section 5.3). This suggests an opportunity for tools that (1) accept non-
code specifications of analysis intent, (2) synthesize analysis programs
that satisfy specifications, and (3) support users in editing programs.

Program synthesis approaches, such as programming-by-example
(PBE) and programming-by-demonstration (PBD), excel in contexts
where users can express outputs but struggle to author code. In
prior work, C-SPRL used PBD to synthesize spatial data queries
from recordings of user interactions in a GIS [92, 93]. However, we
are not aware of synthesizers that aid programmers in selecting
geospatial operators for their analysis pipelines. Given participants’
use of many alternative specifications of intent—natural language
descriptions, direct interaction with maps, constraints on outputs
(Sections 5.3.1 and 5.3.2)—operator selection may be fertile ground
for synthesis. Moreover, prior research in data science has shown
that PBE can assist with operator selection in libraries with large
API surfaces [7], suggesting that search over the vast numbers of
operators in GISs and geospatial analysis libraries is tractable.

Based on participants’ code-foraging behaviors (Section 5.3.1),
synthesis may be useful even if synthesizers cannot reach all plau-
sible programs. We observed that participants were comfortable
tweaking existing programs to reach their target solution. Thus,
tools that support goal (3) above may be helpful both as compan-
ions to synthesis and independently. This echoes design guidance
from [93] arguing that synthesized programs should be editable to
support users in adapting them to similar tasks.

Opportunity 3. Participants relied on running operators and manu-
ally inspecting outputs to understand operator semantics (Section 5.3.2).
This was computationally expensive and time-consuming, suggesting
an opportunity for tools that surface information on operator semantics
without requiring execution across entire inputs.

Live programming offers users immediate visual feedback on
program behavior using concrete inputs [62, 87]. We observed that
participants already use small collections of geographic features or
pixels as test cases to infer operator behavior, implying that this
technique may fit existing debugging patterns (Section 5.3.2). Our
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observations of data subsetting practices (Section 5.2.4) reinforce
this connection—participants already manually reduce dataset size
to get faster feedback. A live programming system for geospatial
analysis could automate these practices.

6.3 Reproducible, Shareable Geospatial
Workflows

Opportunity 4. Participants using GISs struggled to create reproducible,
shareable geospatial workflows (Section 5.4.2). Limitations in existing
history interfaces made it difficult to recover information on the cur-
rent analysis state or revisit past analysis decisions (Section 5.4.1). These
struggles suggest opportunities for tools that (1) support efficient search
through system history and (2) distill history into a portable and exe-
cutable representation.

Tools like Verdant [55] and Variolite [54] offer glimpses of alter-
native ways of surfacing analysis histories. For example, Verdant
offers views of computational notebook history by time, artifact,
and structured search. It also produces a single-file history repre-
sentation that users can share with collaborators. Producing usable
history tools for geospatial data will first require identifying what
history information is valuable. Participants’ informal program
representations suggest that tracking provenance information at
the layer level and recording modifications to layer symbologies
and attribute tables could augment existing systems’ approach of
logging geoprocessing operations (Section 5.4.2).

Beyond making history searchable, developers could borrow
techniques from record and replay [13, 63, 67, 81] to make history
executable. An observational study of GIS users found that partici-
pants’ work was often highly repetitive [23], implying that record
and replay could help automate tedious tasks in GISs. Although we
observed few cases of repetitive work, our participants frequently
used history interfaces to manually replay past operations with
modified arguments (Section 5.4.1). This suggests an opportunity for
tools that can automatically parameterize recordings of user inter-
actions into generalized programs. Ringer [6, 15, 16] and BluePencil
[69] are models in this space; for example, Ringer transforms user
demonstrations in web browsers into scripts that can be modified,
parameterized, and replayed.

6.4 Exploring the Cartographic Design Space

Opportunity 5. Participants wanted to visualize their geospatial data
using multiple cartographic representations, but transitioning between
representations required engineering each one from scratch (Section
5.5.1). This suggests an opportunity for cartographic design tools that
reduce the viscosity [8] of switching between map types.

High-level DSLs offer a low-viscosity approach for design space
exploration. In visualization, grammars of graphics [97] like Vega-
Lite [88] pair declarative primitives for describing visualizations
with a compiler for generating low-level rendering code. Encour-
agingly, these grammars already have some support for geospatial
data. However, because they restrict the geospatial file formats, data
models, and cartographic types that users can work with, these
grammars cannot express the majority of maps our participants
created. In rethinking a grammar of graphics for cartography, our
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findings indicate that supporting more cartographic representations
and minimizing the number of program edits required to switch
representations are critical design considerations. Libraries like Plot
[75] and Bertin.js [60] are promising examples of tools that make
map type a first-class primitive.

Opportunity 6. Many participants used direct manipulation design
software to visualize geospatial data. These tools discard all geographic
information, making it difficult to refactor an analysis once visualization
work has begun (Section 5.5.2). This suggests an opportunity for tools that
(1) bridge geospatial analysis and cartographic design and (2) maintain
the underlying geospatial data representation of graphical elements while
supporting direct manipulation.

Prior work indicates that pairing programmatic and direct manip-
ulation paradigms is possible for tasks with visual outputs. Sketch-n-
Sketch [50] successfully applies this technique to SVG editing. Users
can manipulate the output SVG or edit the program representation
to make changes; Sketch-n-Sketch propagates edits bidirectionally
to maintain the correspondence between program and graphic.
Such an approach for geospatial data could preserve the geographic
information of graphical elements during visualization, allowing
users to return to analysis without obviating in-progress design
work. Moreover, this approach could address participants’ core issue
with using direct manipulation design software for cartography—
that once a particular map design was chosen, they often had to
reproduce the map in code (Section 5.5.1).

7 LIMITATIONS AND FUTURE WORK

In this study, we identified shared challenges and computing needs
of geospatial data users across disciplinary and expertise boundaries.
We expect future research will uncover additional needs beyond
our selected domains and experience levels. We recruited from
three domains: Earth and climate science, the social sciences, and
data journalism. Therefore, our findings may not generalize to
geospatial data users outside these areas, such as epidemiologists,
digital humanities researchers, or statisticians. We believe there
are also opportunities for additional research within our chosen
domains and experience groups. The number of participants from
any given subgroup of our participant pool is too small to reveal
insights about the needs of each class independently.

In general, the sample size of our study (n = 25) limits our ability
to make quantitative claims about the prevalence of our findings
in a broader population [72]. Furthermore, qualitative research
experts warn about the risks of quantifying qualitative data [25].
For these reasons, we intentionally avoided attempts to generalize
our findings beyond our participant group. Instead, we hope they
can serve as a basis for designing larger-scale studies to assess the
prevalence of our identified challenges in the wider community of
geospatial data users.

Using contextual inquiry with open task selection gave us rich
detail on participants’ challenges but also came with drawbacks.
First, asking participants to narrate their thought processes while
performing cognitively challenging tasks can make these tasks more
difficult [24]. Thus, tasks may appear harder in a lab setting than in
a non-observational context. We attempted to mitigate this effect
by permitting participants to pause narration until they reached a
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stopping point for discussion. Second, asking participants to work
on their own tasks inhibits us from making comparative claims
that a fixed-task design may support. For example, alternative stud-
ies could compare participant performance on fixed tasks across
multiple tools to understand their relative strengths. Additionally,
our study design does not assess whether participants’ tasks are
representative of the work of geospatial data users more generally.
Validating task representativeness through additional studies would
bolster our findings.

A critical next step for this research is to validate our design
opportunities with domain experts. We followed the practice of
other contextual inquiry studies that derive design opportunities
directly from participant observation [11, 19, 53]. Indeed, a strength
of contextual inquiry is that it exposes unforeseen participant chal-
lenges in situ, allowing us to identify needs that may not become
visible in alternative methods that rely on participants’ memories
of their work. However, this does not erase the threats of researcher
confirmation bias [73] or causal error [76]. Future work can test
our design opportunities through expert interviews, large-scale
surveys, and formative studies of new systems.

8 CONCLUSION

As geospatial data grows in scale and accessibility, domain experts
require increasingly expressive tools to harness the insights hidden
in this data. But what could such tools look like, and what challenges
should they address? This study deepens our understanding of the
computing needs of domain expert geospatial data users. Using
contextual inquiry, we identified unreported challenges across five
phases of participants’ work: data discovery, data transformation,
analysis, analysis representation, and visualization. For example,
our work is the first to discuss how users (1) employ data subset-
ting and resolution reduction to speed up exploratory geospatial
analysis, (2) create informal program representations to record geo-
processing workflows, and (3) observe changes to feature counts
and geometry to infer geospatial operator behavior. Going beyond
prior work on GIS usability, we also uncovered needs that extend
to other tools used in modern geospatial workflows, including
computational notebooks, design software, and geospatial analy-
sis and visualization libraries. Our observations revealed that four
challenges—finding and transforming geospatial data to satisfy spa-
tiotemporal constraints, understanding the behavior of geospatial
operators, tracking geospatial data provenance, and exploring the
cartographic design space—were especially difficult for participants.
From these observations, we synthesized novel design opportuni-
ties for geospatial analysis and visualization systems. Future work
can build on these insights to create useful and usable tooling that
makes it easier to explore, analyze, and communicate patterns of
spatiotemporal change in our environment and societies.
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