
   
 

    
   

                   
                

                   
                 

           
          

        
        

          
             

          
           

          
          

        
         
          

        
       

      
         

 

              
need-�nding  

        
          

          
          

        
        

       
        

         
           

          
         

          
        

         
          

        
          

A  Need-Finding  Study  with  Users  of  Geospatial  Data  
Parker  Ziegler  

peziegler@cs.berkeley.edu  
University  of  California,  Berkeley  

Berkeley,  California,  USA  

Sarah E. Chasins 
schasins@cs.berkeley.edu 

University of California, Berkeley 
Berkeley, California, USA 

CBA

Figure 1: Example screenshots from participants’ work with geospatial data. (A) PJ3 creates a choropleth map of Texas’ 2021 
proposed electoral districts colored by majority racial demographic in Observable. (B) PJ7 combines satellite imagery, stream 
data, and deforestation data in QGIS to identify illegal logging in southeast Alaska. (C) PE1 computes a Normalized Di�erence 
Water Index of their analysis region in Google Earth Engine using multispectral imagery from the Sentinel-2 satellite. 

ABSTRACT  
Geospatial data is playing an increasingly critical role in the work 
of Earth and climate scientists, social scientists, and data journalists 
exploring spatiotemporal change in our environment and societies. 
However, existing software and programming tools for geospatial 
analysis and visualization are challenging to learn and di�cult to 
use. The aim of this work is to identify the unmet computing needs 
of the diverse and expanding community of geospatial data users. 
We conducted a contextual inquiry study (= = 25) with domain 
experts using geospatial data in their current work. Through a 
thematic analysis, we found that participants struggled to (1) �nd 
and transform geospatial data to satisfy spatiotemporal constraints, 
(2) understand the behavior of geospatial operators, (3) track geospa-
tial data provenance, and (4) explore the cartographic design space. 
These �ndings suggest design opportunities for developers and 
designers of geospatial analysis and visualization systems. 
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1  INTRODUCTION  
Geospatial data—data encoding the location and attributes of phe-
nomena on the Earth’s surface [59]—is growing in scale and accessi-
bility at a tremendous rate [61]. Researchers estimate that Earth ob-
servation satellites generate 80TB of new imagery daily [83]. Closer 
to the surface, cheap, power-e�cient sensors create massive vol-
umes of geolocated data measuring real-time environmental change 
[40]. Additionally, crowdsourcing e�orts like OpenStreetMap have 
fostered an explosion in publicly available volunteered geographic 
information [49, 78]. Geospatial data has long played a fundamen-
tal role in the research of geographers and cartographers. As this 
data becomes more available, experts across a widening array of 
domains are turning to geospatial analysis and visualization to ad-
dress challenges in climate change [17], public health [34], school 
segregation [82], hazard modeling [98], and other areas. 

Despite this expansion in the community of geospatial data 
users, research has yet to explore the speci�c challenges domain 
experts face in gathering, analyzing, and visualizing geographic 
information. Many domain experts are self-taught in the theory of 
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geospatial  data  and  the  specialized  Geographic  Information  System  
software  used  to  manipulate  it.  HCI  researchers  have  found  that  
non-geographers  struggle  to  use  these  systems  because  they  require  
familiarity  with  concepts  and  terminology  from  geography  [43].  
Some  of  these  users  have  turned  to  programming  as  an  alterna-
tive.  While  geospatial  libraries  are  increasingly  common  in  Python,  
R,  and  JavaScript,  domain  experts  must  develop  pro�ciency  in  at  
least  one  of  these  general-purpose  languages  to  bene�t  from  these  
abstractions.  

Our  research  aims  to  investigate  the  computing  needs  of  the  
growing  community  of  geospatial  data  users.  Answering  calls  from  
HCI  researchers  for  increased  collaboration  with  geography  [46,  47],  
we  conducted  a  contextual  inquiry  study  with  25  geospatial  data  
users  from  academia,  industry,  newsrooms,  and  the  public  sector.  
Thematic  analysis  of  observations  and  semi-structured  interviews  
revealed  common  challenges  across  �ve  phases  of  participants’  
work  with  geospatial  data:  data  discovery,  data  transformation,  anal-
ysis,  analysis  representation,  and  visualization.  We  observed  that  
participants  had  di�culty  (1)  �nding  and  transforming  geospatial  
data  to  satisfy  complex  sets  of  spatiotemporal  constraints,  (2)  under-
standing  the  behavior  of  geospatial  operators,  (3)  tracking  geospa-
tial  data  provenance,  and  (4)  e�ciently  exploring  the  cartographic  
design  space,  among  other  challenges.  Our  �ndings  deepen  our  
understanding  of  requirements  for  supporting  domain  experts  in  
their  work  with  geospatial  data  and  suggest  design  opportunities  
for  geospatial  analysis  and  visualization  systems.  

In summary, this paper makes the following contributions: 

• A contextual inquiry study of 25 geospatial data users to 
understand their computing needs 

• A thematic analysis of challenges participants faced across 
distinct phases of their work with geospatial data 

• A set of design opportunities for geospatial analysis and 
visualization systems 

2  BACKGROUND  
2.1  Geospatial  Data  
Geospatial data describes the location and attributes of phenomena                  
on  the  Earth’s  surface  [90].  It  di�ers  from  tabular  data  in  that  it  links  
geometric  representations  of  real-world  geographies—referred  to  
as  the  geometry  of  the  data—with  attributes  of  those  geographies  
[59].  In  this  way,  geospatial  data  connects  information  to  place.  

There  are  two  models  of  geospatial  data,  distinguished  by  their  
geometric  representations  (Figure  2):  
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Figure  2:  Geospatial  data  models.  The  vector  model  represents  geographies  as  points,  lines,  and  polygons.  Geographies  are  
attached  to  tabular  data  via  an  attribute  table.  For  example,  in  the  choropleth  map  (left),  U.S.  counties  encoded  as  polygons  are  
associated  with  housing  data  from  the  U.S.  Census  Bureau’s  2020  American  Community  Survey.  The  raster  model  partitions  
space  into  a  pixel  grid.  Each  pixel  has  an  attached  value  corresponding  to  the  data  attribute  at  that  location.  For  example,  in  the  
Landsat-8  satellite  image  of  Mt.  Rainier  (right),  each  pixel  is  associated  with  an  RGB  value  measuring  light  re�ected  o�  the  
Earth’s  surface.  

(1)  The  vector  model  represents  geographic  features  as  points,  
lines,  and  polygons,  connecting  tabular  data  to  features  via  
an  attribute  table.  For  example,  the  U.S.  Census  Bureau’s  
American  Community  Survey  connects  demographic  esti-
mates  to  geographic  areas  (e.g.,  counties)  modeled  as  poly-
gons  [12].  
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(2)  The  raster  model  partitions  geographic  space  into  a  pixel  
grid.  Each  pixel  corresponds  to  a  portion  of  the  Earth’s  sur-
face  depending  on  the  spatial  resolution  of  the  raster.  For  
example,  the  Landsat-8  satellite  collects  data  at  30m  spatial  
resolution,  meaning  each  pixel  in  the  raster  represents  a  
30G30m  area  [84].  The  value  associated  with  a  raster  pixel  
corresponds  to  the  data  attribute  at  that  location.  

2.2  Geographic  Information  Systems  vs.  
Programming  Environments  

Geographic Information Systems. A Geographic Information Sys-
tem (GIS) is a software system for “capturing, storing, querying, 
analyzing, and displaying geospatial data” [14]. GISs represent 
geospatial datasets as layers, which can be edited, combined, and 
analyzed to generate new layers using built-in geospatial opera-
tors accessed via GUIs. Users visualize and interact with layers in 
a spatial canvas that allows them to zoom, pan, style, and select 
geographic features directly. In this way, GISs center interaction 
with the geometry of geospatial datasets. Interaction with attributes 
happens in secondary table views where users write SQL to query 
and manipulate their data. Many GISs exist; our participants used 
ArcGIS [30] and QGIS [4]. 

Programming Environments. In contrast to GIS software, pro-
gramming environments used to work with geospatial data center 
interaction with the attributes of the data rendered as tables or 
dataframes. This is especially true of computational notebooks 
like Jupyter notebooks [79], R Markdown [85], and Observable 
[74], which have been adopted by geospatial data users but are 
not purpose-built for geospatial data. In these environments, users 
write code to visualize and interact with the geometry of their data. 

Rather than executing geospatial operators via GUIs, they rely on 
APIs from geospatial analysis and visualization libraries. Newer 
programming environments like Google Earth Engine [41] and Mi-
crosoft Planetary Computer [68] mix features from both GISs and 
computational notebooks but are designed for particular forms of 
geospatial analysis (e.g., remote sensing). 

QGISGIS So!ware

Vector and raster 
geospatial 
datasets are 
rendered as layers

Users interact with 
the geometry of 
datasets in a spatial 
canvas

Users execute 
built-in geospatial 
operators via 
secondary GUIs

Example Programming Environments Jupyter

Users access 
geospatial 
operators via 
library APIs

Users write 
code to render 
layers 
individually

Users interact with 
the attributes of 
datasets in table 
views

Example

Figure  3:  Examples  of  GIS  software  and  programming  environments  for  working  with  geospatial  data.  The  QGIS  project  (left)  
and  Jupyter  notebook  (right)  contain  the  same  geospatial  data,  but  users  interact  with  this  data  di�erently  in  each  tool.  

3  RELATED  WORK  
This section surveys �ndings from observational studies of geospa-
tial data users, empirical evaluations of GIS usability, and studies 
exploring the needs of data scientists more generally. 

3.1  Observational  Studies  of  Geospatial  Data  
  Users

Prior observational studies of geospatial data users have focused 
on identifying GIS usability issues [22, 23, 91, 93]. Our work is 
most similar to a workplace study of 21 GIS practitioners, which 
used video recordings, semi-structured interviews, and usability 
checklists to uncover recurrent participant challenges [23]. The 
insights centered around error states, �nding that GISs failed to pre-
vent common user errors, surfaced errors in di�cult-to-understand 
language, and provided insu�cient guidance for correcting errors. 
Additionally, they observed that non-expert GIS users relied on a 
“local expert” to perform their analysis, also reported in [28, 37]. Our 
study di�ers in two ways. First, we investigate how users interact 
with geospatial data across tools other than GISs, including com-
putational notebooks, design software, and geospatial analysis and 
visualization libraries. In fact, most participants (13/25, 52%) did not 
use GIS software. Second, while [23] observed data transformation 
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and analysis, we identi�ed additional challenges related to data 
discovery, analysis representation, and visualization. 

Another closely related study observed non-expert GIS users 
(social science faculty and computer science graduate students) 
and identi�ed data provenance tracking as a common struggle [93]. 
Participants’ GISs maintained no record of how outputs were gen-
erated, making it di�cult to reproduce past analyses. Additionally, 
modifying or retargeting existing maps at new data entailed reverse 
engineering the original analysis through trial and error. Our study 
extends our understanding of provenance needs by (1) identifying 
frustrations with provenance features in modern GISs and (2) de-
scribing participants’ informal methods for tracking provenance 
and reproducing past analyses. 

3.2  Evaluating  GIS  Usability  
Several studies have evaluated GIS usability using non-observational 
qualitative methods, including expert task analysis [91], user sur-
veys [21], interviews [29], and screenshot analysis [44]. A task 
analysis of seven GISs concluded that GIS software is challenging 
to use because it (1) requires users to understand concepts from 
multiple disciplines, including geography, cartography, statistics, 
and databases, and (2) relies on domain-speci�c vocabulary and 
concepts (e.g., “overlay,” “thematic layer”) that re�ect the system 
architecture rather than a user’s view of their work [91]. A survey 
of 159 GIS users found respondents had di�culty understanding 
and �xing errors, customizing the interface via provided macro 
languages, and �nding su�cient documentation to use GISs [21]. 

Other studies have employed quantitative methods such as in-
teraction logging [35, 95], controlled experiments [64, 80], and eye-
tracking [65, 66] to evaluate particular GIS interfaces. A controlled 
experiment compared �ve interaction techniques for cross-layer 
comparison and correlation [64]. Fechner and colleagues logged 
interface interactions in a web-based GIS to understand how users 
collaboratively create and edit geospatial datasets [35]. Unrau and 
Kray provide a comprehensive survey of studies assessing the us-
ability of di�erent GISs [94]. Rather than evaluating speci�c GIS 
interfaces, our study focuses on challenges across various tools. 

3.3  Needs  of  Data  Scientists  
Research on the needs of data scientists has identi�ed struggles 
with wrangling and aligning data from multiple sources [26, 71], 
iterating on and maintaining analysis versions [54, 56], and editing 
data collaboratively [57]. Data transformation and preparation have 
consistently emerged as the most challenging phases of data sci-
entists’ work [42, 52]; practitioners must develop domain-speci�c 
knowledge to identify patterns and anomalies in their datasets, han-
dle missing values, and combine data from di�ering sources and 
temporal paradigms [71]. For geospatial data, ensuring that datasets 
cover the target area and time range of analysis is essential [57]. 
Beyond data transformation, interviews, surveys, and formative 
studies have revealed data scientists struggle to track iterations 
of their analyses, often relying on informal versioning techniques 
[54, 56]. We examine both challenges—data transformation and 
version management—in the special case of geospatial data, high-
lighting areas of overlap and divergence with prior work on data 
science more broadly. 

Parker Ziegler and Sarah E. Chasins 

4  METHOD  
To understand the challenges facing geospatial data users, we con-
ducted a contextual inquiry [51] study with 25 participants from 
academia, industry, newsrooms, and the public sector using geospa-
tial data in their current work. 

Participants and Recruitment. We recruited participants via social 
media (Twitter, Meetup, Reddit, Slack), direct outreach to academic 
departments, and the authors’ networks. We used a screening sur-
vey to select participants from multiple domains—including Earth 
and climate science, the social sciences, and data journalism—with 
varying years of prior experience working with geospatial data (Fig-
ure 4). Our aim with this design was to observe a wide range of user 
challenges and identify those that recurred across a varied group, 
revealing needs that transcend domain and expertise boundaries. 
However, this study design favors breadth at the cost of depth; by 
prioritizing participant diversity, we may have missed details of 
challenges that arise only for experts, non-experts, or users in a 
particular domain. Additionally, recruiting from social media and 
personal networks runs the risk of creating a more homogeneous 
participant pool that may not represent the broader community 
of geospatial data users. Table 1 provides information about our 
participants. 

Consent and Compensation. Before participating in the study, 
participants signed a consent form in accordance with our insti-
tutional review board. Participants received compensation in the 
form of a $40 gift card or a $40 donation to a 501(c)(3) organization 
of their choice. 

Session Structure. Each study session consisted of a 50-70 minute 
observation followed by a 15-20 minute semi-structured interview. 
We conducted sessions remotely over Zoom and recorded them for 
subsequent analysis. One participant opted out of recording; we 
analyzed their session via written notes. During observation, we 
asked participants to share their screen and narrate their thought 
processes as they worked on a task of their choice related to gath-
ering, analyzing, or visualizing geospatial data. We intentionally 
left the choice of task open for two reasons: 

(1) Faithfulness to participants’ work. We aimed to study 
the challenges participants face in their everyday work with 
geospatial data. Researcher-designed tasks may not elicit the 
challenges they typically encounter. 

(2) Experience, domain, and tool diversity. Participants var-
ied widely in their prior experience working with geospatial 
data, their domain of expertise, and the software and pro-
gramming environments they use to work with geospatial 
data. Researcher-designed tasks might lead us to identify 
erroneous needs that are artifacts of task design. 

While the tasks we observed were more representative of partici-
pants’ actual work than researcher-designed tasks, our study design 
does not give us insight into how representative they are of the 
broader community of geospatial data users. Assessing the preva-
lence of our participants’ challenges will require further study. 

During semi-structured interviews, we discussed speci�c obser-
vations from the session to con�rm or re�ne our interpretations of 
participant actions. 



               

Data  Analysis.  We  conducted  an  inductive  thematic  analysis  [10]  top-level  themes.  The  authors  met  weekly  to  re�ne  the  code  hierar-
of  video  recordings  of  the  observations  and  semi-structured  inter- chy,  splitting  and  merging  open  and  axial  codes  based  on  discussion.  
views  using  MaxQDA  [89].  We  started  with  an  open  coding  phase  We  analyzed  29  hours  of  footage  from  24  sessions  and  written  notes  
in  which  we  associated  short,  descriptive  sentences  of  participant  from  one  unrecorded  session.  
behaviors  with  segments  of  the  video  recordings.  We  then  grouped  
these  open  codes  into  a  hierarchy  of  axial  codes  and,  eventually,  

   ID  E��. (Y����)  D�����  L��������  T���� 
 PE1  1-3     Earth and Climate Science  JavaScript    Google Earth Engine 
 PE2  3-5     Earth and Climate Science   R, Python    Google Earth Engine 
 PE3  <1     Earth and Climate Science  —  QGIS 
 PE4  1-3     Earth and Climate Science  Python      Google Earth Engine, Jupyter, geemap 
 PE5  <1     Earth and Climate Science  Python      Jupyter, Google My Maps, Lea�et 
 PE6  5-10     Earth and Climate Science  —  ArcGIS 
 PE7  >10     Earth and Climate Science  —  QGIS 
 PE8  3-5     Earth and Climate Science  Matlab  — 
 PE9  5-10     Earth and Climate Science  Python   Jupyter, geopandas 
 PE10  1-3     Earth and Climate Science  Python   Jupyter, geopandas 

 PS1  1-3   Social Science  —    QGIS, Adobe Illustrator 
 PS2  >10   Social Science  —    QGIS, Adobe Illustrator 
 PS3  <1   Social Science  Python    QGIS, Jupyter, geopandas 
 PS4  1-3   Social Science  R    R Markdown, sf 
 PS5  5-10   Social Science  —  ArcGIS 
 PJ1  1-3   Data Journalism  R    R Markdown, Lea�et 
 PJ2  <1   Data Journalism  —   QGIS, VisiData 
 PJ3  5-10   Data Journalism  JavaScript   Observable, D3 
 PJ4  >10   Data Journalism  Python   Jupyter, geopandas 
 PJ5  5-10   Data Journalism   JavaScript, CSS       QGIS, Adobe Illustrator, Adobe Photoshop, D3 
 PJ6  1-3   Data Journalism  JavaScript   QGIS, Mapbox 
 PJ7  3-5   Data Journalism  Python     Jupyter, Microsoft Excel, Tableau 
 PJ8  1-3   Data Journalism  Python    QGIS, Jupyter, geopandas 
 PO1  3-5   Other (Finance)  —  ArcGIS 
 PO2  5-10    Other (Computer Science)  Python   IPython, geopandas 
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Table 1: Participant characteristics. Throughout the rest of the paper, we use the participant IDs in the ID column to refer to 
individual participants. E��. (Y����) refers to participants’ prior experience working with geospatial data, in years. 
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Figure  4:  Participant  experience  and  skill.  Participants  reported  their  years  of  prior  experience  working  with  geospatial  data  
(left)  and  their  self-assessed  skill  level  working  with  geospatial  data  on  a  scale  of  1-10  (right).  
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5  FINDINGS  
We organize our �ndings into �ve sections corresponding to distinct 
phases of participants’ work with geospatial data: data discovery, 
data transformation, analysis, analysis representation, and visual-
ization. 

5.1  Finding  Geospatial  Data  
Participants struggled to �nd geospatial data satisfying a complex 
set of spatial and temporal constraints derived from their analysis 
goals (PE1, PE2, PE3, PE4, PS4, PJ1, PJ2, PJ6, PO2). The most com-
mon constraint required that a dataset cover a speci�c geographic 
area (PE1, PE3, PE4, PS4, PJ1, PJ6, PJ7). However, it was rare for par-
ticipants to �nd existing datasets tailored to their analysis regions. 
More often, they reduced datasets collected for larger geographic 
extents by clipping them to their study areas (PE3, PJ7) or �ltering 
out features based on attribute values (PE4, PE8, PE10, PS4). For 
example, PE3 derived their dataset by clipping a global soil region 
dataset to their study area and �ltering the remaining features by a 
soil type attribute. In other cases, data for an analysis region was 
spread across multiple sources and had to be combined manually 
(PJ1, PJ6). PJ6 traversed 45 pages of the California Air Resource 
Board’s website to obtain the air monitoring boundaries for 15 com-
munities in their analysis region, which they then composed into a 
single layer. These �ndings are consistent with prior observations 
that geographic coverage a�ects dataset selection [57] and that 
analysts combine datasets from disparate sources to meet analysis 
requirements [36, 71]. 

Some constraints were related to geographic accuracy, which 
occasionally varied across the analysis region. Accuracy inconsis-
tencies were especially pronounced in crowdsourced geospatial 
datasets like OpenStreetMap (PE3, PS2, PO2). PO2 explained that 
in poorly-surveyed areas, “you’ll get weird things where building 
footprints don’t fall within block boundaries, or you’ll have weird 
self-intersections . . . that don’t semantically or geographically make 
sense.” These issues were di�cult to detect before analysis began 
due to the size and detail of participants’ datasets. Some manually 
inspected their data to identify and correct topological errors pre-
emptively (PE6, PO1), while others compared their data to satellite 
imagery (PJ7) or Google Street View images (PJ1) to corroborate its 
accuracy. 

For Earth and climate scientists, constraints on spatial resolution, 
temporal resolution, and occlusion characteristics of satellite im-
agery were critical—though di�cult—to satisfy (PE1, PE2, PE4, PE8). 
For example, PE1’s analysis of drought patterns in Chile required 
them to �lter Sentinel-2 [27] satellite images of their study area to 
those captured during the dry season over a six-year period. Occlu-
sions like clouds, mist, and shadows skewed the analysis, prompting 
them to implement additional image manipulation algorithms to 
mask the a�ected pixels. 

Participants had additional constraints related to: 

• Cost (PE2, PE3) – Participants could only use freely-available 
data. 

• File Format (PE3, PJ7) – Participants needed data in formats 
readable by their analysis tool. 

• Programmatic Access (PE4, PS4) – Participants wanted to 
query and access data via APIs. 
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5.2  Transforming  Geospatial  Data  
Transforming  geospatial  data  was  especially  challenging  for  par-
ticipants,  with  a  plurality  (12/25,  48%)  reporting  this  phase  most  
di�cult  (Figure  5).  As  PE6  noted,  “The  data  doesn’t  come  all  nice,  
neat,  and  packaged  . . .  The  analysis  process  [can  be]  pretty  thin  
and  bare  compared  to  the  preprocessing.”  
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Figure 5: Participant responses to the question, “What part 
of your work or research with geospatial data feels most 
di�cult?” A plurality of participants (12/25, 48%) selected 
data transformation, while 28% (7/25) selected analysis. 

5.2.1  Aligning  Geospatial  Datasets.  Participants  needed  to  align  
datasets  of  di�ering  spatial  extents,  spatial  resolutions,  temporal  res-
olutions,  and  areal  units  to  a  shared  spatial  and  temporal  reference  
(PE2,  PE10,  PJ3,  PJ6,  PJ8).  This  often  required  multiple  transfor-
mations,  including  resampling,  clipping,  and  spatial  and  temporal  
aggregations.  For  example,  PE2’s  groundwater  prediction  model  
used  a  combination  of  MOD16  global  evapotranspiration  data  [86]  
(8-day,  500m),  PRISM  climate  data  [20]  (monthly,  4km),  and  USDA-
NASS  land  cover  data  [96]  (yearly,  30m).  To  align  these  datasets  
to  a  shared  spatial  and  temporal  reference,  they  implemented  (1)  
a  resampling  algorithm  to  transform  rasters  at  �ner  spatial  res-
olutions  (30m,  500m)  to  the  coarsest  resolution  (4km)  and  (2)  an  
algorithm  to  accumulate  data  collected  at  �ner  temporal  resolutions  
(8-day,  monthly)  to  the  coarsest  resolution  (yearly).  Similarly,  PE10  
aligned  observations  from  NASA’s  GRACE  satellite  to  predictions  
from  a  land  surface  model.  They  created  two  “masks”  in  the  form  of  
geopandas  [38]  GeoDataFrames  to  �lter  model  predictions  to  the  
geographic  locations  and  timestamps  for  which  they  had  ground  
truth  GRACE  observations.  In  some  cases,  participants  could  not  
align  datasets  without  making  approximations.  

5.2.2  Topological  Errors.  Participants  spent  signi�cant  time  cor-
recting  the  topology  of  their  datasets  (PE6,  PE7,  PS2,  PO1,  PO2).  
Topological  errors  refer  to  violations  of  geometric  invariants  such  as  
unclosed  polygons,  overlapping  adjacent  polygons,  or  gaps  between  
adjacent  polygons.  Most  participants  identi�ed  topological  errors  
through  time-consuming  visual  inspection  in  GISs  or  matplotlib  
�gures  (PE7,  PS2,  PO1,  PO2).  PE6  used  automated  tools  in  ArcGIS  
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to  �nd  topological  errors  but  explained  that  �xing  these  errors  
required  manual  intervention.  

5.2.3  Reducing  Resolution  to  Improve  Performance.  Participants  
faced  a  trade-o�  between  using  data  with  high  geographic  preci-
sion  and  spatial  resolution  and  being  able  to  analyze  data  e�ciently  
(PE3,  PJ3,  PJ4,  PJ5).  Greater  precision  and  resolution  require  more  
space  to  encode  and,  in  turn,  more  compute  to  process.  PE3  bal-
anced  this  trade-o�  by  using  a  coarser  resolution  version  of  their  
dataset  (⇡340km)  while  iterating  on  an  analysis,  even  though  a  
higher  resolution  version  (⇡1km)  was  available.  This  allowed  them  
to  experiment  with  multiple  analysis  approaches  without  incurring  
the  performance  penalty  of  processing  higher  resolution  data:  “I’m  
doing  it  at  the  lowest  de�nition  to  just  run  through  the  work�ow  
�rst  so  I  know  what  I’m  doing.  I’m  probably  going  to  pick  a  higher  
de�nition  later.”  For  journalists  developing  maps  for  the  web,  re-
ducing  geographic  precision  minimized  the  amount  of  data  loaded  
over  users’  network  connections  (PJ3,  PJ4,  PJ5).  PJ3  and  PJ4  used  
MapShaper  [9]  to  simplify  the  geometry  of  their  vector  datasets;  in  
PJ3’s  case,  simpli�cation  yielded  a  98%  decrease  in  the  size  of  their  
GeoJSON  �le.  

5.2.4  Data  Subse�ing  and  Caching.  Participants’  datasets  were  of-
ten  so  large  that  even  analysis  and  visualization  tools  purpose-built  
for this data lagged. “Just waiting for all this to  . . .  [render]” (PO2)  
was  a  common  refrain  among  participants  using  both  GISs  and  
computational  notebooks.  PE9,  who  used  geopandas  to  analyze  a  
3-million  point  dataset  in  a  Jupyter  notebook,  waited  50  seconds  for  
a  within  operation  to  run.  PJ2  ran  an  O������  A�������  in  QGIS  
between  Census  block  groups  and  a  collection  of  2-mile  bu�ers  that  
took  six  minutes  to  complete;  a  previous  run  using  10-mile  bu�ers  
“took  like  two  hours.”  Prior  studies  have  observed  GIS  users’  frustra-
tions  with  system  performance  [21,  23],  but  we  found  participants  
using  programming  environments  shared  these  frustrations.  

Some  participants  accelerated  the  analysis  feedback  loop  by  
subsetting  data  by  spatial  extent  (PO1,  PO2).  For  example,  while  
investigating  a  bug,  PO2  �ltered  their  dataset  to  features  within  a  

subarea of their analysis region. This reduced matplotlib’s render-
ing time from �ve minutes to one second, allowing them to iterate 
quickly on a �x. However, they cautioned that this strategy could 
silence errors when applying the modi�ed code to the full dataset: 
“We’ll subset the entire data universe we’re trying to work with and 
start developing what we think is a generalized tool. And then once 
we run it on the large universe, we’ll �nd weird inconsistencies and 
bugs.” 

Participants also used past outputs as “waypoints” from which 
they could rerun individual transformations without restarting 
their entire pipeline (PE7, PJ2, PJ8). For example, PE7 organized the 
outputs of each preprocessing stage in separate folders (“Level 1 – 
USGS Product”, “Level 2 – Stacked”, “Level 3 – MESMA”, “Level 4 – 
Shade Normalized”), explaining: 

I think Levels 3 and 4 [are] where a lot of stu� is 
going to change, where I might decide to change the 
parameters or do it a little di�erently. And so what I 
can do is just quickly [delete] this entire folder [Level 
3] . . . and it’ll clean the slate. And then I’ll go back 
to Level 2, and I’ll just rerun everything again from 
Level 2 to get me to Level 3. . . . It kind of speeds up 
the process. 

5.3  Analyzing  Geospatial  Data  
For participants, developing geospatial analyses involved construct-
ing pipelines that applied many geospatial operators (in a particular 
order) to input layers to produce target outputs. Geospatial oper-
ators transform both the geometries and attributes of geospatial 
data, making it di�cult to reason about their behavior. For example, 
the D������� operator merges the boundaries of geographic fea-
tures possessing a shared attribute value and combines attributes of 
merged features using an aggregation function (e.g., sum) (Figure 6). 
Constructing analysis pipelines required participants to have deep 
knowledge of operators and their semantics as well as the ability 
to inspect and debug generated outputs. 

COUNTY TOTAL_POP AIAN_POP

081 737888 9397

… … …
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… … … … …
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Figure 6: An example geospatial operator. The D������� operator is used to group Census tracts in northern California by a 
shared attribute (COUNTY). In addition to merging the geographic boundaries of Census tracts, D������� aggregates values in the 
attribute table using an aggregation function (e.g., sum, first, etc.). 



             

5.3.1  Identifying  Geospatial  Operators.  Participants  struggled  to  
identify  the  correct  operators  to  transform  input  layers  into  target  
outputs  (PE3,  PE7,  PE9,  PS4,  PJ4,  PO2).  Even  an  expert,  PE7,  noted  
that  distinguishing  the  behaviors  of  di�erent  geospatial  operators  is  
challenging:  “I  can  never  remember  the  vector  operations.  There’s  
like  U����  and  M����.  C������!  I  can  never  remember  exactly  
what  they  do.  I  know  exactly  what  the  output  should  look  like  in  the  
end;  I’m  just  trying  to  �gure  out  the  tool  that  gets  me  that  output.”  
PE9  spent  16  minutes  searching  for  a  geopandas  operator  to  �lter  
a  point  layer  to  locations  falling  within  a  speci�c  polygon  in  a  sepa-
rate  layer.  They  experimented  with  programs  using  intersection  
and  sjoin  before  identifying  a  solution  using  within,  re�ecting:  “I  
feel  like  I  spend  a  lot  of  time  getting  stuck  on,  like,  very  simple  GIS.  
It’s  things  like  M����  vs.  J���,  getting  confused  with  which  one  
you  want.  Or  S������  J���  vs.  a  regular  J���.  Sometimes  just  the  
terminology  can  be  confusing,  and  sometimes  it’s  not  consistent  
between  QGIS  and  Arc[GIS]  and  geopandas.”  The  number  of  oper-
ators  in  GIS  software  and  geospatial  analysis  libraries  exacerbates  
this  challenge.  For  example,  ArcGIS  has  over  200  operators  in  its  
Spatial  Analyst  toolbox,  ranging  from  bitwise  operators  to  kriging  
algorithms  [31].  This  is  only  one  of  its  41  toolboxes.  

Alternative  Expressions  of  Intent.  Although  participants  struggled  
to  construct  analysis  pipelines,  many  could  describe  their  intent  in  
other  ways  (PE7,  PE9,  PS4,  PJ3,  PJ4,  PJ7,  PJ8).  Some  used  natural  
language  descriptions,  either  spoken  aloud  (PE7,  PE9,  PS4,  PJ3,  PJ4,  
PJ7)  or  written  as  comments  (PE8,  PS4,  PJ1,  PJ4).  For  example,  PJ4  
phrased  their  intent  as  a  question:  “How  many  homicides  did  each  
neighborhood  have  this  year,  and  how  did  that  compare  to,  like,  
last  year  or  the  last  �ve  years,  or  something  like  that,  right?  . . .  
So  now  I’m  doing  the  puzzle  in  my  head,  like,  how  am  I  gonna  
get  there?”  They  proceeded  to  write  individual  subgoals  for  each  
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analysis  step  in  comments  in  their  Jupyter  notebook  (e.g.,  “Spatially  
join  homicides  to  [neighbor]hoods”).  Some  participants  interacted  
directly  with  features  in  a  map  view  to  express  their  intent  (PS4,  
PJ7).  PJ7  used  their  mouse  to  demonstrate  in  QGIS  how  they  would  
compute  bu�ers  around  each  line  feature  in  their  stream  dataset,  
then  compute  the  area  of  overlap  between  these  bu�ers  and  a  raster  
deforestation  dataset.  This  would  yield  the  total  area  of  illegal  
logging  in  their  analysis  region.  

Code  Foraging.  When  participants  could  not  identify  the  cor-
rect  operator  for  an  analysis  context,  they  resorted  to  foraging  
for  similar  analysis  examples  on  Google  (PE3,  PE7,  PE9,  PJ2,  PJ4),  
StackOver�ow  (PE9,  PE10),  in  documentation  (PE7,  PE9,  PS4,  PJ4),  
in  online  tutorials  (PE3,  PE7,  PE9,  PS3,  PS4,  PJ3,  PJ8),  in  colleagues’  
computational  notebooks  and  source  code  (PE1,  PE4,  PE5,  PS3,  PJ3),  
or  in  their  own  notebooks  and  source  code  (PE1,  PE9,  PE10,  PS3,  PJ3,  
PJ4,  PJ8).  PE9  demonstrated  nearly  all  of  these  behaviors,  visiting  
six  online  tutorials,  six  StackOver�ow  pages,  and  two  pages  of  the  
geopandas  documentation  to  determine  the  �rst  two  operators  to  
use  in  their  pipeline  (Figure  7).  

15:00 17:00 19:00 21:00 23:00 25:00 27:00 29:00 31:00

StackOverflow PostTutorial geopandas DocumentationDebugging Attempt

Accesses blog post 
on Python point-in-
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geopandas 
documentation on 
within operator

Encounters runtime error 
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attribute of first feature in 
GeoDataFrame

30:15 Figures out

                 
                   

                  
          

Figure 7: Timeline of PE9’s attempts to identify geospatial operators. PE9 moved between tutorials, StackOver�ow, and library 
documentation to identify the correct geopandas operator and syntax to �lter a GeoDataFrame of cell phone location records to 
those falling within a polygon from a separate GeoDataFrame. They intermixed foraging for example code with testing candidate 
operators for 16 minutes before arriving at a working solution. 

5.3.2  Understanding  Geospatial  Operator  Semantics.  Even  when  
participants  could  identify  candidate  operators,  they  struggled  to  
understand  operator  behaviors  (PE3,  PE7,  PE8,  PE9,  PJ4,  PJ8,  PO2).  
As  PE7  and  PE9  noted  in  Section  5.3.1,  this  is  partly  due  to  the  
ambiguous  naming  of  geospatial  operators.  Moreover,  operator  se-
mantics  di�er  subtly  across  GISs  and  geospatial  analysis  libraries,  
meaning  “you  do  need  some  sort  of  speci�city  for  doing  the  actual  
[analysis]”  (PS2)  in  a  particular  environment.  For  example,  ArcGIS’s  
M����  combines  vector  layers  of  any  geometric  type—point,  line,  
or  polygon—into  a  single  layer  [32],  while  its  QGIS-equivalent,  
M����  V�����  L�����,  can  only  merge  vector  layers  of  the  same  
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geometric  type  [3].  geopandas  merge  inherits  from  pandas,  ignor-
ing  geometry  altogether  and  performing  a  join  on  shared  attributes  
[39].  As  this  example  illustrates,  knowledge  of  geospatial  operator  
behavior  in  one  tool  rarely  transfers  to  another.  

Participants  used  diverse  strategies  to  understand  operator  se-
mantics.  We  highlight  two  common  techniques.  

Output-Centered  Hypothesis  Testing.  To  test  hypotheses  about  
candidate  operators’  behaviors,  participants  ran  operators,  then  
manually  inspected  generated  outputs  (PE1,  PE3,  PE7,  PE9,  PS1,  
PJ4,  PO2).  For  example,  PE3  attempted  to  combine  two  single-band  
rasters  into  one  multi-band  raster  in  QGIS,  hypothesizing  that  the  
M����  operator  might  be  appropriate  for  the  task.  After  running  
M����,  they  inspected  the  output  raster  and  found  that  it  was  still  
composed  of  a  single  band.  They  next  examined  pixel  values  of  this  
raster,  noticing  they  were  identical  to  pixel  values  of  just  one  of  
the  input  rasters.  From  this  inspection,  they  inferred  that  M����  
stitches  together  input  rasters  of  di�ering  geographic  extents  rather  
than  combining  raster  bands.  

When  testing  candidate  operators,  participants  focused  on  small  
subsets  of  pixels  or  features  and  compared  their  values  in  input  
layers  to  their  corresponding  values  in  outputs.  Sometimes,  selec-
tion  of  pixels  or  features  was  random  (PE7,  PS2,  PO2).  More  often,  
they  selected  parts  of  the  output  where  unexpected  behavior  would  
produce  obviously  incorrect  values  (PE1,  PE3,  PE8,  PS1,  PJ2,  PJ3).  
For  example,  PE1  computed  a  Normalized  Di�erence  Water  Index  
raster  and  checked  the  pixel  values  of  a  lake  in  the  generated  out-
put;  if  the  algorithm  succeeded,  these  values  would  be  close  to  the  
maximum  value  of  one.  

Observing  Feature  Count  Changes.  Many  geospatial  operations,  
such  as  those  that  �lter,  intersect,  or  aggregate  geographies,  pro-
duce  output  layers  containing  a  di�erent  number  of  features  than  
their  inputs.  Participants  used  changes  in  feature  counts  to  assess  
operator  behavior,  with  the  magnitude  and  direction  of  change  
serving  as  proxies  for  correctness  (PE9,  PE10,  PS1,  PS4,  PJ2,  PJ3,  PJ4,  
PJ8).  For  example,  PS4  checked  the  feature  count  of  the  dataframe  
produced  by  an  st_join  operation:  “This  should  only  be  372  obser-
vations  because  each  [Census]  tract  is  unique,  but  instead  test2  
[the  output  dataframe]  is  2790,  which  is  implying  that  there  is  
something  wrong.”  

5.3.3  Visibility  of  Geometry  in  Programming  Environments.  Partici-
pants  relied  on  examining  the  geometry  of  their  data  to  understand  
operator  behavior  and  validate  operator  output.  GISs  center  the  ge-
ometry  of  geospatial  data  via  a  map  view,  a  canvas  that  allows  users  
to  pan,  zoom,  and  inspect  features  and  pixels  directly.  Conversely,  
participants  using  programming  environments  had  to  write  addi-
tional  code  to  perform  these  interactions  (PE8,  PE10,  PJ7,  PJ8,  PO2).  
For  example,  PO2  wrote  code  to  pan  and  zoom  static  matplotlib  
�gures  to  particular  parcels  in  their  OpenStreetMap  dataset.  This  
involved  a  repetitive  process  of  guessing  the  coordinates  of  bound-
ing  boxes  containing  the  parcels,  updating  a  Python  dictionary  
encoding  these  coordinates,  re-executing  their  code  in  IPython,  
and  re-rendering  the  matplotlib  �gures  until  they  achieved  the  
desired  view.  

      
        
            

            
          

         
                
          

               
           
          

             
           

             
        

       
          

           
        

Programming environments made rendering and interacting 
with geospatial data challenging enough that, even when partici-
pants used them for analysis, they often moved their data to GISs 
to “see” and “layer” (PJ6) it interactively (PE9, PJ2, PJ4, PJ6). PJ2 
explained the immediate visibility of their data’s geometry in GISs 
outweighed the performance bene�ts of code: “I’m working in 
QGIS. I know that it’s slower than it would be to do it in PostGIS or 
maybe even geopandas, and so I’ve considered switching to that. 
But I’m still . . . new enough that I need to kind of ‘see’ to make 
sure my projections are right and stu� like that.” PJ4 performed 
their analysis using geopandas in Jupyter but explained they would 
visualize the results in QGIS: “Now I could try to visualize it here 
with matplotlib and geopandas, but I know those things are . . . 
not interactive and so I’m like, ‘I gotta take this to QGIS.’” These 
�ndings extend prior work highlighting visual exploration and 
cross-layer correlation as integral exploratory analysis techniques 
for geospatial data users [29, 64]. Participants wanted visibility into 
their data’s geometry not only to identify spatial patterns but also 
to validate the correctness of their analyses visually. 

5.4  Representing  Geospatial  Analyses  
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Participants  sought  to  represent  their  analyses  in  reproducible,  
shareable  forms.  While  some  GISs  maintain  a  record  of  users’  geo-
processing  operations,  this  record  is  not  grouped  by  project  or  
user  session,  omits  changes  to  layer  symbologies,  and  is  encoded  
in  formats  like  XML  [33]  or  command-line  expressions  [1]  that  
participants  did  not  otherwise  use.  As  a  result,  participants  using  
GISs  created  informal  program  representations  outside  their  GIS  to  
preserve  information  about  analyses.  

5.4.1  Reproducing  Geospatial  Analyses.  Participants  using  GISs  
had  di�culty  reproducing  their  geospatial  analyses,  either  because  
they  struggled  to  remember  the  current  analysis  state  (PJ7)  or  lacked  
documentation  on  how  they  performed  the  analysis  previously  
(PJ5,  PJ6).  For  example,  PJ7  revisited  a  QGIS  project  to  expand  the  
geographic  extent  of  their  analysis  region  but  could  not  recall  if  
they  had  already  clipped  their  layers  to  the  new  extent.  They  noted  
they  “come  across  that  problem  a  lot  of  remembering  where  I  was  
and  what  I’ve  done  already.”  Some  participants  tried  to  reverse  
engineer  their  work�ows  from  generated  artifacts  (PJ5,  PJ6):  “I’m  
just  looking  through  . . .  some  of  my  previous  [exported  SVGs]  to  
remember  what  I  did  from  here”  (PJ5).  Prior  studies  of  geospatial  
data  users  have  similarly  identi�ed  tracking  data  provenance  as  a  
recurrent  challenge  [93].  

Participants  using  GISs  frequently  relied  on  built-in  history  in-
terfaces  to  “backtrace”  (PS1)  operations  they  ran  previously  (PE3,  
PS1,  PJ2).  For  example,  PE3  and  PS1  used  the  R�����  menu  in  the  
QGIS  E���������  E�����  to  recover  syntax  for  SQL  queries  they  re-
cently  executed,  using  these  as  templates  to  repeat  processing  steps  
with  modi�cations.  Likewise,  PJ2  used  the  R�������  U���  menu  
in  the  QGIS  P���������  T������  to  rerun  B�����  and  O������  
A�������  operations  with  new  arguments.  However,  participants  
explained  these  history  interfaces  are  limited  by  how  quickly  they  
become  overloaded  with  stale  information.  PS1:  “[I]f  you  do  so  
many  analyses  in  Q[GIS]  in  a  week,  it  all  gets  buried  at  the  end  of  
the  day.  There’s,  like,  no  way  you  can  actually  export  that  history,  



             

which is why I think fundamentally it’s only good temporally for a 
week at most.” 

Participants using programming environments cited di�culty 
tracking provenance as a core reason they avoid GISs (PE7, PE9, 
PS4, PJ8). PE9 explained: “I don’t do any of my processing in [QGIS], 
and mainly because I like that you can track what you did, the trace-
ability of doing it in Python. Versus, there’s like none of that if you 
do it in QGIS. It’s like you use a plugin or a function, but there’s 
no track record of it.” These participants could also more easily 
recover information on the current analysis state. While converting 
a Google Earth Engine pipeline to use imagery from a di�erent 
satellite, PE1 could not recall how much of this conversion they had 
completed. To determine where to resume refactoring, they simply 
ran the program: “I’m just gonna try running this and see what 
happens because I can’t really remember where the part is that 
I left o�.” Additionally, participants using programming environ-
ments perceived their programs as inherently replicable, shareable 
artifacts (PE1, PE2, PE7, PS4, PJ1, PJ3, PJ4). PE7: “If someone wants 
to go back and look at my code—‘Oh, he got this shape�le from 
here and this shape�le from here, and he’s pushing them together.’ 

Whereas  if  you  do  that  in  Arc[GIS],  you  can’t  really  replicate  that  
work�ow  in  the  same  way.”  

5.4.2  Creating  Informal  Program  Representations.  Participants  us-
ing  GISs  created  informal  program-like  representations  of  their  
analyses  outside  the  software  (PE3,  PS1,  PS2,  PJ2,  PJ5).  Represen-
tations  ranged  from  spreadsheets  (PE3)  to  semi-structured  text  
documents  (PE1,  PS2)  (Figure  8).  PS1  created  a  hand-drawn  dia-
gram  using  a  custom  notation  based  on  the  QGIS  Graphical  Modeler  
[2].  Their  diagram  speci�ed:  the  ordering  of  geospatial  operators;  
the  arguments,  input  layers,  and  output  layers  of  each  operator;  
attribute  table  modi�cations  and  validation  steps  to  perform  at  
speci�c  pipeline  stages;  and  layers  to  symbolize  in  QGIS  before  
export  to  Illustrator.  They  also  used  color  as  a  visual  variable,  dis-
tinguishing  layers  from  operators  using  blue  and  gold  dots.  

DC
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Figure 8: Informal program representations of geospatial analyses. (A) PS1 created a hand-drawn diagram using a custom 
notational system to record operations, layer names, and debugging steps in their analysis pipeline. (B) PE1 recorded high-level 
analysis steps, issues encountered during analysis, and code snippets in a Google Doc and Microsoft Word document. (C) PJ5 
recorded step-by-step instructions for overlaying a GeoJSON �le with a Sentinel-2 image across Sentinel Hub, QGIS, Photoshop, 
and Illustrator. (D) PE3 used a Google Sheet to record information on data sources, their use in the analysis pipeline, and 
arguments to pass to operators in QGIS. 
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Participants also used informal program representations to record 
data acquisition, cleaning, analysis, and visualization steps spread 
across multiple tools (PJ2, PJ5). For example, PJ5 used macOS Notes 
to document a work�ow for overlaying a GeoJSON atop a Sentinel-2 
image, which involved moving data across Sentinel Hub, QGIS, Illus-
trator, and Photoshop. They recorded steps ranging from querying 

        
        

           
           

         
         



               

a speci�c Sentinel-2 image in Sentinel Hub to recomposing raster 
tiles in Illustrator. This degree of tool-hopping was common among 
participants (PS1, PS2, PJ2, PJ5, PJ6, PJ7, PJ8), but all lacked au-
tomated tooling to track cross-system provenance. PJ7 explained: 
“Y’know, when I’m jumping between QGIS and Python and, well, 
we were just in Excel, and Tableau and Adobe Illustrator . . . y’know, 
commenting my code in Python doesn’t help me remember where 
I was in Illustrator.” 

5.5  Visualizing  Geospatial  Data  
Participants  wanted  to  explore  an  expansive  design  space  of  carto-
graphic  representations  to  visualize  their  analyses’  outputs.  How-
ever,  existing  tools  made  this  exploration  di�cult.  Visualizing  the  
same  data  using  di�erent  cartographic  representations  involved  
starting  the  cartographic  design  process  from  scratch  for  each  map  
variant.  Because  the  tools  participants  used  for  map  design  could  
not  always  natively  handle  geospatial  data,  spatial  information  was  
lost  when  cartographic  work  began.  

5.5.1  Sketching  Cartographic  Variants.  Participants  wanted  to  vi-
sualize  data  using  multiple  cartographic  representations  to  explore  
the  design  space  of  possible  maps  and  provide  tangible  artifacts  for  
collaborators  to  evaluate  (PS2,  PJ5,  PJ6).  PJ5  had  over  20  “concept  
drafts”  of  maps  for  one  story,  ranging  from  a  gridded  heat  map  to  a  
layout  combining  choropleth  and  dot  density  symbologies  (Figure  
9).  One  draft  included  a  sequence  of  mockups  showing  how  the  
map  would  respond  to  a  user  changing  the  visualized  variables  via  
dropdown  menus.  These  drafts  allowed  PJ5  to  explore  cartographic  

          
          

           
        
          

              
          

    

         
             

            
           

             
           

          
           

           
          

         
           
          

           

choices with editors: “I have several di�erent versions where some-
one’s like, ‘What if this was a fullscreen map and the controls were 
in the corner, or if this were a side-by-side map?’ Yeah, it’s predomi-
nantly thinking through what is the user experience and what kind 
of information do we want the reader to be focused on.” PJ6 drafted 
multiple choropleth maps for a story in QGIS and Mapbox Studio, 
took screenshots of the maps in each tool, designed webpage lay-
outs around the screenshots in Figma, and copied the layouts into 
a Google Doc for editors to provide comments. They noted that 
prototyping in a combination of GIS and design software allowed 
them to compare cartographic choices quickly and get feedback 
“before I code anything.” While these drafts helped PJ5 and PJ6 
explore the design space, they were not publication-ready. As a 
result, both authored code for the chosen maps after the fact. 

         
        

         
           
         

         
         

         
         

           
               

            
              
    

A Need-Finding Study with Users of Geospatial Data CHI ’23, April 23–28, 2023, Hamburg, Germany 

CBA

                     
                       

                     
                     
    

Figure 9: A selection of PJ5’s draft maps. (A) PJ5’s initial drafts combined choropleth and dot density symbologies in a single 
map. (B) PJ5 created a gridded heat map (top) and used this style with a modi�ed color scheme in a small multiples layout 
(bottom). (C) PJ5 tried an alternate layout combining a heat map with a bar chart. These mockups also included a dropdown 
allowing users to change the variable displayed on the map. The top and bottom mockups show two di�erent UI states in 
response to user interaction. 

To create multiple map versions, participants went through their 
entire visualization pipeline—spread across code, GISs, and design 
software—for each variant (PJ5, PJ6). Several participants used PJ6’s 
strategy of screenshotting draft maps in GISs (PS2, PE5) or the 
browser (PJ5) to capture variants at intermediate stages. This al-
lowed them to record many versions distinguished by minor carto-
graphic di�erences (e.g., color scales, basemaps), even if changing 
map styles was too time-consuming. PJ5 avoided repeating their 
analysis and visualization process by creating synthetic layers in 
some mockups: “If you look at those mocks, they’re not fully accu-
rate because I wasn’t able to do any of the data analysis I wanted to 
do. So it was more of my crude approximation, like, ‘Well, y’know, 
if we allowed the user to mess with these �lters, here’s kind of what 
it would look like.’” 
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      5.5.2 Geospatial Information in Design So�ware.   
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Participants using 
GISs for analysis rarely conducted cartographic work there; instead, 
they moved their data into design software such as Illustrator or 
Photoshop (PS1, PS2, PJ5, PJ7). This process involved transforming 
data encoded in geospatial formats (e.g., GeoJSON, GeoTIFF) into 
non-spatial formats (e.g., SVG, PNG). This transformation jettisons 
the spatial information of the data, making it challenging to alter 
analyses after beginning visualization work. Participants described 
moving from GIS to design software as “crossing a rubicon” (PS2) 
and “mapping without a net” (PJ5) because the transition broke 
the link between features and their real-world geographies. For 
example, PJ5 wanted to alter the brightness of a Sentinel-2 image 
exported from QGIS to Photoshop while keeping it geographically 
aligned to a GeoJSON exported separately to Illustrator: “If I crop 
this by so much as a pixel, right, then it’ll no longer be accurate to 
that geography . . . But as long as this raster image and my Illustrator 
SVG remain the same dimensions, then they will be accurate to one 
another.” 

Participants used a combination of strategies to avoid spatial 
information loss when moving to design software. The most com-
mon was to avoid resizing a map after export from GIS (PS1, PS2, 
PJ5), which guaranteed the preservation of spatial accuracy during 
cartographic design. Participants also exported more data than they 
planned to use to avoid re-exporting. PS1 maintained a layer group 
in QGIS named “primary” to house all layers they believed could 
be important for visualization because “I never know what I want 
to end up exporting as an SVG into Illustrator.” 

6  DESIGN  OPPORTUNITIES  
Our �ndings suggest new research directions and design opportu-
nities for geospatial analysis and visualization systems. 

6.1  Solving  Geospatial  Data  Constraints  

Opportunity 1. Participants struggled to �nd geospatial data satisfying 
complex spatial and temporal constraints (Section 5.1). While many could 
describe their constraints succinctly, satisfying them involved construct-
ing bespoke work�ows to combine, align, and simplify their raw datasets 
(Section 5.2). These challenges suggest an opportunity for tools that (1) of-
fer alternative programming abstractions to express data constraints and 
(2) infer geospatial data queries and transformations from constraints. 

Designers could take inspiration from constraint-based program-
ming systems, which have addressed similar problems in visualiza-
tion [70] and mathematical diagramming [99]. These systems allow 
users to describe target outputs (e.g., charts, diagrams) via con-
straints expressed in domain-speci�c languages (DSLs). Compilers 
then translate these programs into optimization problems for con-
straint solvers. In the geospatial setting, GeoSPARQL’s topology 
vocabulary extension [18] provides an example of a constraint-
based system for enforcing topological invariants. Our �ndings 
suggest that a constraint-based language for geospatial data could 
allow users to compose additional constraints related to spatial 
extent, geographic accuracy, spatial resolution, temporal resolution, 
and occlusion characteristics. 

Many constraint-based languages are declarative—users describe 
what a program should generate without specifying how. Declara-
tive DSLs have addressed domain experts’ needs in �elds including 
cloud infrastructure engineering [45], interactive graphics [48, 88], 
and programmable biochemistry [77]. A declarative DSL for geospa-
tial data transformation could shift much of the burden of wrangling 
to automated tooling. For example, we could imagine PE2 replac-
ing their resampling algorithm (Section 5.2.1) with an expression 
de�ning the required spatial resolution of all input rasters; the lan-
guage implementation would be responsible for generating code to 
perform the resampling. Prior programming languages work tar-
geted at geospatial data [5, 58] has focused on simplifying querying, 
but our �ndings indicate that users need better abstractions for 
transformation. 

6.2  Assistive  Tools  for  Constructing  Geospatial  
Analysis  Pipelines  

Opportunity 2. Participants could describe the target outputs of their 
geospatial analyses but struggled to construct pipelines to produce them 
(Section 5.3). This suggests an opportunity for tools that (1) accept non-
code speci�cations of analysis intent, (2) synthesize analysis programs 
that satisfy speci�cations, and (3) support users in editing programs. 

Program synthesis approaches, such as programming-by-example 
(PBE) and programming-by-demonstration (PBD), excel in contexts 
where users can express outputs but struggle to author code. In 
prior work, C-SPRL used PBD to synthesize spatial data queries 
from recordings of user interactions in a GIS [92, 93]. However, we 
are not aware of synthesizers that aid programmers in selecting 
geospatial operators for their analysis pipelines. Given participants’ 
use of many alternative speci�cations of intent—natural language 
descriptions, direct interaction with maps, constraints on outputs 
(Sections 5.3.1 and 5.3.2)—operator selection may be fertile ground 
for synthesis. Moreover, prior research in data science has shown 
that PBE can assist with operator selection in libraries with large 
API surfaces [7], suggesting that search over the vast numbers of 
operators in GISs and geospatial analysis libraries is tractable. 

Based on participants’ code-foraging behaviors (Section 5.3.1), 
synthesis may be useful even if synthesizers cannot reach all plau-
sible programs. We observed that participants were comfortable 
tweaking existing programs to reach their target solution. Thus, 
tools that support goal (3) above may be helpful both as compan-
ions to synthesis and independently. This echoes design guidance 
from [93] arguing that synthesized programs should be editable to 
support users in adapting them to similar tasks. 

Opportunity 3. Participants relied on running operators and manu-
ally inspecting outputs to understand operator semantics (Section 5.3.2). 
This was computationally expensive and time-consuming, suggesting 
an opportunity for tools that surface information on operator semantics 
without requiring execution across entire inputs. 

Live programming o�ers users immediate visual feedback on 
program behavior using concrete inputs [62, 87]. We observed that 
participants already use small collections of geographic features or 
pixels as test cases to infer operator behavior, implying that this 
technique may �t existing debugging patterns (Section 5.3.2). Our 
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observations of data subsetting practices (Section 5.2.4) reinforce 
this connection—participants already manually reduce dataset size 
to get faster feedback. A live programming system for geospatial 
analysis could automate these practices. 

6.3  Reproducible,  Shareable  Geospatial  
Work�ows  

Opportunity  4.  Participants  using  GISs  struggled  to  create  reproducible,  
shareable  geospatial  work�ows  (Section  5.4.2).  Limitations  in  existing  
history  interfaces  made  it  di�cult  to  recover  information  on  the  cur-
rent  analysis  state  or  revisit  past  analysis  decisions  (Section  5.4.1).  These  
struggles  suggest  opportunities  for  tools  that  (1)  support  e�cient  search  
through  system  history  and  (2)  distill  history  into  a  portable  and  exe-
cutable  representation.  

Tools like Verdant [55] and Variolite [54] o�er glimpses of alter-
native ways of surfacing analysis histories. For example, Verdant 
o�ers views of computational notebook history by time, artifact, 
and structured search. It also produces a single-�le history repre-
sentation that users can share with collaborators. Producing usable 
history tools for geospatial data will �rst require identifying what 
history information is valuable. Participants’ informal program 
representations suggest that tracking provenance information at 
the layer level and recording modi�cations to layer symbologies 
and attribute tables could augment existing systems’ approach of 
logging geoprocessing operations (Section 5.4.2). 

Beyond making history searchable, developers could borrow 
techniques from record and replay [13, 63, 67, 81] to make history 
executable. An observational study of GIS users found that partici-
pants’ work was often highly repetitive [23], implying that record 
and replay could help automate tedious tasks in GISs. Although we 
observed few cases of repetitive work, our participants frequently 
used history interfaces to manually replay past operations with 
modi�ed arguments (Section 5.4.1). This suggests an opportunity for 
tools that can automatically parameterize recordings of user inter-
actions into generalized programs. Ringer [6, 15, 16] and BluePencil 
[69] are models in this space; for example, Ringer transforms user 
demonstrations in web browsers into scripts that can be modi�ed, 
parameterized, and replayed. 

6.4  Exploring  the  Cartographic  Design  Space  

Opportunity 5. Participants wanted to visualize their geospatial data 
using multiple cartographic representations, but transitioning between 
representations required engineering each one from scratch (Section 
5.5.1). This suggests an opportunity for cartographic design tools that 
reduce the viscosity [8] of switching between map types. 

High-level DSLs o�er a low-viscosity approach for design space 
exploration. In visualization, grammars of graphics [97] like Vega-
Lite [88] pair declarative primitives for describing visualizations 
with a compiler for generating low-level rendering code. Encour-
agingly, these grammars already have some support for geospatial 
data. However, because they restrict the geospatial �le formats, data 
models, and cartographic types that users can work with, these 
grammars cannot express the majority of maps our participants 
created. In rethinking a grammar of graphics for cartography, our 

�ndings indicate that supporting more cartographic representations 
and minimizing the number of program edits required to switch 
representations are critical design considerations. Libraries like Plot 
[75] and Bertin.js [60] are promising examples of tools that make 
map type a �rst-class primitive. 

Opportunity 6. Many participants used direct manipulation design 
software to visualize geospatial data. These tools discard all geographic 
information, making it di�cult to refactor an analysis once visualization 
work has begun (Section 5.5.2). This suggests an opportunity for tools that 
(1) bridge geospatial analysis and cartographic design and (2) maintain 
the underlying geospatial data representation of graphical elements while 
supporting direct manipulation. 

Prior work indicates that pairing programmatic and direct manip-
ulation paradigms is possible for tasks with visual outputs. Sketch-n-
Sketch [50] successfully applies this technique to SVG editing. Users 
can manipulate the output SVG or edit the program representation 
to make changes; Sketch-n-Sketch propagates edits bidirectionally 
to maintain the correspondence between program and graphic. 
Such an approach for geospatial data could preserve the geographic 
information of graphical elements during visualization, allowing 
users to return to analysis without obviating in-progress design 
work. Moreover, this approach could address participants’ core issue 
with using direct manipulation design software for cartography— 
that once a particular map design was chosen, they often had to 
reproduce the map in code (Section 5.5.1). 

7  LIMITATIONS  AND  FUTURE  WORK  
In this study, we identi�ed shared challenges and computing needs 
of geospatial data users across disciplinary and expertise boundaries. 
We expect future research will uncover additional needs beyond 
our selected domains and experience levels. We recruited from 
three domains: Earth and climate science, the social sciences, and 
data journalism. Therefore, our �ndings may not generalize to 
geospatial data users outside these areas, such as epidemiologists, 
digital humanities researchers, or statisticians. We believe there 
are also opportunities for additional research within our chosen 
domains and experience groups. The number of participants from 
any given subgroup of our participant pool is too small to reveal 
insights about the needs of each class independently. 

In general, the sample size of our study (= = 25) limits our ability 
to make quantitative claims about the prevalence of our �ndings 
in a broader population [72]. Furthermore, qualitative research 
experts warn about the risks of quantifying qualitative data [25]. 
For these reasons, we intentionally avoided attempts to generalize 
our �ndings beyond our participant group. Instead, we hope they 
can serve as a basis for designing larger-scale studies to assess the 
prevalence of our identi�ed challenges in the wider community of 
geospatial data users. 

Using contextual inquiry with open task selection gave us rich 
detail on participants’ challenges but also came with drawbacks. 
First, asking participants to narrate their thought processes while 
performing cognitively challenging tasks can make these tasks more 
di�cult [24]. Thus, tasks may appear harder in a lab setting than in 
a non-observational context. We attempted to mitigate this e�ect 
by permitting participants to pause narration until they reached a 

https://Bertin.js


             

         
          

         
         

        
          

          
       

   
            

         
        

          
         

            
         

            
           

       
       

          
         

             
          

         
        

        
       

            
         

        
         

         
           

         
      

         
       

       
        

       
       

         
            

          
       

          
        

           
         

            
          

stopping point for discussion. Second, asking participants to work 
on their own tasks inhibits us from making comparative claims 
that a �xed-task design may support. For example, alternative stud-
ies could compare participant performance on �xed tasks across 
multiple tools to understand their relative strengths. Additionally, 
our study design does not assess whether participants’ tasks are 
representative of the work of geospatial data users more generally. 
Validating task representativeness through additional studies would 
bolster our �ndings. 

A critical next step for this research is to validate our design 
opportunities with domain experts. We followed the practice of 
other contextual inquiry studies that derive design opportunities 
directly from participant observation [11, 19, 53]. Indeed, a strength 
of contextual inquiry is that it exposes unforeseen participant chal-
lenges in situ, allowing us to identify needs that may not become 
visible in alternative methods that rely on participants’ memories 
of their work. However, this does not erase the threats of researcher 
con�rmation bias [73] or causal error [76]. Future work can test 
our design opportunities through expert interviews, large-scale 
surveys, and formative studies of new systems. 
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8  CONCLUSION  
As geospatial data grows in scale and accessibility, domain experts 
require increasingly expressive tools to harness the insights hidden 
in this data. But what could such tools look like, and what challenges 
should they address? This study deepens our understanding of the 
computing needs of domain expert geospatial data users. Using 
contextual inquiry, we identi�ed unreported challenges across �ve 
phases of participants’ work: data discovery, data transformation, 
analysis, analysis representation, and visualization. For example, 
our work is the �rst to discuss how users (1) employ data subset-
ting and resolution reduction to speed up exploratory geospatial 
analysis, (2) create informal program representations to record geo-
processing work�ows, and (3) observe changes to feature counts 
and geometry to infer geospatial operator behavior. Going beyond 
prior work on GIS usability, we also uncovered needs that extend 
to other tools used in modern geospatial work�ows, including 
computational notebooks, design software, and geospatial analy-
sis and visualization libraries. Our observations revealed that four 
challenges—�nding and transforming geospatial data to satisfy spa-
tiotemporal constraints, understanding the behavior of geospatial 
operators, tracking geospatial data provenance, and exploring the 
cartographic design space—were especially di�cult for participants. 
From these observations, we synthesized novel design opportuni-
ties for geospatial analysis and visualization systems. Future work 
can build on these insights to create useful and usable tooling that 
makes it easier to explore, analyze, and communicate patterns of 
spatiotemporal change in our environment and societies. 
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