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GAN-DUF: Hierarchical Deep
Generative Models for Design
Under Free-Form Geometric
Uncertainty
Deep generative models have demonstrated effectiveness in learning compact and expres-
sive design representations that significantly improve geometric design optimization.
However, these models do not consider the uncertainty introduced by manufacturing or
fabrication. The past work that quantifies such uncertainty often makes simplifying assump-
tions on geometric variations, while the “real-world,” “free-form” uncertainty and its
impact on design performance are difficult to quantify due to the high dimensionality. To
address this issue, we propose a generative adversarial network-based design under uncer-
tainty framework (GAN-DUF), which contains a deep generative model that simultaneously
learns a compact representation of nominal (ideal) designs and the conditional distribution
of fabricated designs given any nominal design. This opens up new possibilities of (1) build-

ing a universal uncertainty quantification model compatible with both shape and topolog-
ical designs, (2) modeling free-form geometric uncertainties without the need to make any

assumptions on the distribution of geometric variability, and (3) allowing fast prediction of
uncertainties for new nominal designs. We can combine the proposed deep generative
model with robust design optimization or reliability-based design optimization for design
under uncertainty. We demonstrated the framework on two real-world engineering
design examples and showed its capability of finding the solution that possesses better per-
formance after fabrication. [DOI: 10.1115/1.4055898]

Keywords: artificial intelligence, data-driven design, design for manufacturing, design
optimization, generative modeling, robust design, uncertainty modeling

1 Introduction

Many engineering design problems boil down to geometric opti-
mization. However, geometric optimization remains a grand chal-
lenge because of its extreme dimensional complexity and often
hard-to-achieve performance objective. Recent work has shown
that deep generative models can learn a compact2 and expressive
design representation that remarkably improves geometric design
optimization performances (indicated by both the quality of
optimal solutions and the computational cost) [1–3]. However,
the past work based on deep generative models only considers the
ideal scenario where manufacturing or fabrication imperfections
do not occur, which is unrealistic due to the existence of uncertain-
ties in reality, such as limited tool precision or wear. Such imperfec-
tions sometimes have a high impact on a design’s performance or
properties. Consequently, the originally optimal solution (obtained
by only considering the ideal scenario) might not possess high per-
formance or desired properties after fabrication.
The past work has developed task-specific robust optimization

techniques to identify geometric design solutions that are insensi-
tive to variations of load, materials, and geometry [4–6].
However, due to the lack of generalizable uncertainty representation
that is compatible with different geometric representations, the pre-
vious work often makes simplifying assumptions on geometric

variations (e.g., the distribution or the upper/lower bound of uncer-
tain parameters), while the “real-world”, “free-form” geometric
uncertainty and its impact on design performance are difficult to
quantify due to the high dimensionality.3 In this article, we
propose a generative adversarial network-based design under
uncertainty framework (GAN-DUF) to allow uncertainty quantifica-
tion (UQ) of free-form geometric variability under real-world sce-
narios. The term “free-form” refers to two aspects: (1) the
geometric variability has no shape or topological restrictions and
(2) no assumption on the form of uncertainty is needed. Therefore,
this framework is generalizable to any shape or topological designs.
It improves existing geometric design under uncertainty from four
aspects: (1) The generative adversarial network (GAN) uses a
compact representation to reparameterize geometric designs, allow-
ing accelerated optimization. (2) The GAN associates real-world,
free-form fabrication uncertainty with ideal designs (i.e., nominal
designs) by learning a conditional distribution of fabricated
designs given any nominal design. (3) The optimization process
accounts for the distribution of geometric variability underlying
any manufacturing processes and allows UQ for robust design opti-
mization or reliability-based design optimization (RBDO). (4) The
compact representation of nominal designs allows gradient-free
global optimization due to the representation’s low-dimensionality.
We list the contributions of this work as follows:

(1) We propose a hierarchical deep generative model to simulta-
neously learn a compact representation of designs and quan-
tify their real-world, free-form geometric uncertainties.

1Corresponding author.
2Here, “compact” means (1) the learned design representation has a much lower

dimensionality than the original representation and (2) the learned representation

contains mostly valid designs.
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3Due to the free-form nature of the geometry and its uncertainty, there is no easy

way to parameterize them using low-dimensional parameters. This is the reason for

their high dimensionality.

Journal of Mechanical Design JANUARY 2023, Vol. 145 / 011703-1Copyright © 2022 by ASME

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

s
m

e
d
ig

ita
lc

o
lle

c
tio

n
.a

s
m

e
.o

rg
/m

e
c
h
a
n
ic

a
ld

e
s
ig

n
/a

rtic
le

-p
d
f/1

4
5
/1

/0
1
1
7
0
3
/6

9
3
4
0
1
6
/m

d
_
1
4
5
_
1
_
0
1
1
7
0
3
.p

d
f b

y
 N

o
rth

w
e
s
te

rn
 U

n
iv

e
rs

ity
 u

s
e
r o

n
 1

5
 S

e
p
te

m
b
e
r 2

0
2
3



(2) We combine the proposed model with a robust design opti-
mization framework and demonstrate its effectiveness on
two realistic robust design examples.

(3) We build two benchmark datasets, containing nominal and
fabricated designs, which will facilitate future studies on
data-driven design under manufacturing uncertainty.

The rest of the article is organized as follows: Sec. 2 introduces two
core concepts used in our current work — the GAN and design
under uncertainty, including a brief review of related past work
on design under geometric uncertainty. Section 3 describes the
method in detail. Section 4 demonstrates the effectiveness of the
proposed method by using two case studies. Section 5 concludes
this article and discusses the future work.

2 Background

In this section, we introduce generative adversarial networks and
design under uncertainty.

2.1 Generative Adversarial Networks. The generative
adversarial network [7] models a game between a generator G
and a discriminator D. The goal of G is to generate samples
(designs in our case) that resemble those from data, while D tries
to distinguish between real data and generated samples by predict-
ing the probability of a sample being real data. Both models
improve during training via the following minimax optimization:

min
G

max
D

Ex∼Pdata
[ logD(x)] + Ez∼Pz

[ log (1 − D(G(z)))] (1)

where E denotes expectation, Pdata is the data distribution, Pz is a
predefined noise distribution (e.g., a standard normal distribution),
z∼Pz is the noise that serves as G’s input, G(z) denotes the gener-
ated sample, and x denotes the sample from a training dataset. In
this article, x represents geometric designs (e.g., pixelated, voxe-
lated, point cloud, point sequence, or surface mesh representation,
usually with high dimensionality). A trained generator thus can
map from a predefined noise distribution to the distribution of
designs. Due to the lower dimensionality of z compared to the orig-
inal design representation x, we can use z to more efficiently control
the geometric variation of high-dimensional designs.
Despite the ability to generate high-dimensional data from

low-dimensional noise, standard GANs do not have a way of regu-
larizing the noise; so it usually cannot reflect an intuitive design
variation, which is unfavorable in many design applications. To
compensate for this weakness, the InfoGAN adds the latent codes
c as G’s another input and maximizes the mutual information
between c and G(c, z), as a way of regularizing c and obtaining
an interpretable and disentangled latent representation [8]. The gen-
erated design is now expressed as G(c, z). Maximizing the mutual
information prevents the information loss of c in the generation
process. However, directly maximizing the mutual information is
difficult, the InfoGAN instead maximizes the mutual information
lower bound LI:

LI(G, Q) = Ec∼P(c),x∼G(c,z)[ logQ(c|x)] + H(c) (2)

where H(c) is the entropy of the latent codes, and Q is the auxiliary
distribution for approximating P(c|x). The InfoGAN’s training
objective becomes:

min
G,Q

max
D

Ex∼Pdata
[ logD(x)] + Ec∼Pc,z∼Pz

[ log (1 − D(G(c, z)))]

− λLI(G, Q) (3)

where λ is a weight parameter. In practice, H(c) is usually treated as
a constant as Pc is fixed. Please see Ref. [8] for more details about
InfoGAN.
Previous works studied how the maximization of LI in InfoGAN

affects the latent representation of designs [1,9]. Specifically,
Ref. [1] shows that by maximizing the mutual information lower

bound between the latent vector and the generated designs, the
latent vector c encoded major geometric variation in the data,
while the noise vector z encoded minor geometric variation.
Reference [9] showed that without maximizing LI, the latent
vector c either failed to capture major geometric variation or led
to inconsistent geometric variation along latent space bases. The
ability to capture major geometric variation is necessary, since the
generator needs to cover the complete range of both the nominal
and the fabricated designs. The property of consistent geometric
variation is also essential for designers to explore the latent space
in an intuitive way and disentangle the objective function of a
design problem.
Since InfoGAN provides an interpretable and disentangled

latent representation that is also compact and low dimensional,
searching for design solutions in this latent space is much more effi-
cient than searching in the original high-dimensional design space
[1–3,9]. Building on the InfoGAN model, this work proposes a
new deep generative model that constructs a hierarchical latent
representation—the parent latent representation encodes nominal
design variation and the child latent representation encodes fabri-
cated design variation. In this way, we can simultaneously model
(1) the compact latent representation of nominal designs and
(2) the distribution of fabricated designs conditioned on any
nominal design. We will elaborate on our proposed hierarchical
generative model in Sec. 3.1.

2.2 Design Under Uncertainty. Design under uncertainty
aims to identify optimal designs that are robust and/or reliable
under the variations associated with various sources of uncertainties
(e.g., material, geometry, and operating conditions) [10,11]. Two
common approaches are robust design optimization (RDO) [12]
and RBDO [13,14].
We assume that the design is represented by a vector of determi-

nistic design variables b and a vector of random variables ξ. The
vector ξ represents the sources of uncertainty (e.g., noise or
control factor). The goal of RDO is to minimize the effects of var-
iation without eliminating the sources of uncertainties [12]. Given a
performance function f (·), RDO approaches simultaneously maxi-
mize the mean performance μ(f (b, ξ)) and minimize the variance
of the cost σ2(f (b, ξ)) over ξ. The design goal, in general, involves
the following optimization problem:

min
b

JRDO(b, ξ) = −F(μ(f (b, ξ)), σ(f (b, ξ))) (4)

where F is the multi-objective cost function that is typically formu-
lated as follows:

F(·) = μ(·) − kσ(·) (5)

where k> 0 is the tuning parameter. μ( f (·)) and σ
2( f (·)) are the sta-

tistical moments of f(·) with respect to the associated uncertainty ξ

and can be expressed as follows:

μ(f (b, ξ)) = Eξ[f (b, ξ)] =

∫

ξ

p(ξ)f (b, ξ) dξ

σ2(f (b, ξ)) = Eξ (f (b, ξ) − μ(f (b, ξ)))2
[ ]

=

∫

ξ

p(ξ)(f (b, ξ) − μ(f (b, ξ)))2dξ

(6)

Instead of Eq. (5), we can also use one of P(f (b, ξ))’s quantiles as
F(·). The 100% quantile represents the “worst-case” scenario,
while other less conservative quantile orders are also employed
[15].
On the other hand, RBDO refers to the optimization scheme

where reliability analysis is incorporated into deterministic optimi-
zation methods [14]. Herein, reliability is defined as the probability
that a system is expected to successfully operate under risks of inter-
est, such as deflection, leakage, and local damage. RBDO
approaches exploit stochastic methods to address the statistical
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nature of constraints and design problems. Given m risk factors, a
representative formulation of RBDO reads:

min
b

JRBDO(b, μξ) = −f (b, μξ)

s.t. Pj gj(b, ξ) ≥ 0
[ ]

≥ Rj, j = 1, . . . , m
(7)

where μξ is the mean of ξ, gj(·) denotes the jth limit-state function
that indicates the margin of safety with respect to the jth risk
factor, and Rj is the specified reliability level with respect to the
jth factor. Given the jth factor, gj(·) < 0 and gj(·)≥ 0 denote the asso-
ciated failure region and safe region, respectively.
Both approaches have been developed for design optimization

under geometric uncertainty at various levels of geometric com-
plexity (i.e., size, shape, and topology). Unlike parametric uncer-
tainty that only considers the uncertainties of a few independent
design parameters representing the design [18,19], geometric uncer-
tainty can account for the uncertainties at every point on the bound-
ary of a geometry as well as its topological changes. Due to the high
dimensionality of variables to be considered in geometric uncer-
tainty quantification, previous work either assumes uniform bound-
ary variation [6,16,17] (Fig. 1(a)) or imposes predefined
distribution/correlation on boundary points [5,20–23] (Fig. 1(b)).
Specifically, Ref. [5] models geometric uncertainty by perturbing
the boundary using a random normal velocity field; Refs. [20–23]
model geometric uncertainty by applying a predefined random
field as the threshold of a level-set design representation; Refs.
[24–27] build shape deviation models and use Bayesian approaches
to estimate the posterior of model parameters. While those methods
can simplify geometric uncertainty quantification by making
assumptions on the form of shape deviations, the modeled uncer-
tainties do not necessarily conform to realistic scenarios, which
usually involve much more complicated geometric variability. For
example, in real applications, the boundary variation does not nec-
essarily follow canonical distributions (Fig. 1(c)), and manufactur-
ing defects do not only happen on the boundary [28] (Fig. 1(d )).
Therefore, how to model “real-world,” “free-from” geometric
uncertainty without making any simplifying assumptions is still
an open challenge.
In this work, we overcome this challenge by using a hierarchical

deep generative model to learn (1) the underlying distribution of
free-form nominal designs and (2) the conditional distribution of
fabricated design given any nominal design, under free-form geo-
metric uncertainty (Figs. 1(c) and 1(d )). We demonstrate the effi-
cacy using two real-world design examples. The ability to model

free-form geometry and uncertainties allows us to address topolog-
ical uncertainties.

3 Methodology

In this section, we introduce our GAN-DUF. It consists of two
parts: (1) a generative adversarial network to learn a hierarchical
latent representation that compactly captures both the variability
of nominal designs and the uncertainty of any given nominal
design4 (Sec. 3.1). (2) A design under uncertainty module that
uses the trained generator to perform robust design optimization
or reliability-based design optimization (Sec. 3.2).

3.1 Quantifying Uncertainty Using Generative Adversarial
Networks. Let I nom and I fab denote the datasets of nominal and
fabricated designs, respectively:

I nom = x(1)nom, . . . , x
(N)
nom

{ }

I fab = x
(1,1)
fab , . . . , x

(1,M)
fab

( )

, . . . , x
(N,1)
fab , . . . , x

(N,M)
fab

( ){ }

where x
(i,j)
fab is the jth realization (fabrication) of the ith nominal

design. The goals are to (1) learn a low-dimensional, compact rep-
resentation c of nominal designs to allow accelerated design optimi-
zation and (2) learn the conditional distribution P(xfab|c) to allow
the quantification of manufacturing uncertainty at any given
nominal design (represented by c).
To achieve these two goals, we propose a generative adversarial

network (Fig. 2(a)) that enables the hierarchical modeling of
nominal designs and fabricated designs. Its generator G generates
fabricated designs when feeding in the parent latent vector cp, the
child latent vector cc, and the noise z, whereas it generates
nominal designs simply by using the same generator G but setting
cc= 0. By doing this, we can control the generated nominal
designs through cp and the generated fabricated designs through
cc. Note that the noise z represents the portion of geometric varia-
tion that cannot be captured by either the parent latent vector or
the child latent vector. This is useful to be included as one of the
inputs to the generator because sometimes the data contain noise
(e.g., noisy or blurred images of fabricated samples) that is irrele-
vant to either the variation of nominal geometries or the fabrication
imperfection. When using the trained model to generate nominal or
fabricated designs, z is set to 0 to eliminate the effect of noise.
Given the pair of a generated nominal design G(cp, 0, z) and a

generated fabricated designG(cp, cc, z), the discriminatorD predicts
whether the pair is generated or drawn from data (i.e., Inom and
I fab). Similar to InfoGAN, we also predict the conditional distribu-
tion Q(cp, cc|xnom, xfab) to promote disentanglement of latent spaces
and ensure the latent spaces capture major geometric variability [1].
The GAN is trained using the following loss function:

min
G,Q

max
D

Exnom ,xfab [ logD(xnom, xfab)]

+ Ecp ,cc ,z[ log (1 − D(G(cp, 0, z), G(cp, cc, z)))]

− λEcp,cc ,z[ logQ(cp, cc|G(cp, 0, z), G(cp, cc, z))] (8)

As a result, G decouples the variability of the nominal and the fab-
ricated designs by using cp to represent the nominal design (Goal 1)
and cc to represent the fabricated design of any nominal design. By
fixing cp and sampling from the prior distribution of cc, we can
produce the conditional distribution P(xfab|cp)=P(G(cp, cc, z)|cp)
(Goal 2). As a neural network, the generator has the flexibility of
generating fabricated designs completely based on real data,
without making any unrealistic assumptions on the types of
uncertainties.
Compared to existing uncertainty quantification methods, this

GAN-based model opens up possibilities of (1) building a universal

Fig. 1 Types of geometric uncertainty modeling: (a) Uniform
boundary variation where the boundary of the geometry is uni-
formly “eroded” (e.g., overetched) or “dilated” (e.g., under-
etched) [6,16,17]; (b) predefined boundary variation where the
distribution or the correlation of boundary points is predefined
[5]; (c) arbitrary boundary variation where no assumption is
imposed on the distribution of boundary points; (d) topological
variation where the design’s topological change (e.g., hole nucle-
ation) is also possible. To the best of our knowledge, the past
work only considers (a) and (b) when modeling geometric uncer-
tainty, while our proposed method can address “free-form”

uncertainties that include all four cases. 4Code and data are available at https://github.com/wchen459/GAN-DUF
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UQ model compatible with both shape and topological designs, (2)
modeling free-form geometric uncertainties without the need to
make any assumptions on the distribution of geometric variability,
and (3) allowing fast prediction of uncertainties for new nominal
designs.
The trained generator allows us to sample fabricated designs

given any nominal design, simply by sampling the low-dimensional
cc with a fixed cp representing the nominal design (Fig. 2(b)). We
can then evaluate the quantities of interest (QoIs) of these generated
fabricated designs using computational (e.g., physics simulation
such as finite element methods, wave analysis, and computational
fluid dynamics) or experimental methods. The QoIs may include
performance, quality, properties, and/or cost. The resulted QoI dis-
tribution (i.e., postfabrication QoI distribution) allows us to quan-
tify the uncertainty of QoIs for the nominal design. Note that the
proposed framework is agnostic to both the type of designs (e.g.,
how designs are represented or what geometric variability is pre-
sented) and downstream tasks like design evaluation and design
optimization.

3.2 Design Optimization Under Uncertainty Using Trained
Generator. We can integrate the evaluated uncertainty into optimi-
zation frameworks such as robust optimization, where we simulta-
neously optimize the mean QoIs and minimize the influence of
uncertainty [12] (Fig. 2(c)), as well as reliability-based optimization,
wherewe optimizeQoIs subject to constraints such as the probability
of failure or reliability index [14]. The solution is expected to main-
tain high real-world performance/quality, desired properties, or a
lower chance of failure even under fabrication imperfection.
Specifically, in robust design optimization, the formulation of

Eq. (4) is modified as follows:

min
cp

−F(μ(f (x)), σ(f (x))) (9)

where x=G(cp, cc, 0). Here, cp and cc correspond to the vector of
deterministic design variables and random variables, respectively.
In reliability-based design optimization, the formulation of Eq. (7)
is modified as follows:

min
cp

−f (G(cp, 0, 0))

s.t. Pj gj(x) ≥ 0
[ ]

≥ Rj, j = 1, . . . , m
(10)

where gj(x)≥ 0 denotes that the jth QoI is within an acceptable
range. For example, the QoI can be the performance deviation
from a given target performance.
In both formulations, we only need to optimize cp, which has a

much lower dimensionality than the original design representation.

The functionality of cc is to introduce stochasticity, and it reflects
the sources of uncertainty.

4 Results

We use two real-world robust design examples to demonstrate
the effectiveness of our proposed framework. Ideally, to obtain fab-
ricated design data I fab, we can take the nominal designs from Inom,
fabricate them, and use the actual fabricated designs as data.
However, in this study, we simulate the fabrication effects by
deforming the geometry of nominal designs based on the following
approaches, as a way to save time and cost. Note that how well the
simulated manufacturing uncertainty resembles the real-world
uncertainty is not central to this proof of concept study. We treat
the simulated uncertainty as the real uncertainty only to demonstrate
our design under uncertainty framework. In the ideal scenario, we
can directly use the real-world fabricated designs to build I fab,
and our proposed framework can still model the fabricated design
distribution since the framework is agnostic to the form of uncer-
tainty. Also note that the required amount of data and latent
vector dimensions will depend on the complexity level of geometric
variation in data. For example, if the fabricated designs have a
higher variation, we may need more fabricated design data and a
higher-dimensional child latent vector to maintain the same level
of accuracy for modeling the uncertainty.

4.1 Case Study: Airfoil Design. An airfoil is the cross-
sectional shape of an airplane wing or a propeller/rotor/turbine
blade. The shape of the airfoil determines the aerodynamic perfor-
mance of a wing or a blade. By optimizing the airfoil shapes, we can
improve their aerodynamic performance, minimize fuel consump-
tion, and reduce greenhouse gas emissions.

4.1.1 Dataset Construction. We use the UIUC airfoil data-
base5 as our nominal design dataset Inom. The preprocessing of
Inom and the creation of the fabricated design dataset I fab are
described as follows:
Nominal design data. The original UIUC database contains

invalid airfoil shapes and the number of surface coordinates repre-
senting each airfoil is inconsistent. Therefore, we used the prepro-
cessed data from Chen et al. [1] so that outliers are removed and
each airfoil is consistently represented by 192 surface points
(i.e., xnom ∈ R

192×2).

Fig. 2 Illustration of proposed GAN-DUF: (a) the proposed hierarchical GAN architecture for simultaneously learning the
compact representation of nominal designs and the conditional distributions of fabricated designs, (b) Fabricated designs
can be generated by sampling cc at any fixed cp representing a nominal design. The uncertainty of a nominal design’s
QoIs can be quantified by evaluating the QoIs of these generated fabricated designs via simulation or experiments, and
(c) We can optimize cp to obtain a nominal design xnom with desired postfabrication QoIs.

5http://m-selig.ae.illinois.edu/ads/coord˙database.html
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Fabricated design data. For airfoil designs, we simulate the
effect of manufacturing uncertainty by randomly perturbing the
free-form deformation (FFD) control points of each airfoil design
from I nom [29]. Specifically, the original FFD control points fall
on a 3 × 8 grid and are computed as follows:

Pl,m
nom = xmin

nom +
l

7
(xmax

nom − xmin
nom), y

min
nom +

m

2
(ymax

nom − ymin
nom)

( )

,

l = 0, . . . , 7 and m = 0, . . . , 2

(11)

where xmin
nom, x

max
nom, y

min
nom, and ymax

nom define the 2D minimum bounding
box of the design xnom. To create fabricated designs, we add Gauss-
ian noise ε ∼ N (0, 0.02) to the y-coordinates of control points
except those at the left and the right ends. This results in a set of

deformed control points {Pl,m
fab|l = 0, . . . , 7; m = 0, . . . , 2}. The

airfoil shape also deforms with the new control points and is consid-
ered as a fabricated design. The surface points of fabricated airfoils
are expressed as follows:

xfab(u, v) =
∑

7

l=0

∑

2

m=0

B7
l (u)B

2
m(v)P

l,m
fab (12)

where 0≤ u≤ 1 and 0≤ v≤ 1 are parametric coordinates, and the

n-degree Bernstein polynomials Bn
i (u) = niui(1 − u)n−i. We set the

parametric coordinates based on the surface points of the nominal
shape:

(u, v) =
xnom − xmin

nom

xmax
nom − xmin

nom

,
ynom − ymin

nom

ymax
nom − ymin

nom

( )

(13)

Perturbing nominal designs via FFD ensures that the deformed (fab-
ricated) shapes are still continuous, which conforms to conventional
manufacturing methods for aerodynamic shapes. Figure 3 shows an
example of nominal design and its corresponding fabricated
designs.
The final dataset contains 1528 nominal designs and 10 fabri-

cated designs per nominal design. Note that since similar nominal
designs also have similar fabricated designs, we may need even
fewer fabricated designs as training data. Please see Appendix A
for the study on how the sample size of fabricated design data
affects uncertainty quantification using the proposed deep genera-
tive model.

4.1.2 Generative Model Training and Evaluation. We trained
the proposed GAN on I nom and I fab. We set the parent latent
vector to have a uniform prior distribution U(0, 1) (so that we can
search in a bounded space during the design optimization stage),
whereas both the child latent vector and the noise have normal
prior distributionsN (0, 0.5I). The generator/discriminator architec-
ture and the training configurations were set according to Chen et al.
[1]. During training, we set both the generator’s and the discrimina-
tor’s learning rate to 0.0001. We trained the model for 20,000 steps
with a batch size of 32.
We conducted parametric studies over parent and child latent

dimensions to investigate their effects on the generative perfor-
mances (we fix the dimension of the noise z to 10).6 Particularly,

we care about two performances: (1) how well the parent latent rep-
resentation can cover nominal designs and (2) how well the perfor-
mance distributions of fabricated designs are approximated. The
experimental settings and results are described as follows.
We evaluated the first performance (i.e., nominal design cover-

age) via a fitting test, where we found the parent latent vector that
minimizes the Euclidean distance between the generated nominal
design and a target nominal design sampled from the dataset (i.e.,
fitting error). We use sequential least squares programming
(SLSQP) [30] as the optimizer and set the number of random
restarts to three times the parent latent dimension. We repeated
this fitting test for 100 randomly sampled target designs under
each parent latent dimension setting. A parent latent representation
with good coverage of the nominal design data will result in low
fitting errors for most target designs. Figure 4(a) shows that a
parent latent dimension of 7 achieves relatively large design cover-
age (i.e., low fitting errors).
We evaluated the second performance (i.e., fabricated design per-

formance approximation) by measuring the Wasserstein distance
between two conditional distributions—P( f (xfab)|xnom) and
P( f(G(cp, cc, z))|xnom), where f denotes the objective function. In
this example, f is the simulation that computes the lift-to-drag
ratio CL/CD. For each generated nominal design xnom, we created
100 “simulated” fabricated designs as xfab, the same way as we
create training data, to be used as the “ground truth” fabricated
designs. Note that compared to the number of fabricated designs
per nominal design in the training data, we created a much larger
number of “ground truth” fabricated designs for evaluation pur-
poses. We also generated the same number of fabricated designs
using the trained generator. We compute the aforementioned Was-
serstein distance by using these two sets of samples. We repeated
this test for 30 randomly generated nominal designs under each
child latent dimension setting. Figure 4(b) shows that when the
child latent dimension is 5, we have relatively low Wasserstein dis-
tances with the smallest variation (the parent latent dimension was
fixed to 7). When the child latent dimension further increases to 10,
the uncertainty of the Wasserstein distances increase, possibly due
to the higher dimensionality. Note that the training data only contain
ten fabricated designs per nominal design, while in the test phase,
we use many more samples per nominal design to faithfully approx-
imate the conditional distributions. We do not need that many
samples in the training phase because the generative model does
not learn independent conditional distributions for each nominal
design, but can extract information across all nominal designs.

4.1.3 Design Optimization. The objective of the design optimi-
zation is to maximize the lift-to-drag ratio CL/CD, which is com-
puted by using the computational fluid dynamics solver SU2 [31].
We compared two optimization scenarios:

(1) Standard optimization, where we only consider the determi-
nistic performance of the nominal design. The objective is
expressed as maxcp f (G(cp, 0, 0)).

(2) Robust design optimization, which accounts for the perfor-
mance variation caused by manufacturing uncertainty. The

objective is expressed as maxcp Qτ f (G(cp, cc, 0))|cp
( )

,

where Qτ denotes the conditional τ-quantile. We set τ=

0.05 in this example.

Under both scenarios, we fixed the parent and the child latent
dimensions to 7 and 5, respectively, based on the aforementioned
parametric study. In each scenario, we performed Bayesian optimi-
zation (BO) to optimize cp. We evaluate 21 initial samples of cp
selected by Latin hypercube sampling (LHS) [32] and 119 sequen-
tially selected samples based on BO’s acquisition function of
expected improvement (EI) [33].7 In standard optimization, we

Fig. 3 An example of nominal airfoil design and its correspond-
ing fabricated designs

6Compared to parent and child latent dimensions, the noise dimension has a rela-

tively small effect on the results as long as it is sufficiently large to capture the noise

in training data [1].

7The settings of the initial and the total evaluation times in BO are based on the

parent latent dimension dp. Specifically, we performed 3dp initial LHS evaluations

and 20dp total evaluations, where dp= 7 as mentioned earlier.
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evaluate the nominal design performance f (G(cp, 0, 0)) at each
sampled point. In robust design optimization, we estimate the quan-
tile of fabricated design performances f (G(cp, cc, 0)) by Monte
Carlo (MC) sampling using 100 randomly sampled cc∼P(cc) at
each cp. Figure 5 shows the design solutions and the distributions
of ground truth fabricated design performances8 (i.e., postfabrica-
tion performance distributions) of these solutions. We also per-
formed permutation tests [34] to evaluate the difference between
the postfabrication performances of the standard and the robust
design solutions (Table 1). The results show that, by accounting
for manufacturing uncertainty, the postfabrication performances
of the robust design solution x*robust are significantly improved
(indicated by small p-values), compared to the standard design solu-
tion x*std, even though the nominal performance of x*robust is worse
than x*std. This result illustrates the possibility that the solution dis-
covered by standard optimization can have high nominal perfor-
mance but is likely to possess low performance when it is
fabricated. The robust design optimization enabled by GAN-DUF
can substantially mitigate this risk.

4.2 Case Study: Optical Metasurface Absorber Design.
Optical metasurfaces are artificially engineered structures that can
support exotic light propagation building on subwavelength inclu-
sions [35,36]. Among many, metasurface absorbers [37] have
been intensely studied for engineering applications such as
medical imaging, sensing, and wireless communications. In this
work, the functionality of interest is large energy absorbance at a
range of incident frequencies in the terahertz regime. Figure 6
shows a schematic of wave analysis. A free-form unit cell made
of Au is placed on top of a dielectric substrate whose relative per-
mittivity is set as 2.88-0.09i, where the imaginary term is associated
with energy loss. The periodic boundary condition on electromag-
netic fields is imposed on the lateral surfaces of the analysis
domain. The energy absorbance performance at a single-frequency
ω is quantified as A(ω)= 1− |S11(ω)|

2, where ω is the excitation
frequency of the incident wave and Sij is the component of the
S-parameter matrix that characterizes an electrical field intensity
from port i to port j in a complex network. This absorbance behavior
largely depends on the cross-sectional topology of the unit cell
and, by extension, is subject to deviation under fabrication
uncertainty.

4.2.1 Dataset Construction. We created 1000 nominal designs
and 10 fabricated designs per nominal design (Fig. 7(a)) by using
the following method:
Nominal design data. The nominal design dataset builds on three

topological motifs (i.e., I-beam, cross, and square ring) [38,39]. We
create nominal designs by randomly interpolating the signed

distance fields of these baselines [40]. As a result, each design is
stored as 64 × 64 level-set values (i.e., xnom ∈ R

64×64). We can
obtain final designs by thresholding the signed distance fields.
Building on a given set of baselines, this shape generation
scheme allows a unit cell population that is topologically diverse.
Fabricated design data. Similar to the airfoil design example, we

randomly perturb a set of 12 × 12 FFD control points in both x and y
directions with white Gaussian noise that has a standard deviation of
1 pixel. This leads to the distortion of the 64 × 64 grid coordinates at
all the pixels, together with the level-set value at each pixel. We
then interpolate a new signed distance field as the fabricated (dis-
torted) design. To account for the limited precision of fabrication,
we further apply a Gaussian filter with a standard deviation of 2
to smooth out sharp, nonmanufacturable features. The Gaussian
filter can also change the topology by, e.g., removing small holes.
To demonstrate that our proposed deep generative model is flexible
in addressing more complicated uncertainties, we also construct a
scenario where fabrication errors contain nonsmooth boundary var-
iation and random hole nucleation. We show that our proposed

Fig. 4 Parametric study for the airfoil design example: (a) the effect of parent latent
dimensions on design space coverage indicated by fitting errors and (b) the effect of
child latent dimensions on conditional distribution approximation indicated by Was-
serstein distances

Fig. 5 Solutions for the airfoil design example: (a) nominal
airfoil design solutions obtained by standard optimization and
robust design optimization and (b) when considering the manu-
facturing uncertainty, the robust design solution x*robust shows
improved quantile values for the postfabrication performance
distribution compared to the standard design solution x*std,
even though the nominal performance of x*robust is slightly
worse than x*std. The short horizontal lines indicate 95% quan-
tiles, medians, and 5% quantiles.

8
“Ground-truth fabricated design” refers to designs created by the same means by

which the designs from I fab were created.

011703-6 / Vol. 145, JANUARY 2023 Transactions of the ASME

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

s
m

e
d
ig

ita
lc

o
lle

c
tio

n
.a

s
m

e
.o

rg
/m

e
c
h
a
n
ic

a
ld

e
s
ig

n
/a

rtic
le

-p
d
f/1

4
5
/1

/0
1
1
7
0
3
/6

9
3
4
0
1
6
/m

d
_
1
4
5
_
1
_
0
1
1
7
0
3
.p

d
f b

y
 N

o
rth

w
e
s
te

rn
 U

n
iv

e
rs

ity
 u

s
e
r o

n
 1

5
 S

e
p
te

m
b
e
r 2

0
2
3



model can also address this more complicated scenario. Please refer
to Appendix B for details.

4.2.2 Generative Model Training and Evaluation. As men-
tioned in Sec. 2, optimizing designs with varying topology under
geometric uncertainty hosts a great challenge. GAN-DUF can
handle this problem by modeling the uncertainty using the proposed
generative adversarial network. Same as the airfoil example, we set
the parent latent vector to have a uniform prior distribution, while
both the child latent vector and the noise have normal prior distribu-
tions. Again, we fixed the noise dimension to 10. The generator and
the discriminator architectures are shown in Fig. 8. The discriminator
predicts both the discriminative distribution D(xnom, xfab) and the
auxiliary distribution Q(cp, cc|xnom, xfab). During training, we set
both the generator’s and the discriminator’s learning rate to
0.0001.We trained themodel for 50,000 stepswith a batch size of 32.
Similar to the airfoil design example, we want to investigate the

effect of the parent and the child latent dimensions on the trained
GAN’s capability of covering the design space and approximating
the fabricated design performance distributions. To evaluate the
design space coverage, we performed a fitting test as described in
Sec. 4.1.2. Specifically, we use SLSQP as the optimizer and set
the number of random restarts to three times the parent latent dimen-
sion. Here, the fitting error is the Euclidean distance between the
signed distance fields of the generated nominal design and a
target nominal design sampled from the dataset. Under each
parent latent dimension setting, we randomly select 100 target
designs. Figure 9(a) indicates that a parent latent dimension of 5
achieves sufficiently large design coverage, while further increasing
the parent latent dimension cannot improve the coverage.

To evaluate the trained GAN’s performance on approximating
the fabricated design performance distributions, we use the Wasser-
stein distance to measure the distributional difference between
P( f(xfab)|xnom) and P( f (G(cp, cc, z))|xnom) (see Sec. 4.1.2). Under
each child latent dimension setting, we compute the Wasserstein

Table 1 Statistical significance p-values obtained by
permutation tests on the postfabrication performances of the
standard and the robust airfoil design solutions

Measures of location p-Value

5% quantile 1e− 5
25% quantile 8e− 5
Median 0.0397
Mean 1e− 5

Note: The test statistics are the improvement of the quantiles and the mean.
A lower p-value indicates a more significant improvement of the robust
design solution over the standard design solution in terms of the
postfabrication performances.

Fig. 6 Conceptual illustration of a metasurface absorber:
(a) A schematic of wave analysis. A unit cell is placed on top of
the dielectric substrate. A plane wave is normally incident
to the metasurface. Periodic boundary conditions are imposed
on the lateral surfaces of the analysis domain. (b) An example
of a free-form unit cell (nominal design). (c) A hypothetical fre-
quency response of absorbance A at a target frequency band.

Fig. 7 Visual inspection on generated designs: (a) metasurface
designs randomly drawn from training data and (b) designs ran-
domly generated from a trained generator

Fig. 8 Generator and discriminator architectures in the meta-
surface design example
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distance between the energy absorbance distributions of “ground
truth” fabricated designs and generated fabricated designs. We per-
formed fewer design evaluations than the airfoil design example
due to the higher cost of wave analysis. Under each child latent
dimension setting, we computed Wasserstein distances for 10
nominal designs, each with 30 “ground truth” fabricated designs
and 30 generated fabricated designs. Figure 9(b) indicates that a
child latent dimension of 10 achieves the lowest median and
25%/75% quantiles.
Figure 7(b) shows nominal and fabricated designs randomly gen-

erated from the trained generator with a parent and a child latent
dimensions of 5 and 10, respectively.

4.2.3 Design Optimization. During the design optimization
stage, we fixed the parent and the child latent dimensions to be 5
and 10, respectively, based on the aforementioned parametric
study. The objective is to maximize the mean energy absorbance
over the given range of frequencies, 8-9 THz. To achieve broadband
functionality, we formulate the objective function as the sum of
energy absorbance at individual frequencies (i.e., f =

∑nω
i=1 A(ωi),

where nω is the number of frequencies at which absorbance is to
be observed). The RF module of COMSOL MULTIPHYSICS

® [41] is
used for evaluation of metasurfaces.
Similar to the airfoil design example, we compared standard opti-

mization with robust design optimization. To investigate the benefit
of modeling free-form uncertainty over uniform uncertainty, we
also benchmarked the performance of GAN-DUF against the
method that models fabrication uncertainty as uniform boundary
variation [6,16,17]. Specifically, following Ref. [6], we first con-
volve the nominal design pattern xnom(r) with a Gaussian filter to
obtain a blurred pattern x̃(r):

x̃(r) =
∑

ri

1

α
xnom(ri)e

−((r−ri)
2/σ2) (14)

where r is the spatial coordinate on the pattern and α is a normali-
zation factor defined as follows:

α =

∑

ri

e−((r−ri)
2/σ2) (15)

The coefficient σ controls the blur radius that corresponds to pat-
terning resolution. In our experiment, we set σ= 2. We simply
threshold the blurred pattern x̃(r) to create eroded and dilated pat-
terns �x(r):

�x(r) =
0, 0 ≤ x̃(r) ≤ η

1, η ≤ x̃(r) ≤ 1

{

(16)

where η is the threshold with a value between 0 and 1. We can create
an eroded pattern by setting η> 0.5 and a dilated pattern by setting
η < 0.5. The eroded and dilated patterns represent extreme

fabrication errors. The edge deviation Δ (i.e., the distance of bound-
ary shift) is related to both η and σ:

1

2
− η = erf

Δ

σ

{ }

(17)

In this experiment, we set Δ to –0.4 and 0.4 for the eroded and the
dilated patterns, respectively. We can compute η based on Eq. (17)
and then obtain the eroded/dilated pattern using Eq. (16). Please see
Ref. [6] for more details. Figure 10 shows an example of resulted
patterns. While we manually select σ and Δ as in Ref. [6], we can
also calibrate this parameter using training data. However, this cal-
ibration will require additional study and experimentation and
hence may deviate from our goal of comparing our method to exist-
ing ones. Nevertheless, considering data-driven parameter calibra-
tion for the existing methods could be an interesting future work.
To account for this uniform boundary variation as the uncertainty

in robust design optimization, we set the objective to be
f (xnom) + 0.5f (�xeroded) + 0.5f (�xeroded), where �xeroded and �xdilated
denote the eroded and the dilated patterns, respectively, and f com-
putes the overall energy absorbance for a given metasurface pattern.
Due to the prohibitive cost of optimizing a high-dimensional design
(xnom ∈ R

64×64) without analytical gradient, we perform the robust
design optimization in the latent space instead, i.e., based on xnom=

G(cp, 0, 0). We will use “robust (uniform)” to refer to this optimi-
zation scenario.
In each optimization scenario, we performed BO with 15 initial

LHS samples and 85 sequentially selected samples based on the
acquisition strategy of EI.9 The quantile of fabricated design perfor-
mances at each cp was estimated from 30 MC samples. We used
fewer MC samples than those in the airfoil design case due to the
higher cost of evaluating the objective (i.e., performing wave anal-
ysis to compute the energy absorbance).

Fig. 9 Parametric study for the metasurface design example: (a) the effect of parent latent
dimensions on design space coverage indicated by fitting errors and (b) the effect of child
latent dimensions on conditional distribution approximation indicated by Wasserstein
distances

Fig. 10 An example of metasurface design with fabrication
uncertainty modeled as uniform boundary variation [6,16,17]

9We performed 3dp initial LHS evaluations and 30dp total evaluations in BO, where

dp= 5 is the parent latent dimension.
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Figure 11 shows the design solutions and the distributions of
ground-truth fabricated design performances for these solutions.
We observe similar trends as in the airfoil design case, where the
standard optimization finds the solution with the highest nominal
performance, while the two solutions obtained from robust optimi-
zation have higher performances (in general) after fabrication
(Fig. 11(b)). Particularly, by considering free-form uncertainty
enabled by GAN-DUF, the robust design solution further improves
upon the solution obtained under uniform uncertainty, in terms of
their actual postfabrication performances. The low p-values in
Table 2 indicate the statistical significance of this improvement.
This demonstrates that making simplifying assumptions on the

form of uncertainty can lead to suboptimal solutions. The proposed
GAN-DUF does not suffer from this issue since it has the flexibility
of learning and considering any form of uncertainty. This result is
expected because the ability to accurately model the uncertainties
is a prerequisite for finding the true robust design solution that per-
forms better than others when considering uncertainties.

5 Conclusion

We proposed GAN-DUF to facilitate design under free-form geo-
metric uncertainty. It contains a novel deep generative model that
simultaneously learns a compact representation of nominal
designs and the conditional distribution of fabricated designs
given any nominal design. The proposed framework is generaliz-
able to any geometric design representations (i.e., both shape and
topological designs) and can address free-form uncertainties
without resorting to any simplifying assumption on the type of
uncertainty. We applied GAN-DUF to two real-world engineering
design examples (namely aerodynamic shape optimization and
metasurface absorber topology optimization) and showed its capa-
bility in finding the design solution that is more likely to possess
a better performance after fabrication or manufacturing.
In this work, we assume that fabricated designs are independent.

In the case where the distribution of fabricated designs depends on
the varying fabrication tool condition due to, e.g., tool wear, we can
introduce an additional latent vector ct that encodes the variation of
the fabrication tool. In this way, the proposed generative model can
estimate the conditional distribution of fabricated designs given the
tool condition. We can also continuously calibrate ct using new fab-
rication data.
Although we only considered fabrication/manufacturing uncer-

tainty when demonstrating the proposed framework, it is also appli-
cable to other sources of geometric uncertainties such as those
caused by operational wear or erosion. In addition to robust
design optimization demonstrated in this study, we can also
combine the proposed hierarchical generative model with
reliability-based design optimization to find designs that are less
likely to fail after fabrication or under operational wear/erosion.
GAN-DUF is generalizable to 3D designs with certain adjust-

ments to neural network architectures, on top of the 2D cases dem-
onstrated in this work. For example, if the 3D designs are
represented as point clouds, one can adopt the generator/discrimina-
tor architecture from Ref. [42]. Since 3D data may contain more
complex geometric variation, it is likely that we need more
layers, higher latent dimensions, and a larger dataset to accommo-
date the extra complexity.
Although in this work we used synthetic fabrication data, for

future work, we will collect real fabricated designs as training and
test data to validate the effectiveness of GAN-DUF in a completely
realistic scenario.
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Fig. 11 Solutions for the metasurface design example:
(a) nominal metasurface design solutions obtained by standard
optimization and robust design optimization and (b) when con-
sidering the manufacturing uncertainty, the robust design solu-
tion x*robust shows improved postfabrication performance
distribution compared to the standard design solution x*std,
even though the nominal performance of x*robust is worse than
x*std. The short horizontal lines indicate 95% quantiles,
medians, and 5% quantiles.

Table 2 The p-values obtained by permutation tests that
quantify the statistical significance of the improvement when
considering free-form uncertainty enabled by GAN-DUF, in
terms of the post-fabrication performances

Measures of location

p-Value

Standard Robust (uniform)

5% quantile 1e− 5 0.0031
25% quantile 3e− 5 0.00024
Median 1e− 5 0.0118
Mean 1e− 5 0.0028

Note: The test statistics are the improvement of the quantiles and the mean.
For example, a low value in row “Median” and column “Standard” indicates
that there is a significant improvement of the free-form uncertainty-enabled
robust design solution over the standard design solution in terms of the
medians of their postfabrication performance distributions.
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Appendix A: A Sample Size Study

In the main text, we fixed the number of fabricated designs per
nominal design in the training data. In practice, the sample size of
fabricated designs may differ across use cases. There is a trade-off
between the cost of acquiring fabrication data and the accuracy of
quantifying fabrication uncertainties. To investigate how the
sample size affects uncertainty quantification and draw insights
into the minimum fabrication data requirement, we perform a
sample size study on the fabrication data. We vary the number of
fabricated designs per nominal design in the training data while
fixing other hyperparameters. After training the deep generative
model, we evaluate how well the performance distributions of fab-
ricated designs are approximated by the trained generator. We
measure this in the same way as the parametric study over child
latent dimensions described in Secs. 4.1.2 and 4.2.2—i.e., using
the Wasserstein distance to measure the distributional difference
between P( f (xfab)|xnom) and P( f(G(cp, cc, z))|xnom). Results in
Fig. 12 show a general trend of decreased Wasserstein distance or
improved performance distribution approximation, as the sample
size of the fabricated designs increases. Among the tested cases,
we observe the most accurate approximation, in both the airfoil
and the metasurface design examples, when there are seven fabri-
cated designs per nominal design in the training data. Further
increasing the number of fabricated designs per nominal design to

10 does not lead to a significant improvement in the approximation
accuracy. Our future work will study how GAN-DUF will perform
in design under uncertainty under sparse samples of fabricated
designs.

Appendix B: More Complicated Uncertainties

Due to the flexibility of deep neural networks, our proposed GAN
does not assume any specific forms of uncertainties. To help
demonstrate this point, we create a scenario for the metasurface
design example where fabrication uncertainties include defects of
random hole nucleation and non-smooth boundary deviations.
Specifically, compared to the fabricated design data construction

mentioned in Sec. 4.2.1, we remove the Gaussian filter, increase the
FFD lattice resolution (i.e., the number of FFD control points), and
double the random perturbation scale of FFD control points, to
create nonsmooth boundary deviations. We also create a hole
with a random shape and size at a random location of each fabri-
cated design.10 The nominal design data remain unchanged. Exam-
ples of fabricated design data are shown in the upper part of Fig. 13.
We show that by some minor adjustments of hyperparameters,

our proposed GAN can capture these more complicated uncertain-
ties, as shown in the lower part of Fig. 13. To adapt to the more
complicated fabrication data, we decrease the convolutional/decon-
volutional kernel size to (3, 3), increase the child latent dimension to
20, and double the number of filters in the generator’s deconvolu-
tional layers. The visual comparison shows that GAN-DUF can
generate fabricated designs with random hole nucleation and non-
smooth boundary variation as occurred in the data, indicating its
ability to capture these more complicated uncertainties.
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