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ABSTRACT: Conventional approaches on design and modeling of am gﬁ
metasurfaces employ accurate simulation methods. However, these methods s
require considerable computational power and time for every simulation, v
making them computationally expensive in the long run. To address this
high computational cost and learn compact yet expressive design
representations of high-dimensional meta-atoms for efficient design
optimization, deep learning (DL) based approaches have emerged as an
alternative solution and numerous applications have been demonstrated in
recent years. However, there are still outstanding challenges in DL-assisted
modeling and design that need to be overcome, such as limited degrees of
design freedom, insufficient generalizability of models, and poor fabrication
feasibility of final designs. Here, concurrently addressing these challenges,
we propose an end-to-end framework for generative modeling and inverse
design of dielectric free-form metasurfaces. The framework is generic, as it
can accommodate a variety of physical scenarios including dispersion, incident polarization, and operation wavelength using a single
data set and model. We develop a shape generation method to generate an inclusive, free-form, and feasible meta-atom library with
manufacturability considerations. A forward model that exhibits improved generalizability in terms of material dispersion,
polarization, and spectral window of operation is constructed using neural networks. In the final stage, an inverse design of free-form
yet manufacturable metasurfaces is realized. As a proof-of-concept, forward design of a meta-lens and inverse optimization of a
polarization filter and a quarter-wave plate are demonstrated.
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Conventional metasurface simulation, design tools, and However, from both perspectives of forward problem and
approaches rely on full electromagnetic simulations to calculate inverse design, DL-assisted modeling and design have several
the optical response of nanophotonic structures. These challenges to address. One of these problems is limited degrees

simulation methodologies are based on either finite elements
(FEM) or finite difference time domain (FDTD) methods and
) o S )
provide accurate and deterministic predictions. However,
the high computational cost of current methods becomes a
limiting factor, especially with increased structural complexity.
Deep learning (DL) approaches have emerged as an

of design freedom. Most of the pioneering works resort to well-
known fundamental building blocks as “meta-atom base-
lines”.'”~*" Many of these only consider parametric variations
of these baseline structures, such as radius of cylindrical meta-

atoms or thickness of alternating layers, which significantly

alternative tool to address the high computational cost of limit the design freedom a priori.'’~*' To explore beyond the
conventional simulation tools as well as to learn compact baseline structures, deep generative model-based approaches
design reparameterization of intricate metasurface geome- have been reported, yet the resulting geometries are still
tries.'”™> DL has been used for forward modeling of limited to perturbations of the predefined building blocks.””

metasurfaces to obtain instant and highly accurate predictions
of optical response from a given structure. Numerous examples
of forward modeling, including models of multilayered

Although some recent studies model quasi-free-form struc-

23,24

tures, they still have limited degrees of freedom due to

structures,””’ predefined meta-atoms,'"'”'® and arbitrary ] — _

polygons,3l’32 have been realized. The inverse problem, Spe'cml Issue: Optimized Photonics and Inverse {Phétonics
designing the corresponding structure from a given optical Design

response, is also studied extensively. Three main approaches of Received: June 29, 2022

DL, which are supervised learning,'””’ unsupervised learn- Published: September 22, 2022

ng,””**~*” and reinforcement learning,’* have been applied to

the inverse problem for various metasurface applications.®
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Figure 1. (a) A schematic of forward modeling and inverse design. The design variables encompass planar shape, refractive index, periodicity, and
height. Given a set of design variables, forward analysis yields the frequency response of transmission and phase delay. Reversely, inverse design
identifies shape given on-demand spectra. (b—e) Overview of the proposed procedure. (b) Random shape generation based on curvature
constraint. (c) Database generation by wave simulation. (d) Forward net as a composite of an autoencoder and fully connected layers. (e) Inverse
optimization given the on-demand spectra under fabrication constraints.

both the low resolution of pixelated unit cells and limited
shape variations of their building blocks.

DL-assisted metasurface design also suffers from limited
model generalizability. Even with substantial training data
(typically ~ O(10%)) fed into DL models, their applicability is
confined by the training data;'®™** for instance, if the data set
only includes meta-atoms excited by an x-polarized incidence,
the DL model trained on this data set does not generalize to
the cross-polarized illumination. Accommodating any changes
in the problem setting, such as polarization of illumination,
operating spectral range, or material properties, requires
training of either a new model from scratch or an updated
one with a new data set, which results in a repetition of the
computationally expensive data generation and training
processes.

Additionally, it is not straightforward for DL-based
approaches to impose fabrication constraints in inverse design.
Among many relevant works, conditional generative models
have gained special attention primarily due to the ease of using
them for “on-the-fly” inverse design, which circumvents
arduous iterative geometric optimization in high-dimensional
space.”””>?° However, inverse design under fabrication
constraints has not been reliably addressed for DL-assisted
design. Existing works (i) resort to morphological postprocess-
ing without considering the performance deviation at the
system level,””** (ii) do not take fabrication limitations into
account at all, or (iii) impose them only in low-dimensional
design space such as one-dimensional meta-grating.””

In this paper, we propose and demonstrate an inclusive
framework for deep generative modeling and inverse design of
manufacturable free-form metasurfaces considering the limi-
tations of lithography-based top-down fabrication processes.
Our framework concurrently addresses the aforementioned
issues summarized as (i) limited design freedom, (ii)
insufficient model generalizability, and (iii) poor fabrication
feasibility. The framework is comprehensive as it can
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accommodate a variety of operating conditions and meta-
atom structures while ensuring fabrication feasibility. Figure 1
provides an overview of the framework. First, to increase the
design freedom and ensure fabrication feasibility in the training
data set, we wish to generate a library of manufacturable free-
form meta-atoms. To this end, we propose a new shape
generation method considering fabrication constraints and
create a diverse shape library. Second, to address insufficient
model generalizability, a forward network that maps meta-atom
to optical response is constructed, where the unit cell is
specified by periodicity, cross-section (shape), height, and
refractive index of the meta-atom. Our forward model exceeds
the boundaries of the training data set; the model generalizes
the solution to different spectral range of operations, material
dispersions, and incident polarizations. Lastly, to address
fabrication feasibility, fabrication-constrained inverse optimi-
zation in the latent space of the forward net follows to produce
metadevices under the limitations of lithography-based top-
down fabrication processes. The optimization involves multiple
constraints including local curvature, minimum feature size,
and optical responses. To search optimal meta-atoms under
the constraints without case-specific parameter tuning, a
genetic al§orithm based on feasibility-first ranking is
employed.”® We demonstrate the efficacy of the proposed
framework via two metadevice design cases, namely broadband
polarization filter and quarter-wave plate.

B RESULTS AND DISCUSSION

As a data-driven method, DL’s performance significantly
depends on the data set. Thus, creating an inclusive forward
model requires a data set that is unbiased and comprehensive
in terms of the design space. Here, the design space consists of
the 2D cross-section (or the shape), periodicity (p), height
(H), and refractive index (n) of the unit structure (or the
meta-atom). For the first three design variables, SO sets of
values are chosen by Latin hypercube sampling®’ within
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Figure 2. Schematic of the FWD net. The network consists of an autoencoder and a fully connected DNN (FC net). The autoencoder consist of 4
convolution, $ hidden, and 4 deconvolution layers in the given order. The cross-section of the meta-atom is represented as a 100 X 100 pixel image.

The hidden features are extracted from the image and compressed into
reconstructed from the latent vector by the decoder. FC net has S fully

16 parameter latent vectors by the encoder. The original image is
connected hidden layers with 40, 120, 240, 120, and 40 neurons,

respectively. The input of the FC includes refractive index (1), wavelength-normalized geometric parameters of unit cell (p/4, H/A), and the latent
space representation of the meta-atom cross-section. The final output is a complex-valued transmission (S,;) coefficient.

predefined ranges. To create a comprehensive data set, the
cross sections should be arbitrary, unbiased, and free-form.
Additionally, we require our meta-atoms constituting the data
set to be manufacturable.

In this work, manufacturability is defined by the constraints
imposed by the lithography-based top-down fabrication
processes such as minimum feature size and minimum radius
of curvature. We also impose a maximum size limit to ensure
uncoupled operation between adjacent unit cells. To generate
arbitrary, free-form, yet fabricable meta-atoms, we propose a
shape generation method, in which a predefined set of seed
points are randomly distributed over the xy plane. Then, these
points are connected by a smooth, closed curve generated
using constrained nonlinear regression (see Figure 1b and SI-
1). This method provides analytical expressions for the contour
of the shapes and enables direct control of size and curvature.
Meanwhile, the constrained fitting involves nonuniform
deviations of the seed points. To reduce the sampling
redundancy induced by the constrained design space,
determinantal point processes’® that favor a set of repulsive
items are employed as a subset sampler. As a result, a total
number of 20,000 samples combining 400 shapes and S0
parameter sets are generated. The sample-label (unit cell-
optical response) pairs are created using full-wave electro-
magnetic simulations. A detailed discussion on the data
generation process is provided in the Supporting Information.

We apply wavelength normalization'’ to achieve spectral
generalizability beyond the training data set and to remove the
dimensional mismatch between metasurface design space and
the optical response.'”'® The height and the periodicity are
directly normalized to the wavelength vector. On the other
hand, the meta-atom shapes are represented as images with a
100 X 100 pixel resolution. To apply wavelength normalization
to these shapes, the cross-sectional contour is scaled with the
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operation wavelength. We fixed the image frame with the
dimensions of the largest normalized periodicity in order to
keep both the pixel number and size constant during scaling.
However, as the wavelength normalization involves the
multiplication of the number of samples with the number of
frequency points, which is 101 frequency points that create
>4,000,000 instances in our case, a large time and memory
requirement arise.

To overcome this limitation, the problem is divided into two
parts: (1) the image representing the cross-section of the meta-
atom and (2) structural parameters including the height of
meta-atom, the periodicity of the unit cell, and the refractive
index of the material. Two independent networks are
constructed to solve each component of the problem, an
autoencoder and a fully connected NN (FC net) as seen in
Figure 2.

The autoencoder extracts important features from the cross-
section images (Figure 2). It compresses 2D image
representation into a latent vector representation from which
the original cross-section can be reconstructed with an
acceptable loss of geometrical details. Harnessing the on-the-
fly forward analysis of meta-atoms, we apply data augmentation
without any additional cost by rotating the shapes 8 times by
45°. To apply the wavelength normalization, the images are
scaled with 10 frequency points that are randomly selected.
Total instances used in training data of the autoencoder
become 32,000, consequently removing the large time and
memory requirement. Concatenating the resulted latent vector
with the numeric parameters (ie, n, b H), we construct the
input vector of the FC net as seen in the Figure 2. The FC net
maps this input vector to the optical response (i.c., trans-
mission and phase delay). The combination of these networks
(autoencoder and FC net) creates the forward network (FWD
net), for predicting the optical response of a metasurface unit
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Figure 3. (a) Comparison of original and reconstructed images. (b,c) Comparison of simulated and predicted transmission coefficients of
exemplary samples from the validation set (blue line: simulation and red line: prediction). The prediction MSE of this sample is 9.0 X 107 The

cross-section of the example meta-atom is shown in the inset of (b).

cell given the cross-section, height, periodicity, and refractive
index.

For the training and the test of both the autoencoder and
FC net, the means squared error (MSE) loss is used as the
model performance metric. The overall training/test MSEs are
2.0 X 107°/42 x 107 and 1.0 X 107°/2.0 X 107> for the
autoencoder and FC net, respectively. Together with error
distributions and learning curves that are provided in the
Supporting Information, the low and consistent training/test
error values indicate that successful learning is achieved
without overfitting,

To demonstrate overall performance of the FWD net, we
compare original-reconstructed images and the predicted
(simulated) optical response of a sample from the unseen
validation set in Figure 3 (see the Supporting Information for
additional examples). There is a good agreement between the
original images and the reconstructed ones as seen in Figure
3a. Meanwhile, Figure 3b,c indicates sound predictive
performance over optical responses. As a proof-of-concept
for metadevice design, forward design of a metalens is
demonstrated in Supporting Information.

The network architecture and wavelength normalization
approach'” provide extended generalization capabilities to the
FWD net beyond the feature and operation space defined by
the data set. One of these unique properties is spectral
generalizability, which is the ability to generalize the solution
within one spectral range to other spectral ranges. Spectral
generalizability depends on the wavelength scalability of
electromagnetic problems and is inherited from the wavelength
normalization process17 (see Supporting Information for
detailed explanations). To demonstrate the spectral general-
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izability capability of the FWD net, we generated a set of
samples in the visible range (400 to 700 nm), which
corresponds to 7.5 times larger frequencies than the data
set’s frequency range. As seen from the example sample shown
in Figure 4a,b, the FWD net maintains its success in a spectral
range that is not covered by the training data [see the
Supporting Information for more examples in visible and also
near-infrared (1.5 to 2.5 ym) ranges].

Another generalization capability of our FWD net is
modeling dispersive materials without explicit training. As an
outcome of wavelength normalization, our network makes
predictions for each frequency point independently. The
refractive index differences between different frequencies do
not affect each other. As a result, the optical response is
accurately predicted regardless of the dispersion. As an
example, we define a lossless dielectric with a highly dispersive
refractive index as seen in the inset of Figure 4c. Despite being
trained for nondispersive dielectrics only, the FWD net
accurately predicted the optical response of a dispersive
meta-atom, as seen in Figure 4c,d.

Additionally, the FWD net can predict optical responses for
different incident polarizations although all samples in our
library are generated considering only the x-polarized
incidence. Due to the symmetry of the problem, the optical
response of a structure under y-polarized incidence will be the
same as the optical response of the 90° rotated version of the
structure under x-polarization. As we introduce shape rotations
by the data augmentation step applied before the training, our
autoencoder can distinguish, reconstruct, and compress the
rotated cross sections. As a result, the FWD net maintains high
prediction accuracy for the rotated meta-atoms. As a
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Figure 4. Comparison of predicted and simulated transmission response of (a,)b), an example in the visible wavelengths (400—700 nm), (c,d) an
example of a dispersive material, and (e,f) an example under y-polarized illumination. The prediction MSEs are (a,b) 2.1 X 107, (c,d) 3.5 X 107,
and (e,f) 3.8 X 107*. The parameters are as follows: (a,b) p = 300 nm, H = 300 nm, and n = 2.15, (c,d) p = 2.38 um, H = 2.0 ym, and # is shown in
the inset, and (e,f) p = 2.48 ym, H = 1.96 um, and n = 2.31. The cross sections of the example meta-atoms are shown in the figure insets.

demonstration, several samples are selected from the unseen
validation set and simulated with y-polarized incidence. As
seen in Figure 4ef, the FWD net can predict the optical
response of meta-atoms under y-polarized illumination as well.
This result indicates that our model is unlimited with
polarization of incidence as any polarization can be expressed
as superposition of two orthogonal states (x and y, in this
case).

B INVERSE OPTIMIZATION

The purpose of inverse design in this work is to identify a
manufacturable meta-atom shape given target functionalities of
a metadevice. A symbolic formulation of the inverse problem
reads:

argmin J(T(X, Aln, p, H), ¢(X, Aln, p, H))
x

(1)
subject to k < K., (2)
F S T (3)
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r=F(@)'w, (@) = F(@)'w, /'(@) = F(@)'w  (4)
where ] is a performance metric expressed as a function of
either transmission T or phase ¢; X is a planar shape of a meta-
atom; K is local curvature of a meta-atom; and k,,, is the
allowable maximum curvature set as k,,, = 0.025 nm™". The
performance metric | takes the planar shape X as an implicit
argument. Eq 3 is imposed r < r,,,, = 850 nm as a constraint
on the feature size of a meta-atom for uncoupled operation.
The secondary design variables {n, p, H} remain unchanged
during each optimization run. We use n = 3.5, p =2 ym, and H
= 2 pm, unless otherwise stated.

We employ genetic algorithms (GAs) for inverse design.
Our baseline formulation is categorized as a single-objective
optimization problem under multiple constraints (curvature,
feature size, etc.). Hence, efficient constraint handling is of top
importance for the inverse design. GAs can bypass case-specific
tuning of constraint parameters through feasibility-first
population ranking.36 By avoiding the manual tuning of
constraint parameters for individual design cases, a variety of
unit cell optimization problems can be addressed. In addition,
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Figure 5. Inverse optimization results. (a)b) Polarization filter design. (a) Optimization history of the best fitness of J; and optimized shape. (b)
Transmission spectra. (c,d) Quarter-wave plate design. (c) Optimization history of the best fitness of J, and optimized shape. (d) Differences

between the two phase shift components where the target is 7/2.

the population-based, derivative-free evolutionary search
mitigates the issues of both local optimality and initial
dependence that gradient-based design search mostly suffers
from. With the aid of the FWD net, it is tractable to perform an
exhaustive search of GA in the compact latent space that
captures major design variations and fabrication feasibility.

As a proof-of-concept for metadevice applications, the
proposed inverse optimization result of a polarization filter is
presented. The desired functionality is to provide selective
transmission between two orthogonal polarization states. The
major responses of interest are two transmission components
(T, and Tyy). An asscoiated figure-of-merit can be quantified
as the difference between the two components. Built on the
generic formulation in eqs 1—4), we formulate the
optimization problem as

argmin], = —Z IT, (2, Aln, p, H) - Tyy(z, Aln, p, H)
z j

©)

"1 / //l

lx"y" — x'y <«
(CORICOR (6)

with eqs 3 and 4, where ]| is the figure-of-merit of polarization
filters defined as the absolute difference between the two
transmission components; z is the latent vector of FWD net
that represents the structure of the meta-atom; and eq 6 is the
local curvature constraint defined in the Cartesian coordinate
system. Assuming T, is the transmission of an arbitrary shape,
T,, is quickly computed by rotating a meta-atom shape by 90°
and passing it to the FWD net. No target band is specified a
priori. Figure Sa displays the GA result after 150 generations

subject to k(x, y) =
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where the size of the population is 80. The decreasing trend of
the best fitness shows significant performance improvements.
The optical responses of the smooth final design show high-
contrast transmission between the two components over a
wide range of band (Figure Sb).

Adding another metadevice application, we also performed
the proposed inverse optimization for a quarter-wave plate
(Figure Sc,d). The device transforms linear polarization to
circular polarization, and vice versa. The target functionality
demands 7/2-phase difference between the two orthogonal
phase components ¢, and ¢,,. In addition, high transmission
is required for each direction, which can be interpreted as two
additional constraints for inverse optimization. We formulate
the quarter-wave design problem as

argminf, = " I, (z, Aln, p, H) — ¢,(z, Ajn, p, H)| = /2]

= j

(7)

subject to T,.(z, Aln, p, H), T, (2, 4in, p, H) > Ty,
(8)

with eqs 3, 4, and 6, where ], is the performance metric used
for the inverse design of quarter-wave plates. Ty, is the
threshold value that reflects the high-transmission require-
ments, which is set as 0.75. Figure 5d shows the optimization
result given a target band of 3.9—4.1 ym. The optimization
history of the figure-of-merit J, in Figure Sc shows a sharp
decrease at the early stage, followed by a long plateau stage.
The free-form final design meets the high transmission
requirement as well as the two fabrication constraints.

To validate the inclusiveness of the proposed framework
over broad design cases, we tested another optimization run for
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a polarization filter with setting the secondary design variables
as {n =4.0 (Ge), p = 2.3 um, H = 1.7 um}. The result yields an
optimized meta-atom shape of which performance is slightly
better than the case where {n = 3.5, p = 2.0 yum, H = 2.0 um},
mainly due to the higher refractive index, with a completely
different trend of transmissions (Figure S9). The result
corroborates the comprehensive nature of our framework: it
simultaneously covers free-form shape variations, the secon-
dary design variables, and the fabrication constraints, by the
single model and single database. Under large variations of off-
design conditions, both continuum-based topology optimiza-
tion”>*” or automatic differentiation*” must run from scratch
for every condition, with manual handling of constraints taken
into account. Conditional generative networks”>*** have
potential to cover a broad range of design cases, yet existing
works are dedicated to design under a fixed set of secondary
design variables and not able to handle design constraints
reliably.

B CONCLUSION

In this work, for deep generative modeling and inverse design
of manufacturable free-form metasurfaces, we presented a
comprehensive framework that simultaneously addresses three
core challenges of DL based photonic metasurface design:
limited design freedom, insufficient model generalizability, and
poor fabrication feasibility. At the first step, we constructed a
shape generation method that creates arbitrary free-form
geometries while imposing manufacturability conditions. Using
this method, we generated an inclusive data set for the second
step; training of the forward model, “FWD net”. The forward
model exhibits decent generalizability, which was validated in
terms of material dispersion, source polarization, and wave-
length range of operation. At the final step, we realized inverse
optimization under the fabrication constraints. The latent
space of the FWD net was taken as our design space to enable
design of free-form yet manufacturable meta-atoms. The FWD
net is also used as surrogate model in the inverse optimization.
The efficacy of our framework was demonstrated by several
metadevice examples; a forward-designed metalens, two
inverse-designed polarization filters, and an inverse-designed
quarter-wave plate. These devices attain the primary
functionalities as well as meet the fabrication feasibility. We
point out two promising directions for future work including,
but not limited to, (i) extension to general meta-atom
topologies, and (ii) construction of generative models under
global/local fabrication constraints.

B METHODS

The data set is a set of unit cells that consist of an arbitrary
free-form meta-atom sitting on top of a low-index substrate.
The refractive index of the substrate is kept constant as 1.45
(~ ngo,), and the substrate thickness is taken to be infinite.
The meta-atoms have free-form cross sections and constant
height values that vary between 1.5 to 2.5 ym. They are made
of nondispersive and lossless dielectrics with refractive index
values between 2 and 4. The side length of the square unit cells
are changing between 2 and 2.5 pum. The operating spectral
range is defined from 3 to S ym and resolved with 101 equally
spaced wavelength points. The resulting data set is labeled with
corresponding complex valued transmission coefficients, which
are obtained from full wave simulations that are based on the
finite difference time domain method. The simulations are
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performed by the commercial package, Lumerical FDTD
solutions. Periodic boundary conditions are applied along the x
and y directions, while perfectly matching layers (PML) are
used on the z boundaries. x-Polarized plane wave source with
injection toward the +z direction is located into the substrate.
Magnitude and phase of the transmitted light, which is later
converted to complex valued transmission coefficient, are
obtained from the near-field power monitor. A total number of
20,000 samples as combination of 400 shapes and S0
parameter sets are generated and labeled by simulations.
Twenty percent of the data set is separated as a validation set,
and the rest is used for training of both the autoencoder and
FC net. Tensorflow is used. We train all the models using an
Adam optimizer,"' mean squared error (MSE) as the loss
function. “relu” and “tanh” as activation functions are
employed in the autoencoder and FC net, respectively.

To run GA for inverse design, we used the pymoo (multi-
objective optimization in Python) library.*” The library offers
parameter-less constraint handling by feasibility-first ranking in
a population. Building on the approach, we addressed the
constrained inverse optimization problems introduced without
case-specific tuning of any constraint parameters.
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