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ABSTRACT
The James–Stein estimator is an estimator of the multivariate normal mean and dominates the maximum
likelihood estimator (MLE) under squared error loss. The original work inspired great interest in developing
shrinkage estimators for a variety of problems. Nonetheless, research on shrinkage estimation for manifold-
valued data is scarce. In this article, we propose shrinkage estimators for the parameters of the Log-Normal
distribution de!ned on the manifold of N × N symmetric positive-de!nite matrices. For this manifold,
we choose the Log-Euclidean metric as its Riemannian metric since it is easy to compute and has been
widely used in a variety of applications. By using the Log-Euclidean distance in the loss function, we derive
a shrinkage estimator in an analytic form and show that it is asymptotically optimal within a large class
of estimators that includes the MLE, which is the sample Fréchet mean of the data. We demonstrate the
performance of the proposed shrinkage estimator via several simulated data experiments. Additionally, we
apply the shrinkage estimator to perform statistical inference in both di"usion and functional magnetic
resonance imaging problems. Supplementary materials for this article are available online.
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1. Introduction

Symmetric positive-de!nite (SPD) matrices are common in
applications of science and engineering. In computer vision
problems, they are encountered in the form of covariance matri-
ces, for example, region covariance descriptors (Tuzel, Porikli,
and Meer 2006), and in di"usion magnetic resonance imaging,
SPD matrices manifest themselves as di"usion tensors which
are used to model the di"usion of water molecules (Basser,
Mattiello, and LeBihan 1994), and as Cauchy deformation ten-
sors in morphometry to model the deformations (see Frack-
owiak et al. 2004, chap. 36). Many other applications can be
found in Cherian and Sra (2016). In such applications, the
statistical analysis of data must perform geometry-aware com-
putations, that is, employ methods that take into account the
nonlinear geometry of the data space. In most data analysis
applications, it is useful to describe the entire dataset with a
few summary statistics. For data residing in Euclidean space,
this may be simply the sample mean, and for data residing
in non-Euclidean spaces, for example, Riemannian manifolds,
the corresponding statistic is the sample Fréchet mean (FM)
(Fréchet 1948). The sample FM also plays an important role
in di"erent statistical inference methods, for example, principal
geodesic analysis (Fletcher et al. 2003), clustering algorithms,
etc. If M is a metric space with metric d, and x1, . . . , xn ∈ M,
the sample FM is de!ned by x̄ = arg minm

∑n
i=1 d2(xi, m).

For Riemannian manifolds, the distance is usually chosen to
be the intrinsic distance induced by the Riemannian metric.

CONTACT Baba C. Vemuri vemuri@u!.edu Department of CISE, University of Florida, Gainesville, FL.
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Then, the above optimization problem can be solved by Rie-
mannian gradient descent algorithms (Gabay 1982; Groisser
2004; Moakher 2005; Pennec 2006; Afsari 2011; Udriste 2013).
However, Riemannian gradient descent algorithms are usually
computationally expensive, and e#cient recursive algorithms
for computing the sample FM have been presented in the liter-
ature for various Riemannian manifolds by Sturm (2003), Ho
et al. (2013), Salehian et al. (2015), Chakraborty and Vemuri
(2015), Lim and Pál!a (2014), and Chakraborty and Vemuri
(2019).

In Rp with the Euclidean metric, the sample FM is just the
ordinary sample mean. Suppose that X1, . . . , Xn are a random
sample from the multivariate normal distribution on Rp. The
sample mean X̄ = n−1 ∑n

i=1 Xi is the maximum likelihood
estimator (MLE) for the mean of the underlying normal dis-
tribution, and the James–Stein (shrinkage) estimator (James
and Stein 1961) was shown to be better (under squared error
loss) than the MLE when p > 2 and the covariance matrix of
the underlying normal distribution is assumed to be known.
Inspired by this result, the goal of this article is to develop
shrinkage estimators for data residing in PN , the space of N ×N
SPD matrices.

For the model Xi
ind∼ N(µi, σ 2), i = 1, . . . , p, where

p > 2 and σ 2 is known, the MLE of µ = [µ1, . . . , µp]T

is µ̂MLE = [X1, . . . , Xp]T and it is natural to ask whether
it is admissible. Stein (1956) gave a negative answer to this
question and provided a class of estimators for µ that dominate

© 2022 American Statistical Association
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the MLE. Subsequently, James and Stein (1961) proposed the
estimator

(
1 − (p − 2)σ 2

‖X‖2

)
X (1)

where X =
[
X1, . . . , Xp

]T , which is now referred to as the
James–Stein (shrinkage) estimator.

Ever since the work reported in James and Stein (1961),
shrinkage estimators have been developed for the parameters of
other distributions, such as the Poisson and Gamma (Clevenson
and Zidek 1975; Berger 1980). In order to understand shrink-
age estimation fully, one must understand why the process
of shrinkage improves estimation. In this context, Efron and
Morris presented a series of works to provide an empirical Bayes
interpretation by modifying the original James–Stein estimator
to suit di"erent problems (Efron and Morris 1973a, 1973b). The
empirical Bayes approach to designing a shrinkage estimator
can be described as follows. First, reformulate the model as
a Bayesian model, that is, place a prior on the parameters.
Then, the hyperparameters of the prior are estimated from the
data. Efron and Morris (1973b) presented several examples of
di"erent shrinkage estimators developed within this empirical
Bayes framework.

In all the works cited above, the domain of the data has
invariably been a vector space and, as mentioned earlier,
many applications naturally encounter data residing in non-
Euclidean spaces. Hence, generalizing shrinkage estimation to
non-Euclidean spaces is a worthwhile pursuit. In this article,
we focus on shrinkage estimation for the Riemannian manifold
PN . We assume that the observed SPD matrices are drawn
from a Log-Normal distribution de!ned on PN (Schwartzman
2016) and we are interested in estimating the mean and the
covariance matrix of this distribution. We point out that a simple
method to derive a shrinkage estimator in this case is to apply
James–Stein shrinkage to the log-transformed SPD matrices.
However, this does not lead to an optimal shrinkage estimator.
Hence, we derive shrinkage estimators for the parameters of the
Log-Normal distribution using an empirical Bayes framework,
which is described in detail subsequently, and show that the
proposed estimator is asymptotically optimal within a class of
estimators including the MLE. We discuss this issue in more
detail in Section 3.2.

We present simulated data experiments which demonstrate
that the proposed shrinkage estimator of the mean of the Log-
Normal distribution is better (in terms of risk) than the sample
FM, which is the MLE, and the shrinkage estimator proposed
by Yang and Vemuri (2019). Further, we also apply the shrink-
age estimator to !nd group di"erences between patients with
Parkinson’s disease and controls (normal subjects) from their
respective brain scans acquired using di"usion magnetic res-
onance images (dMRIs). Additionally, we empirically demon-
strate the advantage of shrinkage estimation applied to simul-
taneous estimation of the parameters of Log-Normal distribu-
tions via an experiment involving brain connectivity networks
derived from resting state functional MRI (rs-fMRI) human
brain scans. This experiment is presented to show that the
advantages of the proposed shrinkage estimator persist as we
vary the size N of the SPD matrices.

Besides estimation of the mean of di"erent distributions,
estimation of the covariance matrix (or the precision matrix)
of a multivariate normal distribution is an important problem
in statistics, !nance, engineering and many other !elds. The
usual estimator, namely the sample covariance matrix, performs
poorly in high-dimensional problems and many researchers
have endeavored to improve covariance estimation by applying
the concept of shrinkage in this context (Stein 1975; Daniels
and Kass 2001; Ledoit and Wolf 2003; Donoho, Gavish, and
Johnstone 2018). In this literature, it is assumed that for each
i = 1, . . . , p, we observe iid vectors Xi,1, . . . , Xi,ni ∈ RN where
for each j = 1, . . . , ni, the covariance matrix of Xij is "i ∈ PN .
This framework is distinct from our setup, where we assume that
our observations are estimates "̂1, . . . , "̂p ∈ PN .

The rest of this article is organized as follows. In Section 2,
we present relevant material on the Riemannian geometry of
PN and shrinkage estimation. The main theoretical results are
stated in Section 3, with the proofs of the theorems relegated to
the supplementary materials. In Section 4, we demonstrate how
the proposed shrinkage estimators perform via several synthetic
data examples and present applications to (real data) di"usion
tensor imaging (DTI), a clinically popular version of dMRI, and
rs-fMRI. Speci!cally, we apply the proposed shrinkage estimator
to (i) estimation of the brain atlases (templates) of patients with
Parkinson’s disease and a control group, (ii) identi!cation of the
regions of the brain where the two groups di"er signi!cantly,
and (iii) estimation of connectivity networks from rs-fMRI.
Finally, in Section 5 we discuss our contributions and present
some future research directions.

2. Preliminaries

In this section, we brie$y review the commonly used Log-
Euclidean metric for PN proposed by Arsigny et al. (2007) and
the concept of Stein’s unbiased risk estimate, which will form the
framework for deriving the shrinkage estimators.

2.1. Riemannian Geometry of PN

In this work, we endow the manifold PN with the Log-Euclidean
metric. We note that there is another commonly used Rieman-
nian metric on PN , called the a#ne-invariant metric (see Terras
(2016, Chap. 1) for its introduction and Lenglet et al. (2006)
and Moakher (2005) for its applications). The a#ne-invariant
metric is computationally more expensive; however, because
in some applications it provides results that are indistinguish-
able from those obtained under the Log-Euclidean metric, as
demonstrated in Arsigny et al. (2007) and Schwartzman (2016),
we choose to work with the Log-Euclidean metric. For other
metrics on PN used in a variety of applications, we refer the
reader to the recent survey by Feragen and Fuster (2017).

The Log-Euclidean metric is a bi-invariant Riemannian met-
ric on the abelian Lie group (PN , &) where X&Y = exp(log X+
log Y). The intrinsic distance dLE : PN × PN → R induced
by the Log-Euclidean metric has a very simple form, namely
dLE(X, Y) =

∥∥log X − log Y
∥∥, where ‖·‖ is the Frobenius norm.

Let Sym(N) be the vector space of N × N symmetric matri-
ces. Consider the map vec : Sym(N) → R

N(N+1)
2 given by
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vec(Y) =
[
y11, . . . , ynn,

√
2(yij)i<j

]T (Schwartzman 2016). This
map is actually an isomorphism between Sym(N) and R

N(N+1)
2 .

To make the notation more concise, for X ∈ PN , we denote
X̃ = vec(log X) ∈ R

N(N+1)
2 . From the de!nition of vec, we see

that dLE(X, Y) = ‖X̃ − Ỹ‖.
Given X1, . . . , Xn ∈ PN , we denote the sample FM with

respect to the Log-Euclidean distance given above by

X̄ = arg min
M∈PN

n−1
n∑

i=1
d2

LE(Xi, M) = exp
(

n−1
n∑

i=1
log Xi

)
.

2.2. The Log-Normal Distribution on PN

In this work, we assume that the observed SPD matrices fol-
low the Log-Normal distribution introduced by Schwartzman
(2016), which can be viewed as a generalization of the Log-
Normal distribution on R+ to PN . The de!nition is as follows.

De!nition 1. Let X be a PN-valued random variable. We say
X follows a Log-Normal distribution with mean M ∈ PN and
covariance matrix " ∈ PN(N+1)/2, or X ∼ LN(M, "), if X̃ ∼
N(M̃, ").

From the de!nition, it is easy to see that E log X = log M and
E‖log X − log M‖2 = E‖X̃ − M̃‖2 = tr("). Some important
results regarding this distribution were obtained in Schwartz-
man (2016). The following proposition, proved in Schwartzman
(2016), for the MLEs of the parameters will be useful subse-
quently.

Proposition 1. Let X1, . . . , Xn
iid∼ LN(M, "). Then, the MLEs

of M and " are M̂MLE = X̄ and "̂MLE = n−1 ∑n
i=1

(
X̃i −

˜̂MMLE
)(

X̃i − ˜̂MMLE
)T

. The MLE of M is the sample FM under
the Log-Euclidean metric.

2.3. Bayesian Formulation of Shrinkage Estimation in Rp

As discussed earlier, the James–Stein estimator originated from
the problem of simultaneous estimation of multiple means of
(univariate) normal distributions. The derivation relied heavily
on properties of the univariate normal distribution. Later on,
Efron and Morris (1973b) gave an empirical Bayes interpre-
tation for the James–Stein estimator, which is presented by
considering the hierarchical model

Xi|θi
ind∼ N(θi, A), i = 1, . . . , p,

θi
iid∼ N(µ, λ),

where A is known and µ and λ are unknown. The posterior
mean for θi is

θ̂
λ,µ
i = λ

λ + A Xi + A
λ + Aµ. (2)

The parametric empirical Bayes method for estimating the θi’s
consists of !rst estimating the prior parameters λ and µ and then
substituting them into (2). The prior parameters λ and µ can be

estimated by the MLE. For the special case of µ = 0, this method
produces an estimator similar to the James–Stein estimator (1).
Although this estimator is derived in an (empirical) Bayesian
framework, it is of interest to determine whether it has good
frequentist properties. For example, if we specify a loss function
L and consider the induced risk function R, one would like to
determine whether the estimator has uniformly smallest risk
within a reasonable class of estimators. For (2), the optimal
choice of λ and µ is

(̂
λopt, µ̂opt) = arg min

λ,µ
R
(̂
θ

λ,µ, θ
)
,

where θ = [θ1, . . . , θp]T , θ̂λ,µ = [θ̂ λ,µ
1 , . . . , θ̂ λ,µ

p ]T , and λ̂opt and
µ̂opt depend on θ , which is unknown. Instead of minimizing the
risk function directly, we minimize Stein’s unbiased risk estimate
(SURE) (Stein 1981), denoted by SURE(λ, µ), which satis!es
Eθ [SURE(λ, µ)] = R(̂θ

λ,µ, θ). Thus, we use
(̂
λSURE, µ̂SURE)

= arg min
λ,µ

SURE(λ, µ).

The challenging part of this endeavor is to derive SURE, which
depends heavily on the risk function and the underlying dis-
tribution of the data. This approach has been used to derive
estimators for many models. For example, Xie, Kou, and Brown
(2012) derived the (asymptotically) optimal shrinkage estimator
for a heteroscedastic hierarchical model, and their result is
further generalized in Jing et al. (2016) and Kong et al. (2017).

3. An Empirical Bayes Shrinkage Estimator for
Log-Normal Distributions

In this section, we consider the model

Xij
ind∼ LN(Mi, "i), i = 1, . . . , p, j = 1, . . . , n,

and develop shrinkage estimators for the vector of means
M = [M1, . . . , Mp] and the array of covariance matrices " =
["1, . . . , "p]. The motivation for this model is that for the
applications of DTI, we have n DT images and each DT image
contains p voxels. The di"usive behavior of water molecules
in each voxel is characterized by a 3 × 3 SPD matrix. The
Xij’s are PN-valued random matrices. For completeness, we !rst
brie$y review the shrinkage estimator of M proposed by Yang
and Vemuri (2019), who assumed "i = AiI, where the Ai’s
are known positive numbers and I is the identity matrix. The
assumption on " is useful when n is small since for small sample
sizes the MLE for " is very unstable. Next, we present estimators
for both M and ". Besides presenting these estimators, we estab-
lish asymptotic optimality results for the proposed estimators.
To be more precise, we show that the proposed estimators are
asymptotically optimal within a large class of estimators that
contains the MLE.

Another related interesting problem o%en encountered in
practice involves group testing and estimating the “di"erence”
between two given groups. Consider the model

Xij
ind∼ LN(M(1)

i , "(1)
i ), i = 1, . . . , p, j = 1, . . . , nx,

Yij
ind∼ LN(M(2)

i , "(2)
i ), i = 1, . . . , p, j = 1, . . . , ny,
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where the Xij’s and Yij’s are independent. We want to estimate the
di"erences between M(1)

i and M(2)
i for i = 1, . . . , p and select the

i’s for which the di"erences are large. However, the selected esti-
mates tend to overestimate the corresponding true di"erences.
The bias introduced by the selection process is termed selection
bias (Dawid 1994). Selection bias originates from the fact that
there are two possible reasons for the selected di"erences to be
large: (i) the true di"erences are large and (ii) the random errors
contained in the estimates are large. Tweedie’s formula (Efron
2011), which we discuss and brie$y review in Section 3.3, deals
with precisely this selection bias, in the context of the normal
means problem. In this work, we apply an analogue of Tweedie’s
formula designed for the context of SPD matrices.

3.1. An Estimator of M When " is Known

For completeness, we brie$y review the work of Yang and
Vemuri (2019) where the authors presented the estimator for
M assuming that "i = AiI and the Ai’s are known positive
numbers. Under this assumption, they considered the class of
estimators given by

M̂λ,µ
i = exp

( nλ

nλ + Ai
log X̄i + Ai

nλ + Ai
log µ

)
, (3)

where µ ∈ PN , λ > 0, and X̄i is the sample FM of
Xi1, . . . , Xin. Using the Log-Euclidean distance as the loss func-
tion L(M̂, M) = p−1 ∑p

i=1 d2
LE(M̂i, Mi), they showed that

the SURE for the corresponding risk function R(M̂, M) =
EL(M̂, M) is given by
SURE(λ, µ)

= 1
p

p∑

i=1

Ai
(nλ + Ai)2

(
Ai‖log X̄i − log µ‖2 + q(n2λ2 − A2

i )

n

)
,

where q = N(N + 1)/2. Hence, λ and µ can be estimated by(̂
λSURE, µ̂SURE)

= arg min
λ,µ

SURE(λ, µ).

Their shrinkage estimator for Mi is given by

M̂SURE
i = exp

( n̂λSURE

n̂λSURE + Ai
log X̄i+

Ai
n̂λSURE + Ai

log µ̂SURE
)

.
(4)

They also presented the following two theorems showing the
asymptotic optimality of the shrinkage estimator.

Theorem 1. Assume the following conditions:

(i) lim supp→∞ p−1 ∑p
i=1 A2

i < ∞,
(ii) lim supp→∞ p−1 ∑p

i=1 Ai‖log Mi‖2 < ∞,
(iii) lim supp→∞ p−1 ∑p

i=1 ‖log Mi‖2+δ < ∞ for some δ > 0.
Then,

sup
λ>0,‖log µ‖<maxi ‖log X̄i‖

∣∣SURE(λ, µ) − L(M̂λ,µ, M)
∣∣ prob−→ 0

as p → ∞.

Theorem 2. If assumptions (i)–(iii) in Theorem 1 hold, then for
every λ > 0 and µ ∈ PN ,

lim sup
p→∞

[
R(M̂SURE, M) − R(M̂λ,µ, M)

]
≤ 0.

3.2. Estimators for M and "

In Yang and Vemuri (2019), the covariance matrices of the
underlying distributions were assumed to be known, to simplify
the derivation. In real applications however, the covariance
matrices are rarely known, and in practice they must be esti-
mated. In this article, we consider the general case of unknown
covariance matrices, which is more challenging and pertinent in
real applications. Let

Xij|(Mi, "i)
ind∼ LN(Mi, "i)

Mi|"i
ind∼ LN(µ, λ−1"i)

"i
iid∼ Inv-Wishart(& , ν),

(5)

for i = 1, . . . , p and j = 1, . . . , n. The prior for (Mi, "i) is
called the Log-Normal-Inverse-Wishart (LNIW) prior, and it is
motivated by the normal-inverse-Wishart prior in the Euclidean
space setting. We emphasize that the main reason for choosing
the LNIW prior over others is the property of conjugacy which
leads to a closed-form expression for our estimators. Let

X̄i = exp
(

n−1
n∑

j=1
log Xij

)
and

Si =
n∑

j=1

(
X̃ij − ˜̄Xi

)(
X̃ij − ˜̄Xi

)T .
(6)

Then the posterior distributions of Mi and "i are given by

Mi|
(
{Xij}i,j, {"i}p

i=1
)

∼ LN
(

exp
(n log X̄i + λ log µ

λ + n

)
,

(λ + n)−1"i
)

,

"i|Si ∼ Inv-Wishart(& + Si, ν + n − 1),

and the posterior means for Mi and "i are given by

M̂i = exp
(n log X̄i + λ log µ

λ + n

)
and

"̂i = & + Si
ν + n − q − 2

.
(7)

Consider the loss function

L
(
(M̂, "̂), (M, ")

)
=p−1

p∑

i=1
d2

LE(M̂i, Mi)+p−1
p∑

i=1
‖"̂i−"i‖2

=L1(M̂, M) + L2("̂, ").

Its induced risk function is

R
(
(M̂, "̂), (M, ")

)

= p−1
p∑

i=1

[
Ed2

LE(M̂i, Mi) + E‖"̂i − "i‖2]

= p−1(λ + n)−2
p∑

i=1

[
ntr"i + λ2d2

LE(µ, Mi)
]

+ p−1
p∑

i=1
(ν + n − q − 2)−2

[(
n − 1 + (ν − q − 1)2)tr("2

i )
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− 2(ν − q − 1)tr(&"i) + (n − 1)(tr"i)
2 + tr(&2)

]
,

with the detailed derivation given in the supplementary materi-
als. The SURE for this risk function is

SURE(λ, & , ν, µ) (8)

= p−1
{ p∑

i=1
(λ + n)−2

[n − λ2/n
n − 1

trSi + λ2d2
LE(X̄i, µ)

]

+ (ν + n − q − 2)−2
[n − 3 + (ν − q − 1)2

(n + 1)(n − 2)
tr(S2

i )

+ (n − 1)2 − (ν − q − 1)2

(n − 1)(n + 1)(n − 2)

(
trSi

)2

− 2ν − q − 1
n − 1

tr(&Si) + tr(&2)
]}

,

with the detailed derivation given in the supplementary materi-
als.

Remark. Note that instead of the LNIW prior, one may also
consider a prior that captures the correlation structure (if there
is any) among both the Mi’s and the "i’s, which may be a
more appropriate prior for some applications encountered in
image analysis. However, such a prior will make the ensuing
mathematical analysis much more complicated than it already
is. Hence, we stay with the LNIW prior, and in Section 4 we take
a more practical and e"ective approach (involving smoothing)
to deal with the aforementioned correlation structure.

The hyperparameter vector (λ, & , ν, µ) is estimated by min-
imizing the risk estimate SURE(λ, & , ν, µ), and the resulting
shrinkage estimators of Mi and "i are obtained by plugging in
the minimizing vector into (7). This optimization step allows us
to determine the shrinkage from the data. So, unlike the orig-
inal James–Stein estimator which shrinks the estimate toward
a !xed target, we are able to obtain nearly optimal estimates.
Note that this is a non-convex optimization problem, and for
such problems convergence relies heavily on the choice of the
initialization. We suggest the following initialization, which is
discussed in the supplementary materials:

µ0 = exp
(

p−1
p∑

i=1
log X̄i

)
,

λ0 = np−1 ∑p
i=1 d2

LE(X̄i, µ0)
n

p(n−1)

∑p
i=1 trSi − p−1 ∑p

i=1 d2
LE(X̄i, µ0)

,

ν0 = q + 1
n−q−2

p2q(n−1)
tr

[( ∑p
i=1 Si

)( ∑p
i=1 S−1

i
)]

− 1
+ q + 1,

&0 = ν0 − q − 1
p(n − 1)

p∑

i=1
Si.

In all our experiments, the algorithm converged in fewer than
20 iterations with this initialization. This concludes the descrip-
tion of our estimators of the unknown means and covariance
matrices. Theorem 3 states that SURE(λ, & , ν, µ) approximates
the true loss L

((
M̂λ,µ, "̂& ,ν),

(
M, "

))
well in the sense that

the di"erence between the two random variables converges

to 0 in probability as p → ∞. Additionally, Theorem 4
shows that the estimators of M and " obtained by minimizing
SURE(λ, & , ν, µ) are asymptotically optimal in the class of esti-
mators of the form (7).

Theorem 3. Assume the following conditions:

(i) lim supp→∞ p−1 ∑p
i=1

(
tr"i

)4
< ∞,

(ii) lim supp→∞ p−1 ∑p
i=1 M̃T

i "iM̃i < ∞,
(iii) lim supp→∞ p−1 ∑p

i=1 ‖log Mi‖2+δ < ∞ for some δ > 0.

Then

sup
λ>0,ν>q+1,‖&‖≤max1≤i≤p ‖Si‖,

‖log µ‖≤max1≤i≤p ‖log X̄i‖

∣∣∣SURE(λ, & , ν, µ) − L
((

M̂λ,µ, "̂& ,ν),

(M, ")
)∣∣∣

prob−→ 0 as p → ∞.

Note that the optimization has some constraints. However,
in practice, with proper initialization as suggested earlier, the
constraints on & and µ can be safely ignored. The reason is that,
for & and µ far from Si’s and X̄i, respectively, the value of SURE
will be large. The constraints on λ and ν can easily be handled
by standard constrained optimization algorithms, for example,
L-BFGS-B (Byrd et al. 1995).

Theorem 4. If assumptions (i)–(iii) in Theorem 3 hold, then

lim sup
p→∞

[
R
((

M̂SURE, "̂SURE)
, (M, ")

)

− R
((

M̂λ,µ, "̂& ,ν), (M, ")
)]

≤ 0.

Note that in all the theorems above, we consider the asymp-
totic regime p → ∞ while the size of the SPD matrix N is held
!xed. The main reason for !xing the size of the SPD matrix is
that in our !rst application, namely the DTI analysis, the size of
the di"usion tensors is always 3×3, because di"usion magnetic
resonance images are three-dimensional images. However, the
number of voxels p can increase, as they are determined by
the resolution of the acquired image, which can increase due
to advances in medical imaging technology. This is di"erent
from the usual high-dimensional covariance matrix estimation
problem in which the size of the covariance matrix is allowed to
grow.

Remark. The proofs of Theorems 1 and 2 in Yang and Vemuri
(2019) use arguments similar to those that already exist in
the literature, and in that sense they are not very di#cult. In
contrast, the proofs of our Theorems 3 and 4 do not proceed
along familiar lines. Indeed, they are rather complicated, the
di#culty being that bounding the moments of Wishart matrices
or the moments of the trace of Wishart matrices is nontrivial
when the orders of the required moments are higher than two.
We present these proofs in the supplementary materials.

Remark. SURE.Full-FM estimates the covariance matrices "i’s,
and this results in performance that is worse than if the covari-
ance matrices were known. On the other hand, FM.LE and
SURE-FM assume that the covariance matrices are known, and
since this is not the case, we need to estimate them. So we’re
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not really comparing SURE.Full-FM with FM.LE and SURE-
FM, but rather with versions of FM.LE and SURE-FM in which
the covariance matrices are estimated. In SURE.Full-FM they
are estimated jointly via shrinkage, whereas in FM.LE/SURE-
FM they are estimated separately.

3.3. Tweedie’s Formula for F Statistics

One of the motivations for the development of our approach for
estimating M and " is a problem in neuroimaging involving
detection of di"erences between a patient group and a control
group. The problem can be stated as follows. There are nx
patients in a disease group and ny normal subjects in a control
group. We consider a region of the brain image consisting of p
voxels. As explained in Section 4.2, the local di"usional property
of water molecules in the human brain is of clinical importance,
and it is common to capture this di"usional property at each
voxel in di"usion magnetic resonance imaging (dMRI) via a
zero-mean Gaussian with a 3 × 3 covariance matrix. Using
any of the existing state-of-the-art dMRI analysis techniques, it
is possible to estimate, from each patient image, the di"usion
tensor Mi corresponding to voxel i, for i = 1, . . . , p. Let M(1)

i
and M(2)

i denote the di"usion tensors corresponding to voxel i
for the disease and control groups, respectively. The goal is to
identify the indices i for which the di"erence between M(1)

i and
M(2)

i is large. The model we consider is

Xij
ind∼ LN(M(1)

i , "i), i = 1, . . . , p, j = 1, . . . , nx,

Yij
ind∼ LN(M(2)

i , "i), i = 1, . . . , p, j = 1, . . . , ny.

In this work, we use the Hotelling T2 statistic for each i =
1, . . . , p as a measure of the di"erence between M(1)

i and M(2)
i .

The Hotelling T2 statistic for SPD matrices has been proposed
by Schwartzman, Dougherty, and Taylor (2010), and is given by

t2
i =

(˜̄Xi − ˜̄Yi
)T

[( 1
nx

+ 1
ny

)
Si

]−1(˜̄Xi − ˜̄Yi
)
, (9)

where X̄i and Ȳi are the FMs of {Xij}j and {Yij}j, and Si = (nx +
ny − 2)−1(S(1)

i + S(2)
i

)
is the pooled estimate of "i where S(1)

i
and S(2)

i are computed using (6). Since the Xij’s and Yij’s are Log-
normally distributed, one can easily verify that the distribution
of t2

i is given by

ν − q − 1
νq t2

i
ind∼ Fq,ν−q−1,λi , (10)

where ν = nx + ny − 2 is a degrees of freedom parameter
(recall that q = N(N+1)/2). Note that we make the assumption
that the covariance matrices for the two groups are equal, that
is, "

(1)
i = "

(2)
i = "i. Similar results can be obtained for the

unequal covariance case, but with more complicated expressions
for the T2 statistics and the degrees of freedom parameters.
The λi’s are the noncentrality parameters for the noncentral F
distribution and are given by

λi =
( 1

nx
+ 1

ny

)−1(
M̃(1)

i − M̃(2)
i

)T
"−1

i
(
M̃(1)

i − M̃(2)
i

)
.

These noncentrality parameters can be interpreted as the
(squared) di"erences between M(1)

i and M(2)
i , and they are the

parameters we would like to estimate using the statistics (9)
computed from the data. Then, based on estimates λ̂i, we
select those i’s with large estimates, say the largest 1% of all λ̂i.
However, the process of selection from the computed estimates
introduces selection bias. The bias comes from the fact that it
is possible to select some indices i’s for which the actual λi’s are
not large but the random errors are large, so that the estimates λ̂i
are pushed away from the true parameters λi. There are several
ways to correct for this bias, and Efron (2011) proposed to use
Tweedie’s formula for such a purpose.

Tweedie’s formula was !rst proposed by Robbins (1956), and
we review this formula here in the context of the classical normal
means problem, which is stated as follows. We observe Zi

ind∼
N(µi, σ 2), i = 1, . . . , p, where the µi’s are unknown and σ 2

is known, and the goal is to estimate the µi’s. In the empirical
Bayes approach to this problem we assume that the µi’s are
iid according to some distribution G. The marginal density of
the Zi’s is then f (z) =

∫
φσ (z − µ) dG(µ), where φσ is the

density of the N(0, σ 2) distribution. With this notation, if G
is known (so that f is known), the best estimator of µi (under
squared error loss) is the so-called Tweedie estimator given by
µ̂i = Zi + σ 2[f ′(Zi)/f (Zi)]. A feature of this estimator is that
it depends on G only through f , and this is desirable because
it is fairly easy to estimate f from the Zi’s (so we don’t need to
specify G). Another interesting observation about this estimator
is that µ̂i is shrinking the MLE µ̂MLE

i = Zi and can be viewed
as a generalization of the James-Stein estimator which assumes
µi

iid∼ N(0, λ) with unknown λ. The Tweedie estimator can
be generalized to exponential families. Suppose that Zi|ηi

ind∼
fηi(z) = exp(ηiz − φ(ηi))f0(z), and the prior for φ is G. Then
the Tweedie estimator for ηi is η̂i = l′(Zi) − l′0(Zi), where
l(z) = log

∫
fη(z) dG(η) is the log of the marginal likelihood

of the Zi’s and l0(z) = log f0(z).
Although this formula is elegant and useful, it applies only

to exponential families. Recently, Du and Hu (2020) derived a
Tweedie-type formula for noncentral χ2 statistics, for situations
where one is interested in estimating the noncentrality parame-
ters. Suppose Zi|λi

ind∼ χ2
ν,λi

and λi
iid∼ G. Then,

E(λi|Zi)=
[
(Zi−ν+4)+2Zi

( 2l′′ν(Zi)

1 + 2l′ν(Zi)
+l′ν(Zi)

)](
1+2l′ν(Zi)

)
,

where lν(·) is the marginal log-likelihood of the Zi’s (see Theo-
rem 1 in Du and Hu 2020).

For our situation, if we de!ne Zi = [(ν − q − 1)/νq]t2
i , then

Zi|λi
ind∼ Fq,ν−q−1,λi (recall that ν = nx+ny−2, see (9) and (10)).

Assume that the λi’s are iid according to some distribution G.
We now address the problem of how to obtain empirical Bayes
estimates of the λi’s. Let +ν1,ν2,λ be the cumulative distribution
function (cdf) of the noncentral F distribution, Fν1,ν2,λ, and let
+̃ν,λ be the cdf of the noncentral χ2 distribution, χ2

ν,λ. Then the
transformed variable Yi = +̃−1

ν1,λi
(+ν1,ν2,λi(Zi)) follows a non-

central χ2 distribution with degrees of freedom parameter ν1
and noncentrality parameter λi, and we note that when ν2 is
large, +ν1,ν2,λi and +̃ν1,λi are nearly equal, so that this quantile
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vemuri
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vemuri
Highlight
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transformation is nearly the identity. However, the transforma-
tion depends on λi, which is the parameter to be estimated,
so we propose the following iterative algorithm for estimating
E(λi|Zi). Let λ

(t)
i be the estimate of λi at the tth iteration. Then

our iterative update of λi is given by

λ
(t+1)
i =

[
(Y(t)

i − ν1 + 4) + 2Y(t)
i

( 2l′′ν1(Y(t)
i )

1 + 2l′ν1(Y(t)
i )

+ l′ν1(Y(t)
i )

)]

(
1 + 2l′ν1(Y(t)

i )
)
,

where Y(t)
i = +̃−1

ν1,λ(t)
i

(
+

ν1,ν2,λ(t)
i

(Zi)
)
, ν1 = q, and ν2 = ν−q−1.

Now the marginal log-likelihood lν1(y) is not available since the
prior G for λi is unknown. There are several ways to estimate
the marginal density of the Y(t)

i ’s. One of these is through ker-
nel density estimation. However, the iterative formula involves
the !rst and second derivatives of the marginal log-likelihood,
and estimates of the derivatives of a density produced through
kernel methods are notoriously unstable. There exist di"erent
approaches for dealing with this problem (see Sasaki et al.
2016; Shen and Ghosal 2017). Here we follow Efron (2011)
and postulate that lν1 is well approximated by a polynomial of
degree K, and write lν1(y) = ∑K

k=0 βkyk. The coe#cients βk,
k = 1, . . . , K, can be estimated via Lindsey’s method (Efron and
Tibshirani 1996), which is a Poisson regression technique for
(parametric) density estimation; the coe#cient β0 is determined
by the requirement that fν1(y) = exp(lν1(y)) integrates to 1. The
advantage of Lindsey’s method over methods that use kernel
density estimation is that it does not require us to estimate
the derivatives separately, since l′ν1(y) = ∑K

k=1 kβkyk−1 and
l′′ν1(y) = ∑K

k=2 k(k − 1)βkyk−2. In our experience, with l′ν1
and l′′ν1 estimated in this way, if we initialize the scheme by
setting λ

(0)
i to be the estimate of λi given by the Du and Hu

(2020) procedure, then the algorithm converges in fewer than
10 iterations.

4. Experimental Results

Here we describe the performance of our methods on three
synthetic datasets and three sets of real data from di"usion
and functional magnetic resonance imaging. Details on these
datasets will be given subsequently. For the synthetic data exper-
iments, we show the following.

(i) The proposed shrinkage estimator for the FM (SURE.Full-
FM, with simultaneous estimation of the covariance matri-
ces) outperforms the sample FM (FM.LE) and the shrink-
age estimator proposed by Yang and Vemuri (2019) (SURE-
FM, with !xed covariance matrices); see Section 4.1.1.

(ii) Our estimator outperforms its competitors for di"erent
(increasing) values of N, the size of the SPD matrices; see
Section 4.1.2.

(iii) The shrinkage estimates of the group di"erences capture
the regions that are signi!cantly distinct between two
groups of SPD matrix-valued images; see Section 4.1.3.

For the real data experiments, we demonstrate the following.

(iv) The SURE.Full-FM provides improvement over the two
competing estimators (FM.LE and SURE-FM) for (a)
computing an atlas (template) of di"usion tensor images
acquired from human brains (Section 4.2.1) and (b) com-
puting the mean connectivity networks from resting state
functional MRI (fMRI) measurements (Section 4.2.2). The
former experiment tests the framework for the accuracy
by varying the spatial dimension, p, of the images (i.e., the
number of voxels), and the latter tests the accuracy under
varying size, N, of the SPD matrices.

(v) The proposed shrinkage estimator for detecting group dif-
ferences is able to identify the regions that are signi!cantly
distinct between patients with Parkinson’s disease and con-
trol subjects; see Section 4.2.3.

Details of these experiments are presented in the following
paragraphs.

4.1. Synthetic Data Experiments

We present three synthetic data experiments here to show that
the proposed shrinkage estimator, SURE.Full-FM, outperforms
the sample FM and SURE-FM under varying sample sizes and
sizes of SPD matrices and that the shrinkage estimates of the
group di"erences can accurately localize the regions that are
signi!cantly di"erent between the two groups.

4.1.1. Comparison Between SURE.Full-FM and Competing
Estimators

Using generated noisy SPD !elds (P3) as data, we now
present performance comparisons of three estimators of M: (a)
SURE.Full-FM, which is the proposed shrinkage estimator, (b)
SURE-FM, proposed by Yang and Vemuri (2019) which assumes
that the covariance matrices are known and (c) the MLE, which
is denoted by FM.LE (since by Proposition 1 it is the FM based
on the Log-Euclidean metric). The synthetic data are generated
according to (5). Speci!cally, we set µ = I3, & = I6, and
n = 10, and we vary the variance λ and the degrees of freedom
parameter ν of the prior distribution as follows: λ = 10, 50, and
ν = 15, 30. Figure 1 shows the relationship between the average
loss (averaged over m = 1000 repetitions) and the spatial
dimension p under varying conditions for the three estimators.
Note that, since the covariance matrices "i’s are unknown in
our synthetic data experiment and (n − 1)−1Si is an unbiased
estimate for "i, the Ai’s in (4) can be unbiasedly estimated by
[(n−1)q]−1trSi. As is evident from Figure 1, for large λ the gains
from using SURE.Full-FM are greater. This observation is in
accordance with our intuition, which is that for large λ, the Mi’s
are clustered, and it is bene!cial to shrink the MLEs of the Mi’s
toward a common value. The main di"erence between SURE-
FM and SURE.Full-FM is that the former requires knowledge
of the "i’s and in general such information is not available,
and estimates for the "i’s are needed to compute the SURE-
FM. Hence, the performance of SURE-FM depends heavily on
how good the estimates for the "i’s are. In our synthetic data
experiment, we consider the unbiased estimate Âi = [(n −
1)q]−1trSi for SURE-FM. In this case, the prior mean for "i is
E("i) = (ν − q − 1)−1Iq, for which the assumption "i = AiI
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Figure 1. Average loss for each of the three estimators. Results for varying λ and degrees of freedom parameter ν are shown across the columns and rows, respectively.
Note that in the bottom two panels, the curve corresponding to FM.LE is essentially the same as the one for SURE.FM, but is barely visible.

Figure 2. Average loss for each of the three estimators. The left panel assumes µ = diag(2, 0.5, 0.5) and & = I and the right panel assumes µ = I and &ij = 0.5|i−j| .

seems reasonable. For large ν, the generated "i’s are far from
being identity matrices, which violates the assumption (this can
be observed in Figure 1, where we see that SURE-FM is almost
identical to FM.LE for ν = 30).

On the other hand, we can !x λ and ν to see how di"erent
choices of µ and & a"ect the performance of our shrinkage
estimator SURE.Full-FM. To do this, we !x n = 10, λ = 10,
and ν = 15 (so that we can compare with the top-le% panel of
Figure 1). We consider µ = diag(2, 0.5, 0.5) and &ij = 0.5|i−j|.
The results are shown in Figure 2. The top-le% panel of Figure 1
shows that when µ = I and & = I, there is no di"erence
between SURE-FM and SURE.Full-FM, but Figure 2 shows
that when one of µ and & is not the identity, our shrinkage
estimator outperforms SURE-FM. For di"erent choices of λ and
ν, the improvement is more signi!cant, following the trend we
observed in Figure 1. Note that the chosen hyperparameters
here, λ = 10, 50 and ν = 15, 30, are extreme. What we aim
to show with this particular choice in the simulation is that the
SURE-FM can perform either as well as the SURE.Full-FM or as
poorly as the MLE. That is, the performance of SURE.Full-FM
is the best possible performance that SURE-FM can achieve.

4.1.2. Performance Comparisons as Matrix Size Varies
In this section, we present some experiments to assess the
improvement when we vary the size of the matrices. In par-
ticular, we consider the size N of the SPD matrices increasing
from 10 to 100, and we !x p = 10, n = 5, µ = I3, and & =
Iq = IN(N+1)/2 throughout the experiments. The results are
shown in Figure 3. As we can see from the !gure, although the

average loss increases with increasing size (of the SPD matrices),
the improvement of our estimator over the competitors is more
signi!cant for large N.

4.1.3. Di!erences Between Two Groups of SPD-Valued
Images

In this section, we demonstrate the method proposed in Sec-
tion 3.3 for evaluating the di"erence between two groups of
SPD-valued images. For this synthetic data experiment, we use
P2, the manifold of 2×2 SPD matrices, since it is easy to visualize
these matrices. For the visualization, we represent each 2 × 2
SPD matrix of the SPD-valued image by an ellipse with the two
eigenvectors as the axes of the ellipse and the two eigenvalues
as the width and height along the corresponding axes. The data
are created as follows. Given nk, M(k)

i , σ 2
i , k = 1, 2, i = 1, . . . , p,

generate

Xij
ind∼ LN(M(1)

i , σ 2
i I), j = 1, . . . , n1,

Yij
ind∼ LN(M(2)

i , σ 2
i I), j = 1, . . . , n2.

We generate n1 = n2 = 30 P2-valued images for the two groups,
and the size of each P2-valued image is 20×20, which gives p =
20×20 = 400. For the variances σ 2

i , we consider a low-variance
scenario σ 2

i
iid∼ U(0.1, 0.3) and a high-variance scenario σ 2

i
iid∼

U(0.3, 0.8). The means M(k)
i are depicted visually in Figure 4 (in

the form of images with ellipses instead of gray values at each
pixel), and the region in which the means are di"erent is the
top-right corner, containing a quarter of the pixels; this is the
“ground truth” data.



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 9

Figure 3. Average loss (normalized by N2) for each of the three estimators. Results for varying λ and degrees of freedom parameter ν are shown across the columns and
rows, respectively.

Figure 4. The mean P2-valued images M(k)
i , k = 1, 2, used to generate random P2-valued images for the two groups. The vertical ellipse represents the matrix diag(0.3, 1)

and the horizontal ellipse represents the matrix diag(1, 0.3).

As described in Section 3.3, we !rst compute the Hotelling
T2 statistic from {Xij}n1

j=1 and {Yij}n2
j=1 for each i and transform

each of them to an F statistic. We then have p noncentral F
statistics, fi

ind∼ Fν1,ν2,λi , i = 1, . . . , p, where ν1 = q = 3,
and ν2 = n1 + n2 − 2 − q − 1 = n1 + n2 − 6. With the
resulting F statistics, we can apply the algorithm described in
Section 3.3 to estimate the noncentrality parameters (at each
location), and for the estimation of the marginal log likelihood,
we adopt Lindsey’s method and !t a polynomial of degree K = 5
to the log-likelihood lν1 . We have experimented using di"erent
values of K, and we found that the results are robust to changes
in K, at least for relatively small K. In our experiments, we
set n1 = n2 = 30. As we can see from Figure 4, we expect
the method to yield large values on the top-right corner of
the image and small values for the rest of the matrix-valued
image (!eld). We compare the proposed estimator λ̂Tweedie

i to the
estimator λ̂MOM

i = max
( ν1(ν2−2)

ν2
fi − ν1, 0

)
, which is obtained

by the method of moments (MOM) and truncated at 0, and also
compare them for di"erent σ 2

i ’s. We compare with the MOM
estimator instead of the MLE for two reasons: (i) the MLE for
the noncentrality parameter of the noncentral F distribution is
expensive to compute, and (ii) the MOM is commonly used as
a standard for comparison, see for example Kubokawa, Robert,
and Saleh (1993). Figure 5 gives the results. As we can see,

the density of the Tweedie-adjusted estimates concentrates in a
smaller region when compared to that of the MOM estimates.
This shows that the Tweedie-adjusted estimator allows us to
capture the true region of di"erence better than does the MOM
estimator, especially for small σ 2

i ’s. This is due to the shrinkage
e"ect in Tweedie’s formula.

4.2. Real Data Experiments

In this section, we present three real data experiments involving
dMRI and rs-fMRI datasets. The dMRI data we use are pub-
licly available via https://pdbp.ninds.nih.gov/our-data. dMRI is a
diagnostic imaging technique that allows one to non-invasively
probe the axonal !ber connectivity in the body by making the
magnetic resonance signal sensitive to water di"usion through
the tissue being imaged. In dMRI, the water di"usion is fully
characterized by the probability density function of the displace-
ment of water molecules, called the ensemble average propa-
gator (EAP) (Callaghan 1993). A simple model that has been
widely used to describe the displacement of water molecules is a
zero mean Gaussian; its covariance matrix de!nes the di"usion
tensor and characterizes the di"usivity function locally. The
di"usion tensors are 3×3 SPD matrices and hence have 6 unique
entries that need to be determined. Thus, the di"usion imaging

https://pdbp.ninds.nih.gov/our-data
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Figure 5. Comparison of densities of the proposed shrinkage estimates of the noncentrality parameters and those of the MOM estimates. The green dashed lines indicate
the true noncentrality parameters.

technique employed in this case involves the application of at
least 6 di"usion sensitizing magnetic gradients for acquisition of
full 3D MR images (Basser, Mattiello, and LeBihan 1994). This
dMRI technique is called di"usion tensor imaging (DTI). Some
practical techniques for estimating the di"usion tensors and
the population mean of di"usion tensors have been reported
in Wang and Vemuri (2004), Chefd’Hotel et al. (2004), Fletcher
and Joshi (2004), Alexander (2005), Zhou et al. (2008), Lenglet,
Rousson, and Deriche (2006), and Dryden, Koloydenko, and
Zhou (2009).

DTI has been the de facto noninvasive dMRI diagnostic
imaging technique of choice in the clinic for a variety of neuro-
logical ailments. A%er !tting/estimating the di"usion tensors at
each voxel, scalar-valued or vector-valued measures are derived
from the di"usion tensors for further analysis. For instance,
fractional anisotropy (FA) is a scalar-valued function of the
eigenvalues of the di"usion tensor and it was found that FA was
reduced in the neuro-anatomical structure called the Substantia
Nigra in patients with Parkinson’s disease compared to control
subjects (Vaillancourt et al. 2009). In Schwartzman, Dougherty,
and Taylor (2010) the authors used the full tensor information,
and we adopt the same strategy here since the full tensor cap-
tures both the eigenvalues and eigenvectors, which can prove to
be much more useful (compared to FA or other scalar measures)
in order to assess the changes caused by pathologies to the
underlying tissue micro-architecture revealed by dMRI.

4.2.1. Estimation of the Motor Sensory Tracts of Patients
with Parkinson’s Disease

In this section, we demonstrate the performance of SURE.Full-
FM on the dMRI scans of human brain data acquired from
50 patients with Parkinson’s disease and 44 control (normal)
subjects. The dMRI acquisition parameters were as follows:
repetition time = 7748 ms, echo time = 86 ms, $ip angle = 90◦,
number of di"usion gradients = 64, !eld of view = 224 × 224
mm, in-plane resolution = 2 mm isotropic, slice-thickness =
2 mm, and SENSE factor = 2. All the dMRI data were pre-
registered into a common coordinate frame prior to any further
data processing.

The motor sensory area !ber tracts (M1 !ber tracts) are
extracted from each patient of the two groups using the template
described in Archer, Vaillancourt, and Coombes (2017), which

Table 1. Average loss for the three estimators in estimating the population FM for
varying n (with the standard errors in parentheses).

n 10 20 50 100

FM.LE 0.774(0.03) 0.405(0.01) 0.159(0.005) 0.079(0.002)
SURE-FM 0.772(0.03) 0.404(0.01) 0.159(0.005) 0.080(0.002)
SURE.Full-FM 0.388 (0.02) 0.169 (0.003) 0.094 (0.002) 0.057 (0.001)

Bold values indicate the best results among the reported methods in the table.

Table 2. Average loss for the two estimators, MLE and SURE.Full-Cov, in estimat-
ing the population covariance matrices for varying n (with the standard errors in
parentheses).

n 10 20 50 100

MLE 123.69(5.71) 66.80(2.69) 25.54(0.91) 12.91(0.41)
SURE.Full-Cov 111.13 (5.01) 63.27 (2.53) 24.99 (0.88) 12.80 (0.40)

Bold values indicate the best results among the reported methods in the table.

is freely available from http://lrnlab.org. The size (length) of each
tract is 33 voxels for the le% hemisphere tract and 34 voxels for
the right hemisphere tract. Di"usion tensors are then !t to each
of the voxels along each of the tracts to obtain p = 33 (p = 34)
3 × 3 SPD matrices. We then compute the Log-Euclidean FM
tract for each group over the patients, that is, the FM tract
here also has 33 (34) di"usion tensors along the tract. We will
use these FMs computed from the full population for each
group as the “ground truth”; thus, the underlying distribution
in this experiment is the empirical distribution formed by the
observed data, that is, the 33 (34) SPD matrices. Then, we
randomly draw a subsample of size n = 10, 20, 50, 100, with
replacement, from each group and compute the SURE.Full-FM
(our proposed estimator) and the two competing estimators
(FM.LE and SURE-FM, respectively) for each group and for
each subsample size n. An explanation of why sampling is done
with replacement is given in Section 5 of the supplementary
materials. We compare the performance of the di"erent esti-
mators by the Log-Euclidean distance between the estimator
and the “ground truth” FMs. The entire procedure is repeated
for m = 100 random draws of subsamples and the average
distances are reported in Table 1. Since our proposed shrinkage
estimator jointly estimates the FM and the covariance matrices,
we also compare our covariance estimates, denoted SURE.Full-
Cov, with the MLE of the covariance matrices, that is, the sample
covariance matrices. The results are shown in Table 2.

http://lrnlab.org
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As is evident from Table 1, the SURE.Full-FM outperforms
the competing estimators under varying size of subsamples.
Also note that, as the sample size increases, the improvement
is less signi!cant, which is consistent with the observations on
the synthetic data experiments in Section 4.1. Recall that in
Section 4.1.1, the SURE.FM and the SURE.Full-FM perform
equally well when the assumption "i = AiI is not violated
severely. For real data, it is impossible to check this assumption
and it is unlikely to be true. Hence, in this real data experi-
ment, SURE.Full-FM outperforms SURE-FM by a large margin.
The improvement of the proposed shrinkage estimator for the
covariance matrices over the MLEs is evident from Table 2.
Another important issue is that for real data the independence
assumption is unrealistic. For this reason we have described a
simple simulation study to see how the dependence a"ects the
performance of our estimator; see Section 6.2 of the supplemen-
tary materials.

4.2.2. Simultaneous Estimation of Resting State Functional
MRI Connectivity Networks

In this section, we present an experiment on simultaneous
estimation of connectivity networks from resting state func-
tional MRI (rs-fMRI). Brie$y, rs-fMRI is an MRI technique to
measure human brain activity in the resting state, and a (func-
tional) connectivity network computed from rs-fMRI measure-
ments describes how di"erent regions of the human brain are
correlated functionally. Van Den Heuvel and Pol (2010) give
a nice review on connectivity network analysis for rs-fMRI
and its applications. There is a large literature on the rela-
tionship between disruption in functional connectivity (dis-
connectivity) and neurologic and psychiatric brain disorders,
including Alzheimer’s disease, depression, and attention de!cit
hyperactivity disorder (ADHD) (Van Den Heuvel and Pol 2010,
p. 529). Hence, functional connectivity networks have served as
an important tool in such studies.

A functional connectivity matrix is constructed as follows.
At each region of the brain, the blood oxygenation level
dependent (BOLD) signal, which is a scalar measure of the
neuronal activity in the region, can be detected by an MR
scanner. Over the course of time, we obtain a time sequence
of BOLD signals b = [b1, . . . , bn], where n is the number
of time points, at each region of the brain. To describe the
connectivity between two regions, we compute the correlation
between the two time sequences of BOLD signals from the
two regions. In other words, the connectivity between the
two regions measures how in-sync or out-of-sync the two
regions are in terms of the BOLD signals. For N regions,
the connectivity matrix stores the pairwise connectivity
(correlation) of each pair of regions. Hence, a connectivity
network is essentially a correlation matrix. To apply the
results discussed in Section 3, we consider the problem of
simultaneous estimation of the connectivity networks from
di"erent rs-fMRI studies. We use the pre-processed networks
from the USC Multimodal Connectivity Database (http://
umcd.humanconnectomeproject.org/) (Brown et al. 2012).
The datasets we used are ADHD200_CC200, PRURIM, and
UCSF_MAC_PSP. There are in total seven groups emanating
from these three datasets (ADHD200_CC200: Typically

Table 3. Average loss for the three estimators in estimating the population FM for
varying sub-network size N (with the standard errors in parentheses).

N 3 5 7 10

FM.LE 0.409(0.01) 0.738(0.01) 1.387(0.012) 1.969(0.016)
SURE-FM 0.296(0.005) 0.641(0.007) 1.238(0.009) 1.854(0.015)
SURE.Full-FM 0.246 (0.006) 0.534 (0.006) 0.977 (0.006) 1.581 (0.012)

Bold values indicate the best results among the reported methods in the table.

Developing, ADHD-Combined, and ADHD-Inattentive;
PRURIM: Healthy and Psoriasis; UCSF_MAC_PSP: Control
and Progressive Supranuclear Palsy), so here p = 7. (Because
7 is not large, our asymptotic optimality results do not apply;
however, it is reasonable to expect that shrinkage gives an
improvement here in the same way that shrinkage gives an
improvement in the normal means problem when p > 2.)

Since the networks are from di"erent studies targeting di"er-
ent disorders, the sizes of the connectivity networks and the sizes
of the studies are all di"erent. The sizes of the connectivity net-
works in these three datasets are 190×190 (ADHD200_CC200),
116 × 116 (PRURIM), and 27 × 27 (UCSF_MAC_PSP). Thus,
we extract an N × N (where N is !xed across all networks
from di"erent datasets) highly correlated sub-network from
each network using a hierarchical clustering algorithm (Rokach
and Maimon 2005) and the experiments are based on these sub-
networks rather than on the original networks. As in the proce-
dure in the previous section, we treat these (sub-)networks as the
population and randomly draw subsamples (with replacement)
from each group. Then we compute the average loss for the three
estimators. The entire procedure is repeated m = 1000 times
and the results are presented in Table 3. As was seen in Sec-
tion 4.1.2, the improvement of our estimator over the competi-
tors is more signi!cant for large sub-network sizes. Note that in
contrast to our experiment with synthetic data in Section 4.1.2,
here we cannot keep increasing N: the maximum value is 27
because the connectivity network for the UCSF_MAC_PSP
dataset is 27 × 27. This experiment demonstrates versatility
of our shrinkage estimator to application domains beyond the
analysis of dMRI datasets.

4.2.3. Tweedie-Adjusted Estimator as an Imaging Biomarker
Finally, we apply the shrinkage estimator proposed in Sec-
tion 3.3 to identify the regions that are signi!cantly distinct
in di"usional properties (as captured via di"usion tensors)
between patients with Parkinson’s disease and control subjects.
In this experiment, the dataset consists of DTI scans of 46
patients with Parkinson’s disease and 24 control subjects. To
identify the di"erences between the two groups, we use the DTI
of the whole brain, which contains p = 112 × 112 × 60 voxels,
without pre-selecting any region of interest. The di"usion ten-
sors are !t at each voxel across the whole brain volume. The goal
of this experiment is to see if we are able to automatically identify
the regions capturing the large di"erences between the Parkin-
son’s disease group and control groups and qualitatively validate
our !ndings against what is expected by expert neurologists. In
this context, Prodoehl et al. (2013) observed that the region most
a"ected by Parkinson’s disease is the Substantia Nigra, which is
contained in the Basal Ganglia region of the human brain.

A%er computing both the Tweedie-adjusted estimates and
the MOM estimates of the noncentrality parameters, we select

http://umcd.humanconnectomeproject.org/
http://umcd.humanconnectomeproject.org/
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Figure 6. Di!erences between scans of Parkinson’s disease group and those of the control group are superimposed on a dMRI scan of a randomly chosen Parkinson’s
disease patient and indicated in red.

the voxels with the largest 1% estimates of the non-centrality
parameters and mark those voxels in bright red. (There are other
ways to determine the threshold for the selection, for example
by using the false discovery rate (FDR) in hypothesis testing
problems. However, this is beyond the scope of this article and
we refer the reader to Schwartzman (2008) and Schwartzman,
Dougherty, and Taylor (2010) for interesting work on FDR
analysis for DTI datasets.) These voxels are where the large
di"erences between Parkinson’s disease and control groups are
observed. The results are shown in Figure 6. For better visual-
ization, we threshold the estimates by the top 1%. To take into
account the spatial structure, we apply a 4 × 4 × 4 average mask
to smooth the results. This smoothing may also be achieved by
incorporating a spatial regularization term in the expression for
SURE (8); however, the ensuing analysis becomes much more
complicated and will be addressed in future work.

From the results, we can see that the shrinkage e"ect of
our Tweedie-adjusted estimate successfully corrects selection
bias and produces a more accurate identi!cation of the a"ected
regions. Our method is able to capture the Substantia Nigra,
which is the region known to be a"ected by Parkinson’s disease.
Notably, our method did not point to the apparently spurious and
isolated regions selected by the MOM estimator (the tiny red spots
in Figure 6(a)). We also mention that past research using FA-
based analysis did not report the Internal Capsule as a region
a"ected by Parkinson’s disease. We suspect that this discrepancy
is due to the fact that FA discards the directional information
of the di"usion tensors while we use the full di"usion tensor
which contains the directional information. We plan to conduct
a large-scale experiment in our future work to see if this obser-
vation continues to hold.

5. Discussion and Conclusions

In this work, we have presented shrinkage estimators for the
mean and covariance of the Log-Normal distribution de!ned on
the manifold PN of N × N SPD matrices. We also showed that
the proposed shrinkage estimators are asymptotically optimal
in a large class of estimators including the MLE. The pro-
posed shrinkage estimators are in closed form and resemble
(in form) the James–Stein estimator in Euclidean space Rp. We
demonstrated that the proposed shrinkage estimators outper-
form the MLE via several synthetic data examples and real data

experiments using di"usion tensor MRI and rs-fMRI datasets.
The improvements of the proposed shrinkage estimators are
signi!cant especially in the small sample size scenarios, which
is very pertinent to medical imaging applications. Further, we
also empirically demonstrated that the improvement in the
distribution parameter estimates is achieved with increasing size
of the SPD matrices as well.

Our work reported here is however based on the Log-
Euclidean metric, and one of the drawbacks of this metric is
that it is not invariant under a#ne transformations, which may
be a desirable property in some applications. Unfortunately, the
derivation of the shrinkage estimators under the a#ne-invariant
metric is challenging due to the fact that there is no closed-form
expression for some elementary quantities such as the sample
FM, which makes it almost impossible to derive the corre-
sponding closed form for the SURE. Our future research e"orts
will focus on developing a general framework for designing
shrinkage estimators that are applicable to general Riemannian
manifolds.

For applications in localizing the regions of the brain where
two groups di"er, our approach already works well, but it can
potentially be improved if we take into account the fact that
some features of neighboring voxels within a region are close.
For instance, M(k)

i and M(k)
j should be close if voxels i and j are

close. Currently, our approach is to apply a spatial smoother to
the Tweedie-adjusted estimates. Instead, the improvement can
be achieved by imposing regularization constraints, for example,
a spatial process prior, in the proposed framework. However,
the ensuing analysis becomes rather complicated and will be the
focus of our future e"orts.

Supplementary Materials

The supplementary materials include the proofs of Theorem 3 and 4, the
detailed descriptions of the datasets used in Section 4.2, and additional
simulation studies.
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