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Abstract

De-homogenization is becoming an effective method to significantly expedite the design of high-resolution multiscale
structures, but existing methods have thus far been confined to simple static compliance minimization problems. There are
two critical issues in accommodating general design cases: enabling the design of unit-cell orientation and using free-form
microstructures. In this paper, we propose a generalized de-homogenization method to address these two issues, significantly
increasing its applicability in various multiscale design cases. Instead of using conventional square cells with rectangular
holes, we devise a parameterized microstructure composed of bars in different directions to provide more diversity in stiffness
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while retaining geometrical simplicity. The microstructural geometry-property relationship is then surrogated by a multi-
layer neural network to avoid costly homogenization analysis during optimization. A Cartesian representation of the rotation
angle is incorporated into homogenization-based optimization to design the unit-cell orientation. Corresponding high-resolution
multiscale structures are obtained from the homogenization-based designs through a conformal mapping constructed with
sawtooth function fields. This allows us to morph complex microstructures into an oriented and compatible tiling pattern, while
preserving the local homogenized properties. To demonstrate our method with a specific application, we optimize the frequency
response of structures under harmonic excitations within a given frequency range. It is the first time that the de-homogenization
framework, enhanced by the sawtooth function, is applied for complex design scenarios beyond static compliance minimization.
The examples illustrate that high-resolution multiscale structures can be generated with high efficiency and much better dynamic
performance compared with the macroscale-only optimization. Beyond frequency response design, our proposed framework can
be applied to general static and dynamic problems.

©2022 Elsevier B.V. All rights reserved.

Keywords: Multiscale topology optimization; Functionally graded structure; Orientation design; Data-driven design

1. Introduction

Recent advances in computational and manufacturing capability have fueled the development of topology
optimization methods for multiscale structures [1]. In multiscale design, the structure is optimized at both macro-
and micro-scales to provide unprecedented flexibility in meeting spatially varying properties, leading to the desired
structural performance. However, multiscale structure design suffers from computational challenges that deprive it of
practical applications, including exhaustive computational cost, high-dimensional design variables, and unconnected
microstructures. These issues become even more critical for design cases involving dynamic, nonlinear, and
multi-physics behaviors. The aim of this study is thus to develop a new data-driven approach that can mitigate
these computational challenges to expedite multiscale topology optimization without much sacrifice to its design
flexibility.

Existing multiscale topology optimization methods can be largely classified into four categories based on the
tiling patterns they assume for the microstructures, i.e., periodic, aperiodic, multi-domain, and functionally graded
designs. Periodic designs assume the full structure is assembled by the same microstructure, enabling a highly
efficient design process at the cost of suboptimal designs [2—6]. In contrast, aperiodic designs associate each region
in the discretized full structure with an independent microscale optimization, which can significantly increase the
design freedom to obtain better design performance [7,8]. However, the large number of microstructures to be
designed, expensive multiscale performance calculations, and a nested optimization scheme lead to an unaffordable
computational cost. Also, it is difficult to ensure compatible neighboring microstructures in the aperiodic tiling,
which is critical for structural integrity and manufacturability [9,10]. Multi-domain designs divide the full structure
into several subregions of periodic microstructures, compromising between the efficiency of periodic designs
and the design flexibility of aperiodic designs [11-15]. The compatibility between microstructures is considered
in the optimization by prespecifying connectors or adding extra constraints [12,16]. Nevertheless, multi-domain
designs are often confined to a small number of subregions in order to keep computational costs within an
acceptable range. As an alternative to reach a trade-off between periodic and aperiodic designs, functionally graded
designs assume microstructures within the full structure share the same architecture but with varying geometrical
parameters [17-20]. A subsequential advantage brought by this assumption is that one could leave out the microscale
details during the optimization and directly optimize the spatial distribution of geometrical parameters at the
macroscale. After optimization, the corresponding multiscale structure can be obtained by filling elements in the
macroscale design with microstructures specified by the optimized parameters. The former optimization process is
called homogenization-based design while the latter microstructure tiling process is known as de-homogenization.
Moreover, this type of design is amenable to the data-driven framework, which exploits an efficient surrogate
model to replace the expensive on-the-fly homogenization. The functionally graded tiling could also ensure smooth
transitions between neighboring microstructures for better compatibility. To further increase the design freedom,
multiple microstructure architectures can be considered by integrating discrete material optimization [21-23] or
latent-variable mapping [24-26]. Despite the promising results, most existing functionally graded designs fail to
take into account the change of microstructure orientation, which significantly restricts the range of achievable
properties and therefore leads to suboptimal performance.
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The major obstacle in designing graded structures with oriented microstructures lies in the de-homogenization
process. When the unit-cell orientations vary across the macroscale structure, the corresponding microstructures
need to be rotated accordingly to assemble the full structure. As a result, neighboring microstructures might not
be connected with each other after rotation, making the multiscale structure fail to attain the designed performance
and even become unmanufacturable. In a major advance in 2008 [27], Pantz and Trabelsi focused on square
microstructures with rectangular holes and proposed a method to project a homogenized design to a multiscale
oriented structure on a high-resolution mesh. They achieved this de-homogenization process via implicit mapping
functions constructed through least-squares minimization. Later, Groen and Sigmund [28] simplified this de-
homogenization process by introducing the connected component labeling method to obtain a consistent orientation
field, and relaxing the optimization problem for the mapping function. This simplified method was further extended
to enable the efficient design of 3D multiscale structures [29,30]. Meanwhile, several modifications have been
proposed to address singularity issues in orientation field design that would otherwise cause de-homogenization
to fail [31,32]. Although the de-homogenization method is appealing, it is still confined to simple static compliance
minimization problems [33,34]. The reason is that it can only handle square cells with rectangular holes, and
simply makes the unit-cell orientation align with the principal strain direction. While these designs are optimal
for compliance minimization given a single loading, they would become suboptimal for general design cases, such
as multi-loading, dynamic response optimization, and multi-physics problems.

In the last few years, attempts have been made to incorporate orientation design (unit-cell orientation as
optimization variables) and free-form microstructure mapping into de-homogenization. Kim and Lee et al. [35,36]
developed an explicit de-homogenization method that allows the design of unit-cell orientation, instead of simply
aligning it with the principle strain direction. Similar to the texture mapping process, Groen [37] directly used cosine
fields to construct the mapping functions in de-homogenization for complex microstructures that could be described
as a parallelogram or parallelepiped. However, this mapping is not conformal (angle-preserving), which will lead
to the deviation of structural performance from its homogenization-based design. Geoffroy [38] devised stochastic
microstructures with a special parameterization scheme to allow the direct use of de-homogenization, which is not
applicable for general microstructure designs. Meanwhile, Tamijani et al. [39] decomposed the complex unit-cell
microstructure into Fourier series and then constructed a mapping function for each of the spatial harmonics. While
it allows the mapping of free-form microstructures, it needs to calculate a large number of mapping functions (up
to 127 in [39]), which is complex and time-consuming. Kumar et al. [40] constructed a finite element model to
solve the oriented mapping problem for complex microstructures, which overly complicates the implementation
process. As a result, no one, to the best of our knowledge, has successfully integrated orientation design and
free-formed microstructure mappings with de-homogenization to enable efficient multiscale design for applications
beyond simple static compliance minimization. Developing a method that can accomplish this is the goal of this
study.

As shown in Fig. 1, we propose a generalized de-homogenization method to remove existing restraints on the
unit-cell geometries, orientation and applicability, breaking new ground for de-homogenization in a broad range of
applications. The backbone of the proposed method is a novel sawtooth-function-based conformal mapping that can
generate a compatible microstructure tiling for any given unit-cell orientation and any complex microscale geometry.

Specifically, the proposed method differentiates itself from existing data-driven multiscale design methods with
the following key technical innovations:

e Unit-cell designs with diverse topologies: With the proposed method, we are able to use unit cells with
any topologies in de-homogenization. As a demonstration in this study, we devise a parameterized unit-cell
composed of bar groups aligned in different directions to offer a wide range of properties that are unachievable
with conventional square cells with rectangular holes. This parameterized unit-cell is used to construct a large
database with precomputed homogenized properties, i.e., stiffness tensor and volume fraction, from which
a neural network can be trained to surrogate the geometry-property relations to accelerate the later design
process.

e Homogenization-based optimization with unit-cell orientation designs: Instead of simply aligning unit
cells with the principal strain direction, we introduce a Cartesian representation of the rotation angle to
allow the design of unit-cell orientation. By integrating the constructed surrogate model, we achieve a highly
efficient homogenization-based optimization, with both geometrical parameters and unit-cell orientation as
design variables.
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Fig. 1. Overview of the proposed framework.

e De-homogenization with conformally mapped free-form unit cells: We propose to use sawtooth function
fields [41] to construct a conformal mapping from free-form rectangular unit-cells to a microstructure
tiling with prescribed orientations. This sawtooth-function-based mapping ensures good connections between
oriented microstructures and can preserve the original homogenized properties due to its unique confor-
mality. It extends the de-homogenization process by accommodating spatially varying, complex unit-cell
microstructures.

e Applications beyond static compliance optimization: While existing de-homogenization is confined to
simple static compliance optimization, the proposed framework is applicable to more complicated design
applications. We find it particularly useful for frequency response optimization, which can improve both the
efficiency and performance of the design process. Minimizing the frequency response of a structure under a
given excitation is important for engineering design to suppress undesirable vibrations [42—44]. Existing TO
methods for frequency response optimization mainly focus on macroscale designs and efficient reduced-order
models to accelerate the frequency response calculation [43,45-51]. Due to the exhaustive computational cost,
few studies have realized multiscale TO for frequency response optimization, and the solutions are confined to
periodic [4,52,53] and functionally graded designs with fixed unit-cell orientation [19]. Moreover, unlike static
compliance minimization, the structure in frequency response optimization will undergo different distortion
states within the excitation frequency range of interest. Therefore, square unit-cells with rectangular holes
aligned with the principal strain direction, which are adopted in most de-homogenization methods, might
not be optimal or even not applicable for frequency response optimization. In this study, through multiple
design cases, we demonstrate that the proposed data-driven method incorporated with sawtooth-function-
based de-homogenization can provide superior efficiency and flexibility that can benefit frequency response
optimization. It successfully generates high-resolution multiscale structures with efficiency comparable to
single-scale macroscale design while achieving better dynamic performance. To the authors’ knowledge, this
is the first time that the de-homogenization method has been applied to design applications other than static
compliance optimization. With the enhanced flexibility, the proposed method can also accommodate other
general static and dynamic problems beyond frequency response optimization.

2. Microstructure database construction and surrogate modeling

To meet the requirements for general design cases, diverse microstructures are desirable to cover a wide range of
mechanical properties. Meanwhile, microstructures should be able to connect with each other to ensure boundary
compatibility and manufacturability. Herein, we present a six-bar parameterized model, as shown in Fig. 2(a),
to describe unit-cell microstructures in the multiscale design. Those bars are divided into four groups (indicated
by different colors in Fig. 2(a)) based on their orientation, each assigned with an independent design parameter,
i.e., x| through x4. We choose this six-bar microscale representation because it offers a low-dimensional geometrical

4
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Fig. 2. Parameterization of the unit-cell microstructure, (a) Proposed six-bar model with bar groups colored differently, (b) representative
microstructures and their (c) corresponding normalized modulus surfaces.
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Fig. 3. Property space of the generated microstructure database, independent entries of the stiffness tensor are normalized with respect to
the Young’s modulus of the constituent material.

representation that can form a wide range of microstructure designs while ensuring boundary compatibility. To
illustrate this, we show some representative microstructures generated by the six-bar model in Fig. 2(b). These
microstructures have various shapes and topologies, and are guaranteed to have a compatible connection with each
other. Note that the square unit cell with a rectangular hole, which is commonly used in existing de-homogenization,
is just a degenerated case of the proposed 6-bar model where two of the bars have zero thickness. The flexibility in
geometries brings diversity in properties (stiffness tensors), as demonstrated in the corresponding modulus surfaces
in Fig. 2(c). By combining bars in different sizes and directions, one could obtain various symmetry types and
directional characteristics of the microstructures. It should be emphasized that, although a six-bar representation
is adopted here, the later modeling and optimization methods proposed in this study can also accommodate other
rectangular cells with free-form geometries that are self-connected and properly parameterized.

We generate 14* = 38416 microstructures by sampling 14 width values, i.e., x;, for each group of bars.
These microstructures are discretized into a 100 x 100 pixel matrix, with zero and one to represent void
and solid, respectively. Effective stiffness tensors of these microstructures are then calculated via energy-based
homogenization. The constituent material has Young’s modulus Ey = 210GPa and Poisson’s ratio vy = 0.3.
The property space spanned by independent entries of the stiffness tensor (in Voigt notation) and volume fraction,
ie., Ei1, Ep, E13, Ex, Er3, Esz and p, is shown in Fig. 3. From the figure, it can be noted that the constructed
microstructure database covers a wide range of mechanical properties, which will benefit our later multiscale
optimization with better macroscale performance.

Since numerous on-the-fly homogenizations cause an unaffordable computational burden, a surrogate model
is needed to efficiently approximate the relation between microscale geometrical parameters (xj, x2, X3, X4) and
corresponding effective properties (Eq1, E12, E13, E», E»>3, E33 and p). Herein, we opt for a multi-layer neural
network due to its excellent capability in handling nonlinear relations and large datasets, as evident in multiple
existing works [9,10,54-56]. As shown in Appendix A, the neural network is composed of four hidden layers with
tanh activation functions, with a gradient vector that is continuous and can be obtained analytically. We use the
scaled conjugate gradient algorithm to train the model on the constructed database divided into training (80%) and

5
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testing (20%) sets, with mean square error as the loss function. After training, the model achieves a high predictive
power, with R-squared values larger than 0.9999 on both training and testing datasets.

3. Multiscale topology optimization with oriented microstructures

3.1. Design representation

In this section, we integrate the trained neural network into the multiscale topology optimization for frequency
response. Specifically, as shown in Fig. 4, we discretize the design region {2 into a mesh #,, of four-node
quadrilateral elements, each with equal size h,,,. For each element, we need to design both the microstructure
geometry and its orientation.

For the geometry design, the four parameters defined in Fig. 2 are used as the design variables for each element to
describe its geometry, denoted as x, = [x{, x5, x5, xj]T. To avoid thin strips of solid or void in the microstructures,
we will perform filtering on the geometrical design variables during the optimization via the projection scheme
given as [28]

=at A (xye) (1= A G =y )+ (4 2) A (5 1= 7.), (1)

where H is an approximated Heaviside function:

(6. y) = S ) ®
y and 7 are parameters used to control the threshold and sharpness of the projection, respectively. We will
follow the continuation scheme in [28] to gradually increase y and t in every 30 iterations from O and 100
to 0.05 and 400, respectively. This filtering technique encourages the design variables to converge to 0, 1, or
within the range of [y, 1 — y]. By feeding the projected elemental geometrical design vectors X, into the trained
neural network, we can obtain the predicted volume fraction p, and independent entries in the stiffness tensor,
i.e., Efl, Elez, EAfS, E;z, E§3, E§3, together with their partial derivatives. Those independent entries are used to
assemble the elemental stiffness tensor Ee (in Voigt notation).

For the design of the microstructural orientation, the most straightforward method is to use the orientation angle
0. as the design variable. Despite its easy implementation, this method is strongly sensitive to the initial design. It
also suffers from ambiguity due to the 2w periodicity of 6,, which is a critical issue for the commonly used filtering
techniques in topology optimization. Therefore, instead of using a polar representation, we opt for a Cartesian
coordinate representation by introducing a 2D orientation design vector [¢,, 7.]” € [0, 1]%, as shown in Fig. 4. The
cosine and sine function of the orientation angle 6, can be given as

cos (8,) = {, = —==—,sin (0,) = fj, = ——=L=—o,

Be) =& \/ers () = 1. \/mﬂ? 3)
where & is a small constant (107%) to avoid singularities. In this way, the original orientation angle field is
decomposed into two scalar fields, which allows a continuous transition between different angles and can avoid

6



L. Wang, Z. Liu, D. Da et al. Computer Methods in Applied Mechanics and Engineering 395 (2022) 114967

the 27 ambiguity problem. The rotated stiffness tensor (in Voigt notation) corresponding to the orientation angle
6. can then be obtained by

Eo(xe, ¢oone) = T7 (Gos n)Eo(x )T o(C ne), )
where T, is the usual transformation matrix and given as
& L
T, (. ne) = f]? 4-62 ~_§eﬁe . (@)

_226776 226776 ;32 - 77]5
3.2. Topology optimization problem definition

With the proposed geometry and orientation representations, we can obtain the corresponding E, and p, to
assemble the elemental stiffness matrix k., and the elemental mass matrix m,

k. (Ee (xe, Zes 7]8)) Zf_Qe BTEeBdQ’ (6)
me (pe (x0)) = po- [q, PN N, )

where (2, is the region of the element, N is the shape function matrix for the four-node element, B is the associated
constant gradient matrix (also known as strain—displacement matrix), and py is the mass density of the constituent
material. The momentum equation of a damped structure system under external harmonic forces is thus given as

MU +CU + KU = F, (8)

where M, C and K are 2n, x 2n, global mass, damping, and stiffness matrices for the n, finite elements in the
structure, respectively. U and F are 2n, x 1 displacement vector and external force vector, respectively. K and M
can be assembled by elemental stiffness matrix k., and the elemental mass matrix m,, respectively. In this study,
we assume a Rayleigh damping for the structure, so that the damping matrix C can be expressed as

C=arM+,3rKa (9)
where «, and B, are real scalar constants. Under the harmonic excitation assumption, we could further obtain
F =Fe®, U =Uée* (10)

where i is the imaginary unit, @ is the angular frequency of the excitation, F and U are the amplitudes of the
external force and the displacement, respectively. With (10), we can rewrite (6) to be

SU=F, (11)

S=—-w’M+iwC + K, (12)

where S is known as the dynamic stiffness matrix.

The objective for frequency response optimization is to minimize the amplitude of the target response J at a
specific point or region of the structure, over a given frequency range [w;, @, ] of the excitation force. While various
forms of objective functions have been proposed, we will use the following definition of the target response J to
measure the local displacement response [46]

J(Xe, Loy melop, @) = [ ¢ (e, Loy melw) do = [ /|[UT LU |dw, (13)

where ¢ is the response value under a given frequency @ of the excitation force, U is the conjugate of U, |-| is
an operator to calculate the modulus of a complex number, and L is an 2n, x 2n, matrix with the value 1 at the
degrees of freedom in the diagonal line corresponding to the displacements of interest, and with zeros at all other
entries. In practical implementation, this objective function is usually approximated by various numerical quadrature
techniques. Herein, for simplicity, we follow [45] to divide the frequency range into n; > 1 small equal subintervals,
and then use the trapezoidal summation to approximate the integration
A 5L Aw
JE (o, o nelon, o) = 5= (@ (o oo Neln) + ¢ (Ko, Lo, Melig1), (14)
i=1

7
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i—1

ng

w, — Wy
Aw = — , (16)

ng
where Aw is the length of subintervals and w; is the endpoint of the subinterval. We can then define the topology
optimization problem as

Aw, (15)

w; = w; +

min J(xe’ é‘e’ n(.’lwlr wu)
Xe,8esne

s.t. S ((l), Xe, é‘ea nﬁ) U = F’
1 &
V* - Zlae (xE) =< Os (17)
e
e=1

0<¢,ne <1,

e .
O<xmiﬂ5xifly l=1,2,...,3,

where V, is the target solid material volume fraction of the full structure, x,,;, is a small value (107%) to avoid
singularities.

3.3. Sensitivity analysis

To solve the topology optimization problem defined in (17), sensitivity analysis is required to enable the use of
an efficient gradient-based solver, such as the method of moving asymptotes (MMA) [57]. In this section, we use
the adjoint method to derive the analytical sensitivity of the objective function. Note that the objective function can
be viewed as a weighted sum of ¢ (x,, ¢, n.|w) for a set of discrete frequency values w;. We can first derive the
sensitivity of ¢ for different @ values and then perform a weighted sum to obtain the sensitivity of J. To achieve
this, an augmented function is introduced for the original formula of ¢:

F (Xer Cev Nel®) = @ (X, & Nelw) + A (@) (SU — F) + A3 (0) (SU — F) , (18)

where A1 and A, are arbitrary vectors serving as the multipliers. Taking the derivative with respect to design variables
(taking geometrical design variable x; as an instance) on both sides of the Eq. (18), we obtain

—T — —
aF UL U 'L _\ aU 08 a8 —
=—=——+1Ts MSs) —+ A v+ —U, 19
dx¢ <2(p+1>3xf+<2(p+2>3xf+18xf +Zax; (19)
This can be transformed into
aF 08 S —
= —_v+ =1, 20
ox? 1 ox? th ox? (20)
when A; and A, satisfy the following equations:
U'L+20A"S=0,UTL +20AfS =0 1)
Since we have ST = S and real-valued ¢ and L, the solution for these two equations can be obtained as
1 — _
M=~ T LS ' A=2 22)
2¢
After substituting (22) into (20), we can obtain
0 oF 1 . 28
L4 = = ——Re UTLS71 U ) (23)
ox;  0xf %) ax;

where Re(-) selects the real part of the complex value, and % can be obtained by taking the derivative of (12)

3

aS M 9p, aC 0K OE, ;
=t i ek

= o o _ PR (24)
x Pe 0] Pe T2 0Eejk 0%
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Substituting (9) into (24), we can obtain
3

S , . IM 3p, , dK JE, jx
= (— ) — — AR _ JZ 25
dxj (mo +iva,) e 0x{ +(me hinf) /';1 IE. jx 9%} @)
where r”’ ¢ and oL, =¢J% can be readily obtained via the trained neural network. The sensitivity of the original objective
funct10n daje can then be formulated as
a7 2 Aw dp
o = Zl =R ( (e, Lo meleo) o 575 (e ne|w,+1)> (26)

The sensitivity of J with respect to the orientation design parameter ¢, and 7, can be obtained by simply replacing
dx{ with 8¢, and 97., respectively, in both Eqgs. (25) and (26). Since p. does not depend on ¢, and 7., we could
simplify % and % to be

3 ~
0S8 2 0K aEe k
= (—a) + ia),B,) . E ! @7
Gl S OBk 9
3 ~
a8 . 0K 0E, i
= (o’ +iop) 7 P~ (28)
Ne s e, jk Ne

We can then employ MMA to solve the optimization problem (17) iteratively based on the sensitivity analysis.
The sensitivity filter and PDE filter are implemented for geometrical design variables and orientation variables,
respectively, to avoid numerical instability and possible defects [58].

4. Microstructure tiling with generalized de-homogenization

A common drawback of most existing data-driven multiscale TO methods is that they do not consider the design
of unit-cell orientation [19-21]. The difficulties lie in that it is challenging to assemble microstructures in a way
that can meet the designed orientation field and preserve the effective properties. De-homogenization opens a new
venue to achieve this oriented microstructure tiling, but it was originally proposed for square cells with rectangular
holes instead of free-formed microstructures. Therefore, existing designs via de-homogenization are confined to
simple static compliance design. In this section, we propose to integrate a Sawtooth-function-based mapping into
the original de-homogenization method [27,28]. We will show that by incorporating this new mapping method, de-
homogenization can readily realize oriented tiling of complex microstructures without much change to the original
framework [28], so that it can handle general design cases, including both static and dynamic problems.

4.1. Sawtooth function

The key of the proposed generalized de-homogenization method is to replace the original cosine function with a
sawtooth function, which is commonly used in signal processing [41]. Specifically, for y € R, the sawtooth function
¥ (y) can be formulated as

v(y) = 2 -arctan (cot (%y)) , 29)

where P is a parameter to control the periodicity. As shown in Fig. 5(a), 1 stars from —1, linearly increases to 1
and then suddenly bounces back to 0, repeating this pattern with a periodicity of P. The corresponding response
curve has a sawtooth-like shape. We can generalize this function to 2D cases by defining

v (y) = —3 arctan(cot(%e(@)Ty», (30)

where y = [y, yz] € R*is a 2D position vector and e(f) is a unit vector with directional angle 6. We call e(f) a
directional vector since it guides the propagation of the 2D sawtooth function.

9
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Fig. 5. Instances for 1D and 2D sawtooth function field, (a) a 1D sawtooth function field, (b)~(d) 2D function fields with the same P =1
but with different s, e(9) of each field is marked in the lower-left inset, (e)~(g) 2D function fields with the same 6 = 0, but with different
Ps, (h) 2D function fields with the same 6 = 0, P gradually transforms from 1 to 2 as y; increases, (i) 2D function fields with the same
P =1, 6 gradually transforms from O to /4 as y; increases.

As shown in Fig. 5(b) and (c), we can easily control the propagation direction of the 2D sawtooth field by
changing the directional vector. It should be noted that the directional vector can be spatially varying, i.e., a function
of y, instead of a constant vector. For example, as demonstrated in Fig. 5(d), we realize a complex field with spatially
varying propagation directions by assigning the normalized position vector as the directional vector of the sawtooth
function. Meanwhile, we can also control the periodicity of the sawtooth field by changing P (compare Fig. 5(b)
with Fig. 5(e) and (f)). Similarly, P can also be a function of y to obtain spatially varying periodicity, as shown
in Fig. 5(g). An inherent advantage of this field-based representation is that it allows a smooth transition between
different patterns by interpolating P and e(@), as demonstrated in Fig. 5(h) and (i). Therefore, this sawtooth function
provides a simple and yet very flexible method to represent oriented fields, which will benefit the later microstructure
tiling.

4.2. Sawtooth-function-based microstructure tiling

We view microstructure tiling as a texture mapping that locally aligns with a given orientation field. To achieve
this mapping, we first generate an oriented mesh that follows the orientation vectors by combining two 2D sawtooth
function fields 1| (y) and v, (y). This oriented mesh can be used to map unit-cell designs to corresponding elements
in generating target microstructure tiling. In this subsection, we will focus on the constant orientation field to
illustrate this sawtooth-function-based microstructure mapping. The mapping will be generalized to spatially varying
orientation fields to enable de-homogenization in the next subsection.

Given a constant orientation field e(9) and spatially varying periodicity field P (y), we can define v (y) and its
orthogonal counterpart ¥, (y) as

Y (y) = — 2 -arctan <c0t (Pj(ty) elTy>> = —; -arctan (cot (szy) e(9)Ty>> , 3D
Yo (y) = 2 -arctan (cot <P7(Ty) ezTy>> = —; -arctan <cot (Pyzy)e (9 + %)T y)) . (32)

These two fields form a dyadic ¥ = (i, ), which can be viewed as a mapping ¥ (y) : R> — [—1,1]%. As
shown in Fig. 6, this dyadic representation or mapping ¥ actually creates an oriented tiling mesh composed of
quadrilateral regions that locally align with the given constant direction field e(6).
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Fig. 6. Examples of oriented tiling meshes generated by two sawtooth function fields. The contour lines for the peak values of v (y) and
Yo (y) are colored in red and blue, respectively. Those contour lines are combined to represent the quadrilateral regions in the meshes. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Illustration of microstructure tiling process via Sawtooth-function-based mapping. (a) In the mapping space y, the oriented tiling
region is divided into quadrilateral regions by (b) two sawtooth function fields (i, ¥2). (c) The points in y are mapped into a unit-cell
region ¢ by using the values of Sawtooth function fields as the coordinates, i.e., (1, ) = (Y1, ¥2). (d) In ¢, the binary values x(1,f2) of
the unit-cell can be obtained, and finally (e) mapped into the oriented tilling through x (¥1 (), ¥2 (¥)).

We can then use this mapping ¥ to morph unit-cell geometry into each quadrilateral region of the new tiling
mesh, thereby assembling an oriented microstructure tiling. To illustrate this, we define an example mapping region
as having coordinates y = (y;, y2) € R? and the unit-cell region as ¢ = (¢;, ) € [—1, 1]%. Our goal is to construct
a mapping ¥ to morph the tiling region y to the unit-cell region, i.e., to obtain £(y).

Specifically, as shown in Fig. 7(a) and (b), we first generate two sawtooth function fields ¢ via equations (31)
and (32), dividing the tiling region y into an oriented tiling mesh composed of quadrilateral regions. For any given
point A in y (Fig. 7(a) and (b)), we can map it to a point B in the unit-cell region ¢ (Fig. 7(c)) by using the sawtooth
function values ¥ (y), i.e., £ = ¥ (y). Then, let us say we are given a unit-cell geometry as a binary scalar field
x (), with 0 and 1 representing void and solid, respectively (Fig. 7(d)). The binary value of x (¢) at point B (Fig. 7(c)
and (d)) can finally be mapped back to point A in y (Fig. 7(e)). In this way, as indicated in Fig. 7(e), we essentially
construct a composite function ¥ (y) = x (¥ (y)) to generate a binary scalar field in the mapping space y. Since
the new field x (y) is still binary, we can easily obtain the final microstructure tiling (Fig. 7(e)). As demonstrated
in Fig. 8, where two example unit-cell geometries are tiled using the mappings in Fig. 6, this approach enables the
oriented tilling for any quadrilateral cells with free-form geometries. The extension of this mapping method to 3D
is straightforward by incorporating another sawtooth field in the third dimension.

Moreover, we can consider this tiling process as a two-stage composite mapping, with the first-stage mapping
from y into (#1, ;) via ¥ (y) and the second-stage mapping from (#,(y), £2(y)) to x. As illustrated in Appendix B,
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Fig. 8. Examples for oriented microstructure tiling, (a) unit-cell microstructure #1 and (b)~(e) its tiling corresponding to oriented mesh in
Fig. 5, (f) unit-cell microstructure #2 and (g)~(j) its tiling corresponding to oriented mesh in Fig. 5.

it can be proved that the first-stage mapping is conformal (angle-preserving) within the unit cell, given that P is
a positive constant and the directional vectors e; and e form an orthogonal pair. As a result, according to [5],
the homogenized properties of the unit-cell microstructure are well-preserved in the mapped tiling. This is highly
desirable in de-homogenization, and is the main reason we opt for sawtooth functions to construct the mapping.

4.3. Generalized de-homogenization for free-form microstructures

We propose to integrate sawtooth-function-based mapping into the de-homogenization framework and extend it
to handle square cells with free-form geometries. In the previous subsection, we simply employ Eqgs. (31) and (32)
to generate the two sawtooth function fields, v (y) and ¥, (y), whose propagation directions follow orthogonal
orientation fields e; = e (f) and e; = e (9 + %), respectively. However, as discussed in [38], these orientations
are constant and may not accommodate spatially varying orientation fields e (6(y)). This can then lead to severe
distortions of ¥r; (y) and ¥, (y) and cause their propagation directions to deviate widely from the given orientations.
To solve this issue, we relax the construction of the sawtooth-function-based mapping into an optimization problem
to find the two sawtooth fields whose local propagation directions, &; and é,, best approximate the given spatially
varying orientation field e; = e (6(y)) and its orthotropic counterpart e, = e (6’( y) + %), respectively. We introduce
two scalar fields @ (y) = élT yand & (y) = éZT y, instead of directly using (€1, €;) as the optimization variables
to reduce the dimensionality and ease the optimization process. Taking the search for an optimized @, (y) as an
example, we can formulate the optimization problem as

1
min g1 (21 (7)) = Efgdl W 1Y% (») — ex|2d2

(33)
s.t.dy (y) VD1 (y) -e2 =0,
where
0.0 ifye, 0 ifyeq,
dy(y)=10.1 ifyefl , dby)=10 ifyefl, (34)
1 ifyef 1 ifyef

where (2,, {2 and (2 represent regions with volume fraction values p = 0, p = 1 and p € [0, 1], respectively.
Herein, the objective function g (& (y)) measures how well the local propagation direction of the generated
sawtooth function field, i.e., V&, (y), aligns with the given direction field e;. The equality constraint is added to
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enforce the mapped microstructures to have orthogonal boundaries. As illustrated in the previous subsection, this
can ensure that the conformal mapping better preserves its original homogenized properties. The orientation designs
of solids {2 and voids {2, will not influence the local homogenized properties, but tend to be badly determined
(disordered orientations) that can lead to large distortion of the mapped structure. Therefore, the two terms d;
and d, are added to relax the projection in those regions to avoid large distortion induced by badly determined
orientations.

The Lagrangian equations of the optimization problem (33) can be given as

£ (210 7 0) = g1 @1 ) - /Q J1()d: (5) V21 (3) - €202, (35)

where A, (y) is a Lagrange multiplier. Similarly, we can obtain the Lagrangian equation for the second sawtooth
function as

L (Qz (). A (J’)> =422 (y) — / M(Y)dy (y) VD (y) - erd L2, (36)
0
where 1, ( y) is a Lagrange multiplier and g, (5 (y)) is given as

1
2@ 0= /Q di (y) V22 () — e d 2. 37

In practical implementations, while the homogenization-based topology optimization proposed in Section 3 is
performed on the mesh H,,, with elements of size 4,,,, these two optimization problems in Egs. (35) and (36) are
solved on a finer mesh H,, with element size hy, < h,,,/3 as suggested in [38]. Optimized topology optimization
variables obtained on H,,, are projected to H,, by interpolation. We denote the number of elements of H;, as n, y,.
The solutions for the corresponding discretized Lagrange equations on H,, can be efficiently obtained by solving
the following KKT systems,

D"A,D -D"BIA] 2 ]_[ p'aiCy (38)
A2B,D 0 P 0 ’
DTA,D -D"BTA] @, ] _[ DTA1Cy (39)
A;B(D 0 | 0 ’

where D € R*esa*2esa ig g finite difference matrix, Ay, Ay € R¥"ese*esa gre diagonal weighted matrices with
diagonal entries to be d; and d, at the corresponding points in H,,, respectively, vectors Cy, C; € R>"se*! are
composed of e and e; at the corresponding points in H,, respectively, By, B, € R?nesaxMesa gre diagonal matrices
with C; and C, as diagonal lines, respectively. Note that the optimized orientation angle distribution may contain
sudden changes of quadrants, i.e., rotated by 7, due to the lack of rotation polarity. This could lead to infeasible
geometrical features in the microstructure tiling. Therefore, we follow Ref. [38] and use a connected component
labeling algorithm to identify those sudden changes and modify the angles to ensure a consistent orientation field.

After solving Egs. (38) and (39), the solutions &; and &, are smoothed by a density filter with a radius of &g,
to avoid local high-frequency variations. The smoothed &, and &, are then projected to a finer mesh H,,; through
interpolation with element size h,,; satisfying h,,; < h;./15 and h,,; < hy,. These projected &, and &, are then
substituted into Eqgs. (31) and (32) to generate the corresponding sawtooth function fields ¥, and ¥, on the fine
mesh H,,;, from which the oriented microstructure tiling can be readily obtained as x (1//1, 1//2), as illustrated in
Section 4.2. To eliminate possible defects, such as isolated pixels and checkerboard patterns, we use morphological
operators in MATLAB to detect and fix those defects to ensure the feasibility of the de-homogenized structure.
Note that the periodicity parameter P is assigned as constant and can be tuned to control the size of unit-cell
microstructures in the full design.

5. Design case study

To demonstrate the effectiveness and features of the proposed method, we apply it to three design cases in this
section. For all examples, the constituent material is the same as the one used in Section 2 for the construction
of the microstructure database, with Young’s modulus Ey = 210 Gpa, Poisson’s ratio vy = 0.3, and density
0o = 2700 kg/m>. In the initial design, we assume the structure is filled by microstructures composed of horizontal
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Fig. 9. Problem setting illustration of the first case study. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

and vertical bar groups only. These two groups of bars in the initial design have the same width, achieving a volume
fraction equal to the target global volume fraction V,. The principal strain direction calculated at the lower bound
of the given frequency range is used as the initial guess for the orientation field. Optimization terminates when the
change in design variables (normalized) is less than 0.01 between two consecutive iterations or when the number
of iterations reaches 300. For the de-homogenization process, we set h,,; = h;,,/20 and hg, = hpyo /4.

5.1. Pinned beam

As the first case study, we focus on the design of a 1.8 m x 0.4 m pinned beam shown in Fig. 9. External pressure
with an amplitude of 50000 N/m is imposed on the top and bottom of the beam. The optimization objective is to
minimize the frequency response of those loaded regions (marked in blue) within a given excitation frequency range
of [0, 200] Hz, under a 50% volume fraction constraint. The beam is divided into a 90 x 20 mesh H,,, to perform
the proposed homogenization-based optimization. We use 21 integration points in calculating the objective functions
with equal subintervals.

The optimized design variables distribution is demonstrated in Fig. 10(a) and (b). It can be noted that the
orientation of microstructures largely aligns with the contour of the volume fractions, which strengthens the
load-bearing capability of the structure. Different regions of the structure are dominated by different bar groups
(marked by different colors in Fig. 10(b)) to better accommodate the spatially varying loading status. As a result,
the optimized design demonstrates excellent dynamic performance, reducing the objective function value from
0.5193 m.Hz to only 0.0596 m.Hz. As shown in Fig. 10(c), the corresponding de-homogenized design, projected
onto a 1800 x 400 fine mesh, is obtained via the proposed de-homogenization method with P = 1.5. Its oriented
microstructure tiling matches well with the optimized orientation field shown in Fig. 10(b). The outer frame of the
multiscale structure is composed of higher-volume-fraction microstructures conforming to the shape of the frame,
while the inner region is filled by crossing bars to resist shearing forces. It is interesting to note that, although
the 6-bar parameterization model is used to create various unit-cell topologies, most cells in the multiscale design
degenerate to structures with only horizontal and vertical bar groups, except for a few on the boundary. While this
result indicates the possible optimality of the degenerated square-hole unit-cell in this particular case, it should be
emphasized that this unit-cell might not be optimal for general cases in frequency response optimization. Unlike the
static compliance problem, there are no rigorous theoretical conclusions to support the optimality of the square-hole
design, which underlines the importance of the proposed general de-homogenization method, which accommodates a
variety of unit-cell topologies. The de-homogenized design has a 50.25% volume fraction and achieves an objective
value of J = 0.0637 m.Hz, which is close to that of the homogenization-based design (0.0596 m.Hz). This highlights
the effectiveness of the proposed de-homogenized method in generating a multiscale structure that realizes the
designed performance of the homogenization-based design.

To demonstrate the edge that the proposed multiscale design has over single-scale design, we use the classical
SIMP method to design the beam under the same setting but only at the macroscale. The optimized structure is then
projected onto the same fine mesh used in the de-homogenized design. The resultant macroscale design is shown in
Fig. 10(d), with the objective value (0.0705 m.Hz) much higher than that of the de-homogenized design. This can
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Fig. 10. Optimization results for the pinned beams, (a) designed volume fraction distribution with orientation vector marked by red line
segments, (b) optimized design variables distribution, the widths of different bar groups are represented by the lengths of different line
segments with the same color codes as in Fig. 1(a), these line segments are rotated by an angle corresponding to the designed orientation,
(c) de-homogenized multiscale design inferred from (b), (d) single scale (macroscale) design. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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Fig. 11. Frequency response analysis for initial design, de-homogenized design, and macroscale design. The inlet shows an enlarged view
of the frequency responses for de-homogenized design and macroscale design within the frequency range of interest.

also be observed from the frequency analysis shown in Fig. 11. Specifically, the initial design has a fundamental
frequency wy = 163.0349 Hz, which incurs a peak of the frequency response within the frequency range of interest.
In contrast, the fundamental frequencies are much higher for both the de-homogenized (290.46 Hz) and macroscale
design (287.24 Hz), moving the peaks of frequency responses away from the range of interest. As a result, the
frequency responses of these two designs stay at a much lower level than the initial design. Moreover, the peak
frequency response of the de-homogenized design has a lower amplitude, and corresponds to a higher frequency
value, compared to the macroscale design. The response curve of the homogenized design stays below that of
macroscale design over the whole frequency range of interest. This demonstrates the advantages of the proposed
multiscale design over the macroscale design.

In terms of efficiency, the proposed method takes 314.54s (300 iterations) to do homogenization-based opti-
mization and another 349.96 s to perform de-homogenization on a single CPU. While the total execution time of
the proposed method is around 2 times longer than that of the macroscale SIMP method (332.51 s), it achieves
much better structural performance, as demonstrated earlier. In contrast, if classical SIMP is adopted to achieve
the same resolution of the multiscale design in this study (1800 x 400 = 720000 elements), the execution of a
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Fig. 12. De-homogenized designs obtained with different values of periodicity parameter P.

T T T T T T T T T
——De-homogenized Design P=0.5
——De-homogenized Design P=1.0
De-homogenized Design P=1.5
——De-homogenized Design P=2.0
——Macroscale Design

x10°°

-
o
A

Frequency Response(m)

& ~
< >

Frequency range of interest
1 1 1

1 1 1 1 1 1

0 50 100 150 200 250 300 350 400 450
Excitation Frequency (Hz)

Fig. 13. Frequency response analysis for macroscale design and de-homogenized designs obtained with different values of periodicity
parameter P. The inlet shows an enlarged view of the frequency responses within the range of interest.

single iteration alone will take 3712.12 s on the same platform, as the number of element and design variables is
increased by 400 times compared with the design in the coarse mesh (90 x 20 = 1800 elements). Considering the
fact that a high-resolution design usually takes more iterations (~1000) to converge [28], the overall execution time
for macroscale TO on fine meshes will become unaffordable (>1000 h). Therefore, our proposed method shows a
clear advantage in achieving excellent structural performance while retaining high efficiency (over 5700 times faster
than TO on the fine mesh).

Moreover, as illustrated in Section 4.3, we can easily control the size of the unit-cell microstructures by
changing the periodicity parameter P. For the same design variables distribution in Fig. 10(b), we show the
de-homogenized structures obtained with different P values and their frequency responses in Figs. 12 and 13,
respectively.

From Fig. 12, it can be observed that the smaller the P value, the smaller the size of unit-cell microstructures
as well as the width of the bars. Despite the difference in topologies, all these structures exhibit similar unit-cell
orientation and volume fraction distribution. As a result, these designs have similar objective values and frequency
responses. It is noted that there are several non-load-carrying bars in Fig. 12(c) and (d). This is due to the linear
interpolation operation performed to project optimized topology optimization variables obtained on the coarse mesh
Hma to the fine mesh Hy, [28]. Based on our numerical experiments, these non-load-carrying bars will not influence
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the performance of the structure. To remove these bars, as an extension to the technique proposed in [28], we
suggest calculating the strain energy integrated over the whole frequency range and then filtering out solids with
low integrated strain energy. Meanwhile, although the objective values should, in theory, decrease as the unit-cell
size decreases and converge to that of homogenized design, such a pattern is not observed in our designs. The
design with medium-size unit-cells (P = 1.5) has the best performance while the one with the smallest unit-cell
size (P = 0.5) performs the worst. This is likely due to the fact that, given a fixed and finite resolution of the
fine mesh, the bars of small-size cells would become so thin that they weaken their capability to resist the loads.
Still, all de-homogenized designs have better performance than the single-scale macroscale design, regardless of
the unit-cell size.

We continue to study how the unit-cell geometry parameterization method and orientation design will influence
structural performance. Specifically, we align the microstructures along with the horizontal axis and fix the
orientation during the optimization process. As shown in Fig. 14(a) and (b), we obtain two multiscale structures by
considering microstructures with four bars (only horizontal and vertical bars in Fig. 2) and all six bars, respectively.
Unlike the multiscale design in Fig. 10(c), microstructures of the four-bar design in Fig. 14(a) fail to match with
the macroscale geometry due to the lack of orientation design. As a result, the objective function (0.1019 m.Hz) is
much higher than the oriented design in Fig. 10(c), which is also indicated by the frequency analysis in Fig. 14(c).
By including diagonal bars to obtain the six-bar design in Fig. 14(b), it can be noted that the use of extra bars
compensates for the loss of design freedom due to the lack of orientation design, by exploring various combinations
of bars. As a result, the main load-bearing directions of micro- and macrostructures become more consistent,
leading to a lower objective function (0.0710 m.Hz). Nevertheless, its performance is far beneath the oriented de-
homogenized design in Fig. 10(c), underlining the importance of including diverse microstructures and orientation
design for higher flexibility.

5.2. Clamped beam

In this case study, as shown in Fig. 15, the proposed method is applied to design a clamped beam under a 50%
volume fraction constraint, with the same loading and regions of interest as in the first case study. The beam is
divided into a 90 x 20 mesh H,, to perform the proposed homogenization-based optimization. We design the
beam within different frequency ranges of interest, i.e., [0, 200] Hz, [100, 300] Hz and [200, 400] Hz. We use 21
integration points in calculating the objective functions with equal subintervals. With the periodicity parameter
P = 1.5, the corresponding de-homogenized designs are shown in Fig. 16.

From Fig. 16, it can be noticed that the proposed de-homogenized method can attain approximately the same
frequency response performance as that of homogenization-based designs. Structures for different frequency ranges
of interest have similar geometries. While designs for pinned beams in Fig. 12 form a loop-liked shape, these
clamped designs are composed of one center loop and two mirrored half loops on both ends to better resist the
clamped distortion. Again, similar to the previous design case, it can be noted that while a 6-bar model is used in
our study, most unit-cell designs only contain horizontal and vertical bars, except for those on the boundary and in
the intersection regions of the macroscale structure. Despite the similarity in overall geometries, it should be noted
that the bars will change their width and numbers when the frequency range of interest changes. Specifically, as the
range of interest moves toward higher frequencies, the center loop will have its bars decrease in size and number,
while bars in the two half loops go for the opposite. Interestingly, as shown in Fig. 17, we observe that this change
in size and number of bars results in a sequential change of the order for the corresponding frequency response
curves.

Specifically, as shown in Fig. 17(b) and (c), the structure (b) in Fig. 16 achieves the lowest level of response for
most of the intervals in the first frequency range but exchanges its order with structure (d) in Fig. 16. This change
is observed again, as shown in Fig. 17(c) and (d), between structures (d) and (f) in Fig. 16 when the frequency goes
from the second frequency range to the third one. As a result, each structure can only be optimal within its designed
frequency range and become suboptimal for other frequency ranges. This also demonstrates the effectiveness of the
proposed method in finding the optimal structures for a given frequency range.

In all previous designs, the regions of interest are placed symmetrically on the top and bottom. Combined with
the symmetry of the loading condition, the corresponding homogenized designs also have symmetric geometries.
Now, we design another multiscale structure to minimize the frequency response of the region on the bottom of the
beam, but not for the one on the top, within a given frequency range of [0, 200] Hz. The result is shown in Fig. 18.
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Fig. 15. Problem setting illustration of the second example.

As shown in Fig. 18(a) and (b), the de-homogenized structure has an asymmetric geometry with more bars in the
lower half to reduce the distortion of the bottom. It can be observed that, unlike designs in previous examples with
most unit cells degenerating to 4-bar designs, the de-homogenized structure in Fig. 18(b) contains a large portion of
unit cells with more than four bars. In particular, extra diagonal bars in the 6-bar model are included for unit cells in
the center loop. The resulting frequency response is significantly suppressed as indicated in Fig. 18(c). These results
provide further evidence that, in contrast to static compliance optimization, more diverse unit-cell topologies are
needed to achieve better performance in frequency response optimization. This highlights the necessity and benefit
to generalize de-homogenization with our proposed method to accommodate complex microstructures.
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Fig. 16. Optimization results for the clamped beams given different frequency ranges of interest, (a), (c), (¢) are homogenization-based
optimization results on the coarse mesh for frequency ranges [0,200] Hz, [100,300] Hz and [300, 400] Hz, respectively; (b), (d), (f) are
de-homogenized designs inferred from the optimization results in (a), (c), and (e), respectively.

5.3. Cantilever beam

In this case study, we apply the proposed method to design a 2.4 m x 1.2 m cantilever beam shown in Fig. 19. An
excitation force with an amplitude of 2000 N is imposed at the middle of the right end while its left end is fixed. The
optimization objective is to minimize the frequency response of the loading point within a given excitation frequency
range of [0, 200] Hz. The beam is divided into an 80 x 40 mesh H,,, for optimization with 21 integration points
in calculating the objective functions with equal subintervals. We obtained designs corresponding to three different
volume fraction constraints, i.e., 40%, 50%, and 60%, as shown in Fig. 20.

From the results, it is noted that designs with different volume fraction constraints have similar multiscale
structures. The orientation of the microstructures is consistent with the loading path of the macroscale structure.
As the volume fraction of the solid increases, bars in the outer frame of the structure will become thicker. As a
result, the value of the objective function decrease as the volume fraction increases. This can also be seen from
the frequency response curves shown in Fig. 21, where the peak is moved further away and the response becomes
lower in the frequency range of interest when the volume fraction increases.

Moreover, the higher the volume fraction, the smaller the deviation of de-homogenized designs’ performance
from the corresponding homogenization-based design. This may be due to the inherent scaling deviation of 4-
node quadrilateral mesh in dynamic simulation, and the thin bars discussed in the first case study. Nevertheless,
all multiscale de-homogenized designs have very similar performance as the homogenization-based designs,
demonstrating the effectiveness of the proposed method.

6. Conclusions

We have proposed a de-homogenization-based, data-driven topology optimization method to achieve efficient
and effective multiscale designs for complex design cases. It allows the design of unit-cell orientation rather than
simply assuming microstructures align with the principal strain direction. A sawtooth-function-based mapping is
devised to expand the capability of de-homogenization to generate high-resolution multiscale structures with oriented
microstructures instead of the usual square cell with rectangular holes. These techniques enable more flexible control
of the microstructure properties to improve the applicability of de-homogenization in accommodating general design
cases. Compared with the existing mapping methods for complex geometries, the proposed method can preserve
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Fig. 17. Frequency response analysis of designs for different frequency ranges of interest. (a) frequency response within, (b)~(c) enlarged
views for frequency responses of de-homogenized designs within different frequencies ranges.

the homogenized properties of unit-cells due to its conformality feature, and at the same time retain simplicity and
efficiency.

With the proposed method, we have succeeded in applying the de-homogenization method to accommodate
a flexible six-bar parameterized unit-cell representation for design applications beyond simple static compliance
minimization, i.e., frequency response optimization. The de-homogenized structures obtained from the proposed
multiscale method can achieve approximately the same dynamic performance as the homogenization-based designs,
illustrating the effectiveness of the de-homogenization process in preserving the homogenized properties distribution.
Through design cases, we have demonstrated that the proposed method can generate high-resolution multiscale
structures with efficiency comparable to single-scale macroscale design but with much better dynamic performance.
We observe that the multiscale structures have consistent main load-bearing directions at different scales to resist
distortions under dynamic excitations. Moreover, the size of the unit cells can be easily tuned by modifying the
periodicity parameters of the sawtooth function. The proposed method can also adaptively change the structural
geometries to optimize the frequency response of different regions and accommodate different excitation frequency
ranges as well as volume fraction constraints.
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Fig. 19. Problem setting illustration of the third example.

The present study does not consider the singularities that might occur in the optimized orientation fields.
However, the proposed sawtooth-function-based mapping could be easily integrated into existing de-homogenization
methods that take singularities into consideration [31,38]. Currently, the proposed mapping method can only ensure
conformality for rectangular cells. Further studies are needed to enable conformal mapping for other close-packed
tiling patterns, such as triangles, parallelograms and hexagons. Note that, even though we use six-bar unit-cells for
demonstration in this study, the same approach can be readily applied to free-form microstructures. Although we
only applied the proposed method for frequency response optimization in this study, it can also be extended to a wide
variety of static and dynamic design cases, such as those that consider thermal behaviors [59,60], permeability [61],
and fracture resistance [59,60]. We believe these applications would benefit more from the orientation design and
the use of free-formed microstructures achieved by the proposed method.
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Table A.1

Details of the neural network structure.

Layer name

Dim. of inputs

Dim. of outputs

Activation function

Computer Methods in Applied Mechanics and Engineering 395 (2022) 114967

Input layer 4 4 \
Hidden layer 1 4 8 tanh
Hidden layer 2 8 16 tanh
Hidden layer 3 16 32 tanh
Hidden layer 4 32 7 tanh
Output layer 7 7 linear

Appendix A. Details of the neural network structure

In this work, a multi-layer neural network is used as the surrogate model with a four-dimensional input vector
and a seven-dimensional output vector. It is composed of four hidden layers with the details shown in Table A.1.

Appendix B. Theoretical proof

Proposition. Sawtooth-function-based mapping ¥ (y) proposed in Egs. (31) and (32) is an angle-preserving
(conformal) mapping, given that P is a positive constant.

Proof. The Jacobian matrix of the mapping can be obtained as

W 2 cos(6) 2 sin(6)
—| 9y Oy | _ P P
Jacr )= % % B E cos(f + z) z sin(0 + z) . (D
dyr oy P 27 P 2

It can be further simplified as

2 cos(9)  sin(0)
Jacy W) =5 [ —sin(0) cos(6) | (A2)
Substituting ¢ = —6 into (A.2), the Jacobian matrix can be formulated as
2 cos () —sin (D)
Jacy (v) = P [ sin (®)  cos(®) |’ (A.3)

which can be viewed as a scaled multiple of a rotation matrix. Therefore, the mapping ¥ (y) is angle-preserved
(conformal). W
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