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Abstract—Convolutional neural networks have been highly successful in image-based learning tasks due to their translation
equivariance property. Recent work has generalized the traditional convolutional layer of a convolutional neural network to non-euclidean
spaces and shown group equivariance of the generalized convolution operation. In this paper, we present a novel higher order Volterra
convolutional neural network (VolterraNet) for data defined as samples of functions on Riemannian homogeneous spaces. Analagous to
the result for traditional convolutions, we prove that the Volterra functional convolutions are equivariant to the action of the isometry group
admitted by the Riemannian homogeneous spaces, and under some restrictions, any non-linear equivariant function can be expressed
as our homogeneous space Volterra convolution, generalizing the non-linear shift equivariant characterization of Volterra expansions in
euclidean space.We also prove that second order functional convolution operations can be represented as cascaded convolutions which
leads to an efficient implementation. Beyond this, we also propose a dilated VolterraNetmodel. These advances lead to large parameter
reductions relative to baseline non-euclideanCNNs. To demonstrate the efficacy of the VolterraNet performance, we present several real
data experiments involving classification tasks on spherical-MNIST, atomic energy, Shrec17 data sets, and group testing on diffusion
MRI data. Performance comparisons to the state-of-the-art are also presented.

Index Terms—Homogeneous spaces, volterra series, convolutions, geometric deep learning, equivariance
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1 INTRODUCTION

CNNS were introduced in the 1990s by Lecun [1] and
gained enormous popularity in the past decade espe-

cially after the demonstration of the significant success on
Imagenet data by Krizhevsky et al. [2]. At the heart of CNNs
success is its ability to learn a rich class of features from data
using a combination of convolutions and nonlinear opera-
tions such as ReLU or softmax functions. The success of
CNNs however is achieved at the expense of a large number
of parameters that need to be learned and a computational
burden in the training time. It is well known now that a
multi-layer perceptron can approximate any function to the
desired level of accuracy with a finite number of neurons in
the hidden layer. It is therefore natural to consider parameter
efficiency as one of the network design goals to strive for in a
deep netowrk. The higher order Volterra series can capture a
richer class of features and hence significantly reduce the
total number of parameters while maintaining comparable or
better classification accuracy relative to the baselinemodels.

In computer vision and medical imaging, many applica-
tions deal with data domains that are non-euclidean. For
instance, the n-sphere (n ! 2), the manifold of symmetric
positive definite matrices, the Grassmannian, Stiefel mani-
fold, flag manifolds etc. Most of these manifolds belong to
the class of (Riemannian) homogeneous spaces (manifolds).
Thus, our goals here are to 1) Introduce a principled frame-
work for defining CNNs on general homogeneous Rieman-
nianmanifolds. 2) Introduce a novel higher order convolution
layer using Volterra theory [3] on homogeneous Riemannian
manifolds which provides significant parameter-efficiency
improvements for non-euclidean CNNs. 3) Establish empiri-
cal evidence demonstrating the applicability of our homoge-
neous Riemannian manifold CNNs and the performance
boost provided by the Volterra convolutions.

Much of the recent work in this problem domain has
focused on generalizing CNNs to homogeneous spaces by
exploiting the weight sharing that the symmetries of the
underlying manifold allow. The 2-sphere is a particularly
important example. In the recent past, CNNs have been
reported in literature [4], [5], [6] which are designed to han-
dle data that are samples of functions defined on a 2-sphere
and hence are equivariant to 3D rotations which are mem-
bers of the SOð3Þ group. The spherical convolution1 network
presented in [5], [7] is named Spherical CNN. Recently, Kon-
dor et al. in [8] proposed theClebsch-Gordan net by replacing
the repeated forward and backward Fourier transform
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1. As has been pointed out several times in the literature, the convo-
lution operation in CNNs is actually a correlation and not a convolu-
tion. Hence, in this paper, we will use the term convolution and correlation
interchangeably but always imply correlation.
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operations used in [5]. They showed that by using the
Clebsch-Gordan transform as the source of nonlinearity, bet-
ter performance can be achieved by avoiding the repetitive
forward and inverse Fourier transform operations. In [9],
authors present polar transformer networks, which are
equivariant to rotations and scaling transformations. By
combining them with the spatial transformer [10], they
achieved the required equivariance to translations as well.
Recently, the equivariance of convolutions to more general
classes of group actions has been reported in literature [11],
and later in [12]. In [7], Esteves et al. used the correlation
defined in [13] to propose an SOð3Þ equivariant operator
and in turn define a spherical convolution. In this paper, we
will define correlations and the Volterra series on a homoge-
neous manifold and show that the equivariance property
holds for both.

Volterra kernels were first proposed in image classification
literature in [14], [15]. In [15], authors learn the kernels in a
data driven fashion and formulate the learning problem as a
generalized eigenvalue problem. Volterra theory of nonlinear
systems was applied more than two decades ago to a single
hidden layer feed-forward neural network with a linear out-
put layer and a fully dynamic recurrent network in [16]. Most
recent use of Volterra kernels in deep networks was reported
in [17], where, authors presented a single layer of Volterra ker-
nel based convolutions followed by conventional CNN layers.
They however did not explore equivariance properties of the
network or consider non-euclidean input domains.

In this paper, we define a Volterra kernel to replace tradi-
tional convolution kernels. We present a novel generaliza-
tion of the convolution group-equivariance property to
higher order convolutions expressed using Volterra theory
of functional convolution on non-euclidean domains, specif-
ically, the Riemannian homogenous spaces [18] referred to
earlier. Most of these manifolds are commonly encountered
in mathematical formulations of various computer vision
tasks such as action recognition, covariance tracking etc.,
and in medical imaging for example, in diffusion magnetic
resonance imaging (dMRI), elastography etc. By generaliz-
ing traditional CNNs in two possible ways, 1) to cope with
data domains that are non-euclidean and 2) to higher order
convolutions expressed using Volterra series, we expect to
extend the success of CNNs in yet unexplored ways.

We begin with a significant extension of prior work by the
authors of [19], where the authors defined a correlation opera-
tion for homogeneous manifolds. Specifically, our extension
consists of a proof that not only is the correlation operation
group equivariant, but additionally any linear group equivar-
iant function can be written as a correlation on the manifold
(Banerjee et al. [19] only showed the first fact). We present
experiments to demonstrate better performance of the pro-
posed VolterraNet on spherical-MINST and the Shrec17 data
with less number of parameters than previously shown in lit-
erature for the Spherical-CNN and the Clebsch-Gordan net.
We then present a dilated convolution model based on the
VolterraNet and demonstrate its efficacy in group testing on
diffusion magnetic resonance data acquired from patients
with movement disorders. The domain of this data is another
example of a Riemannian homogeneous space.

In summary, our key contributions in this paper are: 1) A
principled method for choice of basis in designing a deep

network architecture on a Riemannian homogeneous mani-
fold M: 2) A proof of a generalization of the classical linear
shift invariance (in our terminology, equivariance) charac-
terization theorem for correlation operations on Riemannian
homogeneous manifolds. 3) A novel generalization of con-
volution operations to higher order Volterra series on non-
euclidean domains specifically, Riemannian homogeneous
manifolds which are often encountered both in computer
vision and medical imaging applications. 4) A generaliza-
tion of the classical non-linear shift invariance (in our termi-
nology, equivariance) characterization theorem for Volterra
convolution operations on Riemannian homogeneous mani-
folds. 5) Experiments on real data sets that are publicly
available such as the spherical-MNIST, atomic energy and
Shrec17. For these real data, we present comparisons to the
state-of-the-art methods. 6) An extension of the VolterraNet
to Dilated VolterraNet and demonstrate its efficiency via
group testing on diffusion MRI brain scans from controls
(normal subjects) and movement disorder patients. Further,
ablation studies on VolterraNet to demonstrate the useful-
ness of the higher order convolution operations.

The rest of the paper is organized as follows: In Section 3.3
we define the correlation operation on homogenous mani-
folds and prove a generalization of the euclidean linear shift
invariance (LSI) theorem for this correlation operation. Then,
in Section 3.4 we present a framework for principled choice
of basis in representing functions on a Riemmanian homoge-
neous manifold. In Section 4.1, we define the Volterra
higher-order convolution operation and prove a generaliza-
tion of the non-linear shift invariance theorem for this
Volterra operation. Following this, we present a detailed
description of the proposed VolterraNet architecture in Sec-
tion 5 and a description of the proposed dilated VolterraNet
in Section 6. Finally, Section 7 contains the experimental
results and Section 8 the conclusions.

2 LIST OF NOTATIONS

We now summarize the list of notations that will be used
throughout this paper.

3 CORRELATION ON RIEMANNIAN HOMOGENEOUS

SPACES

In this section, we define a correlation operation which gener-
alizes the euclidean convolution layer to arbitrary Rieman-
nian homogeneous spaces. Further, we prove a generalization
to Riemannian homogeneous spaces of the linear shift-invari-
ant system characterization of euclidean convolutions. Similar
theoremswere first proved in [11] and later in [12]. This result
is not meant to be novel but to motivate the analogous result
for higher order convolutions on Riemannian homogeneous
spaces thatwe prove subsequently.

3.1 Background
We will briefly review the differential geometry of Rieman-
nian homogeneous spaces from an informal perspective.
Formal definitions will be deferred to the appendix for con-
ceptual clarity, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2020.3035130.
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As mentioned earlier, Riemannian homogeneous spaces
are Riemannian manifolds which ‘look’ the same locally at
each point with respect to some symmetry group G, mean-
ing that the action of G on M is transitive. We will specifi-
cally consider Riemannian manifolds with a transitive
action of the isometry group IðMÞ: For the rest of the
paper, we use G ¼ IðMÞ unless mentioned otherwise. For
example, the 2-sphere is a homogeneous space with G ¼
SOð3Þ: An important fact about homogeneous spaces is
that they can be identified as a quotient space. In general,
if M is a homogeneous space with group G acting on it,
and Hx is some stabilizer (see definition in Appendix A,
available in the online supplemental material) of of a point
x 2 M then M ’ G=Hx: Returning to the 2-sphere exam-
ple, if we take H to be the stabilizer of the north pole, a
subgroup of SOð3Þ isomorphic to SOð2Þ, then G=H ’
SOð3Þ=SOð2Þ ’ S2: For a detailed exposition on these con-
cepts, we refer the reader to [18].

3.1.1 Assumptions

For the remainder of this paper we assume M to be a Rie-
mannian homogeneous space admitting a transitive action
of the group G, which we call the symmetries ofM:We also
assume thatG is a locally compact topological group. Further
we assume that any function f : M ! R is square integrable,
i.e.,

R
M jfðxÞj2vMðxÞ < 1, where vM is a suitable volume

form on M: As mentioned before, we denote the space of
square integrable functions onM byL2ðM;RÞ:

3.2 Euclidean LSI Theorem
We begin this section by recalling the euclidean Linear Shift
Invariant theorem.

Definition 1. Let F : U ! V be a bounded linear operator
between spaces U and V consisting of functions Rn ! R: For

f 2 U [ V and x 2 Rn we define txðfÞðzÞ ¼ fðz& xÞ: The
set ftxgx2Rn forms a group under composition. We say F is
translation equivariant (i.e., shift invariant in the traditional
literature) if

txðF ðgÞÞ ¼ F ðtxðgÞÞ;

for all g 2 U , x 2 Rn:

Theorem 1. Let w : Rn ! R be a weight kernel, then the operator
given as Gw : U ! V is defined by GwðfÞ ¼ f ? w, where ? is
the euclidean convolution operation which is a bounded, linear,
and translation equivariant operator. Further, ifF is any bounded
linear translation equivariant operator, then there exists w :
Rn ! R such thatF ¼ Gw, i.e.,F ðfÞ ¼ f ? w, for all f 2 U:

Thus, euclidean convolutions with a weight kernel have
an interesting and powerful characterization as linear shift
invariant operators. Next we show that the correlation oper-
ation on any Riemannian homogeneous manifolds satisfy a
generalization of the aforementioned LSI theorem.

3.3 Generalizing Convolutions and the LSI Theorem
to Riemannian Homogeneous Spaces

We begin by defining the correlation operation for arbitrary
homogeneous Riemannian manifolds. Some equivalent def-
initions have been made several times in the literature, first
for specific manifolds as in [5], [7], then in more generality
such as in [11] and later in [12]. We then state a generaliza-
tion of the LSI theorem for this correlation operation, which
we call the Linear Group Equivariant (LGE) theorem. Note
that similar theorems were first proved in [11] and later in
[12]. We present this theorem not as a novel result, but as
motivation for a non-linear version of the theorem which
we will prove in Section 4. Regardless, we present a much
simpler proof (compared to [11], [12]) of the result in the
appendix, available in the online supplemental material.

Definition 2 (Correlation). The correlation between f : M !
R and w : M ! R is given by, f ? wð Þ : G ! R defined as
follows:

f ? wð Þ gð Þ :¼
Z

M
fðxÞ g ' wð ÞðxÞvMðxÞ: (1)

The correlation between f : G ! R and w : G ! R is
given by, f ? wð Þ : G ! R defined as follows:

f ? wð Þ gð Þ :¼
Z

G
fðhÞ g ' wð ÞðhÞmGðhÞ; (2)

where mG is the Haar measure on G (which is guaranteed to
exist based on our assumption that G is a locally compact topo-
logical group). Please see the discussion at the end of this sub-
section for details.

Equation (1) is described in words as follows: the weight
kernel w is “shifted” using the action of the symmetry
group, and the point-wise product of the shifted weight ker-
nel and the function f is integrated over the manifold. A
similar interpretation can be given to the correlation on
groups in Eq. (2). This generalizes the work on the 2-sphere
presented in [5], [7] for an arbitrary Riemannian homoge-
neous spaceM:

M Riemannian homogeneous space (manifold)
G a group
SOðnÞ n-dimensional special orthogonal group

of matrices
IðMÞ Isometry group admitted byM
L2ðM;RÞ Space of real-valued square integrable

functions onM
L2ðG;RÞ Space of real-valued square integrable

functions on G
vM Volume form ofM
mG Haar measure of G
g ' x=LgðxÞ Action of g 2 G on x 2 M
gh=LgðhÞ Action of g 2 G on h 2 G
g ' f=L(

g&1ðfÞ Action of g 2 G on f : M ! R
and is given by x 7! fðg&1 ' xÞ

Sn n-sphere
Rþ Space of positive reals
P3 Space of 3* 3 symmetric

positive-definite matrices
GLðnÞ General linear group of n* nmatrices
OðnÞ Space of n* n orthogonal matrices
R n 0f g Space of reals without the origin
StabðxÞ Stabilizer of an element x 2 M
gM Riemannian metric on the manifoldM
logm Matrix log operation
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We show that this correlation operation is equivariant to
the isometry group G of the underlying homogeneous space
M: In order to state this theorem, we first formally define
equivariance.

Definition 3 (Equivariance). Let X and Y be sets and G be a
group acting on X and Y (in literature these sets are termed as
G sets [20]). Then, F : X ! Y is said to be equivariant to the
action of G if

F ðg ' xÞ ¼ g ' F ðxÞ; (3)

for all g 2 G and all x 2 X:

We are now ready to state the following theorems:

Theorem 2. Let S and U be L2ðM;RÞ or L2ðG;RÞ and F : S !
U be a function given by f 7! f ? wð Þ: Then F is equivariant
with respect to the pullback action of G, i.e.,

ðf ' fÞ ? w ¼ f ' ðf ? wÞ;

for f 2 G a symmetry ofM where

f ' h :¼ h + f&1;

for any h : M ! R square-integrable.

Proof. See appendix B, available in the online supplemental
material. tu

This constitutes the forward direction of the LGE theo-
rem. Now we show the converse statement, namely, every
linear group equivariant function is a correlation.

Theorem 3. Let S and U be L2ðM;RÞ or L2ðG;RÞ and F : S !
U be a linear equivariant function with respect to the pullback
action of IðMÞ: Then, 9w 2 S such that,
F ðfÞð ÞðgÞ ¼ f ? wð ÞðgÞ, for all f 2 S and g 2 G:

Proof. See appendix B, available in the online supplemental
material. tu

Together with these two theorems, we can generalize the
LSI theorem to homogeneous spaces using the correlation
defined in Definition 2.

A NOTE ON VOLUME FORMS / MEASURES

In Definition 2, we specify the Haar measure for inte-
gration of a function on G: If f and w are functions on G,
then the Haar measure mG has several desirable proper-
ties. For example, the Haar measure is invariant to
“translations”, i.e., if S , G is measurable then mGðSÞ ¼
mGðgSÞ for any g 2 G: Further, using the Haar measure
provides a convolution theorem which makes correlation
a simple multiplication under the generalized Fourier
transform for groups. This particular property is vital for
efficient implementations.

Note that on the other hand, we do not specify a spe-
cific volume form vM for integration of function onM in
Definition 2. In many cases, the Haar measure on G will
induce aG-invariant volume form onM ’ G=H, but stat-
ing the exact conditions for this to be possible requires
some work. Instead, we define the correlation using an
arbitrary volume form. In the next section we will give a
construction which induces such a G-invariant volume
form onM:

3.4 Basis Functions for L2-Functions on
Homogeneous Spaces

Our goal in this section is to induce a natural basis on
L2 M;Rð Þ from the canonical basis on L2 G;Rð Þ where G is
the group acting on the homogeneous manifold M: The
basis on G consists of matrix elements of irreducible unitary
representations, which provides a Fourier transform on G
(for more details reader is referred to [21]). We show that
this construction matches the commonly used basis for spe-
cific manifolds, e.g., the spherical harmonics and Wigner-D
functions in [5]. This construction can be used to induce
basis on arbitrary Riemannian homogeneous spaces.

3.4.1 Basis on L2 M;Rð Þ Induced From L2 G;Rð Þ
To induce a basis on L2 M;Rð Þ, we use the principal fiber
bundle structure of the homogeneous manifold M: A fiber
bundle is a space that locally looks like a product space. It is
expressed as a base space B with the fibers making up a
fiber space F , and their union being the total space denoted
by E: There is a projection map p : E ! B mapping fibers
to their ”base point” on B: A principal fiber G-bundle is a
fiber bundle with a continuous (right) action of a group G,
such that the action of G is free, transitive and preserves the
fibers. For more details on fiber bundle theory see [22].

As mentioned in Section 3.1, M can be identified with
G=H for G the group action on M and H the stabilizer of a
point x 2 M, usually called the “origin”. It is well known
that this identification induces a principal fiber G-bundle
structure onM via the projection map.

Proposition 1. [18] The homogeneous space, M identified as
G=H together with the projection map p : G ! G=H is a prin-
cipal bundle with H as the fiber. Furthermore there exists a dif-
feomorphism c : G=H ! M given by gH 7! g ' o, where o is
the “origin” ofM:

Moreover, a section is a continuous right inverse of p,
which is denoted by s : B ! E: In literature [18], a zero sec-
tion (denoted by S , G) is the section containing the iden-
tity element of H: Let s0 : S ! M be a diffeomorphism.
Given va : G ! Rf g be the set of basis of L2 G;Rð Þ: Then, we
can get the induced basis on L2 M;Rð Þ as eva ¼ va + s&1

0

! "
: A

schematic of an example fiber bundle is shown in Fig. 1.
Example. Consider the example of M ¼ S2, where G ¼

SOð3Þ,H ¼ SOð2Þ:A choice of basis onL2 G;Rð Þ isWigner D-
functions denoted by fDj

l;mjj 2 f0; 1; . . . ;1g;&j - l;m - jg:
Let ða;b; gÞ be the parametrization of SOð3Þ and the zero sec-
tion (S) be denoted by fa;b; 0g: Then, fDj

l;0g are the choice of
basis on S , G, which gives the induced basis on S2 as

Fig. 1. Fiber bundle ðB;E;pÞ.
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eDj
l ðu;fÞ ¼

ffiffiffiffiffiffiffi
2lþ1
4p

q
Dj

l;0ðf; u; 0Þ: Further, observe that f eD
j
lg are the

spherical harmonics basis.

4 HIGHER ORDER CORRELATION ON RIEMANNIAN

HOMOGENEOUS SPACES

In this section, we define a higher order correlation operator
on Riemannian homogeneous spaces using the Volterra
series, state a theorem demonstrating it’s symmetry equivar-
iance and show how to compute it efficiently using first order
correlation operations. Further, we prove that the set of func-
tions which can be written as sums of products of linear oper-
ators and are G-equivariant can be expressed as a Volterra
series. This partially generalizes the non-linear shift equivar-
iance characterization of Volterra expansions in euclidean
space.

4.1 Volterra Series on Homogenous Spaces
We now generalize the Volterra Series to Riemannian homo-
geneous spaces.

Definition 4 (Volterra series expansion). We define the
Volterra expansion of a function f : M ! R or f : G ! R by
F ðfÞ ¼

P1
n¼1 f ?n wnð Þ: If f : M ! R and wn : Mð Þ.n! R

then f ?n wnð Þ : G ! R is defined as,

f ?n wnð ÞðgÞ :¼
Z

M
' ' '

Z

M
fðx1Þ ' ' ' fðxnÞ g ' wnð Þ

ðx1; . . . ; xnÞvMðx1Þ ' ' 'vMðxnÞ:

If instead f : G ! R and wn : Gð Þ.n! R then f ?n wnð Þ :
G ! R is defined as,

f ?n wnð ÞðgÞ :¼
Z

G
' ' '

Z

G
fðh1Þ ' ' ' fðhnÞ g ' wnð Þ

ðh1; . . . ; hnÞmGðh1Þ ' ' 'mGðhnÞ;

where mG is the Haar measure on G (which again, is guaran-
teed to exist based on our assumption that G is a locally com-
pact topological group).

One can easily see that, Definition 2 is a special case of
Definition 4 when n ¼ 1:When n > 1, we will call it the nth
order Volterra expansion. Higher order terms of the Vol-
terra expansion express polynomial relationships between
function values. An illustration of the second order Volterra
kernel is provided in Fig. 2. As we can see, the second order
Volterra kernel has a regular correlation weight kernel at
each location on the manifold M: The results of applying
these weight kernels get multiplied together to get the out-
put of f ?2 w2: A biological motivation is provided in [17]
for the (euclidean) Volterra series. Now, we prove that F as
defined in Definition 4 is equivariant to the symmetry group
actions admitted by a homogeneous space.

Theorem 4. Let S and U be L2ðM;RÞ or L2ðG;RÞ and F : S !
U be a function given by f 7!

P1
n¼1 f ?n wnð Þ: Then, F is

equivariant.

Proof. Observe that the sum of equivariant operators is
equivariant. Hence, we only need to check that f ?n wn is
equivariant for all n: Let g; h 2 G, let n 2 N: Then,

g:f ?n wnð Þ hð Þ ¼ L(
g&1f ?n wn

$ %
hð Þ

¼
Z

M
' ' '

Z

M
L(
g&1fðx1Þ ' ' 'L(

g&1fðxnÞ

L(
h&1wn

& '
ðx1; . . . ; xnÞvMðx1Þ ' ' 'vMðxnÞ

¼
Z

M
' ' '

Z

M
fðy1Þ ' ' ' fðynÞwn ðh&1gÞ ' y1

&

; . . . ; ðh&1gÞ ' yn
'
vMðg ' y1Þ ' ' 'vMðg ' ynÞ

¼
Z

M
' ' '

Z

M
fðy1Þ ' ' ' fðynÞwn ðh&1gÞ ' y1

&

; . . . ; ðh&1gÞ ' yn
'
vMðy1Þ ' ' 'vMðynÞ

¼ f ?n wnð Þðg&1hÞ
¼ L(

g&1 f ?n wnð Þ hð Þ

¼ g ' f ?n wnð Þð Þ hð Þ:

Here, ðL(
gfÞðhÞ ¼ fðg&1hÞ (see appendix for details, avail-

able in the online supplemental material), since, g; h 2 G
and n are arbitrary F is equivariant. tu

In the other direction, we also show that for the afore-
mentioned set of functions, every G-equivariant function
can be written as a Volterra series.

Theorem 5. Let S and U be L2ðM;RÞ or L2ðG;RÞ and F : S !
U be a non-linear G-equivariant function which can be written
as F ¼

P
i2I Fi, where each Fi is a product of two linear func-

tions, i.e., Fi ¼ Fi;1Fi;2: Then, 9 wif gi2I, S such that, F ðfÞð Þ
ðgÞ ¼

P
i2I f ?2 wið ÞðgÞ, for all f 2 S and g 2 G:

Proof. It suffices to show that for each term Fi ¼ Fi;1Fi;2 (for
Fi;k a linear G-equivariant function) there exists wi such
that Fi ¼ f ?2 wi: If wiðx; yÞ ¼ wi;1ðxÞwi;2ðyÞ (i.e., wi is sepa-
rable), then f ?2 wi ¼ ðf ? wi;1Þðf ? wi;2Þ: But by the previ-
ous theorem, there exists wi;k such that Fi;k ¼ f ? wi;k,
completing the proof. tu

These results partially generalize the well know non-lin-
ear shift equivariance characterization of Volterra expan-
sions in euclidean space and justifies the use of the Volterra
series as a higher-order generalization of the correlation
operation Definition 2.

Fig. 2. Visualization (in the spirit of [17]) of second-order term w2 : M2 !
R of a Volterra kernel (here on a 2-manifold parametrized by ðu;fÞ). The
coordinates above each grid represent the first entry w2ðx; 'Þ, and within
each grid the gray-scale value represents the weight of the associated
kernel w2ðx; yÞ.
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4.2 Efficient Computation of the Second-Order
Volterra Kernel

The Volterra series presented in the previous definition is
significantly more expressive than the correlation operation
defined in Definition 2 since it captures higher order rela-
tionships between inputs, but it requires the computation of
iterated integrals and does not have an efficient GPU imple-
mentation. Note that for separable second order kernel w2,
f ?2 w2ð ÞðgÞ can be factored as f ? ~w2ð Þ gð Þð Þ f ? "w2ð Þ gð Þð Þ:
Thus, we can compute the second order Volterra series with
separable kernel as a product of traditional correlation oper-
ations. In general, we can use a convex combination of first
order and second order terms of the Volterra series to define
second order Volterra network.

A schematic diagram for the second order Volterra corre-
lation operator is shown in Fig. 3. This representation of a
second order kernel using product of two separable kernels
is analogous to tensor product approximation of a function
and can be shown to achieve approximation error of an arbi-
trary precision [23]. The separability assumption on the ker-
nels leads to efficient computation which is especially
valuable in the network setting where these operations are
performed numerous times.

5 ARCHITECTURE

We now present the basic modules for implementing our
correlation and higher-order Volterra operations as layers
in a deep network.

5.1 Correlation on Homogeneous Spaces
Using Definition 2 we can define:

Correlation on M - CorrMðf;wÞ. Let f 2 L2 M;Rð Þ be the
input function and w 2 L2 M;Rð Þ be the mask. Then, using
Definition 2, CorrMðf;wÞ is defined as f ? wð Þ : G ! R: We
have shown in Theorem 2, that CorrMðf;wÞ is equivariant
to the action of G: Hence, we can use CorrG layer as the
next layer.

Correlation on G - CorrGðf;wÞ. Let ef 2 L2 G;Rð Þ be the
input function and w 2 L2 G;Rð Þ be the mask. Then analo-
gous to CorrM, we can define CorrGðf;wÞ as ef ? w

$ %
: G !

R using Definition 2. We have used Theorem 2 to show that
CorrGðf;wÞ is equivariant to the action of G: Since this is an
operation equivariant to G, we can cascade CorrG.

5.2 Volterra on Homogeneous Spaces
We can see that because the basic architecture of second
order Volterra series consists of the following modules:

Second Order Volterra on M - CorrM2 ðf;w1;w2Þ: Let f 2
L2 M;Rð Þ be the input function and w1 : M ! R and w2 :

Mð Þ.2! R be the kernels. Then, CorrM2 ðf;w1;w2Þ :¼

P2
j¼1ðf ?j wjÞ : G ! R: We have shown in Theorem 4, that

CorrM2 ðf;w1;w2Þ is equivariant to the action of G: Hence, we

can use CorrG2 ðf;w1;w2Þ layer as the next layer.
Second Order Volterra on G - CorrG2 ðf;w1;w2Þ: Let f 2

L2 G;Rð Þ be the input function and w1 : G ! R and w2 :

Gð Þ.2! R be the kernels. Then, CorrG2 ðf;w1;w2Þ :¼
P2

j¼1

ðf ?j wjÞ : G ! R: We have used Theorem 4 to show that
CorrG2 ðf;w1;w2Þ is equivariant to the action of G: Since this is
an operation equivariant to G, we can cascade CorrG2 ðf;w1;w2Þ.

5.3 Other Layers
Activation Function. Since the outputs of all the above layers
are functions from G to R, we will use the standard activa-
tion operation on R:

Invariant Last Layer. As both layers, CorrM2 and CorrG2 are
equivariant to the action of G, so are the cascaded layers.
Since, if the input signal is transformed by a group element
g 2 G, so is the output of CorrM2 as this layer is equivariant.
Thus the output of CorrM2 is transformed by the same group
element g: Hence, the input of CorrG2 is transformed by g and
due to the equivariance so is the output ofCorrG2 : This justifies
that the cascaded layers are equivariant to the action of G:
Hence, after the cascaded correlation layers, the output ef 2
L2 G;Rð Þ lies on a G set. Similar to the euclidean CNN, we
want the last layer to beG invariant. Hence, we will integrate
ef on the domainG and return a scalar. Note that in the experi-
ment, we learn multiple channels analogous to the euclidean
CNN, where in each channel, we learn a G equivariant ef 2
L2 G;Rð Þ: Thus, after the integration, we have c scalars, where
c is the number of channels, whichwill be input to the softmax
fully connected layer similar to the euclideanCNN.We abbre-
viate this last layer as iL (invariant layer).

A schematic diagram of our proposed VolterraNet is
shown in Fig. 4.

6 DILATED VOLTERRANET

In this section, we propose a dilated VolterraNet framework
which is suitable for sequential data. Sequential data here
refers to a sequence of data points (signal measurements at
voxels) along the neuronal fiber tracts that are extracted from
diffusion MRI data sets. Neuronal fiber tracts in certain
regions of the brain are disrupted by movement disorders
such as Parkinsons disease. The sensory motor area tract
(pathway) in the brain is one such neuronal pathway where
the disease caused changes are expected to be observed. By
treating this pathway as a sequence of pointswhere diffusion
sensitized MR signal is acquired, we propose to apply the
dilated VolterraNet (described below) to analyze this data.

Fig. 3. Second order Volterra correlation operator with the first-order ker-
nel w1 and separable second order kernel w2.

Fig. 4. Schematic diagram of a second-order Volterranet.
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It is known that the sequential data should involve recur-
rent structure [24], but as pointed out in [25], convolutional
architectures often outperform recurrent models in sequen-
tial data analysis. Furthermore, recurrent models are compu-
tationally more expensive than the convolutional models.
But, note that in order to mimic the infinite memory capabili-
ties of a recurrent model, one needs to increase the receptive
field by using the dilated convolutions. We will first recap
the definition of euclidean dilated convolution [25] and then
describe the proposed dilated VolterraNet.

6.1 Euclidean Dilated Convolution
Given a one-dimensional input sequence x : N ! Rn and a
kernel w : 0; . . . ; k& 1f g ! R, the dilated convolution func-
tion x ?d wð Þ : N ! Rn is defined as, x ?d wð ÞðsÞ ¼

Pk&1
i¼0 wðiÞx

ðs& d* iÞ;whereN is the set of natural numbers and k and d
are the kernel size and the dilation factor respectively. Note
that with d ¼ 1, we get the normal convolution operator. In a
dilated CNN, the receptive field size will depend on the
depth of the network as well as on the choice of k and d:

6.2 Dilated VolterraNet
Now we present a dilated VolterraNet model by combining
the VolterraNet with the dilated CNN model. Given a one-
dimensional input sequence fi : M ! Rf g, we will first
apply CorrM2 and cascaded CorrG2 layers to each point in the
sequence independently. The output of a CorrG2 layer is a
function G ! R: Let the output of the last CorrG2 layer be
gi : G ! Rf g: Then, we discretize the group G, to represent

each gi by a vector xi (as shown in Fig. 5). The steps of dis-
cretization, i.e., length of xi, are chosen via grid search in
the experimental section. This is analogous to the standard
practice in literature [5], [7]. Polar coordinates on G are
used to discretize G and then we use the dilated CNN by
treating each sample as a vector. This essentially amounts
to choosing a uniform grid in the parameter space using
Rodrigues vectors [26], although more sophisticated techni-
ques can be employed in this context [27]. Now, we input
gi

! "
to the euclidean dilated CNN (since the components

of gi are real) to construct a dilated VolterraNet frame-
work. In Fig. 5, we present a schematic of dilated Volterra-
Net with input fif g followed by CorrM2 !ReLU! CorrG2
!ReLU! CorrG2 .

A self explanatory schematic diagram of the dilated Vol-
terraNet architecture is shown in Fig. 5.

7 EXPERIMENTS

In this section, we present experiments on spherical MNIST,
atomic energy and Shrec17 data sets respectively.We present

comparisons of performance of our VolterraNet to Spherical
CNN by Cohen et al. [5] and Clebsch-Gordan net by
Kondor et al. [8]. Further, we also present a separate com-
parison with the spherical CNN presented most recently
in [7] on the shrec17 data set. The separate comparison
was necessary due to the fact that the loss function used in
[7] was distinct from the one used in [5], [8]. Finally, we
extend the VolterraNet to a dilated version, a higher order
analogue of the dilated CNN and use it to demonstrate its
efficacy in group testing on diffusion MRI data acquired
from movement disorder patients. The data in this exam-
ple reside in a product space, S2 * Rþ, which is a Rieman-
nian homogeneous space distinct from S2: This experiment
serves as an example demonstrating the ability of Volterra-
Net to copewithmanifolds other than the sphere.

Choice of Basis. In our experiments, we have three examples
of manifolds, S2, S2 * Rþ and P3: For SOð3Þ, we use the
Weigner basis and forS2 ’ SOð3Þ=SOð2Þ, we use the induced
basis, i.e., the Spherical Harmonics basis. For S2 * Rþ, we use
the product basis of each of the spaces, i.e., SphericalHarmon-
ics for S2 and the canonical basis for Rþ: Since P3 can be writ-
ten asGLð3Þ=Oð3Þ , we use the induced basis on P3 which are
induced from the canonical basis onGLð3Þ:

In all the experiments we compare the VolterraNet archi-
tecture to the state of the artmodels, and additionally compare
it to an architecture which we call Homogeneous CNN
(HCNN) which replaces the Volterra non-linear convolu-
tions/correlationswith the correlation operations fromDefini-
tion 2.Wehave released an implementation of the VolterraNet
architecture with the Spherical MNIST experiment which can
be found at, https://github.com/cvgmi/volterra-net.

7.1 Synthetic Data Experiment: Classification of
Data on P3

In this section, we first describe the process of synthesizing
functions f : P3 ! 0; 1½ 0: In this experiment, we generated
data samples drawn from distinct Gaussian distributions
defined on P3 [28]. Let X be a P3 valued random variable
that followsN M; sð Þ, then, the p.d.f. ofX is given by [28]

fX X;M; sð Þ ¼ 1

CðsÞ exp & d2ðM;XÞ
2s2

( )
; (4)

where, dð:; :Þ is the affine invariant geodesic distance on P3

as given by dðM;XÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trace logm M&1Xð Þð Þ2

$ %r
:

We first chose two sufficiently spaced apart location
parameters M1 and M2 and then for the ith class we gener-
ate Gaussian distributions with location parameters that are
perturbations of Mi and with variance 1. This gives us two
clusters in the space of Gaussian densities on P3, which we
will classify using HCNN and VolterraNet. In this case, the
HCNN network architecture is given by: CorrP3 ! ReLU!
CorrGLð3Þ !ReLU! CorrGLð3Þ! ReLU! iL! FC: and for
VolterraNet the correlation operations are replaced with the
corresponding Volterra convolutions.

The data consists of 500 samples from each class, where
each sample is drawn from aGaussian distribution onP3: The
classification accuracies in a ten-fold partition of the data are
shown in Table 1. In most deep learning applications, one is
used to seeing a high classification accuracy, but we believe

Fig. 5. Schematic diagram of dilated VolterraNet.
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that this can be achieved here as well by increasing the
number of layers and possibly overfitting the data. The
purpose of this synthetic experiment was not to seek an
“optimal” classification accuracy but to provide a flexible
framework which if “optimally” tuned can yield a good
testing accuracy for data whose domain is a non-compact
Riemannian homogeneous space.

7.2 Spherical MNIST Data Experiment
The spherical MNIST data are generated using the scheme
described in [5]. There are two instances of this data, one in
which we project MNIST digits on the northern hemisphere
(denoted by ‘NR’) and the other where we apply random
rotation afterwards (denoted by ‘R’). The spherical signal is
discretized using a bandwidth of 60.

We selected the same baseline model as was chosen in [5],
which is a euclidean CNN with 5* 5 filters and 32; 64; 10
channels with a stride of 3 in each layer. This CNN is trained
by mapping the digits from the northern hemisphere onto
the plane. The Spherical CNNmodel [5] we used has the fol-
lowing architecture (as was reported in [5]), CorrS

2 ! ReLU
!CorrSOð3Þ ! ReLU ! FCwith bandwidths 20, 12 and the
number of channels 20, 40 respectively. We used the same
architecture for Clebsch-Gordan net as was reported in [8].

For our method, we used a second order Volterra net-
work with the following architecture: CorrS

2

2 ! ReLU ! iL
! FC with bandwidth 30, 20 respectively and number of
features 25, 10 respectively. We chose a batchsize of 32 and
learning rate of 5* 10&3 with ADAM optimization [29].

We performed three sets of experiments: non rotated
training and test sets (denoted by ‘NR/NR’), non rotated
training and randomly rotated test sets (denoted by ‘NR/R’)
and randomly rotated both training and test sets (denoted by
‘R/R’). The comparative results in terms of classification
accuracy are shown in Table 2.

We can see that the VolterraNet performed better than all
the three competing networks for both the ‘R/R’ and ’NR/R’
cases. Note that in terms of number of parameters, Volterra-
Net used 46010, while Spherical CNN used 58550 and
Clebsch-Gordan net used 342086. The baseline CNN used
68000 parameters. Thus in comparison, we have approxi-
mately an 86 percent reduction in parameters over the
Clebsch-Gordan net with almost equal or better classification
accuracy. In comparison to the Spherical CNN, we have
approximately a 21 percent reduction in the parameters over
the Spherical CNN while achieving significantly better per-
formance. This clearly depicts the usefulness of our pro-
posed VolterraNet in comparison to existing networks used
in processing this type of data in a non-euclidean domain.

7.3 3D Shape Recognition Experiment
We now report results for shape classification using the
Shrec17 dataset [30] which consists of 51300 3D models

spread over 55 classes. This dataset is divided into a 70=10=20
split for train/validation/test. Following the method in [5],
we perturbed the dataset using random rotations. We proc-
essed the dataset as in [5]. Basically, we represented each 3D
model by a spherical signal using a ray casting scheme. For
each point on the sphere, a ray towards the origin is sent
which collects the ray length, cosine and sine of the surface
angle. Additionally, the convex hull of the 3D shape gives 3
more channels, which results in 6 input channels. The spheri-
cal signal is discretized using Discoll-Healy grid [13] grid
with a bandwidth of 128.

The Spherical CNN model [5] we used has the following
architecture (as was reported in [5]): CorrS

2 ! BN ! ReLU
!CorrSOð3Þ ! BN ! ReLU ! CorrSOð3Þ ! BN ! ReLU
! FCwith bandwidths 32, 22 and 7 and the number of chan-
nels 50, 70 and 350 respectively. We used the same architec-
ture for Clebsch-Gordan net as was reported in [8].

In our method, we used a second order Volterra network

with the following architecture: CorrS
2 ! BN ! ReLU !

CorrSOð3Þ
2 ! BN ! ReLU ! iL ! FCwith bandwidths 10,

8, 8 respectively and number of features 60, 80, 100 respec-
tively. We chose a batch size of 100 and a learning rate of 5*
10&3 withADAMoptimization [29]. Table 3 summarizes com-
parison of VolterraNet with other existing deep network
architectures that reported results on this data in literature.
From this table, it is evident that VolterraNet almost always
yields classification accuracy results within the top three
methods,while having the best parameter efficiency.

ComparisonWith Esteves et al. [7].We also comparedourVol-
terraNetwith recent work of Esteves et al. [7] using an extra in-
batch triplet loss [34] (as used in Esteves et al. [7]).We show the
comparison results in Table 3 (last two rows), which clearly
shows that, (a) The VolterraNet outperforms the network in
[7] (which is the state-of-the-art algorithm in terms of parame-
ter efficiency). (b) The triplet loss boosts the performance of
VolterraNet relative to the baseline loss of cross entropy.

7.4 Regression Experiment: Prediction of Atomic
Energy

Here, we report the application of our VolterraNet to the
QM7 dataset [35], [36], where the goal is to regress over
atomization energies of molecules given atomic positions
ðpiÞ and charges ðziÞ: Each molecule consists of at most 23
atoms and the molecules are of 5 types (C, N, O, S, H). We
use the Coulomb Matrix (CM) representation proposed by
[36], which is rotation and translation invariant but not per-
mutation invariant. We used a similar experimental setup
to that described in [5] for this regression problem. We
define a sphere Si around pi for each ith atom. We define
the potential functions

TABLE 1
Comparative Mean and Stdev. on the Synthetic Data

Model mean acc. std. acc.

VolterraNet 91:50 0:08
HCNN 86.50 0:02

TABLE 2
Comparison of Classification Accuracy

on Spherical MNIST Data

Method NR/NR NR/R R/R # params.

Baseline CNN 97.67 22.18 12.00 68000
Spherical CNN [5] 95.59 94.62 93.40 58550
Clebsch-Gordan net [8] 96.00 95.86 95.80 342086

VolterraNet 96:72 96:10 96:71 46010
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UzðxÞ ¼
X

i6¼j;zj¼z

ztiz

kx& pik
; (5)

for every z and for every x on the sphere Si: This yields a
spherical signal consisting of 5 features which were discre-
tized using the Discoll-Healy grid [13] with a bandwidth of
20. For the VolterraNet, we used one S2 and SOð3Þ second
order Volterra block with bandwidths 12; 8; 8; 4 and number
of features 8, 10, 20, 50 respectively.

We compute the loss and report it in Table 4. We can see
that VolterraNet performs better than the competing meth-
ods. For Spherical CNN [5] and Clebsch-Gordan net [8], we
used similar architectures as described in the respective
papers. Spherical CNN [5] and Clebsch-Gordan net [8] use
1:4M and 1:1M parameters respectively, while the Volterra-
Net used 128460, nearly an order of magnitude reduction of
parameters, while achieving the best classification accuracy.
This illustrates the parameter efficiency gains that we get
from using a higher order correlation, a richer feature, in
the VolterraNet.

7.5 Network Architecture for dMRI Data Using
Dilated VolterraNet

Diffusion MRI is an imaging modality that non-invasively
measures the diffusion of water molecules in tissue samples
being imaged. It serves as an interesting example of our
framework since dMRI data can naturally be described by
functions on a Riemannian homogeneous space. In this sec-
tion we describe the dMRI data and its processing using the
framework presented in this paper, which will help the
reader understand the results of the following subsections.

In each voxel of a dMRI data set, the signal magnitude is
represented by a real number along each gradient magnetic
field over a hemi-sphere of directions in 3D. Hence, in each
voxel, we have a function f : S2 * Rþ ! R: The proposed
network architecture has two components: intra-voxel layers

and inter-voxel layers. The intra-voxel layers extract features
from each voxels, while the inter-voxel layers use dilated con-
volution to capture the interaction between extracted fea-
tures. In our application in the next section we extract a
sequence of voxels lying along a nerve fiber bundle in the
brain known to be affected in Parkinson disease. Hence we
have a sequence of functions along the fiber bundle
ffi : S2 * Rþ ! Rg, making the application of the dilated
VolterraNet in Section 6.2 appropriate.

7.5.1 Extracting Intra-Voxel Features

We extract intra-voxel features (independently) from each
voxel. As mentioned before, in each voxel we have a func-
tion f : S2 * Rþ ! R: Since S2 * Rþ is a Riemannian homo-
geneous space (endowed with the product metric), we will
use a cascade of the Volterra correlation layers defined ear-
lier (with standard non-linearity between layers) to extract
features which are equivariant to the action of SOð3Þ *
R n 0f gð Þ: These features are extracted independently within
each voxel. Observe that this equivariance property is natu-
ral in the context of dMRI data. Since in each voxel of the
dMRI data, the signal is acquired in different directions (in
3D), we want the features to be equivariant to the 3D rota-
tions and scaling.

7.5.2 Extracting Inter-Voxel Features

After the extraction of the intra-voxel features (which are
equivariant to the action of G), we seek to derive features
based on the interactions between the voxels. Here we use
the standard dilated convolution (as described in Sec-
tion 6.1) layers to capture the interaction between features
extracted from voxels.

Now, we are ready to give the details of the data used for
the experiment of our proposed Dilated-VolterraNet. For
this experiment, we used a second order Dilated-Volterra-
Net with 3 dilated layers of kernel size ð5* 5Þ and dilation
factors of 1, 2 and 4 respectively.

7.6 Dilated VolterraNet Experiment: Group Testing
on Movement Disorder Patients

This dMRI data was collected from 50 PD patients and 44
controls at the University of Florida and are accessible via
request from the NIH-NINDS Parkinson’s Disease Bio-
marker Program portal https://pdbp.ninds.nih.gov/. All
images were collected using a 3.0 T MR scanner (Philips
Achieva) and 32-channel quadrature volume head coil. The
parameters of the diffusion imaging acquisition sequence
were as follows: gradient directions = 64, b-values = 0/1000

TABLE 3
Comparison Results in Terms of Classification Accuracy on the Shrec17 Data

TABLE 4
Comparison Results on Atomic Energy Prediction

Method MSE

MLP/ Random CM [37] 5.96
LGIKA (RF) [38] 10.82
RBF Kernels/ Random CM [37] 11.42
RBF Kernels/ Sorted CM [37] 12. 59
MLP/ Sorted CM [37] 16.06
Spherical CNN [5] 8.47
Clebsch-Gordan net [8] 7.97

Ours (VolterraNet) 5:92 (1st)
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s/mm2, repetition time =7748 ms, echo time = 86 ms, flip
angle = 90+, field of view = 224* 224 mm, matrix size =
112* 112, number of contiguous axial slices = 60, slice thick-
ness = 2 mm. Eddy current correction was applied to each
data set by using standardmotion correction techniques.

We first extracted the sensory motor area tracts called M1
fiber tracts (as shown in Fig. 6) using the FSL software [40]
from both the left (‘LM1’) and right hemispheres (‘RM1’). We
applied the Dilated-Volterra to the raw signal measurements
along the fiber tracts. Our model was trained on both the con-
trol (normal subjects) group and the PD group data sets, i.e.,
we learned two Dilated VolterraNet models, one each for the
control and the PD groups respectively. Using the method
from [41]we compute the distance between these twomodels,
denoted by d: Now we permute the class labels between the
classes, retrain twomodels and compute the network distance
dj: If there are significant differences between the classes we
should expect that d > dj: We repeat this experiment for j ¼
1; . . . ; 1000 and let p be the proportion of experiments for
which d - dj: This is a permutation test of the null hypothesis:
there is no significant difference between the tract models
learned from the two different classes. We also performed
ablation studies with regards to the order of the model in the
Dilated-VolterraNet to study the effect of higher order convo-
lutions. We used the following architecture CorrS

2

2 ! BN !
ReLU ! CorrSOð3Þ

2 ! BN ! ReLU as our baseline model

and then replaced CorrSOð3Þ
2 and CorrS

2

2 to CorrSOð3Þ and

CorrS
2
respectively in an alternating fashion. The ablation

study result is presented in Table 5. The ‘N’ in CorrSOð3Þ

(CorrS
2
) indicates thatwe used second order for the respective

convolution operator. The table shows that a second order
representation in later layers is very useful and hence amodel
with CorrSOð3Þ performs poorly but a model with CorrS

2
and

CorrSOð3Þ
2 performs as good as the model with both second

order kernels. Both models reject the null hypothesis with 95
percent confidence.

We compared our dilated VolterraNet with the standard
(no dilation) VoletrraNet and as expected we needed 1 1:5*
parameters in case of standardVolterraNet to achieve p-values
of 0.03 and 0.04 for LM1 and RM1 respectively, which is simi-
lar in performance to its dilated counterpart. Additionally, we
compared our network’s performance to the performance of a
similar dMRI architecture (recurrent model) namely, the SPD-
SRU [39] and the baseline model used for comparison in [39]
(see Section 5.2 of [39] for details on the baseline model). We
found that the baseline method yielded a p-value of 0.17 and
0.34 respectively for ‘LM1’ and ‘RM1’. Whereas, the SPD-SRU
architecture yielded a p-values of 0.01 and 0.032 respectively.

We can conclude that both using standard and Dialted Vol-
terraNet we can reject the null hypothesis with 95 percent
confidence whereas Dilated VoletrraNet can achieve the
statistically significant result with 1 33% reduction in num-
ber of parameters compared to its standard counterpart.

8 CONCLUSION

In this paper, we presented a novel generalization of CNNs to
non-euclidean domains specifically, Riemannian homoge-
neous spaces. More precisely, we introduced higher order
convolutions – represented using a Volterra series – on Rie-
mannian homogeneous spaces. We call our network a Vol-
terra homogeneous CNN abbreviated as VolterraNet. The
salient contributions of our work are: (i) A proof of equivar-
iance of higher order convolutions to group actions on homo-
geneous Riemannian manifolds. Proofs of generalized Linear
Shift Invariant (equivariant) and Nonlinear Shift Invariant
(eqivariant) theorems for correlations and Volterra series
defined on Riemannian homogeneous spaces. (ii) We prove
that second order Volterra convolutions can be expressed as a
cascade of convolutions. This allows for efficient implementa-
tion of second-order Volterra representation used in the Vol-
terraNet. (iii) In support of our conjecture on the reduced
number of parameters, real data experiments empirically
demonstrate that VolterraNet requires less number of param-
eters to achieve the baseline accuracy of classification in com-
parison to both Spherical-CNN and Clebsch-Gordan net. (iv)
We also presented a dilated VolterraNet that was shown to be
effective on a group testing experiment on movement disor-
der patients. Our future work will be focused on performing
more real data experiments to demonstrate the power of Vol-
terraNet for a variety of data domains that are Riemannian
homogeneous spaces.
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