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a b s t r a c t

Machine learning models can assist with metamaterials design by approximating computationally

expensive simulators or solving inverse design problems. However, past work has usually relied on

black box deep neural networks, whose reasoning processes are opaque and require enormous datasets

that are expensive to obtain. In this work, we develop two novel machine learning approaches to

metamaterials discovery that have neither of these disadvantages. These approaches, called shape-

frequency features and unit-cell templates, can discover 2D metamaterials with user-specified frequency

band gaps. Our approaches provide logical rule-based conditions on metamaterial unit-cells that allow

for interpretable reasoning processes, and generalize well across design spaces of different resolutions.

The templates also provide design flexibility where users can almost freely design the fine resolution

features of a unit-cell without affecting the user’s desired band gap.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Metamaterials are traditionally designed through empirical

trial-and-error or intuition [1] or computationally expensive topol-

ogy optimization [1–5] which often produces designs out of

predetermined geometrical building blocks. Recently, machine

learning methods (ML) have gain popularity for metamaterial

design. For example, machine learning models can be trained to

predict material properties from unit cells defined by a finite

set of pixels/voxels, and used as faster surrogate models for

computationally expensive simulations [6–10]. Using deep gen-

erative models and neural network inversion techniques, some

recent works [11–17] aim to directly solve the inverse design

problem for metamaterials, i.e., generating the designs given the

target property. However, the ML models used in these work are

usually gigantic black boxes, whose decision processes are hard to

understand. This is undesirable for scientific discovery purposes

because scientists may also want to gain insights into what

geometric features are important for a given target property,

such a particular frequency band gap. In addition, these massive

models are data hungry and not robust to distributional shift —

they usually require a huge simulated dataset that covers most

of the design space. These models also tend to perform poorly on

datasets they have not seen before, such as unit-cells in a finer

resolution space.

∗ Corresponding author.

E-mail address: zhi.chen1@duke.edu (Z. Chen).

In this paper, instead of relying on existing black box ap-
proaches, we propose two novel rule-based ML approaches for
metamaterial design that have major advantages:

• Interpretability: The approach allows us to discover inter-
pretable key patterns within unit-cells that are related to
a physical property of interest (see Fig. 1a and 1b). We
consider two types of patterns: (i) local patterns called shape
frequency features, which calculate the occurrence frequency
of certain shapes in the unit-cell; (ii) global patterns, called
unit-cell templates, which look for arrangements of con-
stituent materials in specific regions of the metamaterials’
unit-cells. The unit-cell templates are optimized with binary
integer programming to find global patterns within unit
cells that give the metamaterial a desired property.

• Leverages Multi-resolution Properties: An important obser-
vation underpinning our methodology is that a pattern in
the coarser resolution design space also exists in finer reso-
lution design space, with one coarse pixel replaced by many
finer pixels. As a result, if a pattern can robustly characterize
the target property at the coarse resolution design space, it
will also be predictive at the finer resolution design space. This
leads to computationally-efficient discovery of many valu-
able metamaterial designs possessing the desired properties.
In particular, our method allows us to construct a scaffold of
patterns that allows interpretable coarse scale information
discovered at low resolutions to be reliably transferred to
make accurate predictions for high resolution designs (see
Fig. 1c).
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Fig. 1. Examples of interpretable key patterns discovered by the proposed method. a. A shape frequency feature (this one is shaped like a ‘‘+’’). How frequently this

shape appears in the unit-cell is a useful predictor of a band gap. b. A unit-cell template, which considers specific global patterns in the unit-cell. Here, regardless

of whether we place stiff or soft materials at each green pixel in the unit-cell, as long as the stiff and soft materials are in the positions defined by the template

in yellow and purple, there will be a band gap within the user’s desired range. c. The patterns are learned from coarse resolution training data but can be robustly

transferred to finer resolution, and generate fine resolution unit-cells with the target property. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

• Flexible Metamaterial Designs: Our unit-cell templates (e.g.,

the one in Fig. 1b) enables flexibility in unit-cell designs at

any resolution. Simply, unit-cell templates specify regions

where one can almost freely design unit-cell features with-

out changing the target band gap property (e.g., in Fig. 1b

constituent phases can be arranged at will in the green

regions determined by our algorithm). Such flexibility in

design might be useful to satisfy practicality constraints

such as connectivity or other design constraints such as

overall stiffness.

Section 2 discusses related works on ML approaches for meta-

material designs. In Section 3, we introduce the problem setting.

In Section 4, we provide the proposed methods and explain

how they deal with the four core objectives of data-driven ap-

proaches that are important to materials scientists: (a) design-to-

property prediction; (b) property-to-design sampling; (c) identify

key patterns; (d) transfer to finer resolution. We then evaluate

performance of the proposed methods in Section 5 and test them

on practical applications. We discuss and conclude in Section 6.

2. Related works

Metamaterials are architected materials with engineered geo-

metrical micro- and meso-structures that can lead to uncommon

physical properties. As mentioned in the introduction, many ex-

isting works apply machine learning models for designing meta-

materials, i.e., assembling constituent materials into metamateri-

als that have specific physical properties.

Much past work focuses on structure-to-property prediction.

Because of the expensive computational cost of numerical sim-

ulations, these works train machine learning models (mostly

deep learning models) to approximate the simulation results [6–

10]. Using these ML models as a fast replacement of the sim-
ulator, materials satisfying the design objective can be found
more efficiently using rejection sampling, i.e., randomly pick-
ing a structure in the design space until it satisfies the de-
sign objective. However, given the immense size of the design
space, finding materials through rejection sampling can still be
computationally inefficient. Therefore, some recent works apply
deep generative models and neural network inverse modeling
[11–17] to train a more efficient materials sampler, aiming to
solve the inverse design problems for metamaterials, i.e., property-
to-structure sampling. See [18–20] for reviews on using deep
learning methods for metamaterial designs.

Almost all modern existing work on this topic uses black box
models like deep neural networks. Such approaches are unable to
answer key questions such as ‘‘What patterns in a material’s de-
sign would lead to a specific desirable property?’’ A link between
the specific design and the target property could be useful for
further research; i.e., to determine whether there is an agreement
with domain knowledge, and if not, to potentially discover new
knowledge.

Other work also stresses the importance of interpretability for
metamaterial design [14,21,22]. These works are very different
from ours, and cannot solve the challenge we want to address.
Ma et al. [14] try to make the latent space of deep generative
models interpretable. Their interpretable features describe gen-
eral geometrical information such as size and shape of holes in
the material but these properties are not associated with the
target property. In contrast, our goal is to find key patterns within
unit cells that result in the target property (in our case, a band
gap). Elzouka et al. [21] and Zhu et al. [22] also build rule-based
models, namely decision trees, but the design problems they are
solving are different and much simpler than the problem we try
to solve. Specifically, their materials are described by several con-
tinuous features, e.g., thickness of the materials, while we work
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Fig. 2. Input and target of our metamaterial design problem. a. 2-D phononic material constructed with the raw features. Upper Left: raw 15 dimensional input

feature vector. Lower left: the feature vector defines the triangle in the lower right of the unit-cell. The triangle is copied using lines of symmetry to define the

full unit-cell. Right: the unit-cell is tiled to obtain the full material. For the Bloch–Floquet boundary conditions, the tiling is infinite in all dimensions; b. The design

objective is the frequency band gaps.

on pixelated metamaterials whose features are just raw pixels

made of constituent materials. Discovering interpretable patterns

directly from raw pixels is a more challenging and fundamental

problem.

Another serious issue with using black box models like deep

neural networks is that they require large labeled training datasets,

and the training and testing data should come from the same

distribution so that the model generalizes between training and

test. However, constructing these large datasets is extremely

expensive because the labels (i.e., material properties) of meta-

materials are calculated by simulation, which is computationally

expensive. In fact, this whole process could be so expensive that

one might find it less expensive to use the simulator to get the

results on the test set directly rather than go through the process

of collecting a training set at all. Note that deep generative mod-

els like GANs [23,24] do not address the simulation bottleneck

because training a GAN requires co-training a generator and a

discriminator which requires even more training data than just

training a structure-to-property predictor. Ma et al. [25] propose

a self-supervised learning approach that can utilize randomly

generated unlabeled data during training to reduce the amount

of training data. However, this work can only handle structure-

to-property prediction but not the problem of inverse design

considered here. Our method instead alleviates this simulation

bottleneck through amulti-resolution approach: our unit-cell tem-

plate models are trained using a (relatively small amount of)

coarse-resolution data but can extrapolate and generate a (large

amount of) finer-resolution metamaterial designs. This is helpful

because the coarse resolution space is much smaller than the

fine-resolution space, and gives us a bird’s eye view of what might

happen when we sample at the finer scale throughout the space

of possible metamaterials.

3. Problem settings

Here, we introduce the settings of the metamaterial design

problem we are trying to solve, including the inputs and target

of the dataset and their physical meanings.

We aim to design and characterize 2-D pixelated metamate-

rials made by tiling a 10 × 10 unit-cell. Such materials can be

stacked to form 3D structures, and can direct, reflect or scatter

waves, depending on the choice of unit-cell’s material selection

and geometry. In our framework, the unit-cell is a square with

side length a = 0.1 m. However, transferring to a different length

scale for a different application is easily doable by a simple scaling

transformation on the dispersion relations. For a 10 × 10 unit-

cell, the pixel side length is 1 cm; for 20 × 20 unit-cell, the pixel

side length is 0.5 cm. Each unit-cell is made of two constituent

materials: one is soft and lightweight, with elastic modulus E

= 2 GPa1 and density ρ = 1,000 kg/m3, and the other is stiff

and heavy with E = 200 GPa, and ρ = 8,000 kg/m3. These two

sets of material properties are representative of a polymer and

steel respectively. Our unit-cells are symmetric, with four axes

of symmetry (x, y and ±45◦). Under the symmetry constraints,

the coarsest resolution (10 × 10) unit-cell has only 15 irreducible

pixels. As a result, the raw input features of a sample in our

dataset is a 15-dimensional binary vector: 0 means the soft con-

stituent material in that location, and 1 means stiff constituent

material. Thus, the full coarse space can be characterized, having

215 total states. Fig. 2 shows how to construct a material from the

representation involving the 15 raw input features.

The material property we desire in our engineered materials

is a band gap within a specific frequency range, given by the user.

A band gap is a range of frequencies within which elastic waves

cannot propagate and are instead reflected.

To identify the existence of a band gap, one can examine

the effect of dispersion in metamaterials by calculating disper-

sion relations. Dispersion relations are functions that relate the

wavenumber of a wave to its frequency, and they contain in-

formation regarding the frequency dependent propagation and

attenuation of waves. Dispersion relations are found by com-

puting elastic wave propagation solutions over a dense grid of

wavevectors. A band gap exists when there is a range of frequen-

cies in the dispersion relation for which no wave propagation

solutions exist (see Fig. 2b).

Dispersion relation computations use Bloch–Floquet periodic

boundary conditions, i.e., they assume that a given unit-cell is

tiled infinitely in space. The physics revealed in dispersion analy-

sis (infinite-tiling) can be leveraged in more realistic finite-tiling

scenarios, as we will demonstrate later, which makes disper-

sion relation computations very useful for exploration and de-

sign of real materials. Our dispersion relation simulations are

implemented using the finite element method.

More details about the simulation can be found in the Supple-

mentary Information A.

We are looking for materials with band gaps in a certain

frequency range. To define this task as a supervised classification

problem, we create a binary label based on existence of a band

1 GPa is gigapascals, a unit used to quantify elastic modulus.
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gap in a given frequency range (e.g. [10, 20] kHz): 1 means one or

more band gaps exist, 0 means no band gap exists. In other words,

if a band gap range intersects with the target frequency range, the

label is 1, otherwise the label is 0. One can also flexibly adjust the

band gap label for different practical uses. For example, we can

set the label to 1 only when the intersection of the band gap and

the target frequency range is above a minimum threshold. We can

also set the label to 1 when the band gap covers the entire target

range, or even create a label for band gap properties in multiple

frequency ranges.

4. Method

This section introduces proposed methods. Section 4.1 ex-

plains the shape-frequency features and how they can be used to

optimize different objectives. Inspired by the efficiency of shape-

frequency features, we then propose unit-cell template sets in

Section 4.2.

4.1. Shape-frequency features

We hypothesize that the occurrence of certain local features

in the metamaterials might contribute to the formation of band

gaps. For example, certain local patterns/shapes in the materials

can lead to interference and thus cause band gaps. Because the

unit-cells are repeated, the location of such local patterns does

not matter, as long as they occur frequently, the band gap can

be formed. Such physics intuition inspires us to propose shape-

frequency features which calculates the number of times a pattern

occurs in the unit cell divided by total number of locations.

Denote the unit-cell as a n × n binary matrix U ∈ {0, 1}n×n,

where Ui,j = 0 means pixel i, j is assigned to the soft material

and Ui,j = 1 when the pixel is assigned to the stiff material.

A specific shape s can be represented as a set of location offsets

Os whose elements are coordinates of pixels with respect to a

reference pixel. For example, a 2 × 2 square window can be

represented as {(0, 0), (1, 0), (0, 1), (1, 1)}. A 3 × 3 plus symbol as

in Fig. 1 can be represented as {(0, 1), (1, 0), (1, 1), (1, 2), (2, 1)}.
For a specific unit-cell, the feature value corresponding to that

shape is computed by sliding the shape over the unit-cell and

calculating the fraction of times that it is entirely contained

within the soft material,

fs =
1

n2

n
∑

i=1

n
∑

j=1

1

⎡

⎣

⎛

⎝

∑

(or ,oc )∈Os

Ui+or ,j+oc

⎞

⎠ = 0

⎤

⎦ , (1)

where 1[·] is the indicator function. It equals 1 if and only if all the

pixels in the shape are soft material (i.e.,
∑

or ,oc
Ui+or ,j+oc = 0).

We would typically consider a collection of shapes, and have

one element in a unit-cell’s feature vector per shape. Thus, for

unit-cell i, the jth component of its feature vector corresponds to

how often the full shape j appears in its soft material.

In more detail, consider the collection of shapes, shown within

Fig. 3a (left). Note that this collection of shapes is the full set

used in the results section, not just examples of them. Again,

pixels of the stiff material are in yellow, and the soft material is

shown in purple. We slide each of the shapes (sliding windows)

over the unit-cell (Fig. 3a (middle)) and count the fraction of

positions over which the shape is fully contained within pixels

of the soft (purple) material. These fractions together form the

new representation for the unit-cell (Fig. 3a (right)). Note that,

to calculate the fraction, we should also consider the situation

where the sliding window is across the boundary of two unit-

cells, since the entire material is made by tiling the unit-cell.

Because the unit-cells are symmetric, the occurrence of the pat-

terns within the unit-cell are also symmetric: if we rotated the

patterns by 90◦, 180◦ or 270◦, the number of detections of the

pattern within the unit-cell would be identical. Note that the

shape-frequency features are different from standard convolu-

tion filters used in computer vision; details are discussed in

the Supplementary Information B. Theoretically, our method can

be generalized to nonsquare pixels and unit-cells as well, see

Supplementary Information E.

Once we calculate the shape-frequency features of the unit-

cells, they can replace the original raw features and be used

as the inputs of the machine learning models to predict the

band gap output. We show later in Section 5.1 that using the

shape-frequency features as inputs, machine learning models can

predict the existence of band gaps more accurately than using

raw features.

Since shape-frequency features are just new representations

of the unit-cells and they are written in vector form, any type

of machine learning model can be trained to predict band gap

existence, taking these features as inputs. These machine learning

models can not only be complex models like neural networks or

boosted trees, but can also be interpretable models (e.g., sparse

decision trees). Fig. 3b shows examples of sparse decision trees

that predict the existence of band gaps from shape frequency

features. When making predictions, the decision tree starts from

its root node, checking if the shape shown on the node appears

frequently in the unit-cell (e.g., if a 1 × 4 soft bar occurs in the

unit-cell more than 22% of all possible locations). If so, it goes

to the right branch; if not it goes to the left branch. The process

is continued until a leaf node (in green or orange) is reached. At

that point, it outputs the prediction of whether a band gap exists,

based on the majority vote of the training data within that leaf.

The paths denoted by red arrows in the trees in Fig. 3b show how

often the local patterns need to occur in the unit-cells to predict

an open band gap. More analysis of these discovered patterns can

be found in Section 5.3.

4.1.1. Optimizing precision and support

For regular binary classification problems, we hope the ma-

chine learning models have high accuracy for both positive sam-

ples (materials with band gaps) and negative samples (materi-

als with no band gap). This is also the objective if our goal is

to perform only structure-to-property prediction. However, for

the property-to-structure task, where our goal is to produce a

number of unit-cell designs with the target band gap property,

prediction accuracy is no longer a good metric. Instead, we hope

all unit-cells that are predicted to have a band gap actually have

a band gap, i.e., we prefer that the model has high precision.

We also hope the total number of discovered designs, i.e., the

support, meets the requirement of real applications. Thus, for

the property-to-structure task, our objective is a combination of

precision and support.

Most machine learning methods cannot directly optimize cus-

tom objectives with constraints, such as precision, constrained

by support. However, there are new approaches that permit

direct optimization of custom discrete objectives. We use GOSDT

(Generalized and Scalable Optimal Sparse Decision Trees, [26])

for this task, because it directly optimizes decision trees for

customized objectives. Different from traditional decision tree al-

gorithms which use greedy splitting and pruning, GOSDT directly

searches through the space of all possible tree structures, uses

analytical bounds to reduce a huge amount of search space, and

directly outputs a tree that optimizes the customized objective.

We programmed it to maximize the following custom objective

to optimality:

4
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Fig. 3. a. The process of calculating shape-frequency features. Left: Collection of shapes (sliding windows) used to create the shape-frequency features. Middle: An

example 10 × 10 unit-cell design (tiled 4 times for better visualization). Right: Shape-frequency features of the unit-cell, which count the fraction of locations in

the unit-cell where the shape is present in the soft material; b. Optimal sparse decision trees built on shape-frequency features for predicting band gaps in different

frequency ranges; red arrows denote the paths to band gap (BG) nodes. Blue text on the top-right tree breaks down how the decision tree predicts whether the

band gap exists using shape-frequency features. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)

max
tree

[

TPtree

TPtree + FPtree + ϵ
−

K

TPtree + ϵ

]

(2)

= max
tree

[

P − FNtree

P − FNtree + FPtree + ϵ
−

K

P − FNtree + ϵ

]

. (3)

Here, K is a parameter that balances the precision and the sup-

port; ϵ is a small constant for numerical convenience; TP , FP , TN ,

FN mean true positives, false positives, true negatives and false

negatives. Eq. (2) shows precision (first term) and inverse support

(second term); we use inverse support so that if support is large,

the term diminishes in importance. The simplification in Eq. (3)

shows that the objective is monotonically decreasing with respect

to FNtree and FPtree. Theorem B.1 of [26] shows that as long as the

objective is decreasing with respect to FNtree and FPtree, we can

find an optimal sparse decision tree using GOSDT’s branch and

bound algorithm.

4.1.2. Property-to-structure sampling

Because we optimize the precision using GOSDT, the false pos-

itive rate of our model will be low enough to work with. At this

point, we directly do rejection sampling using the decision tree to

produce unit-cell designs with the target band gap. Specifically, to

produce valid designs, the rejection sampling approach randomly

picks structures in the design space, evaluates whether each of

them are predicted to have a band gap, and outputs only these

relevant designs. After sampling, each accepted sample is evalu-

ated with the physics-based finite-element model to determine

whether a band gap is present.

5
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Algorithm 4.1 Sampling Fine resolution Unit-cell Designs via Shape-frequency Features

Input: simulated coarse resolution (10 × 10) dataset D := {xi, yi}
215

i=1, xi ∈ {0, 1}15: raw features; yi: band gap label

Parameters: set of shapes S; tree sparsity regularization λ (see [26]); K , ϵ (see Section 4.1.1)

Output: raw features of a fine resolution unit-cell x̃

1: calculate shape-frequency features xSFFi = SFF(xi,S) for all xi in the dataset (coarse resolution), see Section 4.1

2: train an optimal sparse decision tree τ = GOSDT({xSFFi , yi}
215

i=1, λ, K , ϵ), see Section 4.1.2

3: while(True):

4: randomly sample a binary vector x̃ as raw features in the fine resolution space

5: calculate shape-frequency features x̃SFF = SFF(x̃,S) (fine resolution), see Section 4.1.3

6: if τ (x̃SFF) = 1:

7: return x̃

4.1.3. Transfer to finer resolution

The raw feature space of finer resolution samples is different

from that of coarse resolution samples. Therefore, for the finer

resolution data, we need to slightly modify the approach to obtain

shape-frequency features that are compatible with the coarse

resolution shape-frequency features. Suppose we want to transfer

the model from 10 × 10 to 20 × 20 space. Then, there are three

changes in calculating the shape-frequency features:

• The window size should be doubled when moving from

coarse resolution to fine resolution;

• The stride of the sliding window should be 2 instead of 1;

• In counting the shape-frequency values, exact agreement

between the window and soft material (purple) should be

replaced with near exact agreement. In particular, when less

than 2 yellow pixels (stiff material) are found in the window,

we can consider this to be an agreement.

When using the shape-frequency features with these modifi-

cations, the decision tree model learned on the coarse resolution

data can be directly applied to the fine resolution. Thus, we can

also do rejection sampling on the fine resolution with the model.

Algorithm 4.1 shows the entire pipeline of using an opti-

mal sparse decision tree built on shape-frequency features to

sample fine resolution designs with the target band gap prop-

erty. Visual illustration of the sampling process can be found in

Supplementary Information C.

4.2. Unit-cell template sets

Here, we introduce another interpretable machine learning

model, called unit-cell template sets. Different from sparse trees

on shape-frequency features, which focus on local patterns, a

unit-cell template captures a global pattern for the unit-cell that

is related to the target properties. The unit-cell template is a n×n

matrix T ∈ {0, 1, ∗}n×n, where Ti,j = 0 means the pixel is soft

material, Ti,j = 1 means the pixel is stiff material, and Ti,j = ∗
means the pixel could be either soft or stiff, i.e., a free pixel.

Definition (match). We say a unit-cell design U matches the unit-

cell template if and only if all pixels with value 0 on the template

are also 0 on the design, and all pixels with value 1 on the unit-

cell template are also 1 on the design. That is, ∀(i, j) such that

Ti,j ̸= ∗, we have Ui,j = Ti,j.

A unit-cell template set contains a set of unit-cell templates,

and the sample design is predicted as positive if and only if

it matches at least one unit-cell template in the set. Fig. 4a

shows an example of a unit-cell template set that consists of

five different templates. We proposed unit-cell templates be-

cause we found that some pixels in the unit-cells are more

important for the formation of band gaps than others. For the

pixels that are not important, even if they are flipped, the band

gaps remain unchanged; we denote these as free pixels in the

unit-cell template. The free pixels identify unimportant regions

where changes do not affect the target band gaps, while the

other pixels form the key global pattern that leads to the band

gap. We aim to find a unit-cell template set that captures a

diverse set of global patterns related to the target band gap. The

relationships between unit-cell template sets and other machine

learning methods are discussed in Supplementary Information B.

Theoretically, our method can be generalized to nonsquare pixels

and unit-cells as well, see Supplementary Information E.

The training objective of the model is to find a small number of

unit-cell templates, such that the training precision of the entire

model is high enough, and the model covers as many valid de-

signs as possible, i.e., maximizing the support under a minimum

precision constraint. The reasons for optimizing precision and

support were explained in Section 4.1.1, and we set a limit for

the total number of selected unit-cell templates to encourage

the unit-cell template sets to contain a diverse set of unit-cell

templates. Because the total number of possible templates is

extremely large, the training process is divided into two steps,

a pre-selection of candidate unit-cell templates that filters out

useless templates to reduce the problem size (Section 4.2.1), and a

integer linear programming (ILP) formulation to optimally select

from the candidates obtained in the first step (Section 4.2.2).

Fig. 4b shows the unit-cell template sets learned by the pro-

posed algorithm for band gap prediction. More analysis of these

discovered patterns can be found in Section 5.3.

4.2.1. Pre-selection of templates

Here we consider symmetric unit-cell templates, because de-

signs in our dataset are all symmetric. By removing all symmetry

redundancy, the unit-cell template can be represented by its

irreducible pixels, i.e. a 15 dimensional vector t ∈ {0, 1, ∗}15. The
total number of possible templates is 315 which is approximately

14.3 million. This is too large for the ILP in the next step. However,

among the 315 possible templates, most of them would never

be selected because either their precision or support is not high

enough. For example, a unit-cell template with precision 80% is

not likely to be used if we want the entire model to have precision

above 99%, i.e., we hope the unit-cells are all having the desired

band gap properties. Also, if the support of a unit-cell template,

i.e., the total number of designs that match it, is very small

(e.g., < 10), the model may not generalize well. Therefore, we

pre-select the unit-cell templates by setting minimum thresholds

of precision and support, which reduces the search space only to

promising unit-cell templates. We select the unit-cell template as

a candidate only when it meets the minimum thresholds.

Observing that the entries are all binary in the unit-cell de-

signs, we implement the precision calculation via bit operations,
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Fig. 4. a. An Example of a unit-cell template set. A unit-cell is predicted as positive as long as it matches at least one unit-cell template in the set; b. unit-cell

template sets learned for predicting band gaps in different frequency ranges. Note that because unit-cells are tiled, a large cross through the center is identical to a

square on the border. (E.g., consider the two upper right unit-cells.).

which significantly improves the speed of the pre-selection step.

With the bit-operation implementation, the pre-selection steps of

all 315 possible templates finish in 50 s. The number of unit-cell

templates that remains is typically in the range of 6000 to 12000,

which is now suitable for ILP.

4.2.2. ILP for template selection

After the pre-selection step, we have a set of candidate unit-

cell templates. Since the pre-selection step significantly cuts

down the space of templates, we can directly formulate the

template selection as an optimization problem, and solve it to

provable optimality. Specifically, we formulate a ILP to optimally

select from the candidates. Suppose we have n designs and m

candidate templates. The goal of the ILP is to choose at most s

unit-cell templates (s ≪ m) whose union forms a model, such

that the support is maximized and the precision of the model is

at least p. Denote the true labels of all designs by a binary vector
y ∈ {0, 1}n, and the predicted labels by ŷ ∈ {0, 1}n. M ∈ {0, 1}n×m

denotes a matching matrix, where Mi,j indicates whether design
i matches template j (1 for match, and 0 for not match). Binary
vector c ∈ {0, 1}m denotes the chosen unit-cell templates, where
cj indicates whether template j is chosen (1 for choose, and 0 for
not choose). We solve the following ILP for template selection.

max

n
∑

i=1

ŷi (optimizing support) (4)

s.t.

m
∑

j=1

cj ≤ s (sparsity constraint) (5)

n
∑

i=1

yi · ŷi ≥

(

n
∑

i=1

ŷi

)

· p (minimum precision) (6)
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m
∑

j=1

Mi,j · cj ≥ ŷi, i = 1, . . . , n (define ŷi) (7)

m
∑

j=1

Mi,j · cj ≤ m · ŷi, i = 1, . . . , n (define ŷi) (8)

cj ∈ {0, 1}, j = 1, . . . ,m (9)

ŷi ∈ {0, 1}, i = 1, . . . , n. (10)

In this ILP, the objective (4) means maximizing the total num-
ber of designs predicted as positive, which is the same as support.
Constraint (5) controls the sparsity, i.e., choose at most s unit-
cell templates. Constraint (6) guarantees training precision of the
model is at least p. (7) and (8) constraints together define ŷi,
where ŷi = 1 if and only if design i matches at least one of the
chosen unit-cell templates. In particular, (7) says that if design i
does not match any chosen template j (i.e., whenever cj is 1, Mi,j

happens to be 0), then ŷi will be set to 0. (8) will ensure that
if there is a match for design i to any of the chosen templates
(which all have cj = 1), then this design is assigned ŷi=1. Using a
commercial MIP solver, a problem with around 10000 candidate
templates can be solved to optimality (when the current best
solution meets the upper bound of the best possible solution)
or near-optimality in about 10 min (running single-threaded on
one core of a 2.66 GHz Intel E5640 Xeon Processor). If s = 5,
it can be solved to optimality all the time, and when s = 10,
the optimality gap (difference between current best solution and
an upper bound of the best possible solution as the percentage
of the upper bound) is always <20% for a run time of 30 min
(running under the same environment); it is worthwhile to note
that optimal solutions are often attained quickly, but the solvers
can take a while to prove that the solution is optimal. Note that,
if desired, one can set higher minimum precision and support
thresholds for the pre-selection step to make the problem even
smaller, so that the ILP can be solved even faster. We choose s = 5
for all the experiments in the main paper.

The result of the ILP is our unit-cell template set.

4.2.3. Property-to-structure sampling
After training the structure-to-property model, the resulting

unit-cell template set can be directly used to solve the inverse
property-to-structure problem. An easy sampling procedure to do
this is as follows: first, randomly choose a unit-cell template t
from the unit-cell template set, where the probability to choose
each template is proportional to its support; second, for all entries
in t that equal *, randomly assign value 0 or 1 to them. These
sampled unit-cells are likely to have the desired band gap.

4.2.4. Transfer to finer resolution
The unit-cell template set naturally transfers coarse scale in-

formation to finer resolutions. In particular, by subdividing each
pixel in the unit-cell template into four sub-pixels, we directly
obtain a unit-cell template defined on a finer-resolution space.

Algorithm 4.2 shows the entire pipeline of using unit-cell
template set to sample fine resolution designs with the target
band gap property. Visual illustration of the sampling process can
be found in Supplementary Information C.

5. Results

The results are organized according to four objectives we want
to achieve with the proposed methods, including (a) design-to-
property prediction; (b) property-to design sampling; (c) identify
key patterns; (d) transfer to finer resolution. We evaluate how
well the proposed methods can achieve these objectives, followed
by several tests involving practical applications in materials dis-
covery.

5.1. Objective 1: Structure-to-property prediction

Here, we test how well the proposed methods can perform

structure-to-property prediction. We chose five frequency ranges

([0, 10], [10, 20], [20, 30], [30, 40] and [40, 50] kHz) to predict

the existence of band gaps; these frequency ranges correspond

to five different binary classification problems. Using balanced

accuracy (bacc) as the evaluation metric, we compare the pre-

dictive performance of a diverse set of ML models with and

without the shape-frequency features. We specifically consider

linear models like support vector machines with linear kernels

(SVMs) and logistic regression (LR); tree-based models like CART,

random forest (RF), and boosted trees (LightGBM [27]), as well

as neural networks including the multi-layer perceptron (MLP).

We also compare the proposed method with convolutional neural

networks (CNNs), since they have been widely used in previous

works of ML-based metamaterial design. The baccs of each model

trained on raw feature, SFF, and improvements of SFF over raw

features, are shown in Table 1 (a). We train each model 5 times

and average the accuracy.

Our results show that using the shape-frequency features,

rather than the original raw features, improves the accuracy of

classifiers for most machine learning methods, especially tree-

based methods such as boosted trees, but with the exception of

MLP (SFF decreases its in [0, 10] kHz, [10, 20] kHz, and [20, 30]

kHz).

One might expect CNNs to achieve great success in classifying

band gaps for 2-D metamaterials since the unit-cells share many

similarities with images. However, LightGBM [27] built on shape-

frequency features outperforms ResNet18 [28] in all ranges. In

some cases, e.g., within frequency range [40, 50] kHz, simple

models like CART outperform CNNs.

More details of the experiment (e.g., hyper-parameter set-

tings) can be found in Supplementary Information D.1.

5.2. Objective 2: Property-to-structure sampling

Using the methods discussed in Sections 4.1.2 and 4.2.3, we

are able to solve the inverse design (property-to-structure sam-

pling) problem.

In practice, materials scientists need valid designs with the

target property, but they do not require the set of all designs

with the property. As such, our performance metric is precision,

rather than recall. We also calculate the support, which is the

total number of testing samples predicted as positive, to ensure

the models can generate enough potentially-valid designs. Ta-

ble 1 (b) lists the precision and support values from different

methods. The methods we compared include GOSDT trained on

shape-frequency features (denoted SFF) with the objective in

Section 4.1.1, the unit-cell template set, and LightGBMs trained

on SFF and raw features.

In terms of precision, SFF+GOSDT and unit-cell template sets

significantly outperformed LightGBMs. This is probably owing

to the fact that the proposed methods directly optimize preci-

sion. LightGBMs maintain larger support, while the support of

SFF+GOSDT and unit-cell template sets is much lower. But for

practical use, it is sufficient that the model finds dozens of valid

designs. The average sampling time of these methods and the re-

sults of unit-cell template sets with different sparsity constraints

can be found in Supplementary Information D.2.

5.3. Objective 3: Show key patterns

One advantage of the proposed methods is model interpretabil-

ity; we aim to explicitly identify the key patterns learned from

data that are related to the target property. In this way, domain
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Algorithm 4.2 Sampling Fine Resolution Unit-cell Designs via Unit-cell Template Set

Input: simulated coarse resolution (10 × 10) dataset D := {xi, yi}
215

i=1, xi ∈ {0, 1}15: raw features; yi: band gap label

Parameters: pre-selection support ψpre, pre-selection precision ppre, sparsity constraint s, minimum precision p

Output: raw features of a fine resolution unit-cell x̃

1: pre-select candidate template set S
pre

T = pre-selecting(D, {0, 1, ∗}15, ψpre, ppre), see Section 4.2.1

2: run ILP to find optimal template set S∗
T = ILP(D, S

pre

T , s, p), see Section 4.2.2

3: randomly pick a template t ∈ S∗
T

4: expand t to fine resolution space, get t̃

5: randomly set to 0 or 1 for all * elements in t̃, get x̃

6: return x̃

Table 1

Summary of key quantitative results. The results are organized with respect to different objectives of data-driven metamaterials design. (a) structure-to-property

prediction; (b) property-to-structure sampling; (c) transfer to finer resolution.

(a) Structure-to-property prediction: Testing balanced accuracies (baccs) of different methods. We

mark the models with the best bacc in each frequency range in bold.

Model Frequency range

[0, 10] kHz [10, 20] kHz [20, 30] kHz [30, 40] kHz [40, 50] kHz

SVM

Raw 71.77% 73.88% 50.85% 54.93% 49.84%

SFF (ours) 75.62% 77.35% 67.96% 59.89% 49.93%

Improvement +3.85% +3.47% +17.11% +4.96% 0.09%

LR

Raw 78.03% 75.44% 56.31% 76.59% 90.96%

SFF (ours) 80.53% 79.55% 69.04% 76.9% 91.32%

Improvement +2.50% +4.11% +12.73% +0.31% +0.36%

RF

Raw 85.81% 80.04% 73.00% 77.66% 87.54%

SFF (ours) 85.52% 81.98% 74.53% 81.26% 95.35%

Improvement −0.29% +1.94% +1.53% +3.60% +7.81%

CART

Raw 84.74% 75.68% 63.40% 73.95% 86.82%

SFF (ours) 83.63% 80.13% 70.72% 79.73% 94.47%

Improvement −1.11% +4.45% +7.32% +5.78% +7.65%

MLP

Raw 90.72% 86.39% 78.15% 77.47% 65.90%

SFF (ours) 85.90% 82.55% 76.01% 77.69% 66.4%

Improvement −4.82% −3.84% −2.14% +0.22% +0.50%

LightGBM

Raw 91.32% 88.27% 81.11% 82.62% 77.76%

SFF (ours) 96.10% 90.97% 85.57% 90.01% 94.76%

Improvement +4.78% +2.70% +4.46% +7.39% +17.00%

CNN Raw 93.24% 89.76% 81.65% 79.56% 84.83%

(b) Property-to-structure sampling: Testing precision and support of different methods. Numbers in the table cells are formatted

as ‘‘precision, support.’’ The testing support here is calculated among 6554 testing samples (20% of the entire dataset).

Frequency range Raw+LightGBM SFF+LightGBM SFF+GOSDT (ours) Unit-cell template sets (ours)

[0, 10] kHz 80.77%, 2310 88.93%, 2169 95.77%, 89 98.53%, 339

[10, 20] kHz 93.52%, 4013 95.62%, 4063 98.11%, 423 98.68%, 758

[20, 30] kHz 86.94%, 3654 89.56%, 3811 94.15%, 205 94.08%, 203

(c) Transfer to finer resolution: Transfer precision of different methods.

Frequency range CNN+resizing LightGBM+resizing SFF+GOSDT (ours) Unit-cell template sets (ours)

20 × 20 20 × 20 20 × 20 20 × 20 40 × 40 80 × 80

[0, 10] kHz 18.0% 25.0% 72.5% 100.0% 100.0% 100.0%

[10, 20] kHz 58.0% 68.5% 73.5% 98.5% 99.0% 100.0%

[20, 30] kHz 39.5% 52.5% 25.0% 91.0% 96.0% 98.0%

experts can verify whether the learned rules are aligned with the

domain knowledge, or even discover new knowledge.

In Figs. 3b and 4b, we visualize the GOSDT+SFF and unit-cell

template set learned for band gaps in several frequency ranges

([0, 6], [6, 12], [12, 18], [18, 24], [24, 30] kHz).

In Fig. 3b, the top splits of each tree trained on shape-frequency

features seem to be looking for bars in the soft material. Taking

the top-right tree in 3b as an example, the root node checks if

the 1 × 4 soft bar occurs in more than 22% of the places in the

unit-cell. The unit-cell frequencies need to pass the thresholds to

get to the ‘‘band gap’’ node. All band gap nodes are on the left

branch of the deepest decision nodes in the trees. For instance,

the deepest decision node of the top-right tree checks if shape

17, two 1 × 4 soft bars 2 pixels away from each other, occurs

with more than 5% frequency in the unit-cell. To reach the band

gap prediction node, the sample needs to go to the left branch,

where shape 17 should occur with less than 5% frequency. This

indicates the unit-cells should not have too many soft material

patterns. In the field of elastic wave propagation, it is known that

the presence of stiff inclusions in a matrix of a softer material

may open a band gap due to scattering or resonant dynamics.

The trees we found seem to be looking for patterns that fit this
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description: the deepest node encourages the existence of stiff

inclusion while the first node encourages more soft material.

The unit-cell templates (Fig. 4b) contrast with the shape fre-

quency features in that they explicitly identify global (rather

than local) patterns. In the unit-cell template sets for different

frequency ranges, we can observe the existence of soft circles

(closed curves) and stiff inclusions inside the circles, which are

responsible for the formation of band gaps. As the frequency

range moves higher, the size of the circle decreases. This supports

the physical intuition that the smaller the stiff inclusions, the

higher the frequency of the band gap.

5.4. Objective 4: Transfer to finer resolution

In Sections 4.1.3 and 4.2.4, we discussed how the proposed

methods can transfer coarse scale information to finer resolution

design space. To evaluate how well the model can transfer infor-

mation, we trained the models on coarse resolution (10 × 10)

unit-cells and tested them on finer resolution (20 × 20, 40 × 40

and 80 × 80) unit-cells. Table 1(c) shows the transfer precision of

GOSDT+SFF and unit-cell template sets for band gaps in different

frequency ranges. Other ML methods are not directly comparable

because standard ML models trained on 10 × 10 data cannot

take in 20 × 20 data. Therefore, we compared the proposed

methods with baselines with slight modifications: we resized the

fine resolution (20 × 20) unit-cell to the original size (10 × 10)

and applied two algorithms (CNN or LightGBM) for rejection sam-

pling. As before, if the CNN or LightGBM model predicts that the

resized design has a band gap, we accept that sample, otherwise

we reject it. The resizing was done via bicubic interpolation.

Here, we did not compare with deep generative models such

as GANs. Although GANs (which are notoriously hard to train)

might generate materials faster than rejection sampling, their

precision can only be lower because GANs’ discriminators are co-

trained with the generator, and thus cannot be more accurate

than a CNN directly trained to predict only the target. For each

frequency range, we asked the trained models to sample 200 unit-

cell designs in finer resolution space, and ran the FEA simulation

to obtain the true band gap property for evaluating the transfer

precision. For the baseline models and GOSDT+SFF, we show

the results for 20 × 20 design space. As unit-cell template sets

performs extremely well on this task, and generates new designs

efficiently, we also show its results in 40 × 40 and 80 × 80

design space. Please see Supplementary Information C for visual

illustrations of how to sample fine resolution designs using each

model.

The results in Table 1(c) indicate that the unit-cell templates,

when transferred to all finer resolutions (20 × 20, 40 × 40 or

80 × 80), have very high precision, with almost no precision

drop compared to 10 × 10. GOSDT+SFF and other baselines do

not generalize as well as unit-cell templates to the finer resolu-

tion design space. GOSDT+SFF performs better than the resizing

baselines in [0, 10] kHz and [10, 20] kHz, but performs worse

than baselines in [20, 30] kHz. Interestingly, the transfer preci-

sions, of both GOSDT+SFF and unit-cell template sets, decrease

as frequency ranges moves higher, although unit-cell template

sets have a much slower precision decrease than GOSDT+SFF. A

possible explanation for the decrease of precision is that, in higher

frequency ranges, the band gaps are physically more related to

finer scale features that are not included in the coarse resolution

dataset. Since the models are trained on coarse resolution data,

they can only transfer physics that occurs in coarse patterns

to finer resolution design space, but cannot discover finer scale

physics without supervision. But as shown by the transfer pre-

cision results, we should emphasize that our unit-cell template

sets method was capable of extracting critical coarse resolution

features such that this decrease of precision at finer resolution

due to wave physics is minimized (the worst transfer precision

is still above 90%). One further potential improvement to this is

to add new samples at each finer resolution design space when

transferring between extreme scales.

In Supplementary Information D.3, we show additional results

on sampling with correlation between green pixels for unit-cell

template sets, which demonstrates the surprising flexibility of

unit-cell template sets in terms of designing at finer-resolution

design space.

5.5. Practicality test

In our method and simulations so far, we assumed the unit-

cell is tiled infinitely for computational convenience. However, a

unit-cell can only be tiled finitely in practice and the results can

differ for infinite and finitely tiled domains due to boundary con-

ditions. To test whether the designs found by our method work

in practice, we simulated the dispersion relations of finitely-tiled

materials made by unit-cell designs discovered by our method.

See Supplementary Information D.4 for results of the finite tiling

COMSOL simulation. The results show that our method is robust

under finite tiling.

In addition to the finite tiling test, we also tested the prac-

ticality of the proposed method on its ability to create a wave

demultiplexer (Fig. 5), in which waves with different frequencies

travel through the materials in different directions. That is, a

signal enters the demultiplexer, and there are three different

possible outputs; which one will be non-zero depends on the

frequency of the input signal. Specifically, we will build the de-

multiplexer to route signals from three different frequency ranges

in different directions.

We need 5 different materials to build the demultiplexer: one

material with band gaps covering all three ranges, one material

allowing band pass in all ranges, and three materials allowing

band pass in one range while blocking the other two ranges. We

use homogeneous stiff unit-cells for the material allowing band

pass in all ranges. For other materials, we train a unit-cell tem-

plate set to find 20 × 20 unit-cell designs with these properties,

and assemble the 5 unit-cells to build the demultiplexer (top

row of Fig. 5). The bottom row of Fig. 5 shows the how the de-

multiplexer successfully guides waves with different frequencies

(11.45, 13.97 and 15.55 [kHz]) towards different directions, which

was the goal of the experiment.

6. Conclusion and discussion

Our work shows the power of interpretable machine learn-

ing tools in material design. The approach has achieved both

mechanistic understanding, e.g., physically interpretable rules of

patterns that lead to band gaps, and designing new materials

with desired functionality. The approach has been demonstrated

to be predictive for both infinite domains and realistic finite

domains, and it has been able to design the material geometry for

a wave demultiplexer. Additionally, our multi-resolution frame-

work, which robustly carries coarse-scale knowledge to finer

resolutions, is potentially applicable to a wide range of materials

science problems.

Since our method learns robust coarse-scale features that can

generalize to finer-resolution design space, it might also be useful

in future studies for determining how to collect finer-resolution

training data for rapidly capturing fine-scale physics. Using these

new data, we might be able to fine tune the model so that it can

more efficiently capture physics at multiple scales.
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Fig. 5. Mechanical wave demultiplexer and the displacement fields for input signals frequencies. Each part of the demultiplexer was built using our discovered

unit-cells that have desired properties. Top: The demultiplexer and the unit-cell designs used to make the demultiplexer. Bottom: Magnitude of displacement fields

when signals of different frequencies (11.45, 13.97 and 15.55 [kHz]) are fed into the left side of the demultiplexer. The displacement values are clipped if they exceed

the display range. The signals with different frequencies go through different channels in the demultiplexer: 11.45 [kHz] goes upward, 13.97 [kHz] goes right, and

15.55 [kHz] goes downward, as desired. Note that, although the passing signal of experiment 2 is not as strong as signals in the other experiments, it still pass the

channel on the right without fading inside the channel.
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Supplementary material related to this article can be found
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