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Homeostatic plasticity encompasses the mechanisms by which neurons

stabilize their synaptic strength and excitability in response to prolonged and

destabilizing changes in their network activity. Prolonged activity blockade

leads to homeostatic scaling of action potential (AP) firing rate in hippocampal

neurons in part by decreased activity of N-Methyl-D-Aspartate receptors

and subsequent transcriptional down-regulation of potassium channel genes

including KCNQ3 which encodes Kv7.3. Neuronal Kv7 channels are mostly

heterotetramers of Kv7.2 and Kv7.3 subunits and are highly enriched at the

axon initial segment (AIS) where their current potently inhibits repetitive

and burst firing of APs. However, whether a decrease in Kv7.3 expression

occurs at the AIS during homeostatic scaling of intrinsic excitability and

what signaling pathway reduces KCNQ3 transcript upon prolonged activity

blockade remain unknown. Here, we report that prolonged activity blockade

in cultured hippocampal neurons reduces the activity of extracellular signal-

regulated kinase 1/2 (ERK1/2) followed by a decrease in the activation of

brain-derived neurotrophic factor (BDNF) receptor, Tropomyosin receptor

kinase B (TrkB). Furthermore, both prolonged activity blockade and prolonged

pharmacological inhibition of ERK1/2 decrease KCNQ3 and BDNF transcripts

as well as the density of Kv7.3 and ankyrin-G at the AIS. Collectively, our

findings suggest that a reduction in the ERK1/2 activity and subsequent

transcriptional down-regulation may serve as a potential signaling pathway

that links prolonged activity blockade to homeostatic control of BDNF-TrkB

signaling and Kv7.3 density at the AIS during homeostatic scaling of AP

firing rate.
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Introduction

Activity-dependent changes in synaptic strength and
intrinsic excitability occur rapidly or over a prolonged period
in many different types of neurons in the brain, and could
lead to unstable or saturated neural networks. Homeostatic
plasticity counteracts these destabilizing changes by adjusting
their synaptic strength and intrinsic excitability within a
physiological range (Turrigiano, 2012). For example, prolonged
activity blockade using voltage-gated sodium channel blocker,
tetrodotoxin (TTX) leads to a homeostatic increase in action
potential (AP) firing rate of hippocampal neurons in dissociated
culture, slice culture, and in vivo (Aptowicz et al., 2004;
Echegoyen et al., 2007; Lee et al., 2015). Homeostatic scaling of
firing rate in cultured hippocampal neurons is associated with
decreases in the transcripts of plasticity-related genes including
brain-derived neurotrophic factor (BDNF) and the subunits
of multiple potassium (K ) channels critical for regulating
intrinsic excitability including KCNQ3/Kv7.3 (Lee et al., 2015).

Neuronal Kv7 channels are mainly composed of Kv7.2 and
Kv7.3 (Delmas and Brown, 2005) which show overlapping
expression in the hippocampus and cortex (Pan et al.,
2006). They produce voltage-dependent slow activating and
non-inactivating outward K current (IM) which potently
suppresses repetitive and burst firing of APs (Brown and
Passmore, 2009). They are inhibited by membrane depletion of
phosphatidylinositol-4,5-bisphosphate (PIP2) upon activation
of Gq/11-coupled receptors such as the M1 muscarinic
acetylcholine receptor (Greene and Hoshi, 2017). Kv7 channels
also regulate resting membrane potential, AP threshold, and
spike frequency adaptation, contribute to medium and slow
afterhyperpolarization currents, suppress temporal summation,
and mediate membrane potential resonance and intrinsic
oscillations (Aiken et al., 1995; Yue and Yaari, 2004; Gu et al.,
2005; Hu et al., 2007, 2009; Shah et al., 2008; Tzingounis
and Nicoll, 2008). Subcellular, expression of Kv7 channels
is higher in the axonal plasma membrane compared to the
somatodendritic surface of hippocampal neurons with the
greatest enrichment at the axon initial segment (AIS) (Chung
et al., 2006), which establishes neuronal polarity and serves
as the site for AP initiation and modulation (Pan et al.,
2006; Leterrier, 2018). The AIS localization of Kv7 channels
is mediated by ankyrin-G (Pan et al., 2006) and is critical for
suppressing AP firing (Shah et al., 2008). However, whether a
decrease in Kv7 channel expression occurs at the AIS during
homeostatic scaling of intrinsic excitability remains unknown.

Furthermore, the signaling pathway that mediates Kv7
down-regulation during homeostatic scaling of intrinsic
excitability is unclear. We have previously shown that
homeostatic scaling of firing rate depends on a reduction
in N-methyl-D-aspartate-type glutamate receptor (NMDAR)
activity (Lee et al., 2015). Among multiple kinases activated
downstream of NMDAR that mediate neuronal plasticity

(Fan et al., 2005; Lin et al., 2008; Rosenkranz et al., 2009), one
potential candidate is extracellular signal-regulated kinase 1/2
(ERK1/2) of the mitogen-activated protein kinase signaling
pathway (Pearson et al., 2001). ERK1/2 signaling is required
for visual cortical plasticity during monocular deprivation
(Di Cristo et al., 2001), which is a model of homeostatic
plasticity of excitatory synaptic strength (Ranson et al., 2012;
Zhou et al., 2017). ERK1/2 also regulates the transcription of
plasticity-related genes including BDNF (Adams and Sweatt,
2002; Thomas and Huganir, 2004), and BDNF is shown
to prevent homeostatic scaling of intrinsic excitability by
activating its receptor, Tropomyosin receptor kinase B (TrkB)
(Desai et al., 1999).

In this study, we investigated if homeostatic scaling
of intrinsic excitability involves the downregulation of Kv7
channels at the AIS via a reduction in ERK1/2 signaling. We
found that prolonged activity blockade in cultured hippocampal
neurons transiently reduced ERK1/2 activity before decreasing
TrkB activity, BDNF and KCNQ3 transcripts, and the AIS
expression of Kv7.3 and ankyrin-G. Prolonged pharmacological
inhibition of ERK1/2 was sufficient to induce the same
reductions, suggesting ERK1/2 downregulation as a potential
mechanism that mediates homeostatic control of KCNQ3/Kv7.3
transcript and expression at the AIS.

Materials and methods

Materials

Chemical reagents used included Tetrodotoxin
citrate (TTX, Tocris), 1,4-Diamino-2,3-dicyano-1,4-
bis[2-aminophenylthio]butadiene (U0126, Tocris), and
dimethyl sulfoxide (DMSO, Sigma). 10 mM TTX and
20 mM U0126 stock solutions were prepared using
deionized water and DMSO, respectively. Antibodies used
included anti-ERK1/2-pTyr202 204, anti-ERK1/2, anti-TrkA-
pTyr674 675/TrkB-pTyr706 707, anti-TrkB, anti-GAPDH,
anti-MAP2 (all from Cell Signaling), anti-Ankyrin-G
(Neuromab), anti-Kv7.3 (Alomone), horseradish peroxidase-
conjugated secondary antibodies (Jackson ImmunoReserach
Laboratory), and secondary antibodies conjugated to Alexa
Fluor 488, 594, and 647 (Thermo Fisher Scientific).

Experimental animals

All procedures involving animals were reviewed and
approved by the Institutional Animal Care and Use Committee
at the University of Illinois at Urbana-Champaign in
accordance with the guidelines of the U.S. National Institute
of Health (NIH).
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Hippocampal neuronal culture

Primary dissociated hippocampal neuronal cultures were
prepared from Sprague–Dawley rat embryos at E18 as described
(Brewer et al., 1993). Neurons were plated on Poly L-lysine
(PLL) (0.1 mg/ml)-coated cell culture dishes for QPCR
(2.3 106 cells per 60 mm dish) and immunoblotting (0.6 106

cells per 30 mm dish). For immunostaining, neurons were plated
on PLL-coated 12 mm glass coverslips (1.0 105 cells per
coverslip) or 35 mm imaging dishes with a polymer coverslip
bottom for high-end microscopy (5 105 cells per dish, ibidi).
Neurons at 10 days in vitro (DIV) were treated with TTX (1
µM) or U0126 (20 µM) for 24, 36, or 48 h (h) in culture media.
The vehicle controls of TTX and U0126 were 0.1% H2O and
0.1% DMSO, respectively. For all drug treatments, drugs were
refreshed after 24 h.

qPCR

Total RNA was isolated using the RNeasy Kit (Qiagen). To
synthesize cDNA, reverse transcription was performed using 2
µg of total RNA, random nanomers, dNTPs, M-MuLV reverse
transcriptase, and RNase inhibitor. The resulting cDNA was
subjected to qPCR using the StepOnePlus Real-Time PCR
system (Applied Biosystems) with previously validated primers
(Lee et al., 2015). Data were analyzed using the comparative
threshold cycle (Ct) method (Schmittgen and Livak, 2008) and
the internal control gene GAPDH. Following normalization to
GAPDH cDNA levels, which is reflected in the Ct values, the
relative mRNA quantification (RQ) of the fold change for each
treatment compared to reference control was determined using
the equation: RQ = 2 Ct /2 Ct reference .

Immunoblot analysis

The hippocampal neuronal culture was lysed in ice-
cold radioimmunoprecipitation assay buffer (50 mM Tris,
150 mM NaCl, 2 mM EDTA, 1% Triton X-100, 0.1% SDS,
0.5% deoxycholate) supplemented with Halt protease and
phosphatase Inhibitor Cocktail (Thermo Fisher Scientific)
as described (Lee et al., 2015). The resulting lysates were
immunoblotted with primary antibodies for Kv7.3 (1:500),
ERK1/2-pTyr202 204, ERK1/2, TrkA-pTyr674 675/TrkB-
pTyr706 707, TrkB, and GAPDH (all 1:1000). ImageJ software
(NIH) was used to quantify the immunoblot band intensity and
background. The background-subtracted band intensity of the
protein of interest was first divided by that of the loading control
GAPDH. The ratio (protein of interest/GAPDH) of the vehicle
control was used as 100%, and the ratio of the drug treatment
(TTX or U0216) was normalized to the vehicle control.

Immunocytochemistry

Following drug treatment, neurons were washed with
artificial cerebral spinal fluid (ACSF) containing drugs and fixed
for 10 min with 4% paraformaldehyde (PFA) and 4% sucrose in
PBS, whereas neurons in a 35 mm imaging dish (ibidi) were fixed
for 3 min with 1% PFA and 4% sucrose in PBS. After blocking for
1 h in 10% normal donkey serum (NDS) and 0.2% Triton X-100
in PBS, neurons were incubated overnight with antibodies for
ankyrin-G (1:500), Kv7.3 (1:500), or MAP2 (1:500) in 3% NDS
in PBS at 4 C. After neurons were washed in PBS and incubated
for 2 h with secondary antibodies (1:200), they were thoroughly
washed and mounted in Fluoro-Gel antifade mounting medium
(Electron Microscopy Sciences).

Imaging and image analysis

High-resolution 16-bit grayscale fluorescence images
(1,920 1,216 pixels) were acquired using a Zeiss Axio
Observer inverted microscope with a Zeiss AxioCam 702
mono Camera and ZEN Blue 2.6 software. To compare the
fluorescence intensities of the neurons with different drug
treatments, the images of each color were acquired using the
same exposure time within one independent experiment. Image
analysis was performed only on the healthy neurons using
Fiji software (Schindelin et al., 2012). Neurons with regions
containing fasciculation or overlapping axons were excluded.

The AIS is defined as an axonal initial segment that is
immuno-positive to ankyrin-G. For image analysis, we focused
on the ankyrin-G-positive segment of an axon that originates
from the soma. The start of the AIS was identified as the point in
the axon where the fluorescence intensity of ankyrin-G sharply
increases by twofold within a few pixels. The end of the AIS was
identified as the point in the axon where the ankyrin-G intensity
sharply drops to the background axon intensity.

To obtain the raw integrated intensity value and length
of the ankyrin-G-positive segment, we drew an ROI line (3
pixel thick) down the center of the axon from the start
to the end of the ankyrin-G-positive segment under the
“ankyrin-G” image channel. We then changed to the “Kv7.3”
image channel and obtained the raw integrated intensity of
Kv7.3 within the same ROI line. Background intensity was
measured for each image channel as an area with no cells.
Because the raw intensity values varied from one independent
experiment to another (possibly due to the use of different
lots of the purchased primary and secondary antibodies which
might have affected labeling efficiency and/or fluorescence
intensities), each background-subtracted intensity of ankyrin-
G and Kv7.3 from vehicle- and drug-treated neurons was
normalized to its average intensity value of vehicle-treated
neurons within each independent experiment as described
(Zhang et al., 2020).
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FIGURE 1

Prolonged activity blockade transiently reduces ERK1/2 activity before decreasing TrkB activity. Cultured hippocampal neurons (DIV 10) were
treated for 24 h, 36 h, and 48 h with TTX (1 μM) to block their activity or its vehicle control (0.1% H2O), and subjected to immunoblot analysis for
pTrkB (pTrkATyr674/675/pTrkBTyr706/707) and TrkB (A,B) or pERK1/2 (pERK1Thr202/Tyr204/pERK2Thr185/Tyr187) and ERK1/2 (C,D). GAPDH served as a
loading control. (A,B) TTX treatment for 48 h decreased pTrkB level. (A) Representative immunoblots. (B) Quantification of pTrkB and total TrkB
immunodensities. The immunodensity ratios (pTrkB/GAPDH and TrkB/GAPDH) were normalized to vehicle control. Number of culture dishes
used: pTrkB (24 h: H2O = 6, TTX = 6; 36 h: H2O = 6, TTX = 6; 48 h: H2O = 13, TTX = 13), TrkB (24 h: H2O = 6, TTX = 6; 36 h: H2O = 6, TTX = 6;
48 h: H2O = 17, TTX = 20). (C,D) TTX treatment for 36 h decreased pERK1/2 level. (C) Representative immunoblots. (D) Quantification of
pERK1/2 and total ERK1/2 immunodensities. The immunodensity ratios (pERK1/2/GAPDH and ERK1/2/GAPDH) were normalized to vehicle
control. Number of culture dishes used: pERK1/2 (24 h: H2O = 6, TTX = 6; 36 h: H2O = 6, TTX = 6; 48 h: H2O = 12, TTX = 12), ERK1/2 (24 h:
H2O = 6, TTX = 6; 36 h: H2O = 6, TTX = 6; 48 h: H2O = 12, TTX = 12). The Student’s t-test was used (***p < 0.005). Data shown represent the
mean ± SEM with individual data points.

Statistical analysis

Data are reported as mean ± SEM with individual data
points. Statistical analysis was performed using OriginPro 2019.
The Student’s two-tailed t-test was used to compare the two
groups. One-way ANOVA and post hoc Tukey were used to
compare groups≥ 3. The priori value (p)< 0.05 was considered
statistically significant.

Results

Prolonged activity blockade reduces
extracellular signal-regulated kinase
1/2 activity before decreasing
tropomyosin receptor kinase B activity

Prolonged inhibition of TrkB is shown to increase AP firing
rate similar to prolonged activity blockade (Desai et al., 1999),

implicating reduced BDNF-TrkB signaling in homeostatic
scaling of intrinsic excitability. To test if prolonged activity
blockade decreases TrkB activation, we treated rat hippocampal
neuronal culture (DIV 10–12) for 24–48 h with either vehicle
control (0.1% H2O) or TTX (1 μM) which blocks neuronal
activity (Supplementary Figures 1A–D). 48 h TTX treatment
was previously shown to induce homeostatic scaling of AP
firing rate in cultured hippocampal neurons (Lee et al., 2015),
although the same treatment did not induce homeostatic scaling
of spontaneous network activity (Supplementary Figure 2).
Immunoblot analysis was performed for phosphorylated TrkA
and TrkB at Tyr674/675 and Tyr706/707 (pTrkA/B), respectively.
Since TrkB and TrkC are the primary Trk receptors present
in the hippocampus (Muragaki et al., 1995), the changes in
pTrkA/B represent the phosphorylation of TrkB at Tyr706/707,
which corresponds to TrkB activation upon BDNF binding
(Huang and Reichardt, 2003). We found that 48 h, and not
24 and 36 h, TTX application reduced the pTrkA/B level
compared to the control treatment by 62.7 ± 6.8% (p < 0.01,
Figures 1A,B). Total TrkB expression was unchanged by
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FIGURE 2

Prolonged pharmacological inhibition of ERK1/2 decreased mRNA and protein expression of Kv7.3. (A,B) Cultured hippocampal neurons (DIV 10)
were treated for 48 h with vehicle control (0.1% v/v DMSO) or 20 μM U0126. Immunoblot analysis was performed with antibodies for pERK1/2

(pERK1Thr202/Tyr204/pERK2Thr185/Tyr187), ERK1/2, and GAPDH (n = 6 per treatment). (A) Representative immunoblots. (B) Quantification of
pERK1/2 and total ERK1/2 immunodensities normalized to vehicle control. (C) Both TTX and U0126 treatment for 48 h decreased BDNF and
KCNQ3 expression. Cultured hippocampal neurons (DIV 10) treated for 48 h with 1 μM TTX or its vehicle control (0.1% H2O), and 20 μM U0126
or its vehicle control (0.1% DMSO). QPCR was performed using the cDNA which was prepared from 2 μg of total RNA isolated from cultured
neurons and validated primers for Kcna1, Kcna4, Kcnq3, Bdnf, Camk4, and Gapdh (n = 5 per treatment). Data were analyzed using the
comparative threshold cycle (Ct) method and Gapdh internal control gene. Following normalization to Gapdh cDNA levels (which is reflected in
the �Ct values), the relative mRNA quantification (RQ) of the fold change for each condition compared to reference control was determined
using the following equation: RQ = 2(–� Ct)/2(–� Ctreference). The RQ data is shown as mean ± SEM. One-way ANOVA with Tukey post hoc was
used (***p < 0.005). (D,E) ERK1/2 inhibition for 48 h decreased Kv7.3 and Kv7.2 expression. Hippocampal cultured neurons (DIV 10) were treated
for 48 h with 20 μM U0126 or its vehicle control (0.1% v/v DMSO) and subjected to immunoblot analyses with the verified antibodies for Kv7.3
(Supplementary Figure 4) and antibodies for Kv7.2 and GAPDH (n = 6 per treatment). (D) Representative Immunoblot and quantification of
Kv7.3. (E) Representative Immunoblot and quantification of Kv7.2. The immunodensity ratios (Kv7.3/GAPDH and Kv7.2/GAPDH) were normalized
to vehicle control. Data shown represent the mean ± SEM with individual data points. The Student’s t-test was used (*p < 0.05).

24–48 h TTX treatment (Figures 1A,B). These findings suggest
that 48 h activity blockade decreases the TrkB activity.

Prolonged inhibition of NMDAR alone also leads to
homeostatic scaling of intrinsic excitability and reduction
in BDNF transcript (Lee et al., 2015). Since ERK1/2 acts
downstream of NMDAR and regulates transcription of
plasticity-related genes including BDNF (Adams and Sweatt,
2002; Thomas and Huganir, 2004), we next investigated
whether prolonged activity blockade decreases the ERK1/2
activity by immunoblotting for the phosphorylation of ERK1

at Thr202/Tyr204 and ERK2 at Thr185/Tyr187 (pERK1/2)
(Figures 1C,D), which leads to activation of ERK1/2 (Robbins
et al., 1993; Zhou and Zhang, 2002). We found that TTX
treatment for 36 h but not 24 and 48 h significantly decreased
the pERK1/2 level by 49.6 ± 1.8% (p < 0.01) compared
to vehicle treatment (Figures 1C,D). The total ERK1/2
level was unaffected by TTX treatment (Figures 1C,D).
These findings suggest that prolonged activity blockade
leads to a transient reduction in ERK1/2 activity before
decreasing TrkB activity.
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FIGURE 3

Prolonged activity blockade decreases Kv7.3 and ankyrin-G expression at the AIS. Cultured hippocampal neurons (DIV 11–12) were treated for
48 h with 1 μM TTX or its vehicle control (0.1% H2O) and subjected to immunocytochemistry with antibodies for the AIS marker ankyrin-G,
somatodendritic marker MAP2, or Kv7.3. (A) Representative images of ankyrin-G and MAP2. (B) Representative images of ankyrin-G and Kv7.3.
(C) Quantification of the background-subtracted raw integrated fluorescent intensity of ankyrin-G-positive segment in the axon, which was
normalized to vehicle control, and the length of the ankyrin-G-positive segment. (D) Quantification of the background-subtracted raw
integrated fluorescent intensity of Kv7.3 within the ankyrin-G-positive segment, which was normalized to vehicle control. Data shown represent
the mean ± SEM with individual data points (H2O = 62 neurons from 46 images, TTX = 61 neurons from 43 images). Images were collected
from 2 independent experiments. The Student’s t-test was used (*p < 0.05). Scale bar = 20 μm.

Prolonged extracellular
signal-regulated kinase 1/2 inhibition
decreases mRNA and protein
expression of Kv7.3

Homeostatic scaling of intrinsic excitability is associated
with reductions in the gene expression of BDNF and multiple
K+ channels including Kv1 channels (KCNA1, KCNA4) and Kv7
channels (KCNQ3) (Lee et al., 2015). Since this transcriptional
down regulation and a decrease in TrkB activity occurs at 48 h
TTX application after a transient reduction in ERK1/2 activity
at 36 h (Figures 1C,D, 2C), we next tested if pharmacological
inhibition of ERK1/2 for 48 h with a MEK1/2 specific inhibitor
U0126 (20 μM) decreases BDNF and KCNQ3 transcript levels.
Since MEK1/2 phosphorylates and activates ERK1/2, MEK1/2
inhibition by U0126 leads to specific inhibition of ERK1/2
(Favata et al., 1998). Indeed, 48 h U0126 application induced
a marked 95% reduction in pERK1/2 level without affecting

total ERK1/2 expression compared to vehicle control (0.1%
v/v DMSO), indicative of ERK1/2 inhibition (Figures 2A,B).
Interestingly, U0126 application also decreased spontaneous
activity, burst duration, and number of spikes per burst of
cultured hippocampal neurons (Supplementary Figures 1E–G,
3F) without inducing homeostatic scaling of their spontaneous
activity (Supplementary Figure 3).

Importantly, 48 h U0126 application decreased the
transcript levels of BDNF, KCNQ3, KCNA1, and KCNA4 by
42.6 ± 3.8%, 60.1 ± 12.2%, 53.9 ± 5.0%, and 43.8 ± 6.7%,
respectively (p < 0.005) (Figure 2C) to a similar extent as
48 h TTX treatment (Figure 2C; Lee et al., 2015). In contrast,
CAMK4 expression was reduced only by 48 h application of
TTX but not U0126 (p > 0.05) (Figure 2C), suggesting that
ERK1/2 does not regulate the mRNA expression of CAMK4
implicated in homeostatic scaling of excitatory synaptic
strength (Joseph and Turrigiano, 2017). Compared to DMSO,
48 h U0126 treatment also decreased Kv7.3 and Kv7.2 protein
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expression by 15.1 4.1 and 22.5 4.6%, respectively,
(p 0.05) (Figures 2D,E).

Prolonged blockade of neuronal
activity or extracellular
signal-regulated kinase 1/2 decreases
ankyrin-G and Kv7.3 expression at the
axon initial segment

Heteromeric Kv7.2/Kv7.3 channels are concentrated at the
AIS by their interaction with ankyrin-G (Chung et al., 2006; Pan
et al., 2006), which is an AIS-resident scaffolding protein critical
for maintaining neuronal polarity (Pan et al., 2006; Leterrier,
2018). Therefore, we next examined if Kv7.3 expression at
the AIS is reduced by 48 h treatment with TTX or U0126.
Immunostaining for ankyrin-G revealed the AIS, which does
not overlap with the somatodendritic marker microtubule-
associated protein 2 (MAP2) (Dehmelt and Halpain, 2005),
demonstrating neuronal polarity and health regardless of the
treatments (Figures 3A, 4A).

TTX application for 48 h induced a small but statistically
significant reduction in Kv7.3 immunodensity at the ankyrin-G-
positive segment by 12.7 3.5% compared to its vehicle control
(p 0.05) (Figures 3B,D). Ankyrin-G immunodensity was also
reduced by 10.2 2.9% (p 0.05) in TTX-treated neurons
without altering the length of the ankyrin-G-positive segment
(Figures 3B,C). These findings indicate that prolonged activity
blockade leads to a decrease in both Kv7.3 and ankyrin-G
expression at the AIS.

Similarly, 48 h U0126 treatment decreased ankyrin-G
immunodensity by 21.2 1.9% and the length of ankyrin-G-
positive segment by 8.0 5.5% compared to DMSO control
(p 0.005) (Figures 4A–C). Kv7.3 immunodensity at the
ankyrin-G-positive segment was also decreased by 16.8 1.8%
in U0126-treated neurons (p 0.005) (Figure 4D), indicating
that prolonged ERK1/2 inhibition leads to reductions in
not only ankyrin-G and Kv7.3 expression at the AIS, but
also the AIS length.

Discussion

Homeostatic scaling of intrinsic excitability is previously
shown to involve reductions in KCNQ3 transcript and Kv7
current (Lee et al., 2015). However, the molecular mechanism
underlying the homeostatic regulation of Kv7 channels remains
largely unknown. In this study, we provide evidence that
prolonged activity blockade decreases ERK1/2 activity, followed
by reductions in BDNF and KCNQ3 transcripts, TrkB activation,
and the expression of ankyrin-G and Kv7.3 at the AIS
(Figures 1, 2C, 3), the key site at which Kv7 channels
suppress AP firing in hippocampal neurons (Pan et al., 2006;

Shah et al., 2008). Importantly, prolonged inhibition of ERK1/2
alone is sufficient to induce these reductions (Figures 2C–F, 4),
revealing new mechanistic insights into homeostatic regulation
of Kv7 channels in response to prolonged activity blockade.

Downregulation of extracellular
signal-regulated kinase 1/2 activity as a
potential signaling pathway for
homeostatic control of Kv7.3 and
brain-derived neurotrophic
factor-tropomyosin receptor kinase B
signaling

ERK1/2 regulates gene transcription (Whitmarsh, 2007) by
phosphorylating transcription factors (Hollenhorst, 2012) and
links NMDAR activation with transcriptional modulation of
key plasticity-associated proteins including BDNF (Medina and
Viola, 2018). NMDAR stimulation induces ERK1/2 activation
(Wu et al., 2001), which is required for the induction of long-
term potentiation in the hippocampus (English and Sweatt,
1997; Rosenblum et al., 2002) and hippocampus-dependent
learning and memory (Atkins et al., 1998; Blum et al., 1999).
Furthermore, ERK1/2 facilitates protein synthesis critical for
homeostatic scaling of excitatory synaptic strength (Rutherford
et al., 1998; Wang et al., 2013). Despite the well-known
roles of ERK1/2 in both Hebbian and homeostatic synaptic
plasticity (Adams and Sweatt, 2002; Bateup et al., 2013),
whether ERK1/2 contributes to homeostatic scaling of intrinsic
excitability is unknown.

We have previously shown that 48 h TTX treatment
leads to homeostatic scaling of AP firing rate in cultured
rat hippocampal neurons (Lee and Chung, 2014; Lee et al.,
2015). Here, we found that TTX application transiently
decreased ERK1/2 activity by 36 h before reducing TrkB
activation at 48 h (Figure 1). This is interesting since
prolonged TrkB inhibition alone can induce homeostatic
scaling of intrinsic excitability (Desai et al., 1999). Both
TTX treatment and ERK1/2 inhibition by U0126 for 48 h
also reduced BDNF and KCNQ3 transcripts (Figure 2C),
in line with a previous report that conditional deletion
of MEK1/2, the kinase directly upstream of ERK1/2,
decreases expression of ion channels and neurotransmitter
receptors implicated in regulating neuronal excitability
(Xing et al., 2016).

Interestingly, our MEA recording was unable to detect
homeostatic scaling of spontaneous activity in response to TTX
or U0126 treatment for 48 h (Supplementary Figures 2, 3),
possibly due to the movement of the MEA dishes and manual
removal of TTX-containing medium using pipettes. These
physical processes can create uneven mechanical pressure that
dislodges the neurons from the electrodes or alters their
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FIGURE 4

Prolonged pharmacological inhibition of ERK1/2 decreases Kv7.3 and ankyrin-G expression at the AIS and the AIS length. Cultured hippocampal
cultured neurons (DIV 11–12) were treated for 48 h with 20 μM U0126 or its vehicle control (0.1% DMSO) and subjected to
immunocytochemistry with antibodies for the AIS marker ankyrin-G, somatodendritic marker MAP2, or Kv7.3. (A) Representative images of
ankyrin-G and MAP2. (B) Representative images of ankyrin-G and Kv7.3. (C) Quantification of the background-subtracted raw integrated
fluorescent intensity of ankyrin-G-positive segment in the axon, which was normalized to vehicle control, and the length of the
ankyrin-G-positive segment. (D) Quantification of the background-subtracted raw integrated fluorescent intensity of Kv7.3 within the
ankyrin-G-positive segment, which was normalized to vehicle control. Data shown represent the mean ± SEM with individual data points
(DMSO = 132 neurons from 69 images, U0126 = 126 neurons from 53 images). Images were collected from 2 independent experiments. The
Student’s t-test was used (***p < 0.005). Scale bar = 20 μm.

activity, contributing to variability that could have hindered
the detection of homeostatic scaling of spontaneous activity.
Nonetheless, since homeostatic scaling of AP firing rate can
be induced by either prolonged TTX application or NMDAR
inhibition (Lee and Chung, 2014; Lee et al., 2015) and ERK1/2
regulates transcription of BDNF downstream of NMDAR
(Medina and Viola, 2018), our findings suggest that prolonged
activity blockade may first decrease ERK1/2 activity due to
reduced NMDAR activity, followed by downregulation of
BDNF-TrkB signaling and Kv7.3.

Prolonged ERK1/2 inhibition also decreased spontaneous
activity, burst duration, and number of spikes per burst of
cultured hippocampal neurons (Supplementary Figures 1D–
F, 3F), consistent with the previous study reporting that 10–20
μM U0126 application decreases AP number by increasing AP

half-width and decay time (Wang et al., 2018). The mechanism
underlying the U0126-induced reduction in AP firing is unclear.
U0126 may downregulate voltage-gated sodium current. Since
U0126 is reported to inhibit the transient and sustained K+
currents such as IA and IDR (Wang et al., 2018), and such
inhibition broadens AP half-width (Mitterdorfer and Bean,
2002), U0126 may reduce neuronal firing by regulating ERK1/2-
dependent phosphorylation of Kv4.2 or Kv1.3 channels that
contribute to IA and IDR, respectively (Schrader et al., 2009;
Jimenez-Perez et al., 2016). Although cautionsmust be exercised
for using U0126 as a specific inhibitor for studying ERK1/2
signaling in neurons, a marked 95% reduction in the level of
pERK1/2 upon 48 h U0126 treatment (Figures 2A,B) suggests
that decreases in BDNF and KCNQ3 transcripts are most likely
induced by the inhibition of ERK1/2 activity (Figure 2C).
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Significance of homeostatic
downregulation of Kv7.3 at the axon
initial segment

The computational modeling work has shown that activity-
dependent regulation of ion channel transcripts can serve
as one mechanism for neuronal homeostasis (O’leary et al.,
2013). Indeed, homeostatic scaling of AP firing rate induced by
prolonged activity blockade is associated with transcriptional
downregulation of multiple K channels including axonally
localized Kv1 and Kv7 channels (Lee et al., 2015). In this study,
we found that activity blockade or ERK1/2 inhibition for 48 h
decreased gene expression of KCNA1/Kv1.1, KCNA4/Kv1.4, and
KCNQ3/Kv7.3 (Figure 2C) and Kv7.3 density at the ankyrin-G-
positive segment (Figures 3, 4). Prolonged ERK1/2 inhibition
also decreased the protein levels of both Kv7.2 and Kv7.3
(Figures 2D–E).

Heteromeric Kv7.2/Kv7.3 channels concentrate at the AIS
(Pan et al., 2006) and this AIS localization is critical for their
function to suppress AP firing in hippocampal neurons (Shah
et al., 2008), whereas multiple epilepsy mutations decrease their
enrichment at the AIS (Chung et al., 2006; Cavaretta et al., 2014;
Kim et al., 2018; Zhang et al., 2020) and disrupt their ability to
inhibit neuronal intrinsic excitability (Cavaretta et al., 2014; Kim
et al., 2018). Heteromeric Kv7.2/Kv7.3 channels produce current
amplitudes which are 10-fold larger (Wang et al., 1998; Hadley
et al., 2000; Gamper et al., 2003; Maljevic et al., 2003; Schwake
et al., 2003) and display significantly more surface expression
at the AIS and axons of cultured hippocampal neurons than
homomeric Kv7.2 or Kv7.3 channels do (Schwake et al., 2000;
Chung et al., 2006). Thus, we propose that the reduction of Kv7.3
density at the ankyrin-G-positive segment upon prolonged
activity blockade or ERK1/2 inhibition (Figures 3, 4) is expected
to decrease the surface density of Kv7.2/Kv7.3 channels and
Kv7.3 channels at the AIS, which in turn will reduce their current
critical for suppressing AP firing.

Mechanism underlying homeostatic
downregulation of Kv7.3 at the axon
initial segment

How does prolonged activity blockade decrease Kv7.3
density at the AIS? Reduction in Kv7.3 mRNA and protein
expression upon a decrease in ERK1/2 activity (Figures 1C,D,
2C,E) is one way to reduce Kv7.3 density at the AIS.
Since ankyrin-G binding to Kv7.2 and Kv7.3 mediates their
enrichment at the AIS (Chung et al., 2006; Pan et al., 2006)
and Kv7.3 displays a stronger interaction with ankyrin-G than
Kv7.2 (Xu and Cooper, 2015), another possible way is to
decrease ankyrin-G density at the AIS. Indeed, this is what
we observed following both prolonged activity blockade and
prolonged ERK1/2 inhibition (Figures 3A,C, 4A,C).

Interestingly, prolonged ERK1/2 inhibition also decreased
the length of the ankyrin-G-positive segment, whereas
prolonged activity blockade had no effect (Figures 4A,C).
The mechanism underlying activity-dependent changes in
ankyrin-G density and spread at the AIS is unclear. In cultured
hippocampal neurons, BDNF activation is reported to regulate
the AIS position (Guo et al., 2017), whereas ankyrin-G
clustering at the AIS depends on its phosphorylation and
subsequent recruitment of β4-Spectrin (Yang et al., 2019).
Considering that chronic pharmacological inhibition of Kv7
channels can also induce homeostatic regulation of AP firing
rate (Lezmy et al., 2017) and the AIS is the site of activity-
dependent remodeling (Yamada and Kuba, 2016), investigating
the detailed mechanism underlying Kv7.3 and ankyrin-G
downregulation at the AIS during homeostatic scaling of
intrinsic excitability warrants future studies.
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