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Artificial confocal microscopy for deep 
label-free imaging
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Wide-field microscopy of optically thick specimens typically features 
reduced contrast due to spatial cross-talk, in which the signal at each point 
in the field of view is the result of a superposition from neighbouring points 
that are simultaneously illuminated. In 1955, Marvin Minsky proposed 
confocal microscopy as a solution to this problem. Today, laser scanning 
confocal fluorescence microscopy is broadly used due to its high depth 
resolution and sensitivity, but comes at the price of photobleaching, 
chemical and phototoxicity. Here we present artificial confocal microscopy 
(ACM) to achieve confocal-level depth sectioning, sensitivity and chemical 
specificity non-destructively on unlabelled specimens. We equipped a 
commercial laser scanning confocal instrument with a quantitative phase 
imaging module, which provides optical path-length maps of the specimen 
in the same field of view as the fluorescence channel. Using pairs of phase 
and fluorescence images, we trained a convolution neural network to 
translate the former into the latter. The training to infer a new tag is very 
practical as the input and ground truth data are intrinsically registered and 
the data acquisition is automated. The ACM images present much stronger 
depth sectioning than the input (phase) images, enabling us to recover 
confocal-like tomographic volumes of microspheres, hippocampal neurons 
in culture, and three-dimensional liver cancer spheroids. By training on 
nucleus-specific tags, ACM allows for segmenting individual nuclei within 
dense spheroids for both cell counting and volume measurements. In 
summary, ACM can provide quantitative, dynamic data, non-destructively 
from thick samples while chemical specificity is r ec ov ered c om putationally.

Three-dimensional (3D) cellular systems have been increasingly 
adopted over 2D cell monolayers to study disease mechanisms1 and 
discover drug therapeutics2, as they more accurately recapitulate the 
in vivo cellular function and development of extracellular matrices3. 
Three-dimensional cellular structures, including cellular clusters such 
as organoids and spheroids, have found use in a wide range of applica-
tions such as tissue engineering4, high-throughput toxicology5 and 
personalized medicine6. A particularly exciting direction of research 

is engineering multicellular living systems7–9. These fields of current 
scientific interest bring along the urgent need for new methods of inves-
tigation to inform on cellular viability and cell cluster proliferation. 
Such techniques would ideally provide quantitative data with subcel-
lular resolution at arbitrary depths in the cellular system and dynamic 
information rendered over broad time scales. Importantly, these assays 
would be completely non-destructive, that is, they would report on the 
cell cluster without interfering with its viability and function.
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The excitation light is typically toxic to cells, a phenomenon referred 
to as phototoxicity, whereas the exogenous fluorophores themselves 
can induce chemical toxicity17. Although the advancement of green 
fluorescent protein technology substantially improves the viability of 
the specimen under investigation, concerns regarding phototoxicity, 
photobleaching and functional integrity of the cells following genetic 
engineering still remain18. Overcoming these limitations becomes 
extremely challenging when imaging thick objects over an extended 
period of time and, for that reason, confocal microscopy is often used 
on fixed specimens19,20.

Multiphoton techniques, including harmonic generation and 
two-photon (intrinsic) fluorescence microscopy, have been established 
as valuable label-free approaches for deep-tissue imaging with cellular 
resolution. Multiphoton microscopy uses excitation light with a longer 
wavelength that penetrates deeper into tissues, whereas the nonlinear 
process requires a multiphoton interaction that renders 3D localized 
excitation21. However, multiphoton microscopy requires expensive 
instrumentations such as femtosecond lasers that are less accessible 
to the broader community, and the higher-order nonlinear excitation 
is more susceptible to focus aberrations and phototoxicity. Light sheet 
fluorescence microscopy can acquire 3D tomography of biological 
specimens in seconds with high optical sectioning and axial resolu-
tion due to the sheet-like illumination, minimizing the background 
fluorescence and photobleaching22. However, tomographic recon-
struction often requires sample rotation and sophisticated sample 
mounting. On the other hand, optical coherence tomography—an 
interferometric label-free method—was reported to detect and count 
aqueous cells in the anterior chamber of a rodent model of eye inflam-
mation23 and volumetrically quantify tumour spheroids24. Several 

Due to visible light wavelengths being comparable in size to sub-
cellular structures, optical methods of investigation are well suited 
for meeting these requirements; however, considerable challenges 
exist for the existing optical microscopy techniques when applied to 
increasingly thick samples. Typical spheroids—ranging from hundreds 
of micrometres to millimetres in size—are much larger than the scat-
tering mean free path associated with the light wave propagation, 
generate strong multiple scattering and therefore form optically turbid 
aggregates that are difficult to analyse at a cellular level10,11. As a result, 
high-throughput investigations often are limited to extracting coarse 
parameters, such as spheroid diameters, at low-magnification12.

In 1955, in his pursuit to image 3D biological neuronal networks 
and mimic their behaviour computationally, Minsky was faced with 
the challenge of suppressing multiple scattering, which was particu-
larly severe for the wide-field instruments available at the time13. In 
Minsky’s own words, “One day it occurred to me that the way to avoid 
all that scattered light was to never allow any unnecessary light to enter 
in the first place. An ideal microscope would examine each point of 
the specimen and measure the amount of light scattered or absorbed 
by that point”13. This first implementation of the confocal scanning 
microscope was established in a transmission geometry, requiring 
sample translation. Of course, today’s modern confocal instruments 
take advantage of bright laser sources, use beam scanning and are 
most often used in a reflection geometry, paired with fluorescence 
contrast14. In time, many other advanced laser scanning techniques 
have been developed for fluorescence microscopy15. Nevertheless, 
fluorescence imaging is subject to several limitations. Absorption of the 
excitation light may cause the fluorophore to photobleach, which limits 
the time interval over which continuous imaging can be performed16. 
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Fig. 1  | ACM optical path and image processing. a, The ACM system consists of 
a laser scanning confocal assembly, a DIC microscope and a LS-GLIM module. QPI 
was conducted with the green laser line (488 nm) of the confocal excitation. The 
interferogram was recorded at each point in the scan by the transmission-PMT 
(T-PMT). The fluorescence images were captured by the reflection-PMT (R-PMT) 

of the confocal module. b, Four phase-shifting frames are recorded and used to 
reconstruct the quantitative phase image. The confocal fluorescence image (FL) 
serves as the ground truth, whereas the phase image (LS-GLIM) is the input for 
the network training. NA, numerical apeture.
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phase-sensitive methods developed in a confocal modality have been
recently developed, but their application to thick structures has been
mostly unexplored25–28.

Quantitative phase imaging (QPI)29 has recently emerged as a 
potentially valuable label-free approach which, due to its high resolu-
tion and sensitivity, has found a broad range of new applications30.
Although most applications involve thin specimens (cell monolay-
ers, thin tissue slices)31–33, several efforts have been made for thick
multiple-scattering samples. A multilayer Born model using a first
Born approximation at each of many layers has been proposed to
provide phase reconstruction for thick samples34. Nevertheless, the 
maximum thickness presented in this model was around 30 μm, and

the performance for 3D organoids with thicknesses usually on the order 
of 100 μm remains unclear. A multiscale reconstruction and stitching
algorithm for optical diffraction tomography was recently developed
to render refractive index distributions of 100-μm-thick colon tissues
with subcellular resolution35. The epi-mode tomographic QPI method
shows phase reconstructions of cerebral organoids and whole mouse
brains with thicknesses of up to 60 μm via deconvolution36. Gradient
light interference microscopy (GLIM)37,77 38 has been developed to sup-
press multiple scattering via white light, phase-shifting interferom-
etry, which allowed for imaging and analysis of quantitatively opaque
structures such as spheroids and embryos with thicknesses of around
300 μm. However, as a wide-field technique, GLIM has limited axial
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Fig. 2  | ACM network architecture and inference. a, Network architecture 
for translating phase images into confocal fluorescence signals. It is a U-Net
variant that uses an EfficientNet as the encoder. The input of the Efficient U-Net
consists of three adjacent quantitative phase images along the z-axis, and its
output is the corresponding middle fluorescent slice. b, Comparison of 2 μm 

bead (63x/1.3) tomograms in wide-field GLIM, LS-GLIM, confocal and ACM,
as indicated. The elongation of the beads in wide-field and LS-GLIM is due to
the missing frequencies in the transmission geometry. On the other hand, the
predicted ACM images replicate the confocal sectioning and resolution. BN,
batch normalization. Conv, convolution. ReLU, Rectified linear unit.
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resolution and  suffers from spatial cross-talk, which mixes d iffraction 
contributions by neighbouring points from within the specimen. As a 
result, the accurate d iscrimination of cellular bound aries d eep within 
a spheroid  remains challenging.

Recent d evelopments in artificial intelligence (AI) and  machine 
learning have brought new opportunities to tackle these challenges. 
Deep learning enables super-resolution in fluorescence microscopy 
by training a generative ad versarial network to transform confocal 
microscopy images to stimulated  emission d epletion images, as well as 
to transform total internal reflection fluorescence microscopy images 
to the total internal reflection fluorescence microscopy-based  struc-
tured  illumination microscopy images39. A d eep neural network can be 
trained  to virtually refocus a 2D fluorescence image onto 3D volumetric 
imaging without any axial scanning, ad d itional hard ware, or a trad e-off 
of imaging resolution and  speed . This framework is also capable of 
3D focusing a single wid e-field  fluorescence image to match confocal 
microscopy images at d ifferent focal planes40. An AI-based  d eep learn-
ing algorithm was d eveloped  for the automated  quantification of the 
corneal sub-basal nerve plexus for the d iagnosis of d iabetic neuropa-
thy using corneal confocal microscopy images41. AI-assisted  ad aptive 
optics method s aim to compensate systematic and  tissue-ind uced  
aberrations for imaging d eep into turbid  specimens42. Label-free pre-
d iction of 3D confocal fluorescence images can be obtained  from 
either transmitted -light microscopy images or electron micrograph 
inputs43. A label-free, volumetric and  automated  assessment method  
has been d eveloped  for immunological synapse using optical d iffrac-
tion tomography and  d eep learning-based  segmentation44.

In this Article, we report the artificial confocal microscopy (ACM), 
a laser scanning QPI system combined  with d eep learning algorithms, 
which rend ers synthetic fluorescence confocal images from unlabelled  
specimens. First, we d eveloped  a laser scanning QPI system, which is 
implemented  as an upgrad e mod ule onto an existing laser scanning 
confocal microscope (LSM 900, Airyscan 2, Zeiss). We valid ated  the 
boost in sensitivity and  axial resolution of the new system by using 
stand ard  samples and  rigorous comparison with the wid e-field  coun-
terpart. Second , we d erived  a theoretical mod el based  on the first-ord er 
Born approximation, which yield s an analytic solution for the spatial 
frequency coverage of the laser scanning QPI system. These results 
were valid ated  using experiments to measure the transfer function of 
the instrument. Third , we trained  an artificial neural network on pairs 
of laser scanning QPI and  fluorescence confocal images from the same 
field  of view. As the QPI mod ule is attached  to the same optical path, 
generating the training d ata is straightforward  and  automated , as the 
field s of view are intrinsically registered . Fourth, we applied  the infer-
ence of the computational neural network to monolayers of biological 
neural networks and  found  that the resulting 3D images mimic very well 
those of the ground  truth from the confocal fluorescence images. Using 
these ACM images, we created  binary masks for the contour of the cell 
and  applied  them back to the QPI (input) d ata. Our results show that 
the measurements of cell volume and  d ry mass of ACM versus confo-
cal agree very well. Fifth, we used  the ACM images to perform nuclear 
segmentation and , thus, cell counting, within hepatocyte spheroid s. 
We also showed  that the training performed  on spheroid s suspend ed  in 
phosphate-buffered  saline (PBS) can transfer to specimens suspend ed  
in hyd rogel, which promises broad  applications in tissue engineering.

Results
The ACM imaging system consists of an existing confocal microscope 
augmented  by a laser scanning GLIM system (LS-GLIM). Figure 1a illus-
trates the ACM set-up, which has three main mod ules: the LSM (LSM 
900, Zeiss), the d ifferential interference contrast (DIC) microscope and  
the LS-GLIM mod ule. The LS-GLIM assembly shares the laser source 
from confocal microscopy (see Method s). The two sheared  beams that 
form the DIC image have their relative phase shift controlled  by the 
liquid  crystal variable retard er (LCVR), which was carefully calibrated  

to prod uce accurate phase shifts, as d escribed  in Supplementary Note 
1. For each /2 phase shift, the transmitted  light photomultiplier tube 
(PMT) record s the resulting interferogram, as shown in Fig. 1b. The 
quantitative phase images are generated  by the phase-retrieval recon-
struction and  Hilbert integration algorithms d escribed  in the GLIM 
operation38. By sharing the same illumination path, the imaging system 
registers QPI z-stack images and  pairs them with confocal fluorescence 
frames from the same field  of view, which serve, respectively, as input 
and  ground  truth d ata for the d eep learning algorithm (Fig. 1b,c). Due 
to the laser scanning illumination and  PMT d etection, the noise level is 
red uced  by a factor of five compared  with the full-field  method  (see Sup-
plementary Note 2); the spatial sensitivity of the phase images is thus 
improved . The ground  truth d ata (that is, confocal fluorescence images) 
provid e specificity with a high axial resolution and  signal-to-noise 
ratio (SNR). Our goal is to use d eep learning to infer the fluorescence 
confocal images from the LS-GLIM input d ata and  thus replicate the 
confocal ad vantages on unlabelled  specimens.

Multichannel EfficientNet-based  U-Nets (E-U-Nets) were trained  to 
translate the 3D phase image stack to the correspond ing 3D fluorescent 
image stack. An E-U-Net comprises a stand ard  U-Net where the encod er 
is replaced  with an EfficientNet45 (Fig. 2a). The multichannel inputs of 
an E-U-Net are three neighbouring quantitative phase images along the 
z-axis, and  the output is the correspond ing central fluorescent image 
slice (see Method s). We chose this three-frame set as input to account 
for the fact that the axial spread  in LS-GLIM d ata is much more pro-
nounced  than in the confocal fluorescence d ata, primarily because the 
input image is obtained  in a transmission geometry without a pinhole, 
whereas the output is in reflection with a pinhole or Airyscan d etector 
array; thus, the neural network learns the spread  mechanism from the 
three ad jacent images and  reverses it to prod uce a sharp ACM frame.

In Supplementary Note 3 we present a full d escription of the 3D 
image formation in LS-GLIM for weak-scattering samples, which starts 
with the inhomogeneous wave equation and  consid ers scattering und er 
the Born approximation46. The expression for the signal collected  at the 
d etector has a particularly simple and  physical intuitive form,

where  is the scattering potential of the specimen; Ud and  Ui are the 
d etection and  illumination functions, d efined  as the Fourier transforms 
of their respective pupil functions; the asterisk represents complex 
conjugation and   d enotes the 3D convolution in the spatial d omain, 

; the point spread  function is therefore given by the prod uct 
, that is, it improves with both a tighter illumination focus 

and  a broad er d etection pupil. Note that equation (1) is restricted  to 
weakly scattering specimens such as the phase ed ge used  to estimate 
the LS-GLIM coherent transfer function (see Supplementary Figs. 5 
and  6). These theoretical pred ictions are comparable with the experi-
mental measurements for various d etection numerical apetures. As 
LS-GLIM uses elastic scattering and  operates in transmission mod e, 
the frequencies in the missing cone region of the coherent transfer 
function cause inferior axial resolution and  sectioning compared  to 
confocal fluorescence microscopy. Hence, we rely on the neural net-
work with confocal fluorescence images as reference.

Figure 2b compares images of a 2 μm microbead  und er wid e-field  
GLIM, LS-GLIM, confocal fluorescence microscopy and  the network 
inference, that is, the ACM image. The resulting ACM image is charac-
terized  by its substantially lower axial blur compared  with the LS-GLIM 
input. As d escribed  in the Supplementary Note 2, the sensitivity of 
LS-GLIM is superior to its wid e-field  counterpart d ue to the absence 
of spatial cross-talk and  more sensitive photon multiplier d etector. 
However, d ue to the transmission geometry, they are both inferior to 
the reflection confocal images in terms of axial sectioning. By contrast, 
the correspond ing network inferences (that is, the ACM images) show 
much improved  axial resolution and  sectioning. The average Pearson 
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on ACM-predicted MAP2 segmentation and LS-GLIM phase images. s,t, The box 
plots of volume (s) and dry mass (t) for a single cell from confocal MAP2 (ground 
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correlation coefficient (PCC) of the microbead is 98% and the peak 
signal-to-noise ratio (PSNR) is 46.3. The three adjacent LS-GLIM frames 
used as network input (see Methods for details) contain information 
about the field Laplacian along z, which governs the inhomogene-
ous wave equation (Supplementary Note 3) and may explain why this 
network architecture can produce adequate results in terms of 3D 
reconstructions.

We next applied ACM to imaging neural cultures. We used two 
common stains to tag the Tau and MAP2 proteins47 (see Methods), 
the ratios of which are a popular model for differentiating the long 
axon from smaller dendrites. The confocal fluorescence images from 
the two channels represent the ground truth and, as before, the cor-
responding LS-GLIM images were the input data. The training data 
contained 20 z-stacks of neurons at 10 days in vitro (DIV 10). The results 
are summarized in Fig. 3a–l. Our results indicate that the overall 3D 
renderings of the ground truth and their inferences match very well. For 
Fig. 3a–l, the PPC and PSNR of channel Tau are 80% and 26.9, respec-
tively, whereas they are 91% and 29.1, respectively, for MAP2. We occa-
sionally found some discrepancies in the dendrites, which translates 
into lower correlation values. The white arrows in Fig. 3f,l point to the 
axon of the neuron. ACM images reduced the pixel-level noise and 
confocal stripe artifacts present in the training data. In Extended Data 
Fig. 1 we compared the power spectra of the neurons from Fig. 3a–l
using ground truth and ACM images. The 3D frequency coverage of 
the ground truth and ACM spectra agree, and both reach the theoreti-
cal confocal fluorescence resolution limits. The ACM data allow us to 
delineate individual cells accurately and measure their volumes. Sup-
plementary Video 1 illustrates this performance on live neurons that 
have never been labelled. Visually, it is evident that the ACM provides 
a much sharper decay of the out-of-focus light (that is, greater depth 

sectioning) than the original LS-GLIM. Supplementary Video 2 illus-
trates the time-lapse performance of ACM on unlabelled, dynamic 
neurons. Of course, the ACM images do not suffer from bleaching or 
toxicity while maintaining chemical specificity through computa-
tion. As a result, ACM is suitable for studying live cellular systems 
non-destructively over large periods of time.

From the ACM images, we computed binary masks corresponding 
to the cell contours, which were applied back to the input QPI maps 
to retrieve individual cell dry mass values. From the cell volume and 
mass, we also extracted the dry mass density for each cell. The volumes 
in Fig. 3m–o are rendered using binarized ACM-predicted MAP2, and 
the dry mass densities in Fig. 3p–r are calculated from ACM-predicted 
MAP2 segmentation and LS-GLIM phase images. The PPC and PSNR 
of channel MAP2 are 90% and 32.8, respectively, for Fig. 3m–r. Figure 
3s,t shows comparisons of the volume and dry mass associated with a 
single cell measured from confocal MAP2 and ACM MAP2 predictions. 
The average volume of a single cell is determined by the total volume 
per field of view divided by the number of cell body within the field of 
view. Our results indicate that the volume and dry mass measurements 
are well-matched with the ground truth, that is, there is not a significant 
difference between the two distributions (P-value >> 0.05).

To demonstrate ACM’s ability to delineate cellular structures 
inside turbid spheroids, we imaged hepatocyte spheroids (HepG2) 
suspended in PBS and generated computational stains associated 
with the DNA and RNA (Fig. 4a). The RNA is localized within the 
nucleus, with a high concentration in the nucleolus (Fig. 4b). The 
study of RNA is currently of high interest, not only as it plays a crucial 
role in catalysing cellular processes, but also as it can be used by vari-
ous viruses to encode their genetic information48. The two ground 
truth stains (7-aminoactinomycin D (7-ADD) and SYTO RNASelect 
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Fig. 4 | Label-free intracellular segmentation in turbid spheroids. a,b, Cellular 
compartments were stained using RNA- and DNA-sensitive stains. DNA is used 
to identify the nucleus and dense concentrations of RNA inside the nucleus 
are associated with nucleoli. c, Three-dimensional comparisons of the ground 
truth and ACM-predicted tomography of a spheroid (x40/1.3). For all twenty 

spheroids, we calculated the nuclear dry mass and volumes generated from the 
imputed signal. d,e, Total nuclear dry mass (ground truth (d), ACM (e)) tracks 
closely with total spheroid mass; PCC ρ = +0.65 (the slope of the linear fit is 0.42). 
These results agree well with the same procedure applied to the ground truth 
confocal images (d).
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Green; see Methods) and their associated inferences enable us to 
generate semantic segmentations and annotate the spheroid into 
nuclei and nucleoli, respectively. The entire spheroid represents 
our third class and is obtained as the non-background regions in 
the LS-GLIM data. As shown in Fig. 4c and Supplementary Note 4, 
the actual and imputed fluorescent maps show good agreement. 
The PPC and PSNR of channel DNA are 84% and 24.9, respectively. 
As detailed in Methods, we apply a threshold on the ACM and phase 
image to generate 3D semantic segmentation maps, which we use to 
measure the dimension of the spheroid. The intersection of the RNA 
and DNA labels provides the annotation for the nucleoli. Our results 
show that the total nuclear mass is proportional to the spheroid mass 
across the twenty spheroids studied in this work. This dependence 
is shown in Fig. 4d, where the slope of the linear regression (0.42) 
indicates that about 42% of the spheroid mass is contributed by the 
nuclei. These results agree well with the same procedure applied to 
the ground truth confocal images.

Automatic instance segmentation of cells inside spheroids was 
performed by 3D marker-controlled watershed on the estimated DNA 
signal. The markers were determined by 2D Hough voting on each 
slice in the z-stack basis (Fig. 5). Hough voting results in a volume with 
a unique marker on the spheroid, which resembles a column tracking 
the centre of the nucleus through the focus (see Methods for details). 
The result of the watershed is a 3D volume with a unique label for 
each nucleus within the spheroid, which enables the calculation of 
parameters on individual cells. To compare the mass, volume and 
mass density distributions, we computed the relative spread, σ/µ, 
where σ is the standard deviation and µ is the mean associated with the 

best Gaussian fit. Our data indicate that the nuclear density (Fig. 5d, 
σ/µ = 0.2) has a much narrower distribution than those of nuclear mass 
(Fig. 5b, σ/µ = 0.9) and volume (Fig. 5c, σ/µ = 0.8). These observations 
indicate that the dry mass density is a much more uniform parameter 
across different cells. Given the broad distribution of volumes and 
masses, this result shows that a change in volume is accompanied by 
an almost linear change in mass.

Discussion
The principles of AI and confocal microscopy were both formulated 
in the mid-1950s. Since then, the two technologies have taken inde-
pendent trajectories, with confocal leading to an entirely new class of 
scanning imaging modalities and AI giving rise to a variety of applica-
tions, from digital assistants to autonomous vehicles. Furthermore, in 
the past several years, it has become apparent that AI algorithms are 
valuable tools for extracting knowledge from optical images. As such, 
the two fields are intersecting again, and this combination seems to 
hold exciting prospects for biomedicine.

We developed ACM to combine the benefits of non-destructive 
imaging from QPI with the depth sectioning and chemical specificity 
associated with confocal fluorescence microscopy. Augmenting an 
existing laser scanning microscope with a QPI module (LS-GLIM) we 
can easily collect pairs of registered images from the phase (input 
data) and fluorescence (ground truth) channels, which allow us to 
generate co-localized ground truth–input pairs of images. As expected, 
the transmission quantitative phase image exhibits a much stronger 
elongation along the z-axis, as the scattering wavevector (or momen-
tum transfer) has a much shorter z-component than in the reflection 
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Fig. 5 | Automated segmentation of cells inside spheroids. a, Instance 
segmentation of spheroids was performed by 3D marker-controlled watershed 
on the ACM-estimated DNA signal, with markers being determined through 2D 
Hough voting on a per-z-slice basis. The result of the Hough voting is a volume 
with a unique marker on the spheroid, which resembles a column tracking the 
centre of the nucleus through the focus. The result of watershed is a 3D volume 

with a unique label for each nucleus within the spheroid, which enables the 
calculation of parameters on individual cells. b, Distribution of nuclear dry mass. 
c, Distribution of nuclear volume. d, Distribution of dry mass density; σ, µ and 
their ratios are indicated for each plot. Note that the nuclear mass density (d) 
has a much narrower distribution than the nuclear mass (b) and volume (c), as 
indicated by the σ/µ ratio.
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geometry. These pairs of images are used  to train a neural network (Effi-
cient U-Net) to perform image-to-image translation from the LS-GLIM 
to the confocal fluorescence signal. The final ACM image presents the 
characteristics of the confocal image, with good  axial sectioning and  
chemical specificity (see Figs. 2 and  3). Applying ACM to unlabelled  
cells allows us to non-d estructively translate the confocal microscopy 
features to d ynamic imaging (see Supplementary Vid eos 1 and  2). In this 
work we d escribe the image formation for weak-scattering samples in 
LS-GLIM. The theoretical mod el agrees with the experimental d ata on 
the system’s transfer function by imaging a phase ed ge.

Confocal geometry ad vances the QPI imaging capability in  
several ways, as follows. First, by illuminating one point at a time, 
the confocal geometry eliminates the spatial cross-talk that affects 
wid e-field  method s. With this illumination, the noise from the 
neighbouring points is lowered . Second , the PMT array provid es a 
much more sensitive d etection which, together with the first point 
above, yield s overall higher sensitivity, both spatially and  temporally, 
which we capture in our d ata. Third , the backscattering geometry 
yield s higher axial spatial frequency coverage, resulting in stronger 
sectioning. This quality is obvious in our d ata, both ground  truth  
and  inference.

By overcoming the spatial cross-talk limitations associated  with 
wid e-field  method s, ACM has the potential to provid e new d ata for 
stud ying turbid  cellular systems. Measuring quantitatively functional 
parameters from organoid s and  spheroid s can be useful in a variety of 
applications of biological and  clinical relevance. Using the artificial 
fluorescence images generated  by the neural network, we segmented  
ind ivid ual nuclei within the 3D structures, which can be used  not just 
for cell counting but also for computing ind ivid ual nuclear volumes. 
Furthermore, by creating annotations from the ACM images and  
applying them back to the input phase images, we extracted  d ry mass 
information from ind ivid ual nuclei, ind epend ently from the nuclear 
volume. Our results ind icate that, on average, 42% of the spheroid  
mass is contained  in the nuclei. We also found  that the nuclear d ry 
mass d ensity d istribution is much narrower than the volume and  mass 
counterparts. Nevertheless, ACM images can d iffer from confocal 
fluorescence images. The potential source of error could  come from 
the training corpus includ ing the confocal fluorescence images and  
LS-GLIM phase images. Specifically, LS-GLIM phase images lack sen-
sitivity to spatial frequencies within the missing cone region, while 
the confocal fluorescence images are affected  by variations in the 
staining level. Moreover, the contrast in LS-GLIM images comes from 
the intrinsic inhomogeneity of refractive ind ex d istributions in tissues, 
resulting in much more d etails compared  to the confocal fluorescence 
counterparts.

Finally, we d emonstrated  that the network training can be trans-
ferred  between spheroid s suspend ed  in d ifferent med ia with no ad d i-
tional training, which provid es versatility to our technique. However, 
the accuracy of pred iction is lower than those of spheroid s in PBS, 
which is expected  since the shape of the spheroid s in PBS and  hyd ro-
gel is quite d ifferent, and  the network is never trained  on those d ata. 
We anticipate that ACM can be potentially ad opted  at a broad  scale 
because the LS-GLIM mod ule can be read ily ad d ed  to any existing 
laser confocal system, while the d ata for training can be acquired  
with ease. ACM provid es complementary information to that from 
other laser scanning techniques, as the acquisition is not limited  by 
photobleaching and  toxicity, while the axial resolution is maintained  
at confocal levels.

Online content
Any method s, ad d itional references, Nature Portfolio reporting sum-
maries, source d ata, extend ed  d ata, supplementary information, 
acknowled gements, peer review information; d etails of author contri-
butions and  competing interests; and  statements of d ata and  cod e avail-
ability are available at https://d oi.org/10.1038/s41566-022-01140-6.
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Methods
ACM system
The experimental set-up for ACM is a multichannel imaging system, 
which consists of confocal microscopy (LSM 900, Zeiss) and  LS-GLIM. 
The LS-GLIM mod ule upgrad es a laser scanning confocal microscope 
outfitted  with DIC optics by provid ing phase-shifting assembly capabil-
ity (Fig. 1a). The laser scanning interference microscope shares the same 
two-laser lines (488 nm, 561 nm) of the confocal microscope. The laser 
source from the confocal microscopy goes up through the matched  
DIC prism and  objective (×63, ×40) and  then is scattered  by the sample. 
After the sample, the light is collected  by the cond enser of the DIC 
microscope. The light then travels through the phase-shifting assembly, 
which consists of an LCVR (Thorlabs) followed  by a linear polarizer. We 
removed  the analyser that normally sits insid e the cond enser to allow 
the liquid  crystal to mod ulate the phase shift between the two orthogo-
nal polarizations. The stabilization time of the LCVR is approximately 
70 ms. Four intensity frames are record ed  by the photomultiplier tube 
(PMT, Zeiss) correspond ing to each /2 phase shift, as shown in Fig. 1b. 
The acquisition time of each frame is approximately the same as for a 
confocal fluorescence image, which d epend s on the d well time and  
pixel numbers set for the image acquisition. The d well time for all the 
images was chosen to be 1.2 μs, such that the acquisition time is ~3.7 s 
for an image with 1,744 × 1,744 pixels. The quantitative phase images 
are generated  in real-time by the phase-retrieval reconstruction algo-
rithm and  Hilbert transform algorithm38. The system registers pairs of 
z-stack images from both the confocal fluorescence and  quantitative 
phase, which serve, respectively, as ground  truth and  input images for 
machine learning (Fig. 1b). The z-sampling was chosen to be 0.2 μm, 
0.2 μm and  1 μm for microbead s, neurons and  spheroid s, respectively. 
The x–y sampling was 0.09μm for all of the d ata presented  in this paper.

Network training
We trained  E-U-Nets with paired  phase and  fluorescent images. The 
input channels of an E-U-Net are three neighbouring phase slices, and  
the output is the correspond ing central fluorescent slice. This net-
work d esign allows an E-U-Net to use information from phase images 
acquired  at multiple neighbouring imaging planes to better pred ict 
the fluorescent image.

The network architecture of a multichannel E-U-Net is shown in  
Fig. 2a and  Supplementary Fig. 7. It represents a mod ification of a stand -
ard  U-Net where the encod er is replaced  with an EfficientNet45. The 
EfficientNet generally has a powerful capacity for feature extraction 
but is relatively small in network size. Training an E-U-Net from scratch 
can be challenging when the number of paired  phase and  fluorescent 
images is limited . A transfer learning strategy was used  in the E-U-Net 
training to mitigate this challenge. Specifically, the weights of the 
EfficientNet encod er were initialized  with weights pre-trained  on an 
ImageNet d ataset49 for an image classification task. The ImageNet is a 
benchmark image set that contains millions of labelled  nature images.

In this stud y, a neuron d ataset, a spheroid  cell d ataset and  a bead  
d ataset were used  for training, valid ating and  testing the E-U-Nets, 
respectively. The neuron d ataset contained  22 image stacks that each 
contained  300 neuron phase images of size 1,744 × 1,744 pixels and  
their related  two-channel fluorescent images, which correspond  to 
fluorescent signals from Tau and  MAP2 proteins, respectively. The 
spheroid  cell d ataset contained  21 stacks that each contained  100 
spheroid  cell phase images of size 1,744 × 1,744 pixels and  the related  
two-channel fluorescent images, which correspond  to fluorescent 
signals from DNA and  RNA, respectively. The bead  d ataset contained  
eighteen image stacks that each contained  250 bead  phase images of 
size 128 × 128 pixels and  the associated  fluorescent images. To facilitate 
network training, the pixel values in each fluorescent image stack were 
scaled  to a range of [0, 255.0]. This was accomplished  as: 

, where x0.01% and  x99.99% represent the 0.01%th and  
99.99%th values among all the pixel values in the image stack after they 

were sorted  in non-d ecreasing ord er; xi and  xo represent the original 
and  scaled  value of a pixel, respectively. The estimated  fluorescent 
image stack was subsequently rescaled  to its original range  
using . For those image stacks without 
ground  truth values, the  and   can be estimated  as the aver-
age of x0.01% and  x99.99% related  to the ground  truth values in the  
training set.

Consid ering the limited  number of image stacks in the three 
d atasets d escribed  above, a threefold  cross-valid ation approach was 
employed  to train and  valid ate the E-U-Nets after a few testing image 
stacks were held  out for E-U-Net testing. For a given d ataset in which 
the testing stacks have been held  out, the threefold  cross-valid ation 
approach involves rand omly d ivid ing all the stacks in the d ataset into 
three fold s of approximately equal size. The first two fold s and  the 
remaining one-fold  were treated  as a training set and  a valid ation set to 
train and  valid ate E-U-Nets, respectively. The proced ure was repeated  
three times; each time, a d ifferent fold  was treated  as the valid ation 
set. The three proced ures resulted  in the valid ation of the E-U-Nets on 
each image stack. The trained  E-U-Nets were finally tested  on the held  
out unseen testing samples. Details related  to the cross-valid ation 
of E-U-Nets on the neuron, spheroid s cell and  bead  d atasets are  
d escribed  below.

For the neuron d ataset, two separate E-U-Nets were trained : 
one to translate phase images into each of the two-channel fluores-
cent images. The EfficientNet-B7 network was employed  in the two 
E-U-Nets. The network architecture of the EfficientNet-B7 is shown 
in Supplementary Fig. 7. Two neuron image stacks were held  out as 
unseen testing d ata; the remaining twenty stacks were employed  in 
the threefold  cross-valid ation process d escribed  above. In the three-
fold  cross-valid ation process, the twenty image stacks were rand omly 
d ivid ed  into three fold s that contained  six, seven and  seven image 
stacks, respectively. For each d ata split, the E-U-Nets were trained  by 
minimizing a mean square error (MSE) loss function that measures 
the d ifference between the pred icted  fluorescent images and  their 
correspond ing ground  truth values. The loss function was minimized  
by the use of an ADAM optimizer50 with a learning rate of 5 × 10 4, which 
was empirically d etermined . In each training iteration, a batch of paired  
three neighbouring phase images and  the correspond ing central fluo-
rescent image were sampled  from the training image stacks and  then 
rand omly cropped  into patches of 515 × 512 pixels as training samples 
to train the networks. The batch size was set to four. A d ecaying strategy 
was applied  to the learning rate to mitigate the overfitting by multi-
plying the learning rate by 0.8 when the valid ation MSE loss d id  not 
d ecrease for consecutive epochs. An epoch is a sequence of iterations 
that walk through all the image slices in the training set. The valid ation 
MSE loss was computed  between the pred icted  fluorescent images 
and  their ground  truth values for valid ation images. In the network 
training, an early stopping strategy was employed  to d etermine the 
end  of the network training. Specifically, at the end  of each epoch, the 
being-trained  E-U-Net mod el was evaluated  by computing the average 
of the PCCs between the pred icted  fluorescent images and  the related  
ground  truth values. The network training stopped  if the average valid a-
tion PCC d id  not increase for twenty epochs as shown in Supplemen-
tary Fig. 8. The two figures show the average training and  valid ation 
stopping rule metric for training the two E-U-Nets respectively in one 
of the three training proced ures of the threefold  cross-valid ation pro-
cess. After the E-U-Nets were trained , the performances of the trained  
networks were evaluated  on the valid ation set by computing the PSNR 
and  PCC between the pred icted  fluorescent stacks and  the related  
ground  truth values. The threefold  cross-valid ation process resulted  
in valid ation results for each of the twenty stacks. These valid ation 
results were combined  and  are reported  in Supplementary Note 4. The 
E-U-Nets trained  in the cross-valid ation process were also tested  in the 
two unseen stacks. The correspond ing PCCs and  PSNRs are presented  
in Supplementary Note 4.
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For the spheroid s cell d ataset, two separate E-U-Nets were 
trained  for each fluorescent channel. The EfficientNet-B7 network 
was employed  as the encod er in the two trained  E-U-Nets. Two spheroid  
cell image stacks were held  out for E-U-Net testing; the remaining nine-
teen stacks were rand omly split into three fold s that contain six, six and  
seven stacks, respectively, in the three-fold  cross-valid ation process. 
The other training settings were the same as those d escribed  above for 
network training on the neuron d ataset. The training and  valid ation 
PCCs over epochs correspond  to training the two E-U-Nets in one of 
the three training proced ures of the three-fold  cross-valid ation process 
are d isplayed  in Supplementary Fig. 9. The threefold  cross-valid ation 
results related  to PSNRs and  PCCs are reported  in Supplementary  
Note 4. The results tested  on two unseen testing stacks are also shown 
in Supplementary Note 4.

For the bead  d ataset, a single E-U-Net was built for the phase-to- 
fluorescent image translation. EfficientNet-B0 was employed  as the 
encod er in the E-U-Net. The architecture of the EfficientNet-B0 network 
is shown in Supplementary Fig. 7. One of the bead  image stacks was held  
out as an unseen testing stack for the E-U-Net testing; the remaining 
seventeen bead  stacks were rand omly d ivid ed  into three fold s that each 
contains five, six and  six image stacks, respectively, for the threefold  
cross-valid ation process. Paired  images of size 128 × 128 pixels were 
employed  for the E-U-Net training. The batch size was 32. The other 
training settings were the same as those for the network training on 
neuron and  spheroid  cell d atasets, as d escribed  above. The training 
and  valid ation stopping rule metric over epochs for one of the three 
training proced ures of the three-fold  cross-valid ation process are 
d isplayed  in Supplementary Fig. 10. The threefold  cross-valid ation 
results related  to PSNR and  PCC performances are reported  in Supple-
mentary Note 4. The results on the unseen bead  stack are also shown 
in Supplementary Note 4.

The E-U-Nets were implemented  by use of the Python program-
ming language with libraries includ ing Python 3.6 and  TensorFlow 1.14. 
Mod el training, valid ation and  testing were performed  on an NVIDIA 
Tesla V100-GPU with 32 GB VRAM. E-U-Net training on the neuron d ata-
set and  spheroid  d ataset took approximately 24 h. E-U-Net training on 
the bead  d ataset took approximately 2 h. The inference time for a fluo-
rescent image slice of 1,744 × 1,744 pixels was approximately 400 ms.

Neuron analysis
The volume of neurons was calculated  from the ACM images using 
binary masks with background  threshold ing. The 3D d ry mass d istribu-
tion was generated  with the multiplication of binary masks and  the 3D 
d ry mass d istribution from the QPI images51. The 3D d ry mass d ensity 
is linearly related  to the d epth-resolved  phase maps as

where  is the wavelength of the illumination and  the refractive incre-
ment , which lies within the 0.18–0.21 ml g–1 range for most 
biological samples52;  represents z-sampling, which is ~1 μm for our 
LS-GLIM;  is the measured  phase image on each z-plane.

Spheroid analysis
Three-d imensional semantic segmentation maps were generated  from 
the estimated  fluorescent signals correspond ing to the RNASelect and  
7-ADD stains by applying fixed  threshold s for the entire d ata. This map 
of RNA- and  DNA-stained  regions was further refined  by assigning a 
nucleoli label to the RNA insid e of the DNA regions. To generate a map 
labelling the spheroid , a threshold  was applied  to the quantitative 
phase signal after Hilbert d emod ulation51. Field s of view were acquired  
to contain a single spheroid , and  phase values coincid ent with the 
assigned  label (nucleus, spheroid ) were totalled  on a per-spheroid  
basis to report on the d ry mass and  volume.

Automated 3D cell counting
To segment our images into ind ivid ual nuclei, we used  a 3D variation 
of the marker-controlled  watershed  on the estimated  DNA images53. 
We note that the ACM d ata lacked  the unwanted  pixel-level noise typi-
cally associated  with photon-starved  fluorescent images. This tech-
nique requires the image to be annotated  into sample and  background  
regions with a non-overlapping marker used  to id entify the cell. We 
performed  2D Hough voting which is used  to id entify the centre of 
the nucleus in each z-slice, prod ucing what resembles a curve through 
the z-d imension. To regularize our approach, we applied  a 3 × 3 blur 
to correct for minor d isconnects in our segmentation algorithm. The 
result of our watershed  approach is a 3D volume with a unique label 
annotating each nucleus (Fig. 5a). To valid ate our method , we com-
pared  our results to a manual cell count performed  in AMIRA (version 
5.4.3)54. We obtained  142 cells counted  automatically versus 136 cells 
counted  manually (4% error). The principal d isagreement was d ue to 
und ercounting touching cells. This proced ure was implemented  in 
MATLAB using the imfind cirlces and  watershed  command s.

Sample preparation
Hippocampal neuron preparation. All proced ures involving animals 
were reviewed  and  approved  by the Institutional Animal Care and  Use 
Committee at the University of Illinois Urbana-Champaign and  con-
d ucted  per the guid elines of the US National Institute of Health. For our 
neuron imaging experiments, we used  primary hippocampal neurons 
harvested  from d issected  hippocampi of Sprague–Dawley rat embryos 
at embryonic d ay 18. Dissociated  hippocampal neurons were plated  
on multiwell plates (Cellvis, P06-20-1.5-N) that were pre-coated  with 
poly- -lysine (0.1 mg ml–1; Sigma-Ald rich). Hippocampal neurons were 
incubated  for 3 h at 37 °C and  und er 5% CO2 in a plating med ium con-
taining 86.55% Eagle’s MEM with Earle’s BSS (Lonza), 10% foetal bovine 
Serum (refiltered , heat-inactivated ; ThermoFisher), 0.45% of 20% (wt/
vol) glucose, 1 equiv. 100 mM sod ium pyruvate (100x; Sigma-Ald rich), 
1 equiv. 200 mM glutamine (100x; Sigma-Ald rich) and  1 equiv. penicil-
lin/streptomycin (100x; Sigma-Ald rich) to help attachment of neurons 
(300 cells per mm2). The plating med ia was aspirated  and  replaced  
with maintenance med ia containing Neurobasal growth med ium sup-
plemented  with B-27 (Invitrogen), 1% 200 mM glutamine (Invitrogen) 
and  1% penicillin/streptomycin (Invitrogen) and  incubated  for 10 d ays 
at 37 °C, in the presence of 5% CO2. Hippocampal neurons were main-
tained  for 2 weeks before performing immunostaining.

Immunostaining protocol
Neurons were stained  with antibod ies for Tau (Abcam, ab80579) and  
MAP2 (Abcam ab32454) to localize axons and  d end rites. Neurons 
were fixed  with freshly prepared  4% paraformald ehyd e for 15 min fol-
lowing 0.5% Triton-X for 10 min and  2% bovine serum albumin (BSA, 
ThermoFisher) for 2 h incubation in 4 °C. Hippocampal neurons were 
incubated  for 8 h at 4 °C with anti-Tau antibod ies that were d iluted  to 
1:250 in 5% BSA. After washing with PBS, neurons were exposed  for 8 h 
at 4 °C to goat anti-mouse second ary antibod y (Abcam, ab205719) 
which was d iluted  to 1:500 in 5% BSA. Hippocampal neurons were then 
incubated  in anti-MAP2 antibod y (1:500 d ilution) in 5% BSA for 8 h, 
followed  by goat antirabbit second ary antibod y (Abcam, ab205718, 
1:1000 d ilution) in 5% BSA for 8 h at 4 °C.

Liver cancer spheroid (HepG2 cells)
Human hepatocarcinoma cells (HepG2, ATCC) were cultured  in 
T-75 flasks with DMEM (Thermo), 10% foetal bovine serum and  1% 
penicillin-streptomycin (Gibco) for 7 d ays, lead ing to spontaneous 
pre-formed  spheroid s. The flasks were incubated  at 37 C and  5% CO2. 
The med ia were replaced  every two to three d ays. Spheroid s were incu-
bated  with TrypLE Express (Thermo) for 10 min to d etach pre-formed  
spheroid s of approximately ~100–200 μm in d iameter from the culture 
flask. The passage number used  was between two and  six.
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Pre-formed  spheroid s were plated  on poly- -lysine coated  
glass-bottom d ishes. The spheroid s were incubated  for 10 min to allow 
for attachment. They were then covered  with a collagen hyd rogel 
(bovine collagen type 1, Ad vanced  Biomatrix). The cells were incu-
bated  for three d ays to allow for cellular reorganization into a regular 
spheroid al shape. The spheroid s were first fixed  in a 1:1 ratio of metha-
nol: acetone at 4 °C for 20 min. Cells fixed  using this method  d o not 
need  an ad d itional permeabilization step d ue to the acetone. The cell 
nucleus was stained  using 7-AAD (red , 6163, ThermoFisher) by ad d ing 
1 μl of the stock stain into 1 ml of PBS. The cell RNA was stained  using 
SYTO RNASelect Green (S32703, ThermoFisher) by first creating a 
5 μm working solution and  then ad d ing 100 μl of the working solution 
to 900 μl of PBS. The samples were stained  at room temperature for 
30 min before rinsing once. Two types of samples in PBS or hyd rogel 
were imaged  after staining.

Reporting summary
Further information on research d esign is available in the Nature Port-
folio Reporting Summary linked  to this article.

Data availability
Due to size consid erations, the d ata that support the find ings of this 
stud y are available from the correspond ing author on reasonable 
request.

Code availability
The cod e that supports the find ings of this stud y are available from the 
correspond ing author on reasonable request.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Comparison of ground truth to ACM power spectra 
from Fig. 3a–l. Contours circumscribing theoretical resolution limits of 
confocal fluorescence system (ground  truth) are shown in as red  d otted  circles. 
The theoretical lateral resolution of the system is 0.22 μm (NA = 1.3, 1 Airy Unit 
(AU), excitation wavelength at 561 nm), correspond ing to a maximum lateral 

frequency of 14.3 rad /μm. The theoretical axial resolution of the system is about 
0.50 μm, correspond ing to a maximum axial frequency of 6.3 rad /μm. The 3D 
frequency coverage of the ground  truth and  ACM spectra agree, and  both reach 
the theoretical resolution limits.
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