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Wide-field microscopy of optically thick specimens typically features
reduced contrast due to spatial cross-talk, in which the signal at each point
inthe field of view is the result of a superposition from neighbouring points
that are simultaneously illuminated. In 1955, Marvin Minsky proposed
confocal microscopy as asolution to this problem. Today, laser scanning
confocal fluorescence microscopy is broadly used due toits high depth
resolution and sensitivity, but comes at the price of photobleaching,
chemical and phototoxicity. Here we present artificial confocal microscopy
(ACM) to achieve confocal-level depth sectioning, sensitivity and chemical
specificity non-destructively on unlabelled specimens. We equipped a
commerciallaser scanning confocal instrument with a quantitative phase
imaging module, which provides optical path-length maps of the specimen
inthe same field of view as the fluorescence channel. Using pairs of phase
and fluorescence images, we trained a convolution neural network to
translate the former into the latter. The training to infer anew tagis very
practical as theinput and ground truth data are intrinsically registered and
the dataacquisition is automated. The ACM images present much stronger
depthsectioning than the input (phase) images, enabling us to recover
confocal-like tomographic volumes of microspheres, hippocampal neurons
in culture, and three-dimensional liver cancer spheroids. By training on
nucleus-specific tags, ACM allows for segmenting individual nuclei within
dense spheroids for both cell counting and volume measurements. In
summary, ACM can provide quantitative, dynamic data, non-destructively
from thick samples while chemical specificity is recovered computationally.

Three-dimensional (3D) cellular systems have been increasingly
adopted over 2D cell monolayers to study disease mechanisms' and
discover drug therapeutics?, as they more accurately recapitulate the
invivo cellular function and development of extracellular matrices>.
Three-dimensional cellular structures, including cellular clusters such
asorganoids and spheroids, have found use inawide range of applica-
tions such as tissue engineering®, high-throughput toxicology’ and
personalized medicine®. A particularly exciting direction of research

is engineering multicellular living systems”°. These fields of current
scientificinterest bring along the urgent need for new methods of inves-
tigation to inform on cellular viability and cell cluster proliferation.
Such techniques would ideally provide quantitative data with subcel-
lular resolution atarbitrary depthsin the cellular system and dynamic
informationrendered over broad time scales. Importantly, these assays
would be completely non-destructive, thatis, they would report on the
cell cluster without interfering with its viability and function.

A full list of affiliations appears at the end of the paper.. < e-mail: xc289@cornell.edu
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Fig.1|ACM optical path and image processing. a, The ACM system consists of
alaser scanning confocal assembly, a DIC microscope and a LS-GLIM module. QPI
was conducted with the green laser line (488 nm) of the confocal excitation. The
interferogram was recorded at each point in the scan by the transmission-PMT
(T-PMT). The fluorescence images were captured by the reflection-PMT (R-PMT)
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ofthe confocal module. b, Four phase-shifting frames are recorded and used to
reconstruct the quantitative phase image. The confocal fluorescence image (FL)
serves as the ground truth, whereas the phase image (LS-GLIM) is the input for
the network training. NA, numerical apeture.

Duetovisible light wavelengths being comparable in size to sub-
cellular structures, optical methods of investigation are well suited
for meeting these requirements; however, considerable challenges
exist for the existing optical microscopy techniques when applied to
increasingly thick samples. Typical spheroids—ranging from hundreds
of micrometres to millimetres in size—are much larger than the scat-
tering mean free path associated with the light wave propagation,
generate strong multiple scattering and therefore form optically turbid
aggregates thatare difficult to analyse at a cellular level®", Asaresult,
high-throughputinvestigations often are limited to extracting coarse
parameters, such as spheroid diameters, at low-magnification®.

In 1955, in his pursuit to image 3D biological neuronal networks
and mimic their behaviour computationally, Minsky was faced with
the challenge of suppressing multiple scattering, which was particu-
larly severe for the wide-field instruments available at the time®. In
Minsky’s own words, “One day it occurred to me that the way to avoid
allthatscattered light was to never allow any unnecessary light to enter
in the first place. An ideal microscope would examine each point of
the specimen and measure the amount of light scattered or absorbed
by that point”. This first implementation of the confocal scanning
microscope was established in a transmission geometry, requiring
sample translation. Of course, today’s modern confocal instruments
take advantage of bright laser sources, use beam scanning and are
most often used in a reflection geometry, paired with fluorescence
contrast™. In time, many other advanced laser scanning techniques
have been developed for fluorescence microscopy®. Nevertheless,
fluorescenceimagingis subject to several limitations. Absorption of the
excitation light may cause the fluorophore to photobleach, which limits
the time interval over which continuous imaging can be performed®.

The excitation light is typically toxic to cells, a phenomenon referred
to as phototoxicity, whereas the exogenous fluorophores themselves
can induce chemical toxicity”. Although the advancement of green
fluorescent protein technology substantially improves the viability of
the specimen underinvestigation, concerns regarding phototoxicity,
photobleaching and functional integrity of the cells following genetic
engineering still remain’®. Overcoming these limitations becomes
extremely challenging when imaging thick objects over an extended
period of time and, for that reason, confocal microscopy is often used
on fixed specimens’?,

Multiphoton techniques, including harmonic generation and
two-photon (intrinsic) fluorescence microscopy, have been established
asvaluablelabel-free approaches for deep-tissue imaging with cellular
resolution. Multiphoton microscopy uses excitation light with alonger
wavelength that penetrates deeperinto tissues, whereas the nonlinear
process requires amultiphoton interaction that renders 3D localized
excitation®. However, multiphoton microscopy requires expensive
instrumentations such as femtosecond lasers that are less accessible
tothe broader community, and the higher-order nonlinear excitation
ismore susceptible tofocus aberrations and phototoxicity. Light sheet
fluorescence microscopy can acquire 3D tomography of biological
specimens in seconds with high optical sectioning and axial resolu-
tion due to the sheet-like illumination, minimizing the background
fluorescence and photobleaching?. However, tomographic recon-
struction often requires sample rotation and sophisticated sample
mounting. On the other hand, optical coherence tomography—an
interferometric label-free method—was reported to detect and count
aqueouscellsinthe anterior chamber of arodent model of eye inflam-
mation® and volumetrically quantify tumour spheroids®*. Several

Nature Photonics | Volume 17 | March 2023 | 250-258

251


http://www.nature.com/naturephotonics

Article

https://doi.org/10.1038/s41566-022-01140-6

a
z
Phase input [ =777 Tt
i i
1 1
i !
: : Concatenation
u = H
S Block1 1
i
{\ :
. <</\) Block2 % !
NN H
N O N 1
IR !
AN H
i \%g i
[N . 1
i R \\\Block& ;
1
1 \ A
: N D\S---------------q
1 P i 1
L ] eoed (=[] -{(H
i Blocks S I
R s B -
EfficientNet
b Wide-field GLIM
XY plane
YZ plane

3D rendering -
Fig.2 | ACM network architecture and inference. a, Network architecture
for translating phase images into confocal fluorescence signals. Itis a U-Net
variant that uses an EfficientNet as the encoder. The input of the Efficient U-Net

consists of three adjacent quantitative phase images along the z-axis, and its
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bead (63x/1.3) tomograms in wide-field GLIM, LS-GLIM, confocal and ACM,
asindicated. The elongation of the beads in wide-field and LS-GLIM is due to
the missing frequencies in the transmission geometry. On the other hand, the
predicted ACM images replicate the confocal sectioning and resolution. BN,
batch normalization. Conv, convolution. ReLU, Rectified linear unit.

phase-sensitive methods developed ina confocal modality have been
recently developed, but their application to thick structures hasbeen
mostly unexplored® 2,

Quantitative phase imaging (QPI)*” has recently emerged as a
potentially valuable label-free approach which, due to its high resolu-
tion and sensitivity, has found a broad range of new applications®
Although most applications involve thin specimens (cell monolay-
ers, thin tissue slices)* *, several efforts have been made for thick
multiple-scattering samples. A multilayer Born model using a first
Born approximation at each of many layers has been proposed to
provide phase reconstruction for thick samples®. Nevertheless, the
maximum thickness presented in this model was around 30 pm, and

)29

the performance for 3D organoids with thicknesses usually on the order
of100 pmremains unclear. A multiscale reconstruction and stitching
algorithm for optical diffraction tomography was recently developed
torender refractive index distributions of 100-um-thick colon tissues
with subcellular resolution®. The epi-mode tomographic QP method
shows phase reconstructions of cerebral organoids and whole mouse
brains with thicknesses of up to 60 pm via deconvolution®. Gradient
light interference microscopy (GLIM)**® has been developed to sup-
press multiple scattering via white light, phase-shifting interferom-
etry, which allowed forimaging and analysis of quantitatively opaque
structures such as spheroids and embryos with thicknesses of around
300 um. However, as a wide-field technique, GLIM has limited axial
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resolutionan suffers fromspatial cross-talk, whichmixes iffraction
contributions by neighbouring points from within the specimen. Asa
result, theaccurate iscriminationofcellularboun aries eepwithin
aspheroi remains challenging.

Recent evelopments in artificial intelligence (Al) an machine
learning have brought new opportunities to tackle these challenges.
Deep learning enables super-resolution in fluorescence microscopy
by training a generative a versarial network to transform confocal
microscopyimagestostimulate emission epletionimages,aswellas
totransformtotalinternal reflection fluorescence microscopy images
to the total internal reflection fluorescence microscopy-base struc-
ture illumination microscopyimages®.A eep neural network canbe
traine tovirtually refocusa2D fluorescenceimage onto 3D volumetric
imaging withoutany axialscanning,a itionalhar ware,oratra e-off
of imaging resolutionan spee . This framework is also capable of
3Dfocusingasinglewi e-fiel fluorescenceimage to matchconfocal
microscopyimagesat ifferentfocal planes**.AnAl-base  eeplearn-
ingalgorithmwas evelope fortheautomate quantificationofthe
corneal sub-basal nerve plexus for the iagnosisof iabetic neuropa-
thy using corneal confocal microscopy images*'. Al-assiste a aptive
optics metho saimto compensate systematic an tissue-in uce
aberrations forimaging eepintoturbi specimens*. Label-freepre-

iction of 3D confocal fluorescence images can be obtaine from
either transmitte -light microscopy images or electron micrograph
inputs*. Alabel-free, volumetrican automate assessmentmetho
hasbeen evelope forimmunological synapseusingoptical iffrac-
tiontomographyan eeplearning-base segmentation*.

Inthis Article, we report the artificial confocal microscopy (ACM),
alaser scanning QPIsystem combine with eeplearningalgorithms,
whichren erssyntheticfluorescence confocal images fromunlabelle
specimens. First, we evelope alaser scanning QPI system, which is
implemente asanupgra emo uleonto an existing laser scanning
confocal microscope (LSM 900, Airyscan 2, Zeiss). We vali ate the
boostin sensitivity an axial resolution of the new system by using
stan ar samplesan rigorouscomparisonwiththewi e-fiel coun-
terpart.Secon ,we erive atheoreticalmo elbase onthefirst-or er
Born approximation, whichyiel sananalytic solution for the spatial
frequency coverage of the laser scanning QPI system. These results
werevali ate usingexperimentstomeasure the transfer function of
theinstrument. Thir ,wetraine anartificial neural network on pairs
oflaserscanning QPlan fluorescence confocalimages fromthe same
fiel of view.Asthe QPImo uleisattache tothesame optical path,
generating thetraining ataisstraightforwar an automate ,asthe
fiel sofviewareintrinsicallyregistere .Fourth,weapplie theinfer-
ence of the computational neural network to monolayers of biological
neuralnetworksan foun thattheresulting3Dimages mimicvery well
those ofthegroun truthfromthe confocal fluorescenceimages. Using
these ACMimages, we create binary masks for the contour of the cell
an applie them back to the QPI(input) ata. Our results show that
the measurements of cell volumean  ry mass of ACM versus confo-
calagree very well. Fifth, weuse the ACMimages to performnuclear
segmentationan , thus, cell counting, within hepatocyte spheroi s.
Wealsoshowe thatthetraining performe onspheroi ssuspen e in
phosphate-buffere saline (PBS) can transfer to specimenssuspen e
inhy rogel, which promisesbroa applicationsintissue engineering.

Results

The ACMimaging system consists of an existing confocal microscope
augmente byalaserscanning GLIM system (LS-GLIM). Figurelaillus-
trates the ACM set-up, which has three mainmo ules: the LSM (LSM
900, Zeiss), the ifferentialinterference contrast (DIC) microscopean
the LS-GLIM mo ule. The LS-GLIM assembly shares the laser source
from confocal microscopy (see Metho s). Thetwosheare beamsthat
form the DIC image have their relative phase shift controlle by the
liqui crystalvariableretar er(LCVR), whichwas carefully calibrate

topro uceaccurate phaseshifts,as escribe inSupplementaryNote
1.Foreach /2phaseshift,thetransmitte light photomultiplier tube
(PMT) recor sthe resulting interferogram, as shown in Fig. 1b. The
quantitative phaseimagesare generate by the phase-retrievalrecon-
structionan Hilbertintegration algorithms escribe inthe GLIM
operation®®. By sharing the same illumination path, the imaging system
registers QPlz-stackimagesan pairsthem with confocal fluorescence
framesfromthe samefiel ofview, whichserve,respectively,asinput
an groun truth ataforthe eeplearningalgorithm (Fig.1b,c).Due
tothelaserscanningilluminationan PMT etection,thenoiselevelis
re uce byafactoroffivecompare withthefull-fiel metho (seeSup-
plementary Note 2); the spatial sensitivity of the phase images is thus
improve .Thegroun truth ata(thatis,confocalfluorescenceimages)
provi e specificity with a high axial resolutionan signal-to-noise
ratio (SNR). Our goalisto use eep learning to infer the fluorescence
confocal images from the LS-GLIM input ataan thusreplicate the
confocala vantagesonunlabelle specimens.

Multichannel EfficientNet-base U-Nets (E-U-Nets) weretraine to
translate the 3D phase image stack to the correspon ing3D fluorescent
image stack. AnE-U-Netcomprisesastan ar U-Netwheretheenco er
isreplace with anEfficientNet® (Fig.2a). The multichannelinputs of
anE-U-Net are three neighbouring quantitative phase images along the
z-axis,an theoutputisthecorrespon ingcentral fluorescentimage
slice (seeMetho s).We chose this three-framesetasinputtoaccount
for the fact that the axial sprea inLS-GLIM ata is much more pro-
nounce thanintheconfocalfluorescence ata, primarily becausethe
inputimageisobtaine inatransmissiongeometrywithoutapinhole,
whereas the outputisinreflection withapinholeor Airyscan etector
array; thus, theneural networklearnsthesprea mechanismfromthe
threea jacentimagesan reversesittopro uceasharp ACM frame.

In Supplementary Note 3 we present a full escription of the 3D
image formation in LS-GLIM for weak-scattering samples, which starts
withtheinhomogeneouswaveequationan consi ersscatteringun er
the Bornapproximation*®. The expression for the signal collecte atthe

etector has aparticularly simplean physicalintuitive form,

s < xX(P)Q[Us (@) U; (0], 6}

where isthe scattering potential of the specimen; U an U, are the

etectionan illuminationfunctions, efine astheFouriertransforms
of their respective pupil functions; the asterisk represents complex
conjugation an enotes the 3D convolutionin the spatial omain,

; the point sprea function is therefore given by the pro uct
Uq (p) U (p), thatis, itimproves with both a tighter illumination focus
an abroa er etection pupil. Note that equation (1) is restricte to
weakly scattering specimens such asthe phasee geuse toestimate
the LS-GLIM coherent transfer function (see Supplementary Figs. 5
an 6).Thesetheoretical pre ictionsarecomparable withthe experi-
mental measurements for various etection numerical apetures. As
LS-GLIM uses elastic scattering an operates in transmissionmo e,
the frequencies in the missing cone region of the coherent transfer
function cause inferior axial resolution an sectioning compare to
confocal fluorescence microscopy. Hence, we rely on the neural net-
work with confocal fluorescence images as reference.

Figure 2b comparesimagesofa2 pmmicrobea un erwi e-fiel
GLIM, LS-GLIM, confocal fluorescence microscopy an the network
inference, thatis, the ACM image. The resulting ACM image is charac-
terize byitssubstantially lower axialblurcompare withtheLS-GLIM
input. As escribe inthe Supplementary Note 2, the sensitivity of
LS-GLIM is superior to its wi e-fiel counterpart ueto the absence
of spatial cross-talk an more sensitive photon multiplier etector.
However, ueto the transmission geometry, they are both inferior to
thereflection confocalimagesin terms of axial sectioning. By contrast,
thecorrespon ingnetworkinferences (thatis, the ACM images) show
muchimprove axialresolutionan sectioning. The average Pearson
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Fig. 3| ACM estimates volume and dry mass from inferred fluorescence
signals. a,b,g,h, Two-dimensional comparisons of ground truths from confocal
(Tau (a), MAP2 (b)) and predicted fluorescence (Tau (g), MAP2 (h)). c-f,i-1, A3D
comparison of ground truth from confocal (XY (c), XZ (d), YZ (e), 3D tomogram
(f)) and predicted fluorescence (XY (i), XZ (j), YZ (k), 3D tomogram (I)). m-o,
Volumes from binarized ACM-predicted MAP2 (3D rendering (m), XZ (n), YZ (0)).
p-r,Dry mass density distribution (3D dry mass density (p), XZ (q), YZ(r)) based
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on ACM-predicted MAP2 segmentation and LS-GLIM phase images. ,t, The box
plots of volume (s) and dry mass (t) for a single cell from confocal MAP2 (ground
truth) and ACM predictions (prediction) for DIV neurons. Each box plot shows
the median (red lines), the 25th and 75th percentiles of the sample (the bottom
and top of each box) and the range (whiskers). P-values are of the unpaired two-
sided t-tests.
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spheroids, we calculated the nuclear dry mass and volumes generated from the
imputed signal. d,e, Total nuclear dry mass (ground truth (d), ACM (e)) tracks
closely with total spheroid mass; PCC p = +0.65 (the slope of the linear fit is 0.42).
These results agree well with the same procedure applied to the ground truth
confocalimages (d).

correlation coefficient (PCC) of the microbead is 98% and the peak
signal-to-noiseratio (PSNR) is46.3. The three adjacent LS-GLIM frames
used as network input (see Methods for details) contain information
about the field Laplacian along z, which governs the inhomogene-
ous wave equation (Supplementary Note 3) and may explain why this
network architecture can produce adequate results in terms of 3D
reconstructions.

We next applied ACM to imaging neural cultures. We used two
common stains to tag the Tau and MAP2 proteins*’ (see Methods),
the ratios of which are a popular model for differentiating the long
axon from smaller dendrites. The confocal fluorescence images from
the two channels represent the ground truth and, as before, the cor-
responding LS-GLIM images were the input data. The training data
contained 20 z-stacks of neurons at 10 daysin vitro (DIV10). The results
are summarized in Fig. 3a-1. Our results indicate that the overall 3D
renderings of the ground truth and their inferences match very well. For
Fig. 3a-I, the PPC and PSNR of channel Tau are 80% and 26.9, respec-
tively, whereas they are 91% and 29.1, respectively, for MAP2. We occa-
sionally found some discrepancies in the dendrites, which translates
into lower correlation values. The white arrows in Fig. 3f,| point to the
axon of the neuron. ACM images reduced the pixel-level noise and
confocalstripeartifacts presentin the training data. In Extended Data
Fig.1we compared the power spectra of the neurons from Fig. 3a-1
using ground truth and ACM images. The 3D frequency coverage of
theground truthand ACM spectraagree, and bothreach the theoreti-
cal confocal fluorescence resolution limits. The ACM data allow us to
delineate individual cells accurately and measure their volumes. Sup-
plementary Video lillustrates this performance on live neurons that
have never been labelled. Visually, it is evident that the ACM provides
amuch sharper decay of the out-of-focus light (that is, greater depth

sectioning) than the original LS-GLIM. Supplementary Video 2 illus-
trates the time-lapse performance of ACM on unlabelled, dynamic
neurons. Of course, the ACM images do not suffer from bleaching or
toxicity while maintaining chemical specificity through computa-
tion. As aresult, ACM is suitable for studying live cellular systems
non-destructively over large periods of time.

Fromthe ACM images, we computed binary masks corresponding
to the cell contours, which were applied back to the input QPI maps
to retrieve individual cell dry mass values. From the cell volume and
mass, we also extracted the dry mass density for each cell. The volumes
inFig. 3m-o are rendered using binarized ACM-predicted MAP2, and
thedry mass densities in Fig. 3p-rare calculated from ACM-predicted
MAP2 segmentation and LS-GLIM phase images. The PPC and PSNR
of channel MAP2 are 90% and 32.8, respectively, for Fig. 3m-r. Figure
3s,t shows comparisons of the volume and dry mass associated with a
single cellmeasured from confocal MAP2 and ACM MAP2 predictions.
The average volume of a single cell is determined by the total volume
per field of view divided by the number of cell body within the field of
view. Our results indicate that the volume and dry mass measurements
arewell-matched with the ground truth, thatis, thereis not asignificant
difference between the two distributions (P-value >> 0.05).

To demonstrate ACM’s ability to delineate cellular structures
inside turbid spheroids, we imaged hepatocyte spheroids (HepG2)
suspended in PBS and generated computational stains associated
with the DNA and RNA (Fig. 4a). The RNA is localized within the
nucleus, with a high concentration in the nucleolus (Fig. 4b). The
study of RNA s currently of high interest, not only as it playsa crucial
rolein catalysing cellular processes, butalso asit can be used by vari-
ous viruses to encode their genetic information*. The two ground
truth stains (7-aminoactinomycin D (7-ADD) and SYTO RNASelect
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Fig. 5| Automated segmentation of cellsinside spheroids. a, Instance
segmentation of spheroids was performed by 3D marker-controlled watershed
onthe ACM-estimated DNA signal, with markers being determined through 2D
Hough voting on a per-z-slice basis. The result of the Hough voting is a volume
withaunique marker on the spheroid, which resembles a column tracking the
centre of the nucleus through the focus. The result of watershed is a 3D volume
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witha unique label for each nucleus within the spheroid, which enables the
calculation of parameters onindividual cells. b, Distribution of nuclear dry mass.
¢, Distribution of nuclear volume. d, Distribution of dry mass density; o, u and
their ratios are indicated for each plot. Note that the nuclear mass density (d)

has amuch narrower distribution than the nuclear mass (b) and volume (c), as
indicated by the o/u ratio.

Green; see Methods) and their associated inferences enable us to
generate semantic segmentations and annotate the spheroid into
nuclei and nucleoli, respectively. The entire spheroid represents
our third class and is obtained as the non-background regions in
the LS-GLIM data. As shown in Fig. 4c and Supplementary Note 4,
the actual and imputed fluorescent maps show good agreement.
The PPC and PSNR of channel DNA are 84% and 24.9, respectively.
As detailed in Methods, we apply a threshold on the ACM and phase
image to generate 3D semantic segmentation maps, which we use to
measure the dimension of the spheroid. The intersection of the RNA
and DNA labels provides the annotation for the nucleoli. Our results
show that the total nuclear mass is proportional to the spheroid mass
across the twenty spheroids studied in this work. This dependence
is shown in Fig. 4d, where the slope of the linear regression (0.42)
indicates that about 42% of the spheroid mass is contributed by the
nuclei. These results agree well with the same procedure applied to
the ground truth confocal images.

Automatic instance segmentation of cells inside spheroids was
performed by 3D marker-controlled watershed on the estimated DNA
signal. The markers were determined by 2D Hough voting on each
sliceinthe z-stack basis (Fig. 5). Hough voting resultsin a volume with
aunique marker on the spheroid, which resembles a column tracking
the centre of the nucleus through the focus (see Methods for details).
The result of the watershed is a 3D volume with a unique label for
each nucleus within the spheroid, which enables the calculation of
parameters on individual cells. To compare the mass, volume and
mass density distributions, we computed the relative spread, o/,
whereoisthe standard deviation and zis the mean associated with the

best Gaussian fit. Our data indicate that the nuclear density (Fig. 5d,
o/p=0.2) hasamuch narrower distribution than those of nuclear mass
(Fig.5b, o/u=0.9) and volume (Fig. 5c, o/ = 0.8). These observations
indicate that the dry mass density isa much more uniform parameter
across different cells. Given the broad distribution of volumes and
masses, this result shows that a change in volume is accompanied by
analmost linear change in mass.

Discussion

The principles of Al and confocal microscopy were both formulated
in the mid-1950s. Since then, the two technologies have taken inde-
pendent trajectories, with confocal leading to an entirely new class of
scanningimaging modalities and Al giving rise to a variety of applica-
tions, from digital assistants to autonomous vehicles. Furthermore, in
the past several years, it has become apparent that Al algorithms are
valuabletools for extracting knowledge from opticalimages. Assuch,
the two fields are intersecting again, and this combination seems to
hold exciting prospects for biomedicine.

We developed ACM to combine the benefits of non-destructive
imaging from QPI with the depth sectioning and chemical specificity
associated with confocal fluorescence microscopy. Augmenting an
existing laser scanning microscope with a QPI module (LS-GLIM) we
can easily collect pairs of registered images from the phase (input
data) and fluorescence (ground truth) channels, which allow us to
generate co-localized ground truth-input pairs ofimages. As expected,
the transmission quantitative phase image exhibits a much stronger
elongation along the z-axis, as the scattering wavevector (or momen-
tum transfer) has a much shorter z-component than in the reflection

Nature Photonics | Volume 17 | March 2023 | 250-258

256


http://www.nature.com/naturephotonics

Artic e

https://doi.org/10.1038/s41566-022-01140-6

geometry. These pairsofimagesareuse totrainaneural network (Effi-
cient U-Net) to perform image-to-image translation from the LS-GLIM
tothe confocal fluorescence signal. The final ACM image presents the
characteristics of the confocal image, with goo axial sectioning an
chemical specificity (see Figs.2an 3). Applying ACM to unlabelle
cellsallowsustonon- estructively translate the confocal microscopy
featuresto ynamicimaging (seeSupplementaryVi eoslan 2).Inthis
workwe escribe theimage formation for weak-scattering samplesin
LS-GLIM.Thetheoreticalmo elagreeswiththe experimental ataon
the system’s transfer function by imaging aphasee ge.

Confocal geometry a vances the QPI imaging capability in
several ways, as follows. First, by illuminating one point at a time,
the confocal geometry eliminates the spatial cross-talk that affects
wi e-fiel metho s. With this illumination, the noise from the
neighbouring points is lowere .Secon ,the PMT array provi esa
much more sensitive etection which, together with the first point
above, yiel soverallhighersensitivity, bothspatiallyan temporally,
which we capture inour ata. Thir , the backscattering geometry
yiel shigher axial spatial frequency coverage, resulting in stronger
sectioning. This quality is obvious in our ata, both groun truth
an inference.

By overcoming the spatial cross-talk limitations associate with
wi e-fiel metho s, ACM has the potential to provi enew atafor
stu yingturbi cellularsystems. Measuring quantitatively functional
parametersfromorganoi san spheroi scanbeusefulinavariety of
applications of biological an clinical relevance. Using the artificial
fluorescenceimages generate bytheneural network, we segmente
in ivi ualnucleiwithinthe 3D structures, which canbe use notjust
for cell counting but also for computing in ivi ualnuclear volumes.
Furthermore, by creating annotations from the ACM images an
applying themback to the input phase images, we extracte  ry mass
information fromin ivi ualnuclei,in epen ently from the nuclear
volume. Our results in icate that, on average, 42% of the spheroi
mass is containe inthe nuclei. We also foun that the nuclear ry
mass ensity istributionis muchnarrowerthanthevolumean mass
counterparts. Nevertheless, ACM images can iffer from confocal
fluorescence images. The potential source of error coul come from
the training corpus inclu ing the confocal fluorescence images an
LS-GLIM phase images. Specifically, LS-GLIM phase images lack sen-
sitivity to spatial frequencies within the missing cone region, while
the confocal fluorescence images are affecte by variations in the
staining level. Moreover, the contrast in LS-GLIM images comes from
theintrinsicinhomogeneity of refractivein ex istributionsintissues,
resultinginmuchmore etailscompare tothe confocal fluorescence
counterparts.

Finally, we emonstrate thatthenetworktrainingcanbetrans-
ferre betweenspheroi ssuspen e in ifferentme iawithnoa i-
tional training, which provi esversatility to our technique. However,
the accuracy of pre iction is lower than those of spheroi sin PBS,
whichisexpecte sincetheshapeofthespheroi sinPBSan hy ro-
gelis quite ifferent,an thenetworkisnevertraine onthose ata.
We anticipate that ACM can be potentiallya opte atabroa scale
because the LS-GLIM mo ulecanberea ilya e toany existing
laser confocal system, while the ata for training can be acquire
with ease. ACM provi es complementary information to that from
other laser scanning techniques, as the acquisition is not limite by
photobleachingan toxicity, while the axial resolutionis maintaine
atconfocallevels.

Online content

Anymetho s,a itionalreferences, Nature Portfolio reporting sum-
maries, source ata, exten e ata, supplementary information,
acknowle gements, peerreview information; etails of author contri-
butionsan competinginterests;an statementsof ataan co eavail-
ability are available at https:// o0i.org/10.1038/s41566-022-01140-6.
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Methods

ACM system

The experimental set-up for ACM is a multichannel imaging system,
which consists of confocal microscopy (LSM 900, Zeiss)an LS-GLIM.
TheLS-GLIMmo uleupgra esalaser scanning confocal microscope
outfitte withDIC opticsbyprovi ingphase-shiftingassembly capabil-
ity (Fig.1a). Thelaser scanninginterference microscope shares the same
two-laser lines (488 nm, 561 nm) of the confocal microscope. The laser
source from the confocal microscopy goes up through the matche
DICprisman objective (x63,x40)an thenisscattere bythesample.
After the sample, the light is collecte by the con enser of the DIC
microscope. The light then travels throughthe phase-shifting assembly,
which consistsof an LCVR (Thorlabs) followe byalinear polarizer. We
remove theanalyserthatnormallysitsinsi ethecon ensertoallow
theliqui crystaltomo ulate the phase shiftbetween the two orthogo-
nal polarizations. The stabilization time of the LCVR is approximately
70 ms.Fourintensity framesarerecor e bythe photomultipliertube
(PMT, Zeiss) correspon ingtoeach /2phaseshift,asshowninFig.1b.
The acquisition time of each frame is approximately the same as for a
confocal fluorescence image, which epen sonthe welltimean
pixel numbers set for the image acquisition. The well time for all the
images was chosen to be 1.2 us, such that the acquisition time is -3.7 s
for animage with 1,744 x 1,744 pixels. The quantitative phase images
aregenerate inreal-time by the phase-retrieval reconstruction algo-
rithman Hilberttransform algorithm®. The system registers pairs of
z-stack images from both the confocal fluorescence an quantitative
phase, whichserve, respectively,asgroun truthan inputimagesfor
machine learning (Fig. 1b). The z-sampling was chosen to be 0.2 um,
0.2uman 1umformicrobea s,neuronsan spheroi s,respectively.
Thex-ysamplingwas 0.09 umforallofthe atapresente inthispaper.

Network training

We traine E-U-Nets with paire phasean fluorescentimages. The
inputchannels of an E-U-Net are three neighbouring phase slices, an
the output is the correspon ing central fluorescent slice. This net-
work esign allows an E-U-Net to use information from phase images
acquire at multiple neighbouring imaging planes to better pre ict
the fluorescentimage.

The network architecture of a multichannel E-U-Net is shown in
Fig.2aan SupplementaryFig.7.Itrepresentsamo ificationofastan -
ar U-Net where theenco erisreplace with an EfficientNet®. The
EfficientNet generally has a powerful capacity for feature extraction
butisrelatively smallin network size. Training an E-U-Net from scratch
can be challenging when the number of paire phasean fluorescent
imagesislimite .Atransferlearningstrategy wasuse intheE-U-Net
training to mitigate this challenge. Specifically, the weights of the
EfficientNet enco er were initialize with weights pre-traine onan
ImageNet ataset*’ for animage classification task. The ImageNetisa
benchmarkimage set that contains millions of labelle natureimages.

Inthisstu y,aneuron ataset,aspheroi cell atasetan abea

ataset were use for training, vali atingan testing the E-U-Nets,
respectively. Theneuron atasetcontaine 22imagestacksthateach
containe 300 neuron phase images of size 1,744 x 1,744 pixels an
their relate two-channel fluorescent images, which correspon to
fluorescent signals from Tauan MAP2 proteins, respectively. The
spheroi cell ataset containe 21stacksthateachcontaine 100
spheroi cell phase images of size 1,744 x 1,744 pixelsan therelate
two-channel fluorescent images, which correspon to fluorescent
signalsfromDNAan RNA, respectively. Thebea atasetcontaine
eighteenimage stacks that each containe 250bea phase images of
size128 x 128 pixelsan theassociate fluorescentimages.To facilitate
network training, the pixel values in each fluorescentimage stack were
scale to a range of [0, 255.0]. This was accomplishe as:
Xo =255.0 X )ﬁ,wherex&man X900y FEPresent the 0.01%th an
99.99%th values among all the pixel valuesin the image stack after they

were sorte innon- ecreasingor er;x;an X,represent the original
an scale value of a pixel, respectively. The estimate fluorescent
image stack was subsequently rescale to its original range
using X; = % (X99.99% — X0.01%) + Xo.012. FOr those image stacks without
groun truthvalues,the Xy o,an X999, Canbe estimate astheaver-
age of Xy 014 AN Xogooy relate to the groun truth values in the
training set.

Consi ering the limite number of image stacks in the three

atasets escribe above,athreefol cross-vali ationapproachwas
employe totrainan vali atethe E-U-Nets after a few testing image
stacks were hel out for E-U-Net testing. For agiven ataset in which
the testing stacks have been hel out, the threefol cross-vali ation
approachinvolvesran omly ivi ingallthestacksinthe atasetinto
three fol s of approximately equal size. The first two fol san the
remainingone-fol weretreate asatrainingsetan avali ationsetto
trainan vali ateE-U-Nets,respectively. The proce urewasrepeate
three times; each time, a ifferent fol wastreate asthevali ation
set. Thethree proce uresresulte inthevali ationoftheE-U-Netson
eachimage stack. Thetraine E-U-Netswere finallyteste onthehel
out unseen testing samples. Details relate to the cross-vali ation
of E-U-Nets on the neuron, spheroi scellan bea atasets are

escribe below.

For the neuron ataset, two separate E-U-Nets were traine :
one to translate phase images into each of the two-channel fluores-
cent images. The EfficientNet-B7 network was employe in the two
E-U-Nets. The network architecture of the EfficientNet-B7 is shown
in Supplementary Fig. 7. Two neuron image stacks were hel out as
unseen testing ata; the remaining twenty stacks were employe in
the threefol cross-vali ation process escribe above.Inthe three-
fol cross-vali ationprocess,the twentyimagestackswereran omly

ivi e intothreefol sthatcontaine six,sevenan sevenimage
stacks, respectively. For each atasplit, the E-U-Nets were traine by
minimizing a mean square error (MSE) loss function that measures
the ifference between the pre icte fluorescentimagesan their
correspon inggroun truthvalues. Thelossfunction was minimize
by the use of an ADAM optimizer®*® withalearning rate of 5x 10 *,which
wasempirically etermine .Ineachtrainingiteration,abatch of paire
three neighbouring phaseimagesan thecorrespon ingcentral fluo-
rescentimage were sample from the trainingimage stacksan then
ran omlycroppe into patchesof515 x 512 pixels as training samples
totrainthe networks. The batch size was settofour.A ecayingstrategy
was applie to the learning rate to mitigate the overfitting by multi-
plying the learning rate by 0.8 when the vali ation MSEloss i not

ecrease for consecutive epochs. Anepochisasequence of iterations
thatwalk throughall theimageslicesin the training set. Thevali ation
MSE loss was compute between the pre icte fluorescentimages
an their groun truth valuesforvali ationimages. Inthe network
training, an early stopping strategy was employe to etermine the
en ofthenetworktraining. Specifically,attheen ofeachepoch,the
being-traine E-U-Netmo elwasevaluate bycomputingtheaverage
ofthe PCCsbetweenthepre icte fluorescentimagesan therelate
groun truthvalues. The networktrainingstoppe iftheaveragevali a-
tionPCC i notincrease for twenty epochs as shown in Supplemen-
tary Fig. 8. The two figures show the average trainingan vali ation
stopping rule metric for training the two E-U-Nets respectively in one
ofthethreetraining proce uresofthethreefol cross-vali ationpro-
cess. After the E-U-Netswere traine ,the performances ofthetraine
networkswereevaluate onthevali ationsetbycomputingthe PSNR
an PCCbetween the pre icte fluorescentstacksan the relate
groun truth values. The threefol cross-vali ation process resulte
invali ation results for each of the twenty stacks. These vali ation
resultswerecombine an arereporte inSupplementaryNote4.The
E-U-Netstraine inthecross-vali ationprocesswerealsoteste inthe
two unseenstacks. The correspon ingPCCsan PSNRsare presente
inSupplementary Note 4.
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For the spheroi s cell ataset, two separate E-U-Nets were
traine for each fluorescent channel. The EfficientNet-B7 network
wasemploye astheenco erinthetwotraine E-U-Nets.Twospheroi
cellimage stacks were hel out for E-U-Net testing; the remaining nine-
teenstackswereran omlysplitintothreefol sthatcontainsix,sixan
seven stacks, respectively, in the three-fol cross-vali ation process.
Theother training settings were the same asthose escribe above for
network training on the neuron ataset. The trainingan vali ation
PCCs over epochs correspon to training the two E-U-Nets in one of
thethreetrainingproce uresofthethree-fol cross-vali ationprocess
are isplaye inSupplementaryFig.9.Thethreefol cross-vali ation
results relate to PSNRsan PCCsarereporte inSupplementary
Note4.Theresultsteste ontwo unseentestingstacksarealsoshown
inSupplementary Note 4.

Forthebea ataset, asingle E-U-Net was built for the phase-to-
fluorescent image translation. EfficientNet-BO was employe as the
enco erintheE-U-Net. Thearchitecture of the EfficientNet-BO network
isshowninSupplementary Fig.7.One ofthebea image stackswashel
out as an unseen testing stack for the E-U-Net testing; the remaining
seventeenbea stackswereran omly ivi e intothreefol sthateach
contains five, sixan six image stacks, respectively, for the threefol
cross-vali ation process. Paire images of size 128 x 128 pixels were
employe for the E-U-Net training. The batch size was 32. The other
training settings were the same as those for the network training on
neuronan spheroi cell atasets,as escribe above. The training
an vali ation stopping rule metric over epochs for one of the three
training proce ures of the three-fol cross-vali ation process are

isplaye in Supplementary Fig.10. The threefol cross-vali ation
resultsrelate toPSNRan PCC performancesarereporte inSupple-
mentary Note 4. The results on the unseen bea stack are also shown
inSupplementary Note 4.

The E-U-Nets were implemente by use of the Python program-
minglanguage withlibrariesinclu ingPython3.6an TensorFlow1.14.
Mo eltraining,vali ationan testingwere performe onanNVIDIA
TeslaV100-GPU with 32 GB VRAM. E-U-Net training on the neuron ata-
setan spheroi atasettook approximately 24 h.E-U-Net trainingon
thebea atasettookapproximately2 h.Theinferencetimeforafluo-
rescentimage slice of 1,744 x 1,744 pixels was approximately 400 ms.

Neuron analysis

The volume of neurons was calculate from the ACM images using

binary masks with backgroun threshol ing.The3D rymass istribu-

tionwasgenerate withthe multiplication ofbinary masksan the3D
rymass istribution fromthe QPlimages™. The3D rymass ensity

islinearlyrelate tothe epth-resolve phase mapsas

A

Mx.y.2) = 2ny6z

P, y,2), ()

where isthe wavelength of theilluminationan therefractiveincre-
ment y ~ 0.2, which lies within the 0.18-0.21 ml g' range for most
biological samples®; 6z represents z-sampling, which is -1 um for our
LS-GLIM; ¢(x,y,z)isthe measure phaseimage oneachz-plane.

Spheroid analysis

Three- imensional semantic segmentation mapswere generate from
theestimate fluorescentsignalscorrespon ingtothe RNASelectan
7-ADD stains by applying fixe threshol sfortheentire ata.Thismap
of RNA-an DNA-staine regions was further refine by assigninga
nucleolilabeltothe RNAinsi eofthe DNAregions. Togenerateamap
labelling the spheroi , athreshol wasapplie to the quantitative
phasesignal after Hilbert emo ulation®.Fiel sofviewwereacquire
to contain a single spheroi ,an phase values coinci ent with the
assigne label (nucleus, spheroi ) were totalle on a per-spheroi
basistoreportonthe rymassan volume.

Automated 3D cell counting

To segment our images intoin ivi ualnuclei, weuse a3D variation
of the marker-controlle watershe onthe estimate DNA images®.
Wenotethatthe ACM atalacke theunwante pixel-levelnoisetypi-
cally associate with photon-starve fluorescentimages. This tech-
niquerequirestheimage tobe annotate intosamplean backgroun
regions with a non-overlapping marker use toi entify the cell. We
performe 2D Hough voting whichisuse toi entify the centre of
thenucleusineachz-slice, pro ucingwhatresemblesacurvethrough
the z- imension. To regularize our approach, we applie a3 x 3 blur
to correct forminor isconnectsin our segmentation algorithm. The
result of our watershe approach is a3D volume with a unique label
annotating each nucleus (Fig. 5a). Tovali ate our metho , we com-
pare ourresultstoamanual cell count performe in AMIRA (version
5.4.3)**. We obtaine 142 cells counte automatically versus 136 cells
counte manually (4% error). The principal isagreementwas ueto
un ercounting touching cells. This proce ure wasimplemente in
MATLAB usingtheimfin cirlcesan watershe comman s.

Sample preparation
Hippocampal neuron preparation. All proce uresinvolving animals
werereviewe an approve bythelnstitutional AnimalCarean Use
Committee at the University of lllinois Urbana-Champaign an con-
ucte perthegui elinesoftheUSNationallnstitute of Health. For our
neuronimaging experiments, we use primaryhippocampal neurons
harveste from issecte hippocampiofSprague-Dawleyratembryos
atembryonic ay18. Dissociate hippocampal neurons were plate
on multiwell plates (Cellvis, P06-20-1.5-N) that were pre-coate with
poly- -lysine (0.1 mg ml™;Sigma-Al rich). Hippocampal neurons were
incubate for3hat37°Can un er5%CO,inaplatingme ium con-
taining 86.55% Eagle’s MEM with Earle’s BSS (Lonza), 10% foetal bovine
Serum (refiltere ,heat-inactivate ; ThermoFisher), 0.45% of20% (wt/
vol) glucose,1equiv.100 mMso ium pyruvate (100x; Sigma-Al rich),
lequiv.200 mMglutamine (100x; Sigma-Al rich)an 1lequiv. penicil-
lin/streptomycin (100x; Sigma-Al rich) to help attachment of neurons
(300 cells per mm?). The plating me iawas aspirate an replace
with maintenanceme iacontaining Neurobasalgrowthme iumsup-
plemente withB-27 (Invitrogen),1% 200 mM glutamine (Invitrogen)
an 1% penicillin/streptomycin (Invitrogen) an incubate forl0 ays
at37°C, inthe presence of 5% CO,. Hippocampal neurons were main-
taine for2weeksbefore performingimmunostaining.

Immunostaining protocol

Neurons were staine with antibo ies for Tau (Abcam, ab80579) an
MAP2 (Abcam ab32454) to localize axons an  en rites. Neurons
were fixe withfreshly prepare 4% paraformal ehy efor15minfol-
lowing 0.5% Triton-X for 10 minan 2% bovine serum albumin (BSA,
ThermoFisher) for 2 hincubationin 4 °C. Hippocampal neurons were
incubate for8hat4°Cwithanti-Tauantibo iesthatwere ilute to
1:250in 5% BSA. After washing with PBS, neurons were expose for8h
at 4 °C to goat anti-mouse secon ary antibo y (Abcam, ab205719)
whichwas ilute to1:500in5%BSA.Hippocampal neuronswerethen
incubate inanti-MAP2 antibo y (1:500 ilution) in 5% BSA for 8 h,
followe by goat antirabbit secon ary antibo y (Abcam, ab205718,
1:1000 ilution)in5%BSAfor8hat4 °C.

Liver cancer spheroid (HepG2 cells)

Human hepatocarcinoma cells (HepG2, ATCC) were culture in
T-75 flasks with DMEM (Thermo), 10% foetal bovine serum an 1%
penicillin-streptomycin (Gibco) for 7 ays, lea ingto spontaneous
pre-forme spheroi s.The flasks wereincubate at37Can 5% CO,.
Theme iawerereplace everytwotothree ays.Spheroi swereincu-
bate with TrypLE Express (Thermo)for10 minto etachpre-forme
spheroi sofapproximately-100-200 umin iameter fromthe culture
flask. The passage number use wasbetweentwoan six.
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Pre-forme spheroi s were plate on poly- -lysine coate
glass-bottom ishes. Thespheroi swereincubate for10 mintoallow
for attachment. They were then covere with a collagen hy rogel
(bovine collagen type 1, A vance Biomatrix). The cells were incu-
bate forthree aystoallow for cellularreorganizationintoaregular
spheroi alshape.Thespheroi swerefirstfixe inal:1ratioofmetha-
nol: acetone at 4 °Cfor20 min. Cells fixe usingthismetho onot
nee ana itional permeabilizationstep uetotheacetone. The cell
nucleuswasstaine using7-AAD (re ,6163, ThermoFisher)bya ing
1ul of the stock staininto 1 ml of PBS. The cell RNA was staine using
SYTO RNASelect Green (532703, ThermoFisher) by first creating a
Sumworkingsolutionan thena ing100 uloftheworkingsolution
to 900 ul of PBS. The samples were staine at room temperature for
30 min before rinsing once. Two types of samples in PBS or hy rogel
wereimage after staining.

Reporting summary
Furtherinformationonresearch esignisavailableinthe Nature Port-
folio Reporting Summary linke to thisarticle.

Data availability

Due to size consi erations, the atathat support the fin ings of this
stu y are available from the correspon ing author on reasonable
request.

Code availability
Theco ethatsupportsthefin ingsofthisstu yareavailablefromthe
correspon ingauthoronreasonable request.
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Extended DataFig. 1| Comparison of ground truth to ACM power spectra frequencyof14.3ra /um.The theoretical axial resolution of the systemis about
from Fig. 3a-1. Contours circumscribing theoretical resolution limits of 0.50 um, correspon ingtoamaximum axial frequency of 6.3ra /um.The3D
confocal fluorescence system (groun truth) areshowninasre otte circles. frequency coverage ofthegroun truthan ACMspectraagree,an bothreach
The theoretical lateral resolution of the system is 0.22 um (NA = 1.3,1 Airy Unit the theoretical resolution limits.

(AU), excitation wavelength at 561 nm), correspon ingtoamaximum lateral
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Software and code
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Antibodies

Antibodies used Tau (Abcam, ab80579) and MAP2 (Abcam ab32454)

Validation Popular antibodies validated by the manufacturer

Eukaryotic cell lines
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