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Abstract. We give a new proof of local convergence of a multigrid method called iterative
aggregation/disaggregation (IAD) for computing steady states of Markov chains. Our proof leads
naturally to precise and interpretable estimates of the asymptotic rate of convergence. We study
IAD as a model of more complex methods from statistical physics for computing nonequilibrium
steady states, such as the nonequilibrium umbrella sampling method of Warmflash, Bhimalapuram,
and Dinner [J. Chem. Phys., 127 (2007), 154112]. We explain why it may be possible to use methods
like TAD to efficiently calculate steady states of processes in statistical physics and how to choose
parameters to optimize efficiency.
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1. Introduction. We prove local convergence of iterative aggregation/
disaggregation (IAD) for computing steady states of Markov chains, and we esti-
mate the asymptotic rate of convergence. TAD was devised in the 1960’s to solve
economic input-output models; see the references given in [21, 34]. Substantially,
equivalent methods were independently developed in the 1980’s to calculate steady
states of Markov chains [3, 4, 14, 15]. In the 2000’s, similar ideas arose for the third
time as a part of more complex methods for calculating nonequilibrium steady states
and reaction rates in statistical physics [1, 2, 9, 11, 35, 36]. We study IAD as a simple
model of these complex methods. We explain why it may be possible to use methods
like IAD to efficiently calculate steady states in statistical physics and how to choose
parameters to optimize efficiency. We hope others will apply our results to understand
IAD in other contexts.

We call a Markov process nonequilibrium if it is irreversible. A physical sys-
tem subject to nonconservative forces or external flows of energy and matter would
typically be modeled by a nonequilibrium process, e.g., a single-molecule experiment
where a protein is subjected to a flow of ions [8, 20]. In principle, to sample the steady
state distribution of any ergodic process, reversible or irreversible, one can take the
average over a long trajectory. In practice, however, trajectory averages converge to
the steady state very slowly when obstacles like bottlenecks inhibit exploration of the
state space. For example, a process modeling a protein may spend most of the time
vibrating around some stable folded state, undergoing transitions between different
folded states only rarely. Such a process is said to be metastable.

Computing the steady state of a metastable, nonequilibrium process is especially
difficult. Reliable methods have been devised to efficiently compute steady states of
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reversible, metastable processes, e.g., parallel tempering [12, 31], umbrella sampling
[17, 30, 33], metadynamics [18], and adaptive biasing [5]. These methods are essential
tools for simulating systems in equilibrium. Unfortunately, however, none of them can
compute nonequilibrium steady states. Each requires either reversibility or knowledge
of the steady state density, and when computing nonequilibrium steady states one
typically knows only the generator of the process. By contrast, in equilibrium, the
steady state has the Boltzmann density, which can almost always be calculated up to
a normalizing constant.

Recently, analogous methods have been devised to compute nonequilibrium steady
states and dynamical quantities such as reaction rates. We consider one class derived
from umbrella sampling, including nonequilibrium umbrella sampling (NEUS) [36],
trajectory parallelization and tilting [35], weighted ensemble with a direct solve [2],
exact milestoning [1], trajectory stratification [9], and injection measures [11]. The
exact objectives and details of these methods differ significantly, but they are all
essentially stochastic evolving particle systems that approximate IAD (or a similar
deterministic dynamics) in the limit of a large number of particles. We refer the
reader to [11] for details. We ask whether approximating IAD is a suitable goal for
an algorithm designed to compute steady states in statistical physics.

TAD is like an algebraic multigrid method, but it is nonlinear and nonsymmet-
ric, which significantly complicates its analysis; cf. Appendix D.3. In the earliest
convergence analysis of TAD known to us, Mandel and Sekerka proved local con-
vergence for a class of problems including the solution of input-output models but
not steady states of Markov chains [21]. Later work verified local convergence for
Markov chains under various conditions and for various versions of the TAD algo-
rithm [11, 16, 22, 23, 24, 25]. We are not aware of a proof of global convergence that
holds under general conditions. However, see [24] for a proof of global convergence
under somewhat restrictive conditions and examples where TAD fails to converge.
The efficiency of TAD has been studied in special cases, including nearly completely
decomposable chains [15] and cyclic chains [29].

We contribute a new proof of local convergence of IAD under weak conditions that
are easy to verify. The usual conditions that guarantee convergence of a Markov chain
to a steady state, irreducibility and aperiodicity, do not suffice to prove even local
convergence of IAD; cf. Appendix B.2 and [24]. If P is the transition matrix of the
chain, we prove local convergence when P and PP are irreducible; cf. Theorem 4.13.
It is equivalent to assume that the chain is strictly contracting in a certain norm;
cf. Lemma 4.4. A sufficient condition is that P be irreducible and have a positive
diagonal.

Our proof of local convergence leads to precise and interpretable estimates of the
asymptotic rate of convergence; cf. Theorem 5.4 and Corollary 5.6. Based on these
estimates, we have developed some general advice to guide the choice of parameters
in IAD; see the discussion following Corollary 5.6. We apply our theory of the rate
of convergence in section 6 to explain why it may be possible to use methods like
IAD to efficiently compute steady states of reversible or irreversible processes arising
in statistical physics and computational chemistry. To be precise, in section 6, we
introduce a family of Markov chains analogous to the metastable diffusion processes
that are widely used as models of molecular systems. We then explain why TAD can
sometimes efficiently calculate the steady states of such chains and how to choose the
parameters in practice. We illustrate our conclusions with numerical experiments. We
developed our rate estimates with these examples from statistical physics in mind, but
our results are general, and we hope others will apply them to understand IAD in
other contexts.
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2. Notation. Here, we summarize our notation. Notation is also explained
below when it first appears.

o P c RY*N will be an irreducible, column stochastic transition matrix with
invariant distribution p € RV,

e For any matrix or vector M, M > 0 means all entries of M are nonnegative.
M > 0 means all entries are positive.

e 1 will denote a vector of all ones, and I will denote the identity matrix. The
dimension of 1 or I will be determined by the context.

e Forany AC{l,...,N}, 14 will denote the characteristic function of A. That
is, Ta(x)=1ifxre Aand La(z)=0if z ¢ A.

e For any vector v € R*, we let diag(v) € R¥** denote the diagonal matrix with
diag(v); =v; fori=1,... k.

e ||-|l, and (,), denote the ¢£%(v)-norm and inner product, respectively; see
Definition 4.1. For M € R¥*% M*¥ denotes the adjoint of M with respect to
the ¢?(v)-inner product. In some proofs, we simplify notation, letting |-, {,),
and M* denote the ¢?(1/u)-norm, inner product, and adjoint, respectively.

e For any operator M € RV*N Rg(M) denotes the range of M.

3. The iterative aggregation/disaggregation method. Iterative aggrega-
tion/disaggregation (IAD) is a numerical method for computing the steady state dis-
tribution of a Markov chain. Let P € RVY*N be the column' stochastic transition
probability matrix of a discrete-time Markov chain on the state space

Q={1,...,N}.

We call ) the fine space. We assume that P is irreducible,? so there is a unique steady
state probability vector u € RV solving

Pu=p.

In each step of IAD, one calculates a coarse approximation to P based on a user-
specified partition of 2 into disjoint sets {S; : ¢ = 1,...,n}. We call each set S; a
coarse state, and we call the set {1,...,n} of indices the coarse space. To define the
coarse approximation, we specify operators mapping between the sets of probability
vectors on the fine and coarse spaces. The aggregation operator maps vectors on the
fine space to vectors on the coarse space.

DEFINITION 3.1. We define the aggregation operator A:RN —R™ by

(Av); ==v'1g, = Z Vg

z€S;
foranyi=1,...,n and v € RV

LA matrix is (row) stochastic if its entries are nonnegative and each row sums to one. A matrix is
column stochastic if it is nonnegative and each column sums to one. Note that the usual convention
in the probability literature is for the transition matrix to be row stochastic, so if X; is a Markov
chain with transition matrix P, then P[X; 1 = j|X; =] = P;;. Following the literature on IAD, we
adopt the opposite convention, taking P[X;y1 = j|X; =14] = Pj;.

2We recall that a column stochastic matrix P € R"*" is irreducible if and only if for any
i,5 € {1,...,n}, there exists a k € N so that (P¥);; > 0. The Perron-Frobenius theorem guarantees
that an irreducible column stochastic matrix has a unique positive steady state probability vector p
so that Pu=p.
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Note that when v is a probability vector, Av; is simply the probability of S; under
v. Moreover, if v is a probability vector, then so is Av.

The disaggregation operator maps vectors on the coarse space to vectors on the
fine space. It depends on the current approximation fi of the steady state p.

DEFINITION 3.2. Given a probability vector ji € RN with Afi > 0 and a coarse
state S;, define the conditional distribution fi(+S;) by

~ . :ilj]]‘Si (.])
S;) = —/———=
A1) == i
for j € Q. Here, 1g, denotes the characteristic function of S;. Define the disaggrega-
tion operator D(ji) : R™ — RN by

n

D(f)z; = Zziﬂ(ﬂsi)

i=1
for any z € R™.

Note that if z is a probability vector, so is D(ji)z. Also, observe that D(f)
is defined only when Aji > 0. This will always be the case in practice under our
assumptions; cf. Lemma 3.6.

Given an approximation fi of y, the coarse approximation C(i) to P is defined
by composing P with A and D(f).

DEFINITION 3.3. Let fi € RN be a probability vector with Afi >0. We define the
coarse approzimation C(f1) € R™*"™ by

C(j1) = APD(j).

The coarse approximation C'(ft) is a column stochastic matrix. To see this, note
that C'(&) maps probability vectors to probability vectors, since each of A, P, and
D(j1) maps probability vectors to probability vectors. In each step of IAD, one solves
for the steady state of C(f1). It is convenient to establish some general notation for
this operation.

DEFINITION 3.4. For M an irreducible and column stochastic matriz, we let z(M)
denote the unique probability vector solving

2(M) = Mz(M).

Now let u® € RY be a user-specified initial approximation of y. In IAD, one
alternates coarse correction and smoothing steps. Given a probability p* € RN, the
coarse correction step is to compute

(3.1) ptE = D(uF)z(C(uh)).

To compute z(C(u*)) in practice, one can use the algorithm outlined in Appendix A.
The smoothing step is to compute

(3.2) pktt :Pu’”%.

Note that the smoothing step is the same as one step of the power method for calcu-
1

lating 1 and also the same as evolving ©**2 by one step under the forwards equation

for the chain.
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Many variations of IAD have appeared in the literature. We will not treat all of
them. Some versions apply to substochastic problems such as economic input-output
models [21, 34]. Others use different smoothers [16, 22, 25], apply multiple smoothing
iterations at each step [16, 22, 25], smooth the aggregation or disaggregation operators
[6], use a hierarchy of several coarse approximations in a multigrid V- or W-cycle [7], or
solve infinite-dimensional problems using more general aggregation and disaggregation
operators [11, 25]. We do not consider these possibilities.

We now summarize our assumptions and show that TAD is well-posed.

Assumption 3.5. We assume the following:
1. P is irreducible.
2. The initial approximation u° of the steady state y is strictly positive.

LEMMA 3.6. If Assumption 3.5 holds, then the iterates u* produced by IAD are
defined for all k € N. In particular, Ap* >0 and C(u*) is irreducible, so D(u*) and
2(C(u*)) are defined.

Proof. See Appendix B.1. ]

If one does not assume p® > 0, then C(u°) may be reducible, in which case the
steady state z(C(u°)) need not be unique. This can occur even when P is both
irreducible and aperiodic; see Appendix B.2 for an example.

Finally, we present a complete version of IAD with a termination criterion similar
to those typically used in practice.

The user must specify the following:
1. a column stochastic and irreducible transition matrix P € RV*V,
2. a partition {S;:i=1,...,n} of {1,..., N} into disjoint sets,
3. a probability vector u° € RY with p® >0, and
4. an error tolerance 7 > 0.
Given these data, IAD proceeds as follows:
1. Set pold = 0.
2. Calculate z(C/(p°'d)) using the algorithm in Appendix A. Set

Mnew _ PD(,uOld)Z(C(MOId)).

3. If

new __ ,old Ppnew _ new
I U |§Tand_max | Ppi™ — pi™|

<T
icl,..,N pdtd icl,..,N Pppev ’

old new

then output p"%V. Otherwise, set p°'¢ = u"V, and return to step 2 above.

4. Local convergence of IAD. In this section, we prove local convergence of
IAD. That is, we show that if the initial approximation p° is sufficiently close to
the true steady state u, then p* converges to p. We begin with an analysis of the
smoothing step of TAD in section 4.1, which is the power method. In section 4.2, we
prove local convergence of TAD.

4.1. The power method. Here, we prove convergence of the power method
(or, equivalently, convergence of the forwards equation of the chain) to the steady
state p. Of course, convergence of the power method is already well understood. The
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details of our particular proof will be instrumental in our analysis of the efficiency of
TIAD, however. We begin by defining convenient norms.

DEFINITION 4.1. Let v € RF with v > 0. We define the ¢?>(v)-norm and inner
product by

k

1
<xay>l/:zxiyiyi and ||CEHV:<.’IJ,.’I;>3
i=1

for z,y €R*. Given M € RF¥F we let || M||,, denote the induced operator norm. We
let M*" be the adjoint matrix so that

(Maz,y), = (z, M™"y),
for all x,y € R*.

We will use the ¢?(1/p)-norm to measure discrepancies between probability mea-
sures on €2, for example the error u* — p after k steps of IAD. The ¢2(u)-norm will
arise when we analyze the efficiency of IAD. As a first step in our analysis of the
power method, we relate adjoints in the £2(1/u)-inner product to time reversals.

LEMMA 4.2. Let P € RYNXN pe column stochastic and irreducible. The time
reversal of P is P*Y"_ In particular,

(4.1) P — diag(p) Pt diag(1/ 1)
s column stochastic and irreducible and has invariant distribution p.
Proof. See Appendix C.1. d

The spectrum of the operator P*!/#P will play a crucial role in our proof of
convergence of the power method and in our efficiency analysis of IAD. By Lemma 4.2,
P*1/tP is column stochastic with invariant distribution pu. Therefore, 1 is a left
eigenvector of P*/1 P with eigenvalue 1, and p is the corresponding right eigenvector.
(Here, 1 € RY denotes the vector whose entries are all equal to one.) Moreover,
P*YEP s self-adjoint and positive semidefinite with respect to the ¢2(1/u)-inner
product. Therefore, o(P*/#P) C[0,1]. Let

I=M2X2>-2An 20

be the eigenvalues of P*1/# P listed in decreasing order and with repetition if any have
multiplicity greater than one. Let vq,...,vn be the corresponding right eigenvectors
normalized so that ||v;;/, =1 for alli=1,...,N. Since P*1/1 P is self-adjoint, the
eigenvectors are an orthonormal basis of RY with the ¢2(1/p)-inner product, so

<Uiavj>1/u:5ija

and we have the diagonalization

N
(4.2) PYYRP =1t 4 Z Apvgvy, diag(1/p).

k=2
We will refer to this diagonalization frequently. Note that the left eigenvectors of
P*Y/1pP are

vy =1,v5 =diag(1/p)va, ..., v = diag(1/p)vy.
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The left eigenvectors play an important role in our efficiency analysis of IAD.
We now show that when P is irreducible, the power method for computing u is
strictly contracting in the #2(1/u)-norm if and only if P*P is irreducible.

DEFINITION 4.3. For P € RN*N an irreducible column stochastic matriz and
W eRYN a probability vector, we define the power method iteration

vl = puk,

LEMMA 4.4. Let P € RNY*N be an irreducible column stochastic matriz. Let
9 € RN be a probability vector, and let v* be the corresponding sequence of power
method iterates in Definition 4.3. Define

P=pP— 1t
We have
(4.3) =P — ).
Moreover,

HPHI/M =V A2,
and \o < 1 if and only if P'P is irreducible.
Proof. See Appendix C.2. ]

Note that the asymptotic rate of convergence of the power method is

: pm %: ®
Tim [P = p(P)

For irreversible chains, p(P) may be significantly less than the contraction constant
||]5||1/# of the power method in the ¢?(1/u)-norm. See section 6.4 for an example.
However, for reversible chains, we have p(P) = ”P”l//w since P*1/1r =P,

In our convergence analysis of IAD, we assume that P*P is irreducible. By formula
(4.1) for P/~ it is equivalent to assume that P*!/#P is irreducible. A sufficient,
but not necessary, condition is that P be irreducible with a positive diagonal. We
note that if P is irreducible but P'P is not, then P = (I + P) is irreducible, has a
positive diagonal, and has the same unique steady state as P. Therefore, to compute
the steady state of P one could apply IAD with P in place of P, and local convergence
would then be guaranteed by the results below.

We now give an example to illustrate what can go wrong when P*P is reducible.
Consider a right shift on three states:

0 01
P=1|1 0 0
01 0

This is an irreducible Markov chain, and the steady state is the uniform distribution
%]l € R3. The time reversal is the left shift P*3! = pt = p~1, Therefore, poilp—7
is reducible even though both P and P*3! are irreducible. In this case, ||]5||1/M =1,
and the power method does not converge, since P is periodic.

The right shift in our last example is irreducible but periodic. There also exist
irreducible, aperiodic chains so that P'P is reducible. For such chains, the power

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/30/23 to 128.119.202.136 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

AGGREGATION METHODS FOR STATISTICAL PHYSICS 1177

method is convergent, but it is not a strict contraction in the ¢2(1/u)-norm. See
Appendix B.2 and [24] for an example of an irreducible, aperiodic chain so that P*P
is reducible and TAD is not locally convergent.

4.2. Local convergence of TAD. Here, we prove local convergence of TAD.
We begin with a convenient reformulation of the steady state problem for a Markov
chain.

LEMMA 4.5. Let M € RF¥* be an irreducible column stochastic matriz, and let
v,w € R* with 1'v #0 and 2(M)*w #0. The matriz I — M +vw® is invertible, and
2(M) = (I — M +vw®) tow'z(M).
Proof. See Appendix D.1. ]

We use two special cases of Lemma 4.5. First, the steady state u € RY is the
unique solution x of

(4.4) (I —P+pl"z=p.
Second, the coarse steady state z(C(u*)) € R™ is the unique solution of
(4.5) (I —C(ux) + Aplt)z = Ap.

Note that one cannot solve the linear equations (4.4) and (4.5) in practice to compute
p and z(C(u¥)), since both the matrices and the right-hand-sides depend on the
unknown p. We use (4.4) and (4.5) only to derive the following recursive formula for
the error after the coarse correction.

LEMMA 4.6. For any probability vector v € RN with v >0, the matriz A(I — P +
plt)D(v) is invertible, and we may define

S(v):=DW)[AI — P+ pl*)D(v)] P A(I — P + pl®).

The operator S(v) is a projection with Rg(S(v)) = Reg(D(v)). We call S(v) the coarse
projection. We have

(4.6) e — = (1= S (k) (uF = ).
Proof. See Appendix D.2. 0

In Appendix D.3, we interpret IAD as an adaptive algebraic multigrid method
for solving (4.4). The coarse projection S(u*) is exactly the coarse grid correction
in this interpretation. The restriction operator is A, and the prolongation operator
is D(u*). Note that S(v) is a projection on Rg(D(v)). This is the most important
algebraic fact in our analysis below. All of our results below would hold if S(u) were
any projection on Rg(D(u)), except for Theorem 5.5.

To derive a recursive formula for the error after a complete step of IAD, we simply
compose formula (4.6) for the error after the coarse correction with formula (4.3) for
the propagation of the error under the power method.

LEMMA 4.7. Define the error propagation operator

We have
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Proof. By (4.3) and (4.6), we have

. 1 R
P — = P(FE — ) = P(I = S(u*)) (1" — p).

Similar formulas for the propagation of the error appear in [21] and subsequent work

22, 23, 25). 0

We now show that J () has norm less than one with respect to a certain operator
norm. Local convergence follows. To construct the right norm, we decompose R
into Rg(D(u)) and its orthogonal complement in ¢2(1/4). The orthogonal projection
II(1) defined below will be useful.

DEFINITION 4.8. Given a probability vector v € RN with v > 0, we define the
orthogonal coarse projection

Lemma 4.9 summarizes the properties of II(v).

LEMMA 4.9. Let v € RN be a positive probability vector. The orthogonal coarse
projection I1(v) is the orthogonal projection on Rg(D(v)) with respect to (,)1,. It is
also a reversible, column stochastic matrix with invariant distribution v.

Proof. For completeness, we give a proof in Appendix D.4. Equivalent observa-
tions appear in [21] and subsequent work [22, 23, 25]. d

We will show that for the ||-||c norm defined below, ||J(u)||e < 1 for sufficiently
small €.

DEFINITION 4.10. For € >0, we define the e-inner product and norm on RN by

(9)e = o, (T = T () + e T))rye and ] = (z,2)2

For M € RNXN " we let ||M||. denote the induced operator norm.

To verify that (,). is an inner product, observe that it is symmetric, since IT(y) is
an orthogonal projection, and therefore TT(x) = IT(x)*/#. Tt is nondegenerate, since

Jal2 > min{1, e} {7 = T2, + TG0 )3, )
=min{1,=}z]3,,

using again that IT(y) is an orthogonal projection. Bilinearity is inherited from (,)q/,,.
We now show that when & > 0 is small, ||J(u)||e is approximately | (I —

TL() T (k)1 -
LEMMA 4.11. We have

17G)le <\ /1T =TT () B, + <lTGe) — SGo)E .

Proof. See Appendix D.5. a0

We will estimate ||(1—TL(x))J (12)[|1/,- By Lemma 4.11, if || (1—TI(p))J (p) || 1 /0 < 1,
then ||J(u)|le <1 for e sufficiently small.

THEOREM 4.12. Assume that P and P'P are irreducible and that at least one
coarse state contains more than one fine state. We have
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, (2,(I—P*YEP)2),,
1
zeRg(I-s(w)  [|(1 —1(u))z]3,
1
(I = TI(p)) (I = P*Y/1P)=Y (T = TI())|l1/

@7 I =) I (Wi, =1~

(4.8) <1-

<1

Proof. See Appendix D.6. ]

We now prove local convergence.

THEOREM 4.13. Assume that P and P'P are irreducible. For € > 0 sufficiently
small,

(4.9) [T()le <1.

For any € > 0 small enough so that |J(p)|le <1 and any n € (0,1 — ||J(w)|], there
exists v >0 so that if ||u® — pllc <r, then

11 = plle < (1T ()l + ) ¥ = pll

for all k e N.
Proof. See Appendix D.7. ]

5. The rate of convergence. Here, we analyze the asymptotic rate of conver-
gence of IAD. First, we show that the rate is bounded by the spectral radius p(J(p)).
We then derive an upper bound on the spectral radius based on the results in section 4.
Our upper bound is appealing and easy to interpret, but it significantly overestimates
p(J(p)) for some irreversible processes. See section 6.4 for an example. Therefore, we
also derive an exact formula for p(J(p)). Our exact formula could be the basis for a
better understanding of the rate of convergence of IAD for irreversible processes, and
it yields an interpretable exact expression for p(J(p)) when P is reversible.

We now show that p(J(u)) bounds the asymptotic rate of convergence. By the
asymptotic rate of convergence, we mean the expression on the left-hand side of (5.1)
below.

LEMMA 5.1. Let P and PP be irreducible, let r >0 be as in Theorem 4.13, and

assume that ||u° — pl|c <r. For any norm ||-|| on RY, we have
(5.1) limsup|u* — p|['* < p(J ().
n—oo
Proof. See Appendix E.1. ]

We now estimate p(J(p)). Our approach is based on comparing the orthogonal
coarse projection IT(u) with the orthogonal projection on the eigenvectors associated
with the largest eigenvalues of P*/#P.

DEFINITION 5.2. Fix some k < N, and let Q be the £*(1/u)-orthogonal projection
on the eigenvectors vy, ... vy, associated with the k largest eigenvalues of P*'/F P,
That is, define

k
(52) Q=pl"+ vi(v))"

=2
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Here, {v; :i=1,...,N} and {v}:i=1,...,N} are the right and left eigenvectors of
P*Yep. In formula (5.2), we normalize the right eigenvectors so that lvilliju =1
and we take vi = diag(1/p)v; as in (4.2).

Note that Q@ = Q*/* and @ = Q, so @ is an orthogonal projection in £2(1/pu).
Moreover, by (4.2), we have QP*Y/#P = P*'/rPQ, and o(QP*'/*P)={\1,...,\}.

When thinking about @, we suggest that the reader keep the family of Markov
chains defined in section 6.2 in mind. We devised this family of chains as a simple
model of the reversible metastable diffusion processes encountered in molecular sim-
ulation. For these chains, P*'/#P typically has a small number k of eigenvalues that
are very close to one. The rest of the spectrum is much farther from one. That is,

1— X

— << 1.
1= Aky1

In our examples, we choose Q to be the projection associated with these k largest
eigenvalues.

Our estimate of p(J(u)) is expressed in terms of the angle from Rg(Q') to
Rg(I(1)*) in the £2(u)-inner product.

LEMMA 5.3. We have 0 < ||(I —II(1)")Q"||,. <1, and therefore we may define an
angle 6 € [0,7/2] by
(5:3) sin(0) == (1 = T1(1)") Q" -

Note that here the norm is weighted by p not 1/p.

Proof. Both IT* and Q' are orthogonal projections with respect to the £2(ju)-inner
product, since IT and Q are orthogonal projections with respect to £2(1/u). Therefore,
(I —TI())Q | < |(I — IL(p)") ||, [|Q ]|, = 1, since any orthogonal projection must
have norm equal to one. 0

One can show that the angle defined above coincides with the typical definition

sin(f) := gap(Rg(Q"), Rg(I1"))

= max  min |ju—w|,
u€Rg(Q") weRg(IT")
lull,=1 " llwll.=1
= max |[(I—T"ul,.
w711l
llull =1

We do not prove this, since it will not be important below.
We understand 6 as a measure of how well one can approximate elements of
Rg(Q*) within Rg(TI(x)®). Note that

Rg(IT*(u)) = span{ls,,...,1g, }
and that
Rg(Q") =span{v},...,v}}.
That is, Rg(II(x)") is spanned by the characteristic functions of the coarse states, and

Rg(Q") is spanned by the first k left eigenvectors of P*'/#P. Therefore, § will be
small when each of the first k left eigenvectors of P*1/#P is well-approximated by a
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linear combination of characteristic functions of coarse states. Equivalently, 6 is small
when each of the first k left eigenvectors can be approximated by a function that is
constant on the coarse states.

We now estimate the asymptotic rate of convergence.

THEOREM 5.4. Assume that P and P'P are irreducible and that at least one
coarse state contains more than one fine state. We have

p(J(1)* < NI = TL() T (I3,

(5.4) <1- - ! -
I(I = TL(p))(I — P/ e P)=H (I = TL(1)) |1/
1
5.5 <1-
(5:5) - sin2(9)—1f}\2 +0082(0)1*>}k+1
Proof. See Appendix E.2. ]

In our examples in section 6, we consider metastable chains for which P*/#pP
has a small number of eigenvalues very close to one, and we choose k to be the number
of such eigenvalues. We note, however, that Theorem 5.4 holds for any k. To obtain
a useful estimate, one has to choose k carefully. If k is too large, then sin(f) will be
close to one, giving only /A2 as an upper bound on p(J()).

Note that the right-hand side of (5.5) increases from g1 to Ay as sin®(f) increases
from zero to one. Thus, the asymptotic rate of convergence of IAD is never larger
than y/)a, which is the contraction constant of the power method in the ¢2(1/u)-
norm. For reversible chains, /Ay is also the asymptotic rate of convergence of the
power method, since any reversible P is self-adjoint with respect to the £2(1/u)-inner
product by Lemma 4.2 and therefore ”P”l/u = p(P). Thus, for reversible chains, the
asymptotic rate of convergence of IAD is never greater than the asymptotic rate for
the power method.

For irreversible chains, however, the asymptotic rate of convergence p(P) of the
power method may be less than the contraction constant ||P||; /u- Theorem 5.4 may
significantly overestimate p(J(u)) in such cases. For example, suppose there is only
a single coarse state S7 = Q. In that case, IAD reduces to the power method, and
J(1) = P. Moreover, I —II(p) = I — pd*, so (I —TI())J () = P. Note that our upper
bounds in Theorem 5.4 are in fact upper bounds on ||(1 —II())J(p)][1/,. Therefore,
if there is only one coarse state, neither of our upper bounds can be smaller than
||]5||1/M. See Figures 6.5 and 6.6 for additional examples where our upper bounds
overestimate p(J(u)).

Since our upper bound in Theorem 5.4 may significantly overestimate the spectral
radius for some irreversible chains, we also give an exact formula for the spectrum of
J(p). This formula could lead to a better understanding of IAD in the irreversible case,
and it also leads to an interpretable exact formula for p(.J()) for reversible processes.

THEOREM b5.5. Assume that P and P'P are irreducible. Assume that there is
more than one coarse state and at least one coarse state contains more than one fine
state. The spectrum of J(u) is given by

1
. o(J =|1- 2 .
o0 o) (l a<<z—H(u»u—m—lu—nm)))\{0}>U{O}

Proof. See Appendix E.3. d
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For reversible processes, Theorem 5.5 has the following corollary.

COROLLARY 5.6. Let P be reversible, and assume that P and P*P are irreducible.
Assume that there is more than one coarse state and at least one coarse state contains
more than one fine state. We have

1
5.7 Tw)=1- -
(5.7) p(J (1)) (I = TL()) (I — P)=1(I — (1)) |1/
1
(5.8) <1- Sin2(9)ﬁ+COS2(9)ﬁ.
Proof. See Appendix E.4. D

We include the angle upper bound (5.8) in Corollary 5.6 to demonstrate that the
exact formula (5.7) can be interpreted in the same way as the norm upper bound (5.4)
in Theorem 5.4. There does not appear to be a meaningful difference between the
two angle upper bounds in Theorem 5.4 and Corollary 5.6 when Ay and A;4;1 are both
close to one. In fact, one can show that the two angle upper bounds are asymptotic
in various limits as A2 and A;4; tend to one.

We now list three implications of our theory for the choice of coarse states. First,
Corollary 5.6 suggests that for a reversible process one should choose coarse states
so that the left eigenvectors of P corresponding to eigenvalues close to one are well-
approzimated by vectors that are constant on the coarse states. In section 6, we explain
how to interpret this statement for processes like those used in molecular model-
ing. Similarly, Theorem 5.4 suggests that for irreversible processes one should choose
coarse states so that the leading left eigenvectors of P*'/#P are well-approximated.
Our examples in section 6.4 indicate that this may be good advice for some irreversible
chains but that it could be misleading for some very irreversible chains; cf. Figure 6.6.

Second, since the quality of approximation is measured in the ¢?(u)-norm, one
only needs an accurate approximation in regions of high probability under u. Regions
of low probability will not have a significant influence on sin(#) unless some of the first
k eigenvectors are concentrated in those regions. As a consequence, the efficiency of
IAD is not always as sensitive to the choice of coarse states as one might expect, and
in some cases a very naive choice of coarse states can work quite well. See section 6.5
for an example.

Third, Corollary 5.6 proves that for reversible chains p(J(u)) decreases whenever
the coarse states are refined. We say that a set of coarse states R = {T1,..., T} is
a refinement of C = {S1,...,S5,} if each S; can be expressed as a union of T}’s. Let
IIz and Il be the orthogonal coarse projections II(u) for the two partitions R and
C, respectively. To see that the spectral radius p(J(u)) for the refined partition R
is less than or equal to the spectral radius for the coarse partition C, observe that
Rg(Ilr) D Rg(Ilc), so

Ilellg =1Iglle =1l¢,
since both Il¢ and Iz are £2(1/p)-orthogonal projections. Therefore,
(7 = TR)(I = P) (I — HR)H%
= (I =Tr)(I =Tle)(I = P)" (I = Tle)(I ~ TIg)| » 1
<M = 2|1 =Te)(I = P)~H(I — )|+ |11 - HRH 1
SH(I—Hc)(I—P) I =T s,
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since I — Il is an £2(1/u)-orthogonal projection and so ||[I — g+ = 1. It follows
by Corollary 5.6 that the spectral radius for the refined partition is “less than for the
coarse partition.

For irreversible chains, the spectral radius may increase with refinement. See
section 6.4 for an example. However, in our examples, we still observe a clear (but
not monotone) trend toward lower spectral radii with increasing refinement. We also
note that all of the upper bounds on the spectral radius in Theorem 5.4 must decrease
with refinement even when P is irreversible.

6. Examples related to modeling molecules. Here, we apply the theory
developed in section 5 to develop an understanding of the rate of convergence of IAD
for processes similar to those used as molecular models. To begin, we review certain
important properties of molecular models, and we define a simple family of Markov
chains with similar properties. We then calculate p(J(u)) and the upper bounds in
Theorem 5.4 for some members of this family and for various choices of coarse states.
Our theory explains the observed dependence of the rate of convergence on the choice
of coarse states for all but the most irreversible (and least metastable) chains.

6.1. Molecular models. Molecular modeling begins with the specification of a
potential energy V : RM — R defined on the space of all configurations of the atoms
comprising the system. Based on the potential, one defines a stochastic process to
model the evolution of the system. For example, the overdamped Langevin dynamics

dX,=—VV(X,)dt +V2kT dB,

may be used to model a system in contact with a heat bath at temperature T'. (Here, k
is Boltzmann’s constant.) Refer to [19] for details. We recall the following well-known
properties of overdamped Langevin:
e Under some conditions on V', the unique steady state of X; is the Boltzmann
distribution

n(dr)=Z ' exp <V(:1:)> dz, where Z7! z/ exp(—8V(x)) dz.
kT R3N

e X, is reversible.

e If the potential energy V has several local minima, then when the temperature
T is low, X; is metastable. In particular, trajectories tend to vibrate around
local minima of V', undergoing transitions between minima only rarely. Un-
der some conditions on V, in the limit as T'— 0, each local minimum of V'
corresponds to an eigenvalue of the generator of X; that converges exponen-
tially to zero. The remainder of the spectrum remains bounded away from
zero uniformly in 7. The eigenvectors corresponding to the eigenvalues that
converge to zero are approximately constant on the basins of attraction of
the minima. See [19, section 2.5] for details.

Overdamped Langevin is reversible, but we take a particular interest in irre-
versible models, since these are the hardest to sample. For example, consider

(6.1) dX, = (—=VV(X,) + aF(X;))dt + V2kT dB;,
where F' is a nonconservative force; i.e., F' is not the gradient of a potential function.

Here, X; is irreversible [19, section 5.1.2]. There is no general, closed-form expression
for the steady state density of (6.1). In particular, the steady state is not the Boltz-
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mann distribution. This is one reason why sampling nonequilibrium steady states is
difficult.

6.2. Simple Markov chain model of overdamped Langevin. We define a
family of Markov chains on a one-dimensional grid with properties similar to over-
damped Langevin. Let V:R — R, T > 0, [a,b] C R, and N € N. Define the discrete
Boltzmann distribution u € RN by

62 e ()

b—a,
where Z = vazl exp(—%). Define the transition matrix

1 p(d) (i) ) :
Py= - ~ + — — | for all i € Q,
2 <M(Z— D)+ p()  p(i+1)+ p(i)
1 p(+1) .
6.3)  Pggi—-— T for all i € 9,
(6.3) +1, 2M(Z+1)+M(Z) or all 7 €
1 p(i—1) .
Pygi=-——t= for all i € Q, and
1, 2016 — 1)+ 1) or all 4 an
Pj; =0 otherwise.

In the definition of P, we impose periodic boundary conditions, associating 0 with IV,
1 with N 41, etc. This family of Markov chains was proposed in [32] as a model of
overdamped Langevin and other metastable processes often encountered in statistical
physics. We also define a similar family of chains on a two-dimensional grid; see
Appendix F and section 6.5.

The Markov chain P has properties similar to overdamped Langevin: Observe
that P is in detailed balance with the discrete Boltzmann distribution u, so P is
reversible and has invariant distribution g. In our examples below, we choose T
small, and in that case P is metastable, as demonstrated in [32]. Moreover, in the
examples given in section 6.3, for each local minimum of V', there is one eigenvalue
of P that lies very close to one and the remainder of the spectrum lies much farther
from one. The left eigenvectors of P associated with the eigenvalues that lie close to
one are approximately constant on the basins of attraction of the minima. We will
not prove that these properties of the spectrum hold in general (or even formulate
them precisely), but we note that they do hold in our examples.

We also define irreversible Markov chains that are analogous to overdamped
Langevin with a nonconservative force (6.1). Define the right shift W € RN*N by

Wit1,,:=1 foralli€(, and

(6.4) .
W;i:=0 otherwise,

taking periodic boundary conditions as in the definition of P. We consider chains of
the form (1 — )P + oW for a € (0,1).

6.3. TAD for a metastable, reversible chain on a one-dimensional grid.
We now test our theory on a highly metastable, reversible problem. We will see that
for any sufficiently refined choice of coarse states, IAD converges quickly compared
with the power method. However, for some very poor choices of coarse states, IAD
converges at essentially the same rate as the power method. We explain these results
in detail using the rate estimate in terms of 6 (5.5) and the properties of molecular
models outlined above.
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TABLE 6.1
The largest five eigenvalues of P*1/EP for the reversible, one-dimensional chain P of section
6.3. We report /A instead of Ak, since it is \/Ag that appears in Theorem 5.4. We have added the
third column for comparison with Figure 6.3.

k VA —logio(1 = VAk)
1 1 00
2 0.999992 5.09
3 0.991441 2.07
4 0.986243 1.86
5 0.979807 1.69
steady-state left eigenvectors of P* kp
250 .
— V) 1
—2.5 7 200 - , ]
V5 | |
- 07 150 == vy | |
2 | i
R 100 - I |
g |
= -10.0 1 504 ' “
-12.5 N ] \
T
\
-15.0
T T T _50 T T I\
20 57 81 20 57 81

i i

FiG. 6.1. Left: the steady state p. Right: the eigenvectors of P*1/up_ Note that v} and vl are
approximately constant on the basins of attraction of the local minima of V', which correspond to
mazima of the steady state distribution. Here, the local minima of p at i =57 and i =0 separate the
basins of attraction. Note that i =0 and ¢ = 100 are identified, since we impose periodic boundary
conditions.

Let £ be the discrete Boltzmann distribution defined in (6.2) with

Vi) =0+ 5,
N =100, [a,b] = [-1.7,1.55], and T'= 1/10. Let P be the corresponding reversible
transition matrix defined by (6.3). Here, the potential V' has two minima, so we
expect that exactly two eigenvalues of P*!/#P = P2 will lie very close to one with
the remainder significantly farther from one. Table 6.1 confirms that this is indeed
the case. The left eigenvectors are displayed in Figure 6.1. Based on our discussion
of molecular models above, we expect that the eigenvectors corresponding to the two
largest eigenvalues should be approximately constant on the basins of attraction of
V. Here, on the grid used to define p, V has a local maximum at ¢ = 57. It has
a global maximum at ¢ = 0, which is identified with ¢ = 100 by periodicity. These
maxima divide the state space into two basins of attraction. Observe that the first
two eigenvectors, vf =1 and v4, are roughly constant on the basins of attraction. The
third is not.

We compute p(J(p)) and the upper bounds in Theorem 4.13 for several different
choices of coarse states. First, we test uniform grids. We show for this simple,
one-dimensional system that TAD converges quickly whenever the coarse states are
sufficiently refined. Therefore, one does not need detailed prior knowledge of the
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~I0g10(1 ~ Maxp()))

1 5 10 15 20
number of coarse states (n)

F1G. 6.2. The mazimum of p(J(p)) over all1=0,...,|100/n| for n=1,...,20 for the uniform
grids of coarse states defined in (6.5). The curve labeled o =0 is for the reversible chain of section
6.3. The other curves are for the irreversible chains in section 6.4.

eigenvectors of P to choose good coarse states for this problem. For any n € N and
£e€{0,...,|100/n|}, we define the uniform grid of coarse states

(6.5) SJ:{{JIOOJ+£,...,+{(J+1)100J+€—1}
n n
for J=0,...,n—2, and
snz{o,...7£—1}u“(n—1)mJ ,...,99}.

n

For example, for n = 2 and ¢ = 5, the coarse states would be Sy = {5,...,54} and
S1={0,...,4} U {55,...,99}. In Figure 6.2, we report the maximum of p(J(u)) over
alll=0,...,[100/n| for n=1,...,20. We see a clear decreasing trend with a growing
number of coarse states.

We now investigate the dependence of p(J(i)) on the choice of coarse states in
more detail. We compute the spectral radius p(J(u)) and our upper bounds for a
family of coarse states of the form

(66) 31:{0,...,6} and 52:{£+1,...,99},

with £ =0,...,98. We display the results in Figure 6.3. Different locations ¢ of the
boundary between coarse states result in different angles 8, depending on how well v},
can be approximated by vectors that are constant on the coarse states. We expect 6
to be small when the boundary between the coarse states coincides with the boundary
between the basins of attraction, and this happens when ¢ = 57. Note that when / is
close to 57, p(J(i)) = /A3, and it is as if one has eliminated the larger eigenvalue v/As.
When /¢ is far from 57, p(J(u)) = VA2, and TAD will converge at approximately the
same rate as the power method. Note that both of the upper bounds in Theorem 5.4
yield precise estimates of p(J(u)), but the norm bound (5.4) is so precise as to be
indistinguishable from the spectral radius p(J()).

Note that the optimal coarse states in the family (6.6) considered above coincide
with the basins of attraction of V. We wish to emphasize that it is not in general
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—log10(1 —yA2) =5.09 1

= —10g10(1 — p(J))
—logi10(1 — angle bound)
== = —|0g;0(1 —norm bound)

3

2.28 1
-log1o(1 = vA3) =2.07

T T T

T
20 40 57 80
boundary (£)

FI1G. 6.3. The spectral radius p(J(p)), the norm upper bound (5.4), and the angle upper bound
(5.5) for the reversible, one-dimensional chain. Each of these numbers x is very close to one for all
values of £, so we plot —log,o(1 —x). The variable £ on the horizontal azis relates to the definition
of the coarse states; cf. (6.6). The spectral radius and the norm bound are indistinguishable in this
figure.

steady-state left eigenvectors of P* kP
2000 7
1
=2.5 1 1000 - 'I 1
-5.0 0 ~ . -
3 oo | o :
"3 —-7.5 - - 1000 1 | ;
g ~2000 I
= -10.0 4 AR E
: . —3000 A 3 SR
-1254: : e VD |I I
15.0{° : TA0007 —— vy "
' T T T _5000 T = T T
20 57 81 20 57 81

i i

Fic. 6.4. Left: the steady state distribution po of Po for a =0.05. For comparison, we have
included the discrete Boltzmann distribution p as well. Right: the first three left eigenvectors of

PEYEa P for a = 0.05.

necessary to choose the coarse states to be the basins of attraction. It is only necessary
that the leading left eigenvectors of P be well-approximated by functions that are
constant on the coarse states. Note that this will be true whenever the coarse states
are sufficiently refined.

6.4. TAD for irreversible chains on a one-dimensional grid. We now con-
sider irreversible perturbations of the last process. Define
P,=(1-a)P+aW,

where P is as above, W is the right shift matrix (6.4), and a € [0,1]. Let u, be
the steady state of P,. We compute p(J(po)) and the upper bounds for the fam-
ilies of coarse states defined above in section 6.3. We will see that our bounds are
not as precise for irreversible chains as reversible chains. For a = 0.05, our bounds
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TABLE 6.2
The spectral radius p(ﬁa) for « =0,0.05,0.15. Note that for a =0, Py is simply the reversible
chain defined in section 6.3. Observe that for a = 0.15, the chain converges very quickly compared
with a=0.

« p(Pa) —logo(1 — p(Pa))
0 0.999992 5.09

0.05 0.999581 3.38

0.15 0.989564 1.98

overestimate the true rate of convergence but correctly predict the dependence of
the rate on the choice of coarse states. For a = 0.15, our bounds do not seem to
yield any useful information about the dependence of the rate of convergence on the
coarse states. However, we note that Py 15 is not metastable: we have p(Po_ls) ~0.99
compared with p(ﬁ’) ~ 0.99999; cf. Table 6.2. Therefore, one does not need a sophis-
ticated method like IAD to estimate the steady state of a kernel like Py 15, so Py.15 is
not of much interest as a test case for TAD. We include results for o = 0.15 simply to
illustrate the limitations of our theory.

In Figure 6.2, we report the maximum of p(J(uy)) over all I = 0,...,[100/n|
for n =1,...,20. We see a clear decreasing trend with a growing number of coarse
states. However, note that the spectral radius does not decrease monotonically with
the number of coarse states for a« = 0.15. In particular, for some choices of coarse
states with n =2, p(J(uo.15)) is larger than p(P0,15). For such poor choices of coarse
states, IAD would converge more slowly than the power method.

In Figure 6.5, we report p(J (o)) and the upper bounds for the family of shifted
coarse states (6.6) for « =0.05. We report the steady state p, and the three leading
left eigenvectors of P, in Figure 6.5. Note the similarity with the eigenvectors of Py
in Figure 6.1. Our upper bounds correctly predict the dependence of p(J(uq)) on
£. However, note that when £ is far from the optimal value, p(J(uq)) is almost the
same as p(fDa), which is the asymptotic rate of convergence of the power method.
Our estimates in Theorem 5.4 predict the slower rate of convergence /), which
is the contraction constant of the power method in ¢2(1/u). Recall that all of our
upper bounds on p(.J(u)) are in fact upper bounds on ||(1 — IT(u))J(x)|1/.. Note
that although our bounds are generally quite close to |[(I — TI(x))J(i)||1/,, they
sometimes significantly overestimate p(J(u)); cf. the discussion after the statement
of Theorem 5.4.

In Figure 6.6, we report p(J(uq)) and the upper bounds for the family of shifted
coarse states (6.6) for o = 0.15. Here, our upper bounds do not seem to yield any
useful information about the dependence of the convergence rate on the choice of
coarse states. We propose that more precise estimates based on the exact formula for
the spectral radius given in Theorem 5.5 could be developed to understand the rate
of convergence in this case. We leave this for future work. Note also that for some
values of £, we have p(.J(to)) > p(P.,), which indicates that TAD would converge more
slowly than the power method.

6.5. IAD for a metastable chain on a two-dimensional grid. We now
consider a metastable chain on a two-dimensional grid. Molecular models and other
models in computational chemistry usually involve stochastic processes on spaces
having thousands or millions of dimensions. Of course, when the dimension is so
high, one cannot expect to cover space by a uniform grid of coarse states. Therefore,
in many sampling strategies, one chooses a low-dimensional coordinate to discretize.
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—logao(1 —vA2) =3.97 1

—10g10(1 — p(P)) = 3.38 7
= —0g10(1 — p(J))

—logi10(1 — angle bound)
== = —|0g19(1 —norm bound)

—logo(1 — VA3) =2.21
1.9 1

T T T T

20 40 57 80
boundary (£)

FI1G. 6.5. The spectral radius p(J(puqa)), the norm upper bound (5.4), and the angle upper bound
(5.5) with k=2 for the irreversible, one-dimensional chain Py with oo =0.05. Each of these numbers
x 1s very close to one for all values of £, so we report —log,q(1—x). The variable £ on the horizontal
axts relates to the definition of the coarse states; cf. (6.6).

—logio(1 —vA2) =372 1 == -
. /
—log10(1 — p(P)) = 3.38 ‘| 7/
v/
L. .7 = —10g10(1 — p()))
‘') ==« —logio(1 —angle bound)
_ - = N ~
log10(1 — VA3) = 2.65 — = —10g10(1 — norm bound)
0 50 100

boundary (£)

F1G. 6.6. The spectral radius p(J(pa)), the norm upper bound (5.4), and the angle upper bound
(5.5) with k=2 for the irreversible, one-dimensional chain Py with o =0.15. Each of these numbers
x 1s very close to one for all values of £, so we report —logy(1—x). The variable £ on the horizontal
azxis relates to the definition of the coarse states; cf. (6.6).

We demonstrate for a model two-dimensional system that one can attain a significant
reduction in the rate of convergence by discretizing a single variable into a small
number of coarse states.

Define V : R? = R by

1\? 5 2
Vi = ie (‘””2 (-3 ) e (_”CQ ~(#-35) )
—5exp (_ (e —1)" - y2) —5exp (— (z+1)* - y2> )
See Figure 6.7. This simple potential function was proposed for a study of reaction

rates in [28]. Let p be the discrete Boltzmann distribution on a two-dimensional
grid with V' as above and with [a,b] X [¢,d] = [-1.7,1.7] x [-1.7,2], N = 50, and
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2.0

1.00C

1.5 A
1.0 A
0.5 4
0.0 A
—0.5 1
—1.0 A

—1.5

Fic. 6.7. A Contour map of the potential function V. Note the two global minima on the left
and right and the local minimum along a path between the other two at the top.

TABLE 6.3
The largest five eigenvalues of P*1/1P for the reversible, two-dimensional chain P of section
6.5. We report /A instead of A\, since it is \/A that appears in Theorem 5.4.

Vi
1
0.999997
0.999488
0.997511
0.994219

TR W N S

T =1/4. Let P be the corresponding reversible Markov chain. The definitions of the
discrete Boltzmann distribution and the reversible dynamics are analogous to the one-
dimensional case. See Appendix F for details. We report the largest five eigenvalues
of P in Table 6.3, and we display the left eigenvectors v4 and v} in Figures 6.8 and 6.9.
Define the coarse states
i

(6.7) SI:{(i,j)e{l,...,N}Q: M :j} for 1=0,1,2.

Here, P is a Markov chain on the state space {1,...,50} x {1,...,50}, and the coarse
states discretize only the first variable, not the second. The outlines of the coarse
states are visible in the left panel of Figure 6.8. We report p(J(u)), the norm upper
bound (5.4), and the angle upper bound (5.5) for k =2 and k = 3 for this choice of
coarse states in Table 6.4. Note that sin2(9) ~ 0.002 is quite small. We display the
eigenvector vh and its best approximation in the £2(p)-norm in Figure 6.8. Although
the two vectors may not appear to be aligned, they are in fact very close in the £2(u)-
norm, since the regions where they differ have very small probability under u and
the maximum size of the difference between the vectors is not large in comparison
to the very small probability. Observe that in this case, even with very few coarse
states that discretize only a single dimension, we have in effect eliminated the largest
eigenvalue v/)2, and the rate of convergence of IAD is essentially equal to v/A3. Note
that sin? (9) is large for k=3 in this case, so v} is not well approximated by a vector
that is constant on the coarse states; cf. Figure 6.9.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/30/23 to 128.119.202.136 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

AGGREGATION METHODS FOR STATISTICAL PHYSICS 1191

best approximation of v,

1.0 1.0
40 40
0.5 0.5
30 30
0.0 0.0
20 20
10 -05 o -0.5
0 -1.0 0 -1.0
0 20 40 0 20 40

FIG. 6.8. Right: the second left eigenvector vl of P*Y/bup. Left: the best approzimation
(p)tvh of vh in the £2(u)-norm by a function that is constant on the one-dimensional grid of
coarse states (6.7). Note that this figure could also be interpreted as a depiction of the coarse states
themselves.

best approximation of vj

V3
40 30 40 30
25
30 30 25
20 20
20 15 20 15
10 10
10 10
5 5
0 0 0 0
0 20 40 0 20 40

FIG. 6.9. Right: the third left eigenvector v} of P*1/bp. Left: the best approzimation I (p) b0
of v in the 02(p)-norm by a function that is constant on the two-dimensional grid of coarse states

(6.7).

We now test a six-by-six, two-dimensional grid of coarse states that refines the
one-dimensional grid of three coarse states used above. For all I, J € {0,...,5}, we let

(6.8) SIJ:{(x,y)E{l,...,N}2:{%J:Iand {%J:J}.

One can see the outlines of some of these coarse states in the left panel of Figure 6.9.
We report p(J(p)) and the upper bounds for this choice of coarse states in Table 6.4.
Note that both the spectral radius and the upper bounds are smaller, as expected for
a refinement of the coarse states given the discussion following Corollary 5.6. For our
six-by-six grid, sin®(f) for k = 3 is much smaller than for the one-dimensional grid.
However, it is not small enough that the angle upper bound for k& = 3 is actually lower
than for k = 2. In fact, the interpolation between /A1 and /A in (5.5) is very
steep, and one needs a very small value of sin? (9) for the upper bound to approximate
v/ Ak+1. Nonetheless, refining the set of coarse states reduces p(J(u)) significantly,
and this is correctly predicted by the norm upper bound (5.4).
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TABLE 6.4
The spectral radius p(J(w)), the norm upper bound (5.4), and the angle upper bound (5.5)
together with sin?(0) for k = 2,3. The first column is for the one-dimensional grid (6.7) and the
second column is for the siz-by-siz, two-dimensional grid (6.8).

1-d grid 2-d grid
p(J(w)) 0.999410 0.987327
norm bound 0.999410 0.987327
sin?(9), k=2 0.002382 0.000143
angle bound, k=2 0.999650 0.999502
sin?(9), k=3 0.854170 0.031745
angle bound, k=3 0.999997 0.999920

7. Conclusion. Our work here was motivated by a desire to understand the ro-
bustness and efficiency of methods such as nonequilibrium umbrella sampling (NEUS)
[36], exact milestoning [1], and injection measures [11] for calculating nonequilibrium
(or equilibrium) steady states in statistical physics. We have studied IAD as a simple
model of this class of methods. We explain why it may be possible to use meth-
ods similar to IAD to efficiently compute steady states of molecular models and how
one might choose the coarse states in practice to optimize efficiency. For reversible
processes, we conclude that one should choose coarse states so that the leading left
eigenvectors of P are well-approximated in the ¢2(u)-norm by vectors that are con-
stant on the coarse states. Since error is measured in the ¢?(u)-norm, regions of low
probability will not have a significant influence on the approximation quality unless
some of the leading eigenvectors are concentrated in those regions. This means that
in some cases a very naive choice of coarse states can be efficient. For irreversible
processes, our conclusions are similar but not so definite. For some very irreversible
processes, our upper bounds do not yield much information about the dependence of
the asymptotic rate of convergence on the choice of strata. Although our primary
interests lie in statistical physics, our results are general, and we hope others will
apply them to understand the performance of IAD in other contexts.

Our work does not address all important points. We show only local convergence,
not global. We focus primarily on estimates of the asymptotic rate of convergence,
ignoring preasymptotic phenomena. We recall that NEUS and similar methods are
stochastic evolving particle systems that approximate IAD; we do not consider issues
related to the particle approximation. We leave these points for future work.

Appendix A. Computing the coarse steady state. We compute the coarse
steady state z(C(u*)) by the following algorithm, which was introduced in [10].

Assume that C(p*) is irreducible as guaranteed by Lemma 3.6. The user must specify
an error tolerance 7 > 0 and an exponent m € N. In our numerical experiments in
sections 6.3 and 6.5, we take 7 = 1072 and m = 2'°. We compute z(C(u*)) by the
following procedure:

1. Set C'=L(I+C(ph)).

2. Use the algorithm described in section 5 of [13] to compute an initial approxi-
mation Z to the steady state z(C(1*)). That is, compute the Q R-factorization
of I —C", and let Z be the last column of @) renormalized to have a sum eq.

3. Refine the initial approximation Z using a version of the power method:

(a) Set z°d =z
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(b) Calculate

new __ Crm ZOld.

z
(c) If
3o = Capv]
max — ——————
i=1,...,n ziV
then return 2™V to the user. Otherwise, set 2°!9 = 2"°V and go to step
(b) above.

In practice, we find that direct methods (such as the algorithm of [13] based on
the QR-factorization of I — C") for calculating the coarse steady state are often not
sufficiently accurate due to floating-point error. When direct methods produce an
inaccurate result, applying a few power method iterations has usually produced a
much better estimate of the steady state in our experience. For efficiency, instead of
multiplying by C in each step of the power method, we first calculate C™ for some
large m. We then multiply by C™ in each step. If we choose m = 27 for some j € N,
then computing C™ requires only squaring a matrix j times. This may be much less
costly than performing m steps of the power method and multiplying by C in each
step. See [10] for a more detailed explanation, including an example that explains
why the power method step of this algorithm can be beneficial.

Appendix B. Well-posedness of IAD. Here, we prove that TAD is well-posed
under our assumptions, and we give some examples to illustrate what can go wrong
when our assumptions do not hold.

B.1. Proof of Lemma 3.6. We show that IAD is well-posed if P is irreducible
and p° > 0.

Proof. First, we show that if P is irreducible and v > 0, then C(v) is irreducible.
We prove the contrapositive, showing that if v > 0 and C(v) is reducible, then P is
reducible. If v >0 and C(v) is reducible, then there is a partition of the coarse states

{1,...,n}=AUB

into disjoint and nonempty sets A and B so that for all a € A and b€ B

vy -
C(V)ba = APD(V)ba = Z 71/04 Pji =0.
1€S,
JESy

Therefore, since v >0, Pj; =0 for all i € S, and j € .Sy. Now define

A=UycaS, and B=UppSp.

The sets A and B are a partition of ) into disjoint and nonempty sets, and we have
Pj; =0 for any i € A and j € B. It follows that P must be reducible. We conclude
that if » >0 and P is irreducible, then C(v) must be irreducible.

Now we show that if ¥ > 0, then p*+! > 0. To verify that z**2 > 0, we observe
that C(u*) is irreducible when p* > 0 by the previous paragraph, and so the steady
state z(C(p*)) is unique and positive by the Perron-Frobenius theorem. It follows
that p*+2 = D(u*)z(C(ur)) > 0. Moreover, when P is irreducible, v > 0 implies
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Pv > 0. To see this, observe that if v > 0, then for any ¢ € Q with Pv; =0, P;; =0
for all j # 4. Thus, P is reducible if Pv is not positive. Therefore, u*+1 = PuF+2 >0
if u* > 0, and by induction p® > 0 implies x* > 0 for all £ € N. This concludes the
proof that the iterates u* are well-defined. 0

B.2. Examples motivating our assumptions. We now give some pathological
examples to motivate our assumptions that u° > 0 and that PP is irreducible.

B.2.1. Positive initial condition (u° > 0). We assume p° > 0, since if p° is
not positive, then C(u°) may be reducible even when P and P'P are irreducible and
aperiodic. For example, consider the chain on 2 ={1,2,3} with transition matrix

0%0
0 5 0

Here, P and P'P are irreducible and aperiodic. Now define the coarse states
51:{1,2} and 52:{3}

For p® = 1(81 +65) = (3,0, 3)", we have

C(u’)=APD(u°) = ((1) é) :

which is reducible.

B.2.2. P'P irreducible. We assume that P'P is irreducible to prove local con-
vergence of IAD. It was observed in [24, Example 2] that IAD is not locally convergent
for

N

Il
O w-I= O
—_— o O O
ON= Ol

o O O

with the strata S1 = {1,2} and Sy = {3,4}. However, P is irreducible and aperiodic,
so the Markov chain with transition matrix P is convergent. The reader will note
that P'P is reducible, so this is an example where the power method is convergent
but not a strict contraction in £2(1/u).

Appendix C. Proofs of results stated in section 4.1.

C.1. Proof of Lemma 4.2. We begin with a proof of Lemma 4.2, which shows
that the time reversal of P is its adjoint P*1/#,

Proof. For simplicity, we write (,) for (,);,, and P* for P*1/# Note that for any
z,y € RV, we have

<$,Py> = (%diag(l/ﬂ)Piy)n
= (diag(p) P* diag(1/p)z, diag(1/p)y)u
= (diag(p) P* diag(1/p)z,y),

SO

(C.1) P* = diag(u) P diag(1/p).
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Therefore, Pj; = L:LJ, which is exactly the time reversal of P. See [27, Theorem
1.9.1] for the definition of the time reversal and its properties. (Remember that P is
column stochastic, so the time reversal here takes a slightly different form than for
the row stochastic matrices of [27].) The time reversal P* is column stochastic and
has the same invariant distribution p as P, since time reversals always have these
properties. ]

C.2. Proof of Lemma 4.4. We now prove convergence of the power method
when both P and PP are irreducible. Note that if P'P is irreducible, then the
stochastic matrix P*/#P is irreducible, and this is the essential fact in our proof
that the power method is strictly contracting in the ¢2(1/u)-norm.

Proof. To simplify notation, for any M € RV*N  we write M* for M*/# and M*
for the transpose. We let ||| and (,) denote the ¢*(1/u)-norm and the inner product.
Since P is column stochastic and v/ is a probability vector, v* is a probability vector
for all k€N, so 1tv* =1. Therefore,

Vk+1 _M:Pyk_,u/
= (P — pl%”
= (P —p1") (V" — p)
=P(* —p).

Note that the third equality above follows since Py = p and p is a probability vector.
We now observe that for any M € RN*N | we have

(C.2) |M|| = p(M*M)% = || M*M||%.

In particular, ||P|| = p(P*P)z =||P*P||2. The analogous result

1 1
[M]lx = p(M"M)> = ||M*M] {

for the uniformly weighted ¢?(1)-inner product is well known, and the standard

proof generalizes to any inner product space. Therefore, it will suffice to show that
AL AL

p(P*P)z < +/Ay. Observe that

P*P = (P* — 1) (P — p1)
=P*P— P ul' — p1*P + plt
=P*P —pult,

so p(P*P) =\, by the diagonalization (4.2) of P*P. Thus, || P|| = v/Xa.

By (C.1), P*P is irreducible if and only if P*P is irreducible. Moreover, ||P|| =
VA2 < 1if P*P is irreducible by the Perron-Frobenius theorem; cf. [26, section 8.3,
p. 673]. Therefore, Pt P irreducible is a sufficient condition for ||P|| < 1. To see that
it is also a necessary condition, we will prove that if P*P is reducible, then || P|| > 1.
If P*P is reducible, then there exist nonempty, disjoint subsets A and B of {2 so that
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P'P;;=0forall i€ A and j € B. Since P'P is symmetric, we also have P*P;; =0 for
1€ B and j € A. Therefore, P*P admits a block decomposition of the form

A B
o A [P0
Pr=y (08)

where P; and P, are both column stochastic matrices. Let v; and vs be steady state
probability vectors of Py and Py, respectively. Define V; = (v1,0)® and V5 = (0,v2)".
We have V; — V5 #0, and

1P(Vi = Va)|* = [|P(Vi = Va)|[* = (P*P(Vi = Va), (Vi = Va)) = ||V — Va|?,
which verifies || P|| > 1. O

Appendix D. Proofs of results stated in section 4.2.

D.1. Proof of Lemma 4.5. We begin with a proof of Lemma 4.5, our reformu-
lation of the steady state eigenproblem Qz(Q) = 2(Q) as a linear system.

Proof. Observe that x = z(Q) solves
(D.1) (I -Q +vw")e=vw'2(Q),

since Qz(Q) = 2(Q). If we can show that = z(Q) is the unique solution of (D.1),
then I — @ + vw* is invertible and the result follows.
Suppose to the contrary that u # 2(Q) also solves (D.1). Then we have

151 — Q + vw®)u = 1*vw'u = 1P vw'2(Q),

since 1*(1 — Q) =0 for any column stochastic Q. Therefore, w'u = w'2(Q), since we
assume 1'v # 0. It follows, again by (D.1), that

(I -Q)u=0.
Moreover, since we assume w'z(Q) # 0, v # 2(Q) and w'u =w'2(Q) imply

u ¢ span{z(Q)}.

Now recall that since @ is irreducible, z(Q) > 0 by the Perron—Frobenius theorem.
Thus, for some € >0, 2(Q) +cu >0, 2(Q) + cu ¢ span{z(Q) }, and

Q(z(Q) + eu) = 2(Q) + cu.

This contradicts uniqueness of the stationary distribution of @, so z(Q) is the unique
solution of (D.1), and I — Q + vw"® is invertible. O

D.2. Proof of Lemma 4.6. We prove our error propagation formula for the
coarse correction step.

Proof. First, note that
A(I = P+ pl)D(v)=1—C(v) + Aul*

is invertible by Lemma 4.5, since C(v) is irreducible when v > 0 by Lemma 3.6.
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We prove formula (4.6) for the error after the coarse correction. Using our refor-
mulations (4.4) and (4.5) of the steady state problems, we have

I—C(u")+ Apl®) 1 Ap
I =P+ pl*)D(u*) ™ A
I =P+ pl)D(u*) "L A(I = P+ pl)p

=2

Now, since D(p*)u* = p*, we have
S(u*)u* = D(p*) (AL = P+ pl*)D(u*) P A = P+ p1 )
= D(u*)(A(I = P+ p1")D(p*)) " A(I = P+ p ) D(p")
:Mk:.
Therefore,

ptE — = —(I = S(uk)p= (I - S(ub)) (u* — p),

as desired.

It remains to show that S(v) is a projection on Rg(D(v)). For convenience, we
write S for S(v), D for D(v), and C for C'(v). To see that S is a projection, observe
that

To see that Rg(S) =Reg(D), first observe that
Reg(A(I - P)) =Rg(4) =R",

since (I — P) is invertible by Lemma 4.5. Therefore, since A(I — P)D =1—C + Aul*
is also invertible by Lemma 4.5,

Rg([A(I - P)D] " A(I - P)) =",

and it follows that Rg(S) =Rg(D). |

D.3. IAD as an algebraic multigrid method. Here, we explain that IAD is
more or less an adaptive algebraic multigrid method. Roughly similar observations
appear in [16]. Recall that the steady state p is the unique solution z of the linear
system of equations

(I —P+pl)z=p;
cf. (4.4). Suppose that one were to try to solve this equation by algebraic multigrid

with the restriction operator A. Typically, the prolongation operator would be the
transpose of restriction. Suppose that instead one were to take an adjoint with respect
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to some nonuniform inner product. For example, let v € RY be a positive probability
vector, and define the prolongation operator to be the operator AT € RV X" satisfying

<A77, w>1/Ay = <777 AT’w>1/u

for all w € R™ and n € RY. By Lemma D.1, we have AT = D(v).
The coarse grid correction step for a multigrid method with restriction operator
A and prolongation D(v) is

W = g D) (AT — P4 g1 D) A — (I — P+ )
="+ DW)(A(I = P+ p1*)D(v)) " A(I = P+ pd") (= pi*)
=" = S(w)(u" - p),

where S(v) is the coarse projection defined in Lemma 4.6. Here, the residual is
p— (I — P+ pl®)pF and the coarse system matrix is A(I — P + p1*)D(v). Note
that if one chooses v = u*, the coarse grid correction is equivalent with the coarse
correction step of IAD. After the coarse grid correction in a multigrid method, one
computes several steps of a smoothing iteration, often using some version of the Jacobi
or Gauss—Seidel method. In TAD, one performs a step of the power method, which
corresponds to using P as the smoothing matrix.

Note that IAD is not a true multigrid method, since the inner product and there-
fore the prolongation operator depend on the current approximation p* of p. Thus,
TAD is nonlinear and the standard theory of multigrid methods does not apply.

D.4. Proof of Lemma 4.9. We prove that II(v) is an ¢?(v)-orthogonal projec-
tion. We begin by showing that A and D(v) are adjoint in a certain sense.

LEMMA D.1. For any w € R" and n € RV, we have
<D(V)wan>1/1/ = <’LU, An>1/Ay-
Proof. We have

. 1
ka(J|5k)77j;
J

(DW)w,n)1, =

11>
1= 11

N .
1 .

-y wk%(ﬂ)m

: Vi

j=1k=1

n N 1
=> we [ Y 1s. () T

k=1 j=1 k
- <w7An>1/Al/' a

We now prove Lemma 4.9, which verifies that II(v) is an orthogonal projection.

Proof. First, note that
AD(v) =T € RV*V,
Therefore,
(v)*=D(v)(AD(v))A= D(v)A =T1I(v),

so II(v) is a projection.
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To see that II(v) is orthogonal, note that by Lemma D.1, for any n,x € R,
((w)n, k)1 = (D(W) A, K) 1/
= <Ana AH>1/AI/
= <77v D(V)AK/>1/V
= (n,1L(V)K)1/0-

Therefore, TI(v)*'/* =TI(v) so II(v) is an orthogonal projection in £2(1/v).

Finally, observe that II(v) = D(v)A is column stochastic, since both A and D(v)
map probability vectors to probability vectors. We have II(v)v = v directly from the
definition of II(v), and II(v) is reversible, since it is self-adjoint with respect to the
?2(1/v)-inner product; cf. Lemma 4.2. O

D.5. Proof of Lemma 4.11. We begin our proof of Lemma 4.11 by comput-
ing the block decomposition of J(u) with respect to II(x). The essential facts are
summarized in the following simple lemma.

LEMMA D.2. We have

O()S(p) = S(p) and  S(WI(n) =II(k).
Proof. For convenience, we write II for II(x) and S for S(u). Since S is a projec-
tion with Rg(S) =Rg(II) by Lemma 4.6, we have
ST =1I.
Similarly, IIS = S. O

As a consequence of Lemma D.2, we have the following block decomposition of
J ().
LEMMA D.3. We have

J () () =0

and

I(p)J (p) =) = S(p).-
Proof. For convenience, we write J for J(u), II for II(x), and S for S(u). By
Lemma D.2, STI=1I, so
(D.2) JII = P(I — S)IT=0.
We also have
IJ =TIP(I - S)
=IIP - TIPS
=IIP — D[APD(I — APD)"'|A(I — P)
=IIP — D|[(I — APD)™* — I|A(I — P)
=IIP — D|(A(I — P)D)"' — IJA(I — P)
=TIP - S +TI(I — P)
=1-S.
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The fifth inequality above follows since AD =1 € R"*". a0
By Lemma D.3,
(D.3) J(p) = J () (I — ().

This will be important in several of our proofs. It implies, for example, that

(D-4) o(J () = o(J(w)(I =T(w)) = o ((I = 1L(p))J (1)),
since 0(AB) = o(BA) for any matrices A, B € RV*Y. We now proceed with the proof
of Lemma 4.11.
Proof. For convenience, we write J for J(u), IT for II(x), and S for S(p). For
zeRVN,
|22 =|7(1 - m)x|2
=1 ~I)J(I =M, + | LI -z,

< (I =10)713 , +lMLI13,, ) 10 = a3,
< (I =102, +elTLT)3,,) a2

= (I =13, + el =13, o2

The first equality holds by (D.3). The inequality in the second-to-last step holds, since
I —1I is an orthogonal projection and therefore ||I —1I||;;, = 1. The last equality
holds by Lemma D.3. O

D.6. Proof of Theorem 4.12. We derive an upper bound on [|(I —
(1)) T (1)1 /-

Proof. For convenience, we write J for J(u), II for II(u), etc. We write ||-|| for
-l /s ;) for (,)1/u, and P* for P*'/i_ First, observe that since at least one coarse
state contains more than one fine state, we have I —II # 0. Since J = J(I —II) by
(D.3), and since I —II is an orthogonal projection, we have

(D.5) I(I =) J|| = |(I = I)J(I =) :weﬁgg{mll(f*ﬂ)h\h
llzll=1

Now we claim

(D.6) (T = T)a||* — | (T =) Ja|> = (I = S)x, (I — P*P)(I - S)x)

for all z € R™. To prove this, observe that

I(1 = )z||> = |(1 =) Jz||* = (I = T)z||* = (|| J=||* - [TLT]?)
= (I =Mz |)> — | P(I = S)a|* + || (1T — §)z||?
=||(I = Ma|* - | P(I - S)a||* + [|-ST — )|
=||(I = M)a = S(I = M)z||* — | P(I - S)a|?
=||(I = S)z||* = |1 P(I - S)x|?
— (I = S)a, (I — P*P)(I — S)a).
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The first equality above follows since II is an orthogonal projection by Lemma 4.9,

and therefore ||IIJx||? + ||(I — II)Jz||?> = ||Jx||? by the Pythagorean theorem. The

second follows since I1J =II — S by Lemma D.3. The third follows since SII =1II by

Lemma D.2, so II—-S = —S(I —1II). The fourth follows from the Pythagorean theorem

since Rg(S) = Rg(II) and therefore (I — II)z and —S(I — II)x are orthogonal. The

fifth follows since (I — S)(I —II) =1 — S because STI =1I by Lemma D.2.
Combining the results of the last paragraph yields

I =)J|* = max [[(I-TI)Jz|?

g
x||=1
= I—Mz||? = (I -8z, (I —P*P)(I—-S
xeéggx;c_n)ll( )z l|* = (( )z, ( )( )x)
llel=1
. (I-8)x,(I-P P)2(I )
zeRg;IOfm (I —TD)z]]

We now make the change of variables z = (I —S)x in the above minimization problem.
By Lemma D.2,

(I-Maz=I-M{I-S)z=(1-1)=.

Moreover, since (I —S)(I —II) = (I — S) by Lemma D.2, we have (I —S)Rg(I —1II) =
Rg(I —S). Also, Rg(I — S) has the same dimension as Rg(I — IT) because S and II
are both projections on Rg(D). Therefore, (I —S)(Rg(I —1II)\{0}) =Rg(I —5)\ {0}.
It follows that

_ 2_1_  oin (I = S)e, (I~ P*P)(I — S)z)
17 =107 =1 »eRg([-TI) (7 - )z

(z,(I — P*P)z)

= 1 — min _——
zeRg(1-S) ||[(I —1I)z||?
z#0

)

which proves the first claim in the statement of this lemma.

To prove the second claim, we make the change of variables w = (I — P*P)zz.
The square root (I — P*P)? exists since p(P*P) < 1 by Lemma 4.4, and therefore
I — P*P is symmetric and positive definite with respect to the ¢?(1/u)-inner product.
See the proof of Theorem 5.4 for a detailed proof of the existence of a similar square
root. We have

2
|7 -m)7)* =1~ min lwl®
we(I—P*Pys Rg(i—s) ||(I =II)(I — P*P)~2wl|?
1

I =ID)(I = P<P)=2 |2

<1-

Note that the denominator here is nonzero because I —II # 0 and (I — P*P)~7 is
invertible.
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Now observe that

(I —10)(I - P*P)~% % =

The first equality above follows since for any M € RVN*N we have || M|? = p(M*M)
by (C.2). The third equality follows since II is an orthogonal projection, so IT* =1II.
The fourth follows since I —IT and P*P are both symmetric in ¢2(1/u) and therefore
(I —T11)(I — P*P)~1(I —I) is symmetric, so its norm is equal to its spectral radius. 0

D.7. Proof of Theorem 4.13. We prove local convergence of IAD.
Proof. By Theorem 4.12, ||(I —1II).J(p)|[1/, < 1, and so for € > 0 sufficiently small

IPAVOIIERS \/II(I = T(u) T ()17, + el(w) = ST, <1

by Lemma 4.11. We observe that J(v) is continuous as a mapping from the set of
positive probability vectors to the space of operators on RY with any choice of norms.
This is because S(v) is continuous, and so is the operator product. Therefore, there
exist 7 >0 and ¢ <1 so that if ||v — p||. <7, then

[J(@)]le <.
The result follows. 0

Appendix E. Proofs of results stated in section 5.

E.1. Proof of Lemma 5.1.

Proof. Let ||| denote both the norm on RY and also the induced operator norm
on RV*N | By Lemma 4.7,

K-1 %
limsup||* — pf| % =limsup || [T 7(u")(u® = 1)
K—o0 K—o00 i=0
K-1 x
<limsu J(ut
< limsup ]}J (1)
By Gelfand’s formula,
. il
lim [[.J ()" [ = p(J (1))

n—oo

Thus, for any ¢ > 0 there exists an N so that

TN |V < p(J (1)) + 6.
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Now write
1
K-1 K
log | || [T 7 ()
i=0
1 [(K—1)/N| iN—1 K-1
<= > dog|| [ ()| +1og 11 I (1)
i=0 j=(i—1)N j=|(K-1)/N]N
1 [(K—1)/N| 1 iN—1 1 K-1
< - —log J()|| + = log ||/ ()|
w2 v 1L Jwleg 2 ’
i=1 j=(i—1)N j=l(K-1)/N|N
=: Ax + Bk.

Since ||J(pn) — J(u)|| = 0, we have

M+N
Jim log | T ()| =log]|7()"|| < N log(p(J (1) + ).
i=M-+1

and so

. 1
Khm A = NlogHJ(u)NH <log(p(J (1)) +6).
— o0

Moreover, limg .o Bx = 0. To see this, observe that by Appendix D.7, under our
assumptions, lim;_, o p1; = p. Therefore, since J(v) is continuous as a function of v
(cf. the proof of Appendix D.7), C := max{||J(y;)||;7 € N} is finite. Now the sum
defining By consists of at most N terms, so Bx < CI?[ . The result follows. O

E.2. Proof of Theorem 5.4. In the proof of Theorem 5.4, we use that the
norms ||-[|1/, and [-||,, are dual with respect to the unweighted ¢?(1)-inner product,
and therefore || M||;, = [[M*||, for any M € R¥*¥_ Similar results are well known,
and this might all be obvious to the reader, but we are unable to find a reference, so
we offer a proof below.

LEMMA E.1. For any M € RV*N and any positive v € RN, we have
M1/ = 1Mo
Proof. First, observe that

Y117, = (y, diag(1/v)y)a
= (diag(1/v)y, diag(v) diag(1/v)y)x
= ||diag(1/v)yll2,

so diag(1/v) is an isometry mapping ¢?(1/v) to £?(v). Therefore, we have

||'T||1/l/ = max <xay>1/u
lyll1/,=1

= max (z,diag(l/v)y)1
llyllin=1

= max (x,2)7.
llz]l=1
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The first equality above follows from the Cauchy—Schwarz inequality for £2(1/v). The
last equality follows by making the change of variables z = diag(1/v) and using that
diag(1/v) is an isometry mapping £2(1/v) to £*(v). We now have

HMlll/u—H R 1M1/,

= max max (Muz,z)1
==t lzll/w=1

= max max (v,M°2)q
lzllv=1 /=1

— max | M"2]),
llzll,=1

=[|M*]],,

as claimed. d

We now prove Theorem 5.4.

Proof. For convenience, we write ||-|| for |||/, II for II(n), and M* for M*1/k.
First, we observe that

(E.1) p(7) < inf ]l = (7 = T0).J|

by Lemma 4.11. Also, observe that I —II 0, since at least one coarse state contains
more than one fine state.

We now estimate || (I —II)(I — P*P)~*(I—1I)|. By Theorem 4.12, an upper bound
on this expression implies an upper bound on ||(/ —1II).J||* and therefore on p(J)% by
(E.1). Since p(P*P) <1 by Lemma 4.4, I — P*P is symmetric positive definite with
respect to the £2(1/p)-inner product, and therefore so is (I — P*P)~1. Tt follows that
there exists a square root

N
L=(I-P*P)"2 =) (1) 2,0} diag(1/p),
k=2

which is also symmetric positive definite. We note that L must commute with the
spectral projector Q. Also,

(B-2) ILQI=(1=A2)"% and [LU = Q)] = (1 = A1) 2.
These facts follow directly from the above formula for L in terms of the diagonalization
of P*P

Since (I —II) is an orthogonal projection, (I —II)* =1 —II, and we have

I( =) = P*P)" (I = 1D)|| = || —~ ) L*( —1D)]
= [[(L(I = T)"L(I - TD)|
=L —TD)|*.

The last equality above follows since for any M € RN*N || M*M| = || M| by (C.2).
We have
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|27 = 10)| = anaax | (T — )
= max [QL(I — Iz |* + | (I - QLU ~ M)z
= max [[ILQ(I - mz|? + | LI — Q)(I — )|
- HIglgll‘a:xlIILQQ(I —I)z|? + | LU — Q)(I — Q)(I — )z|?

< max [LQ[* QU — M)z||* + [ L(I = Q)I*||( - Q)(] — )a||?

=1
1
I—Mz|? + ———
QU ~ e + = —

2
ma - (7 = Q)1 ~ 1z
The second equality in the above display follows from the Pythagorean law, since @
is an orthogonal projection. The third equality follows since L and ) commute, as
explained in the previous paragraph. The last equality follows from our formulas in
(E.2) for the norms of LQ and L(I — Q).
Now observe that

I = Q) = Mz|* + QU — Ma|* = | (I — Mz|* <1,

again by the Pythagorean law. Therefore,

(E3) 17— Q) —Mz|* <1— QU — Mx|*.
By Lemma E.1,
(E4) QU —ID)| = [I(Z - II")Q"||,, = sin(#).

Combining (E.3) and (E.4) with the results of the previous paragraph yields

I(7 1) = P*P)~} (1 ~1D)]

1

< max I-Mz|*+ ——||(I - I—1D)z|?

i QU ~ W + 75— (1~ Q)(I ~ )|

1 1
< 2 1— a2
- OSaIIglsa{il(Z(G) 11—\ ot 1-— >\k+1( @ )
1 .9 1 9

= 0)+ —— ).

= sin”( )+1_/\k+1cos (@)

The result now follows by Theorem 4.12. 0

E.3. Proof of Theorem 5.5.

Proof. For convenience, we write J for J(u), I for IT(x), etc. Note that I —II 0
and II # 0, since there is more than one coarse state and at least one coarse state
contains more than one fine state. Recall that J has the same spectrum as (I —IT).J
by (D.4). Observe that 0 € o((I —1II).J), since we have J = J(I —1II) by (D.3), and so
Jx =0 for any « € Rg(II). Now suppose that

(E.5) (I-II)Jz= Az
for some A # 0 and =z # 0. We will show that x is an eigenvector of (I — II)(I —

P)~1(I —1I) with eigenvalue (1 —X)~*. (Note that A # 1 because p((I —I1)J) <1 by
Theorem 4.12, so (1 — A\)~! is defined.) Since IIJ =II — S by Lemma D.3, we have
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(I-M)—(I-MJ=I-TI—-J+T1-S
=I-S—P(I-25)
=(I-P)I-25).

Since A # 0, the eigenvalue equation (E.5) implies that « € Rg(] — IT). Therefore,
since I —1II is a projection, we have (I —II)x =z, and

(I—P)I—-S)z=I—-Mz—(I—-T)Jz=(1-\)(I—1)z.

Multiplying on both sides above by (I —II)(I — P)~! yields

(1-N({I-I)(I—-P)"Y(I -1z V(I —S)x

(I-T1
(I-T)x

since we have (I —II)(I —S) =1 —1II by Lemma D.2. Thus, x is an eigenvector of
(I —T)(I — P)~Y(I — 1) with eigenvalue (1 — \)~'. We conclude that

1
i, . ] 0}.
(J(w) C < g((I—H(,u))(I—P)1(I_H(“)))\{O}> o

It remains to prove the opposite inclusion. Consider the operator
M=(I-P)I-5).

We have

IIM = DA(I — P)(I — D(A(I — P)D)"YA(I — P))

=DA(I — P)— DA(I — PYD(A(I — P)D)"'A(I — P)
=0,

so Rg(M) C Rg(II). Moreover, since I — P is invertible, ker(M) = Rg(S) = Rg(II).

Therefore, when viewed as an operator on the range of I —II, M is invertible.
Now suppose that

(I-T)(I - P)" (I -y =ay

for some £ 0 and y # 0. Then y € Rg(I —1II), and so we may write y = Mz for some
x € Rg(I —II). Therefore,
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since (I —II)(I —S)=1I—1I and = € Rg(I —II). Therefore, X is an eigenvalue of M
with eigenvector z. Now

(I—TI)J+M= [(I—H)IEH—(I—P)} (I-5)
=[t-m+nu-p)]u-s)
—(I-T)(I—S)+ 1M
:(I_H)v

since IIM =0 and (I —II)(I —S) =1 —1II as explained above. Therefore,
(I —10)J = (I —1I) - M,

and x € Rg(I —II) is an eigenvector of (I — II).J with eigenvalue 1 — 1. Finally, 0 is
an eigenvalue of J because Jx =0 whenever « € Rg(II). Therefore,

1
o(J - 2 .
(J(w) > (1 U((j_H(M))([_P)—l(l—l_[(,u)))\{0}> oo

E.4. Proof of Corollary 5.6.

Proof. For convenience, we write I for II(u), J for J(u), and |- for [|-[|1/,.
Observe that (I —1II)(I — P)~'(I —1I) is self-adjoint as an operator on ¢2(1/u), since
P is reversible and I — II is an orthogonal projection, and so both P and I —1I
are self-adjoint. Therefore, o((I — II)(I — P)~'(I — 1)) ¢ R. Since P and P'P
are irreversible, we have p(J) < 1 by Theorem 4.13. Therefore, by Theorem 5.5
we must have o((I — II)(I — P)~'(I — 1)) C [0,00) because if any eigenvalue of
(I —1II)(I — P)~'(I — II) were negative, then Theorem 5.5 would imply p(.J) > 1. It
follows that

p(J)= max ‘1 - 1‘
Xeo((I-II)(I—P)~1(I-1I)) A
B 1
p((I —T)(I — P)~1(I —1I))
1

I I = P)=1(I —=ID)||

The proof of the inequality is identical with the proof of Theorem 5.4, except with
L=(I—P)" = and /X; in place of ;. n|

Appendix F. A model of overdamped Langevin dynamics on a
two-dimensional grid. We define a family of Markov chains on a two-dimensional
grid with properties similar to overdamped Langevin. Let V : R? — R, T > 0,
[a,b] % [c,d] CR?, and N € N. Define the discrete Boltzmann distribution p € RV*¥
by

v . .
(F.1) pij =Z " exp (— A
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where Z = Zf\il exp (— Y

GABRIEL EARLE AND BRIAN VAN KOTEN

Z)) Define a transition probability on 2 =

{1,...,N}? by

1 u(i+k,j+90)

P(i-l—k,j-i—é),(i,j) = for k,0 € {71, 1} and (Z,]) e,

T Ap(i+ kg +0) + (i, )
Pajg) =1- Z Plitkjvey  for (i,5) €9,
k.te{-1,1}
P(klh(i,j) =0 otherwise.

In the definition of P, we impose periodic boundary conditions, associating (0, j) with
(N,7), (4,1) with (i, N + 1), etc. Note that P is in detailed balance with p.
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