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Abstract—Model Predictive Control (MPC) is a popular con-
trol approach to ensure constraint satisfaction, while minimizing
a cost function. Although MPC usually leads to very good results
in terms of performance, its computational overhead is typically
non-negligible, and its implementation for systems where the
computing capacity is limited may be impossible. To address this
issue, this technical note proposes a robust to early termination
MPC. That is, the proposed scheme runs until available time
for execution runs out, and the solution, while sub-optimal,
is guaranteed to enforce the constraints and ensure recursive
feasibility despite arbitrary early termination. Also, the closed-
loop stability is maintained. Simulations are carried out on a
F-16 aircraft to assess the effectiveness of the proposed scheme.

Index Terms—Model predictive control, limited computing
capacity, early termination, barrier function, primal-dual flow.

I. INTRODUCTION

HE systematic design of control laws for systems subject
to constraints is one of the major challenges in controlling
real-world systems. Currently, constrained control is dom-
inated by optimization-based techniques; more specifically,
Model Predictive Control (MPC) [1], [2] which is able to
optimize the control performance while satisfying system’s
constraints. However, the use of online optimization required
by MPC may require computational capabilities which may be
unrealistic for certain problems, e.g., those characterized by
fast dynamics and controlled by inexpensive microcontrollers.
One possible way to reduce online computation of MPC is
to pre-compute optimal laws offline and store them in memory
for future use. This approach is adopted in explicit MPC [3]-
[5]; however, it requires high memory usage for larger state
dimensional problems. Moreover, explicit MPC is not robust
to early termination of the searching process.

Making use of triggering mechanisms is another way to ad-
dress limited computing capacity. This idea has been exploited
in self-triggered MPC [6]-[9] and event-triggered MPC [10]-
[12]. However, in the presence of limited computational power,
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there is no guarantee that online optimization converges when
the triggering mechanism invokes MPC.

Another approach to address limited computational power in
MPC implementation is to perform a fixed number of iterations
[13]-[15]. The main issue is that there is no guarantee that
required iterations can be carried out in the available time.

Anytime MPC has been presented in [16]-[18], where a
relaxed logarithmic barrier function has been introduced to
convert the MPC problem into an unconstrained optimization
problem. Although anytime MPC ensures closed-loop stability
even with only one iteration at every time instant, in general
and unlike our approach, it does not guarantee safety.

The most recent approach to address limited computational
power for MPC implementation is dynamically embedded
MPC [19], in which the processor runs a virtual dynamical
system whose trajectory converges to the optimal solution of
the MPC problem. However, guaranteeing recursive feasibility
with this approach is challenging. To address this issue, [20]
augments the dynamically embedded MPC with an Explicit
Reference Governor [21], [22]. However, this approach usually
leads to slow response due to conservatism of ERG.

This technical note proposes REAP (Robust to EArly ter-
mination model Predictive control), which embeds the optimal
solution of the MPC problem into the internal states of a virtual
continuous-time dynamical system to be run in parallel with
the process. The term robust indicates that the trajectory of the
virtual system converges to the optimal solution, and provides
a sub-optimal but feasible solution whenever its evolution
is terminated. Also, the closed-loop stability is maintained.
REAP allows us to implement MPC with a small sampling
period (and consequently with a minimum performance degra-
dation), while ensuring constraints satisfaction at all times.

The key contributions of this technical note are: i) devel-
oping REAP; ii) proving its properties; and iii) assessing its
effectiveness for longitudinal control of an F-16 aircraft.

II. PROBLEM STATEMENT

Consider the following discrete-time LTI system:
x(t+1) = Az(t) + Bu(t), y(t) = Cx(t)+ Du(t), (1)

2,(t)]" € R™ is the state vector at
time instant ¢, u(t) = [uq(t) --- up(t)}T € RP is the control
input at time instant ¢, y(t) = [y1(t) -+ ym(t)] € R™ is
the output at time instant ¢, and A € R"*", B € R"*P,
C e R™*™ and D € R™*P are system matrices.
Assumption 1: The pair (A, B) is controllable.

where x(t) = [z1(t) ---
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System (1) is subject to the following constraints:
z(t) € X, u(t) €U, YVt € Z>g, ()
where X and U are convex polytopes:

(3a)
(3b)

X={zeR":aq]a+b<0,i=1,,c},
Uz{ueR”:cZu—&—diSO, i=1,--,cu},

with a; € R™, b; € R, ¢; € RP, d; € R, ¢, as the number of
state constraints, and ¢, as the number of input constraints.
We use ¢ := ¢, +c¢, to indicate the total number of constraints.
Let » € R™ be the desired reference. Suppose that its
corresponding steady-state configuration (Z,., @, ) satisfying

z, = A%, + Bu,, r=CZ%, + Di,, 4)
is such that z, € Int(X) and @, € Int(i). Such a reference
signal is called steady-state admissible reference; we denote
the set of all steady-state admissible references by R.

This technical note addresses the following problem.

Problem 1: Consider system (1), and suppose that the
time available for control input computations is limited and
unknown. Given r € R, develop a control scheme that drives
the system’s output to r without violating constraints (2).

III. CONVENTIONAL MPC FOR TRACKING PROBLEMS

Given r € R as the desired reference and N € Z-( as
the prediction horizon size, the typical MPC approach for
a tracking problem is to solve the following optimization
problem at any t to compute the optimal control sequence
w (1) = [ (0l)T -+ (ur(N—1))T]" e RNP:

N-1 N-1
. N 2 _ 2
min kZ_O 1Z(k[t) = Zrll g, + kz_o [u(klt) = arllg,

+ 2N ) = 2013, (52)

subject to
Z(k + 1|t) = Az(k|t) + Bu(k), Z(0|t) = x(¢), (5b)
z(klt)ye X, ke {0,---,N —1}, (5¢)
u(klt) eU, ke {0,--- ,N —1}, (5d)
(@(Nt),r) € Q, (Se)

where k indicates the time instant along the prediction hori-
zon, Q; = QI = 0(Q: € R™xm), Qu = QI =0
(Qy € RP*P) and Qn € R™ ™. Given the terminal control
law u(k) = x(Z(k|t),r) with k : R xR™ — RP, the terminal
constraint set {2 C R™ x R™ is such that if (2(N|t),r) € Q,
we have (&(k|t), x(&(k[t),r)) € X xU, Vk > N. In general,
determining €2 is challenging [23]. However, as mentioned in
[20], [24], having the terminal control law x(-) fixed, it is
possible to obtain a subset of 2, denoted by , by resorting
to the level sets of the associated Lyapunov function, which
will be discussed next. Note that although approximating the
set {2 may lead to a conservative solution, such approximation
is adequate and effective in many cases [24]. Furthermore,
Remark 2 will provide an approach to enlarge such a subset.
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A. Obtaining a Subset of the Terminal Constraint Set §)

In what follows, we define the terminal set in (5e) so that it
is invariant under the terminal control law x(x(t),r) = @, +
K(x(t) — &), where K is such A + BK is Schur, and is
constraint admissible.

Defining the tracking error as e(t) := z(t) — Z,, it is easy
to show that if constraints are inactive, then e(t + 1) = (A +
BK)e(t), which implies e(t) — 0 as t — oo. Thus, there
exist a Lyapunov function for the closed-loop system with the
terminal controller in the following form

V(x(t),r) = (a(t) — z,) " ¥ (x(t) - Z,), ©6)

with O = U = 0 (I € R"*") satisfying (A+ BK)TW(A+
BK) — ¥ < 0, that proves the stability of Z,.

Remark 1: Assumption 1 guarantees the existence of a
stabilizing feedback gain matrix K. It is convenient to select
@n in (5a) as the solution of the algebraic Riccati equation
Qn =ATQNA-(ATQNB)(Qu+BTQnB) (BT QnA)+
@2, and the feedback gain matrix K in the terminal control
law as K = —(Q.,+B"QnB)"1(BTQnA); such a selection
is optimal for the unconstrained problem.

By taking into account the terminal control law, the set of
input constraints given in (3b) can be rewritten as:

U={zeR":¢]Kx+d; <0, i=1,,¢c,}, (7
where d; = d; + c;'—Kﬂr — c;rKfr. Thus, by considering the
terminal control law, constraints (3) can be expressed as a
single constraint set on the states of the system, as follows:

A={zeR":p/z+~<0,i=1,---,¢} (8)

where n; € R™ and v; € R.
Constraints (8) can be mapped into a convex constraint on
the Lyapunov function [25], [26], so that ) can be defined as:

Q= {(.’E,T)ZV(ZC,’I“)—FZ‘(T) §07 Z:L aé} gQa (9)

where I'; is the largest Lyapunov level set that does not violate

i-th state constraint given in (8) computed as follows:
_ 2 _

Li(r) = (0 2 +7) "/ (0] €7 me) - (10)

Remark 2: As shown in [20], [27], it is convenient to select

W in (6) individually for each constraint such that the resulting
Lyapunov level sets are as large as possible.

IV. PROPOSED SOLUTION—REAP

Common approaches to solve optimization problem (5) is
to use interior-point methods. Though these methods are fast
and efficient, in general, iterates are not necessarily feasible
[28], [29]. Thus, there is no guarantee that early termination
(due to limited computing capacity) yields a feasible point.
This section addresses this practical challenge.
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A. Continuous-Time Dynamical System

We proceed by first tightening constraint sets as follows:

Xg={z:a]x+b;+1/8<0,i=1,,c.}, (11a)
Us ={u:c]u+di+1/8<0,i=1, ,c,}, (11b)

Qﬁz{@%m:VK%T)7FAT»+1N3§O’i:lf.wéh
(11¢)

where 5 > 0 is sufficiently large to make sure that the feasible
set of optimization problem (5) with the tightened sets remains
nonempty. We denote the solution of (5) with the tightened sets
by uf(t). It is evident that limg_,o. u' (t) = u*(t).

Remark 3: Constraint tightening has been widely used in
distributed MPC (e.g., [30]-[34]) to ensure feasibility and sub-
optimality even after only a finite number of iterations. The
main issue with these schemes is that there is no guarantee that
required iterations can be carried out in the available time.

The modified! barrier function B(x(t), T, )\) asso-
ciated with optimization problem (5) with the tight-
ened constraint sets (11) is as in (12), where 7)\T =
(Ao - AL ve1) Mo A €
R(NH)C is the vector of dual parameters. At any time instant
t, we denote the vector of optimal dual parameters by ().

Now, we propose the following primal-dual gradient flow:

u Q
ACuv(]\/v_l) )\1

L a(s) = o VaB(a(1), 7, 6(s), A®)), (132)
dilsx(s) = 10 (V3B(a(t).r.6().A(8)) + (). (13b)

where 0 € R+ is a tuning parameter that determines the rate
of the evolution of the system (13), s is the auxiliary time
variable that REAP spends on solving the MPC problem, and
®(s) € RINH1? is the projection operator onto the normal
cone of A [36] whose i-th entry (denoted by [®(s)];) is®

0, if (A(s)]; > 0) or ([A(s)]; =0
[®(s)]; = and [V;B()]; > 0)
—[VB(-)]i, otherwise
(14)

with [A(s)]; and [V5B(-)]; as the i-th entry of A(s) and
B(x(t),r,u(s), 5\(3)), respectively. The differential equations
(13) build a virtual continuous-time dynamical system (see
Subsection IV-C for the definition of its initial conditions)
which should be run at any time instant ¢. In the following
subsection, we will discuss properties of system (13).

INote that modified barrier functions do not grow to infinity when the
current approximation approaches the solution [35], which allows converging
to the optimal solution u (#).

2For the sake of brevity, we denote B(z(t), r, u(s), A(s)) by B(-).

Remark 4: Given Y (s) = (ﬁ(s))T (5\(5)) T} T, since the

Hessian matrix VyB(+) is not full rank, we cannot use meth-
ods requiring the inverse of Hessian matrix, e.g., [37], [38].
Also, methods requiring an approximation of (VyyB(-)) ",
like quasi-Newton method, have a slower convergence [39].

B. Properties

In this subsection, we prove convergence and constraint-
handling properties of system (13). Theorem 1 shows that the
trajectory of system (13) converges to the optimal solution
(uf(t),AT(t)), and Theorem 2 proves that they satisfies con-
straints (5¢)-(5e) at all times. See Appendix for proofs.

Theorem 1: Let (@(s),\(s)) be the trajectory of (13).
Given a feasible initial condition (ﬁ(O),S\(O)), (ﬁ(s),j\(s))
exponentially converges to (uf(t), AT(t)) as s — oc.

Theorem 2: Let (ii(s), \(s)) be the solution of (13). Given
a feasible initial condition (ﬁ(O),S\(O)), u(s) satisfies con-
straints (5¢)-(5e) for all s.

Remark 5: By virtue of imposing the terminal constraint
set as in (5e), Theorem (2) ensures that recursive feasibility is
preserved irrespective of early termination.

Remark 6: In this paper, REAP is introduced as a
continuous-time scheme. This facilitates the analysis and the
derivation of its theoretical properties. This is not dissimilar to
how control schemes are derived and analyzed. For instance,
a similar strategy reliant on optimization algorithms in contin-
uous time is employed in the recent book [40]. For discrete-
time implementation of system (13), one can use the difference
quotient with a sufficiently small sampling period. Our numer-
ical experiments suggest that a discrete-time implementation
maintains the desired properties of our algorithm. Furthermore,
if the current step of the approximating discrete-time system
jumps over the constraints due to discretization, REAP will
stop and will use the solution from the previous step which
is feasible. According to the employed acceptance/rejection
mechanism (see Subsection IV-D), this approach will not
hamper the convergence or feasibility properties. We leave the
study of theoretical guarantees for the discrete-time implemen-
tation to future work.

C. Warm-starting

The warm-starting strategy is used to define 0(0) at time
instant ¢t based on the previously computed control input
sequence augmented with the terminal control law for the new
prediction time, i.e.

i(0) = [

T
u(t — Dperonp (@r + K@(N[E—1) — 7,)) ] :
(15)

N-—1 N—-1 ce; N—1
= Z |2 (k[t) — 2015, + > luklt) — @iy, + [2(N]E) = 205, — > > Ay log(—Ba #(k[t) + bi +1/8) + 1)
k=0 =1 k=0
cy N-—1
=N Mg log(—B(e] u(klt) + di +1/8) +1) Z)\Q log(—B(V (&(N|t),r) — Ts(r) + 1/8) + 1). (12)
i=1 k=0
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where u(t—1),41.n5p € RV=YP is3 the entries p+1 to Np of
u(t — 1) (which is the control input computed at time instant
t—1) and @, + K(2(N|t—1)—Z,) is the terminal control law
for the new prediction time. This selection is reasonable, as
in most applications, from one time instant to the next, states
of the system do not change substantially.

Regarding the initial condition for dual parameters, note that

TRE=1) 0\ (E—1) #0; A$E £ 0) implies that the i-th
constraint on the states at prediction time % (i-th constraint on
the control input at prediction time k; i-th terminal constraint)
was active at time instant £ — 1. This condition moves one
step backward at time instant ¢. The same condition holds
for inactive constraints. Thus, there is a one-step time shift
in the active and inactive constraints. Hence, we propose the
following initial condition for 5\(5) at time instant ¢:

AO) = AT (t=1) - AL (vepy(E = 1) AL, (vopy(t = 1)
Tt =1) - AL eyt —1) AL (vopy(t—1)
- - T

APE—1) - Mt -1)] (16)
where )\zm,(Nfl) (t — ].) € RZO and )\Z“(Nil)(t — 1) S RZO
are used as initial guesses for the value of dual parameters at
the new prediction time, and A\}(t—1) € R>q, i € {1,--- ,¢}
are used as initial guesses for the values of dual parameters
at the prediction time N (terminal constraints). Note that any
non-negative values for dual parameters are feasible; however,
our numerical experiments show that such an ad hoc strategy

for picking the last elements of (16) is very effective.
Remark 7: At the time instant ¢ = 0, the dual parameter
A(0) can be set to any vector whose elements are all positive,
and 1(0) can be set to any feasible sequence. Note that since
the MPC given in (5) typically responds to desired reference
changes, a feasible control sequence at ¢ = 0 can always be
determined by using the feasibility governor described in [20].

D. Acceptance/Rejection Mechanism

Theorem 1 showed that at any time instant ¢, (4(s), 5\(5)) —
(uf(t),AT(t)) exponentially fast as s — oco. However, since
the evolution of system (13) might be terminated before
convergence due to limited computing capacity, and since, in
general, the behavior of @(s) — uf(t) is not monotonic, there
is a need for a logic-based method to accept or reject a(s)
once the evolution of system (13) is terminated.

Drawing inspiration from [41], we develop a simple yet
efficient acceptance/rejection mechanism. As discussed in
Subsection IV-C, ©(0) as in (15) is a feasible and a sub-optimal
solution for the optimization problem (5) with the tightened
constraint sets. Thus, given the termination time s;, we accept
u(sy) (e, u(t) = a(s;) and A(t) = A(s;)) if the value of
the cost function given in (5a) with @(s;) is smaller than that
with @(0), and reject (i.e., u(t) = a(0) and A(t) = A(0))
otherwise. It is obvious that the above-mentioned mechanism
does not discard the optimal solution if system (13) converges.

3Due to limited computing capacity, the computed control input at time
instant ¢ is not necessarily the optimum ( i.e., ut(¢)). For this reason, we
drop the 1 when referring to the computed control input at time instant ¢. We
do the same when referring to dual parameter.
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Fig. 1. Longitudinal control of a F-16 aircraft.
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Fig. 2. Impact of the prediction horizon length on the mean computing time
of the conventional MPC.

V. SIMULATION STUDY

The objective of this section is to validate REAP and
assess its effectiveness. The simulations are run on a computer
with Intel(R) Core(TM) 17-7500U CPU 2.70 GHz processor
and 16.00 GB of RAM. We use YALMIP toolbox [42] to
implement the computations of the conventional MPC scheme.
For comparison purposes, we define the Performance Index
as PIL 2 [(||lz(7) — &[5, + |u(r) — @[5, )dr. where the
integration is performed over the duration of the simulations.

As shown in [43], the longitudinal dynamical model of an
F-16 aircraft (see Fig. 1) around the origin can be expressed
by the continuous-time LTI model & = A.x + B.u, where
x=1[0qad 6" with 6 as the pitch angle, ¢ as the pitch
rate, « as the angle of attack, &, as the elevator deflection, and
dy as the flaperon deflection, and v = [u. uf]T with u, as the
elevator deflection command and u; as the flaperon deflection
command. We use the matrices A, and B, given in [20]. The
desired pitch angle and angle of attack are 9 and 6 [deg],
respectively. The system is required to satisfy the state con-
straints |g| < 4 [deg/s] and o < 6.5 [deg]. The weight matrices
in the cost function (5a) are @, = diag(1,0.1,1,0.1,0.1)
and @, = diag(0.1,0.1). For the model discretized with
sampling period of 100 msec, Fig. 2 reports normalized mean
Computing Time (CT) of the conventional MPC from 2000
runs, where the mean CT for NV = 10 is used as the basis for
normalization. As expected, as we look further into the future,
the dimension of the problem becomes larger, which results
in a larger CT.

A. System Performance—Comparing With Conventional MPC

Assuming that the prediction horizon size is N = 20, the
worst-case execution time of the conventional MPC from 2000
runs is ~380 ms. We consider the following three cases: i)
there is no computational limitation and we can implement
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Fig. 3. Simulation results for longitudinal control with REAP.

TABLE I
SYSTEM PERFORMANCE ANALYSIS

‘ MPC (100 ms) ‘ MPC (400 ms) ‘ REAP
Normalized PI | 1 ‘ 1.52 | 1.08

the conventional MPC every 100 ms; ii) to address limited
computing capacity, we implement the conventional MPC
every 400 ms; and iii) we implement REAP every 100 ms
with ¢ = 1 and B8 = 10°. Note that to implement REAP, we
use the optimal control input computed offline at time zero.

For space limitations, we only show simulation results
for REAP in Fig. 3. Normalized achieved PIs for all cases
are reported in TABLE I, where the achieved PI for the
conventional MPC with the sampling period 100 ms is used as
the basis for normalization. As seen in this table, implementing
MPC with a large sampling period (i.e., the conventional MPC
with the sampling period 400 ms) degrades the performance.
However, REAP yields better performance by computing a
sub-optimal solution every 100 ms.

B. Sensitivity Analysis—Impact of N

We conducted sensitivity analysis of the performance of
REAP with respect to the prediction horizon length N. Fig. 4
shows how the prediction horizon length N impacts the
performance of REAP in comparison with the conventional
MPC. In this figure, for each N, the conventional MPC is
implemented with the given sampling period A which is
determined based on the worst-case execution time from 2000
runs (note that the worst-case execution time increases with
the prediction horizon). In Fig. 4, the normalized PI means
the ratio of the REAP’s PI implemented every 100 ms with
the given N to the PI of the conventional MPC implemented
every given A ms with the given N. As seen in Fig. 4,
as N increases, the performance of REAP in comparison
with the conventional MPC improves. This is consistent with
our expectations; while the performance of REAP remains

Fig. 5. Impact of the design parameter o on the performance of REAP.

almost constant for different values of N (as it is implemented
every 100 ms), the performance of the conventional MPC
deteriorates with the longer sampling period A.

C. Sensitivity Analysis—Impact of o

In this subsection, we study the sensitivity of the REAP’s
performance to the design parameter o. Fig. 5 reports the
normalized PI to show how the design parameter o impacts the
system performance, where the system performance for o = 1
is used as the basis for normalization. From Fig. 5, we observe
that as o increases, the REAP’s performance improves. This
is consistent with our expectations from Theorem 2 (to be
more precise, from inequality A.4). It should be noted that to
maintain REAP’s properties, the larger the design parameter
o is, the smaller the sampling period should be selected for
discrete-time implementation of REAP (see Remark 6).

D. System Performance—Comparing With [44]

In [44, Subsection IV-A], the authors propose a novel
MPC scheme where a control law is constructed to control
a constrained system to a desired set. Similar to REAP, the
method in [44], ensures constraint satisfaction at all times.
However, method [44] appears to give worse performance
in comparison with REAP, as [44] employs a fixed control
law, even though its parameters are determined by solving an
optimization problem. This point is shown in Fig. 6 which
presents simulations results for REAP (implemented with
o = 100 and 8 = 10°) and method [44]. From this figure,
REAP performs ~38% better in comparison with method [44]
in terms of tracking performance.

E. System Performance—Comparing With [16]

In this section, we compare our method with the anytime
MPC presented in [16]. Note that even though both methods
maintain closed-loop stability if computations are terminated
early, method [16] may lead to constraint violation, while
REAP guarantees constraint satisfaction at all times.

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on September 10,2023 at 17:11:09 UTC from IEEE Xplore. Restrictions apply.

© 2023 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3308817

0 [deg]
o [deg]

S =W e s

——REAP

Method [45]

= = Desired Angle of Attack
— = Constraint

——REAP
Method [45]
— — Desired Pitch Attitude

0 5 10 15 0 5 10 15
Time [s] Time [s]
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Fig. 7. Simulation results with REAP and the method in [16].

To implement the method [16], we used binary variables to
convert the logical conditions of the barrier functions, and used
bnb solver to solve the corresponding optimization problems.
Also, we set the relaxation parameter and the barrier function
weighting parameter to 1072, and we implemented REAP with
o = 100 and B = 10°. Simulation results when there is a
sufficient computing resource and no early termination occurs
for the method [16] are shown in Fig. 7. As seen in this figure,
when the computing capacity is not limited, REAP and method
[16] yield comparable tracking performance.

To compare constraint satisfaction property of both meth-
ods, we assume that the available time (in ms) for executing
the methods at each time instant is given by 100 — , where x
is selected randomly from a Weibull distribution* with shape
parameter 2, location parameter 20, and scale parameter 4.
Our results from 2000 runs show that method [16] leads to
constraint violation in ~13% of the runs, while REAP always
ensures constraint satisfaction.

F. System Performance—Comparing With [47]

In this section, we compare our method with the robust to
early termination command governor presented in [47], which
is used to augment a nominal state feedback controller. We as-
sume that the available time (in ms) for executing the methods
at each time instant is given by 100 — x, where x is selected
randomly from a Weibull distribution with shape parameter
2, location parameter 20, and scale parameter 4. Simulation
results are shown in Fig. 8. From this figure, although both
methods ensure feasibility at all times, REAP (implemented
with ¢ = 100 and 3 = 10°) improves performance by ~16%
in comparison with the method [47].

VI. CONCLUSION

This technical note proposed a robust-to-early termination
MPC (REAP) which is an algorithm capable of maintaining
feasibility of MPC in the presence of limited and possibly

4The approach of using the Weibull distribution to characterize the available
time for a computing task is well-accepted in the literature, e.g., [45], [46].
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Fig. 8. Simulation results with REAP and the method in [47].

time-varying computing resources. REAP is developed based
on the barrier function and continuous-time primal-dual gra-
dient flow method. It was shown that REAP converges to the
optimal solution of the MPC problem, and provides a sub-
optimal but feasible and effective solution if early terminated.
The effectiveness of REAP was validated through simulation
studies. This technical note showed that REAP can effectively
address the issue of limited computational resources, and can
satisfy control objectives without violating constraints.
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{1,---,¢x}, k€{0,--- ,N—=1} by s, i € {1, ;e N}; Therefore, by taking the limit from both sides of (B.3) as
Ny 3 € {L,-,eu}, k€ {0,---,N =1} by oy, @ € ; — 0%, Vj, and by applying the L’Hopital’s rule, we get
{¢zN +1,--- ,¢N}; and )\?, jed{l,---,ct by o, @ € d ef2a? )
{éN +1,--- &N +1)}. Thus, the modified barrier function lim —B(-) < lim —o ( 57— — & (log () ) <0,
(12) takes the following form: 9507, ¥ ds g0t g

(B.8)

- ~ hich completes the proof -

N _ 2 _ 2 tes t .

B() = Z |2 (k[t) — 2.5, + Z lu(klt) — @]l which completes the proo

k=0 k=0

e(N+1)
S _ 2
+E(NIt) = Zollg, — > eilog(¥y).  (B.1)
=1

Remark B.1: From (13) and (B.1), %5(3) >0if0< ;<
1/3, implying that when ¢; is in a close proximity of 1/3: 1)
there exists « > 0 such that &;(s) > «; and ii) ®;(s) = 0.

According to the definition of ¢J; as mentioned above, the
constraints (5¢)-(5e) are satisfied if ¥J; > 0, Vi. Note that
B(-) = oo only if ¥; — 0T, j € {1,---,&}, with £ < ¢
Thus, the boundedness of B(-) from above is equivalent to the
constraint satisfaction at all s. We prove the boundedness of
B(-) by showing that

d
li —B(-) <0, B.2
19]-—>IOIE, vj ds () (B.2)
which asserts that B(-) must decrease along the system trajec-
tories when these trajectories are near the boundary.
According to (B.1) and (13), the time derivative of B(-)
w.r.t. the auxiliary time variable s is given by

LB) = o (IVaBOI ~ IVaBOIE — (VaB) " @)

(B.3)
According to Remark B.1, the limiting behavior of the terms

(VaB(-))" ®(-) and |[VaB(-)|? as 9; — 0T, Vj is’:
(VaB() " @() = 0(1), (B.4)

3
IVaB()|” = Z log(9;)% + O(1) < £ (log (9))* + O(1),
= (B.5)

where ¥ := minjc(y.... ¢} ¥, and ¥ — 07 as ¥; — 07, Vj.
Also, the limiting behavior of the term ||VgB(-)||* as v —
0T, Vjis

2

20 a9\
W8OI = 5 | 2o, (52) | +ow. @

T
where gj%’;{) are outward vectors normal to curves associ-
ated with active constraints. According to Remark B.1, and by
applying the lemma in Appendix of [47] and the Alexandrov’s
theorem [48, pp. 333], it can be concluded that there exists
¢ > 0 such that the limiting behavior of the term ||VaB(-)|”
as ¥; — 0", Vj satisfies

2.2
IvaBOI? 2 T2 o) ®.7)

SGiven f : R™ — R, f(x) = O(1) means that IM > 0 such that
|f(z)| < M.
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