
Abstract
Daylength sensing in many plants is critical for coordinating the timing of flowering with the appropriate season. Temperate climate-
adapted grasses such as Brachypodium distachyon flower during the spring when days are becoming longer. The photoreceptor
PHYTOCHROME C is essential for long-day (LD) flowering in B. distachyon. PHYC is required for the LD activation of a suite of
genes in the photoperiod pathway including PHOTOPERIOD1 (PPD1) that, in turn, result in the activation of FLOWERING LOCUS
T (FT1)/FLORIGEN, which causes flowering. Thus, B. distachyon phyC mutants are extremely delayed in flowering. Here we show
that PHYC-mediated activation of PPD1 occurs via EARLY FLOWERING 3 (ELF3), a component of the evening complex in the
circadian clock. The extreme delay of flowering of the phyC mutant disappears when combined with an elf3 loss-of-function
mutation. Moreover, the dampened PPD1 expression in phyC mutant plants is elevated in phyC/elf3 mutant plants consistent with
the rapid flowering of the double mutant. We show that loss of PPD1 function also results in reduced FT1 expression and extremely
delayed flowering consistent with results from wheat and barley. Additionally, elf3 mutant plants have elevated expression levels of
PPD1, and we show that overexpression of ELF3 results in delayed flowering associated with a reduction of PPD1 and 
expression, indicating that ELF3 represses PPD1 transcription consistent with previous studies showing that ELF3 binds to the
PPD1 promoter. Indeed, PPD1 is the main target of ELF3-mediated flowering as elf3/ppd1 double mutant plants are delayed
flowering. Our results indicate that ELF3 operates downstream from PHYC and acts as a repressor of PPD1 in the photoperiod
flowering pathway of B. distachyon.

Author summary
Daylength is an important environmental cue that plants and animals use to coordinate important life history events with a proper
season. In plants, timing of flowering to a particular season is an essential adaptation to many ecological niches. Perceiving
changes in daylength starts with the perception of light via specific photoreceptors such as phytochromes. In temperate grasses,
how daylength perception is integrated into downstream pathways to trigger flowering is not fully understood. However, some of the
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presented in Fig 2.

The authors are working with PLOS to try and address these issues. Meanwhile, the PLOS Genetics Editors issue this
Expression of Concern to notify readers of the above issues.

19 Sep 2023: The PLOS Genetics Editors (2023) Expression of Concern: PHYTOCHROME C regulation of photoperiodic
flowering via PHOTOPERIOD1 is mediated by EARLY FLOWERING 3 in Brachypodium distachyon. PLOS Genetics 19(9):
e1010955. https://doi.org/10.1371/journal.pgen.1010955 | View expression of concern

https://doi.org/10.1371/journal.pgen.1010706
https://doi.org/10.1371/journal.pgen.1010706
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1010706#pgen.1010955.ref001
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1010706#pgen.1010955.ref001
https://doi.org/10.1371/journal.pgen.1010955
https://doi.org/10.1371/journal.pgen.1010955
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1010955
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1010955


components involved in the translation of daylength perception into the induction of flowering in temperate grasses have been
identified from studies of natural variation. For example, specific alleles of two genes called EARLY FLOWERING 3 (
PHOTOPERIOD1 (PPD1) have been selected during breeding of different wheat and barley varieties to modulate the photoperiodic
response to maximize reproduction in different environments. Here, we show in the temperate grass model Brachypodium
distachyon that the translation of the light signal perceived by phytochromes into a flowering response is mediated by 
that PPD1 is genetically downstream of ELF3 in the photoperiodic flowering pathway. These results provide a genetic framework for
understanding the photoperiodic response in temperate grasses that include agronomically important crops such as wheat, oats,
barley, and rye.
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Introduction
The transition from vegetative growth to flowering is an important developmental decision for which the timing is often directly
influenced by the environment (e.g. [1–4]). This critical life history trait has been shaped over evolutionary time to enable
reproduction to coincide with the time of year that is most favorable for flower and seed development. Moreover, breeding to adjust
the timing of flowering in crops has been critical for adapting various crop varieties to changing environments and to increase yield
(e.g. [5]).

In many plant species, changes in day-length and/or temperature provide seasonal cues that result in flowering during a specific
time of year [1,6]. Many temperate grasses such as Brachypodium distachyon (B. distachyon), wheat, and barley that flower in the
spring or early summer months in response to increasing day-lengths are referred to as long-day (LD) plants [7]. B. 
closely related to the core pooid clade comprising wheat, oats, barley, and rye and has a number of attributes that make it an
attractive grass model organism suitable for developmental genetics research [8,9].

Variation in the LD promotion of flowering in temperate grasses such as wheat and barley can be due to allelic variation at
PHOTOPERIOD1 (PPD1), a member of the pseudo-response regulator (PRR) gene family (PPD1 is also known as 
RESPONSE REGULATOR 37;PRR37) [10,11]. Natural variation in PPD1 resulting in either hypomorphic alleles as found in barley
or dominant PPD1 alleles as found in tetraploid or hexaploid wheat impacts flowering [10–15]. Specifically, natural recessive
mutations in the conserved CONSTANS, CONSTANS-LIKE and TIMING OF CAB EXPRESSION 1 (CCT) putative DNA binding
domain in the barley PPD1 protein cause photoperiod insensitivity and delayed flowering under LD [11, 12], whereas wheat
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photoperiod insensitivity is linked to overlapping large deletions in the promoter region of PPD1 in either the A [13] or D genome
homeologs [10]. These deletions result in elevated expression of PPD1, particularly during dawn, causing rapid flowering even
under non-inductive SD conditions [13]. It is worth noting that although these wheat lines are referred to as photoperiod insensitive
(PI) varieties they still flower earlier under LD than under SD if the timing of flowering is measured as the emergence of the wheat
spike (heading time) [16]. It has been hypothesized that the large deletion within the PPD1 promoter might remove a binding site for
one or more transcriptional repressors [13]. To date, natural variation studies of flowering in B. distachyon have not pointed to allelic
variation at PPD1 and thus its role in LD flowering in B. distachyon is not known [17–21].

Variation in EARLY FLOWERING 3 (ELF3; also known as mat and eam) impacts photoperiodic flowering in grasses, including
wheat [22,23], barley [24,25], and rice [26]. In these plants, natural variation in ELF3 allows growth at latitudes that otherwise would
not be inductive for flowering, enabling these crops to be grown in regions with short growing seasons [5]. For example, 
maturity (eam) loci have been used by breeders to allow barley to grow at higher latitudes in regions of northern Europe with short
growing seasons [24,27]. The eam8 mutant in the barley ortholog of ELF3, is a loss-of-function mutation that accelerates flowering
under SD or LDs [24,25] similar to elf3 loss-of-function alleles described previously in the eudicot model Arabidopsis thaliana
thaliana) [28]. Moreover, loss of function of ELF3 in B. distachyon also results in rapid flowering under SD and LD, and expression
of the B. distachyon ELF3 protein is able to rescue the A. thaliana elf3 mutant, demonstrating a conserved role of ELF3
across angiosperm diversification [29–31].

Work in A. thaliana has shown that ELF3 is an important component of the circadian clock that acts as a bridge protein within a
trimeric protein complex that also contains LUX ARRTHYHMO (LUX), and EARLY FLOWERING 4 (ELF4) and is referred to as the
evening complex (EC) [32]. Loss-of-function mutations in any of the proteins that make up the EC results in disrupted clock function
and rapid flowering [33–36]. The peak expression of the EC at dusk is involved in the direct transcriptional repression of genes that
make up the morning loop of the circadian clock including A. thaliana PRR7 and PRR9, which are paralogs of grass 
PRR73 [37–39]. Recently, it has been shown that the EC also directly represses PRR37, PRR95, and PRR73 in rice (
rice ortholog of PPD1), indicating conservation of the role of the EC across flowering plant diversification [40]. Furthermore, 
mutants in barley, wheat, and B. distachyon have elevated PPD1 expression [23,24,30] indicating ELF3 may impact flowering in
part via PPD1, but to what extent remains to be determined.

The photoperiod and circadian pathways converge in the transcriptional activation of florigen/FLOWERING LOCUS T1
leaves [6,41]. In temperate grasses, PPD1 is required for the LD induction of FT1, whereas in A. thaliana CONSTANS
main photoperiodic gene required for FT1 activation in LD [16,42,43]. There are two CO-like genes in temperate grasses.
Interestingly, in the presence of functional PPD1, co1co2 wheat plants have a modest earlier heading phenotype suggesting they
are in fact mild floral repressors, but in the absence of PPD1, CO1 acts as a flowering promoter under LD [16]. To date, no null
co1co2 double mutants have been reported in B. distachyon. However, RNAi knock-down of co1 results in a 30-day delay in
flowering under 16h LD [44] and overexpression of CO1 leads to earlier flowering in SD [44]. These results indicate that in 
distachyon CO1 has a promoting role in flowering even in the presence of a functional PPD1 gene, and suggest potential
differences in the role of CO1 in the regulation of flowering between B. distachyon and wheat.

Once FT1 is activated by LD it interacts with the bZIP transcription factor FD which triggers the expression of the MADS-box
transcription factor VERNALIZATION1 (VRN1) [45,46]. VRN1 in turn upregulates the expression of FT1 forming a positive feedback
loop that overcomes the repression from the zinc finger and CCT domain-containing transcription factor VERNALIZATION2
[17,47–50]. The FT1 protein is then thought to migrate from the leaves to the shoot apical meristem, as shown in A. 
rice [51,52], to induce the expression of floral homeotic genes including VRN1, thus converting the vegetative meristem to a floral
meristem under favorable LD photoperiods.

Light signals are perceived initially by photoreceptors that initiate a signal transduction cascade impacting a variety of
developmental responses to light [53]. The sensing of light is accomplished by complementary photoreceptors: phytochromes that
perceive the ratio of red and far-red light, cryptochromes, phototropins, and Zeitlupe family proteins that detect blue light, and UV
RESISTANCE LOCUS 8 that detects ultraviolet B light [54,55]. The phytochromes form homodimers that upon exposure of plants
to red light undergo a confirmation shift to an active form causing the activation of a suite of downstream genes [54]. Exposure of
plants to far-red or dark conditions causes reversion of the phytochromes to an inactive state [54].

There are three phytochromes in temperate grasses referred to as PHYTOCHROME A (PHYA), PHYTOCHROME B (PHYB), and
PHYTOCHROME C (PHYC) [56]. Functional analyses of these phytochromes in temperate grasses revealed that PHYB and PHYC
play a major role in the LD induction of flowering because loss-of-function mutations in either of these genes results in extremely
delayed flowering [57–59] whereas loss-of-function mutations in PHYA in B. distachyon results in only a modest delay of flowering
under inductive LD, indicating PHYB and PHYC are the main light receptors required for photoperiodic flowering in temperate
grasses [29].The important role of PHYC in photoperiodic flowering is not universal as loss of phyC function in A. thaliana
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only has small effects on flowering [60,61].

In temperate grasses, PHYB and PHYC are required for the transcriptional activation of a suite of genes involved in the photoperiod
pathway, including PPD1, CO1, and FT1, and ectopic expression of FT1 in the B. distachyon phyC background results in rapid
flowering—a reversal of the phyC single-mutant, delayed-flowering phenotype [57,58,62]. Moreover, consistent with PHYB/C acting
at the beginning of the photoperiodic flowering signal cascade, expression of genes encoding components of the circadian clock
are also severely dampened in the phyB and phyC mutant backgrounds [29,57–59]. An exception to this is that the expression of
ELF3 is not altered in the temperate grass phytochrome mutants [29,58,59]. Recently, in B. distachyon it has been shown that
PHYC can interact with ELF3, and this interaction destabilizes the ELF3 protein indicating that the regulation of ELF3 by PHY is at
least in part at the protein level consistent with previous studies from A. thaliana, rice, and the companion study in wheat
[23,29,40,63–66]. At present it is not clear to what extent the regulation of ELF3 by PHYs is critical for photoperiodic flowering.

Here, we show in B. distachyon by analyzing phyC/efl3 double mutant plants that indeed the light signal perceived by
phytochromes is mediated through ELF3 for photoperiodic flowering. The extreme delayed flowering of the phyC mutant disappears
in the phyC/elf3 double mutant which flower as rapidly as the elf3 single mutant. Moreover, the expression profiles of genes in the
photoperiod pathway are similar between elf3 and phyC/elf3 mutants compared to phyC mutants. Thus, elf3 is completely epistatic
to phyC at the phenotypic and molecular levels. Furthermore, we show strong, environment-dependent genetic interactions
between ELF3 and PPD1, which indicates that PPD1 is a main target of ELF3-mediated repression of flowering. These results
provide a genetic and molecular framework to understand photoperiodic flowering in the temperate grasses.

Results
Rapid flowering of elf3 is epistatic to the delayed flowering of phyC

Previous studies in B. distachyon showed that PHYC can affect the stability of the ELF3 protein, and that the transcriptome of a
phyC mutant resembles that of a plant with elevated ELF3 signaling [29]. Thus, it has been suggested that the extreme delayed
flowering phenotype of the phyC mutant [58] could be mediated by ELF3 [29]. To test the extent to which the translation of the light
signal perceived by PHYC to control flowering is mediated by ELF3, we generated elf3/phyC double mutant plants and evaluated
the flowering of the double mutant relative to that of elf3 and phyC single mutants as well as Bd21-3 wild type under 16h-LD and
8h-SD (Fig 1).

Fig 1.
The rapid flowering of the elf3 mutant is epistatic to the delayed flowering of the phyC mutant (A) Representative images of
Bd21-3 wild-type, elf3, phyC and elf3/phyC double mutant plants grown in a 16h photoperiod at 90d after germination. Bar =
17cm. (B, D) Flowering times under 16h (B) or 8h daylengths (D) measured as days to heading of Bd21-3, elf3, phyC
elf3/phyC. (C) Flowering phenotypes under 16h (C) or 8h daylengths (E) measured as the number of leaves on the parent
culm at time of heading. Bars represent the average of 8 plants ± SD. Arrows above bars indicate that none of the plants
flowered at the end of the experiment (150d). Letters (a, b) indicate statistical differences (p < 0.05) according to a Tukey’s
HSD test used to perform multiple comparisons.
https://doi.org/10.1371/journal.pgen.1010706.g001

Under both 16h LD and 8 SD photoperiods, we found that elf3 is epistatic to phyC. Specifically, in LD elf3/phyC double mutants
flowered rapidly by 38 days with 6.9 leaves similar to elf3 mutants that flowered by 34 days with 6.6 leaves (Fig 1A and 1B
contrast, phyC mutants had not flowered after 150 days with greater than 20 leaves when the experiment was terminated, and
Bd21-3 wild-type flowered by 72 days with 12 leaves consistent with previous studies [49,58]. In 8h SD, elf3/phyC double mutants
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also flowered rapidly by 54 days with 8.8 leaves similar to elf3 mutants that flowered by 48 days with 8.5 leaves (Fig 1D and 1E
contrast, both Bd21-3 wild-type and phyC mutants had not flowered by 150 days with >18 leaves when the experiment was
terminated (Fig 1D and 1E). These results indicate that the extreme delayed flowering mutant phenotype of phyC in 
is mediated by ELF3.

To determine if PHYC affects the expression of ELF3, we analyzed ELF3 mRNA levels across a diurnal light cycle (16h light and 8h
dark). There were no significant differences in ELF3 expression at any time point in the phyC mutant relative to wildtype (
indicating that PHYC does not affect the transcriptional profile of ELF3 in B. distachyon consistent with results from A
wheat (67, 69).

Effect of mutations in PHYC and ELF3 on the transcriptional profiles of flowering time genes

To further understand how PHYC and ELF3 affect flowering at a molecular level, we compared the mRNA levels of B
orthologs of the photoperiod and vernalization pathway genes FT1, VRN1, PPD1, VRN2, CO1, and CO2 across a diurnal cycle in
16h LD in the phyC and elf3 single mutants versus the elf3/phyC double mutant (Fig 2). We were particularly interested in
determining how the expression profiles of “flowering-time genes” in the elf3/phyC double mutant compared to the elf3
single mutant. The newly expanded fourth leaf was harvested for gene expression analyses because at this developmental stage in
16h daylengths the meristems of all of the plant genotypes are at a vegetative stage and thus are developmentally equivalent.
Consistent with the rapid flowering of the elf3 and elf3/phyC mutants, the mRNA expression levels of FT1 and VRN1
are significantly higher than the levels in wild-type and phyC mutants across all the time points tested (Fig 2A and 2D
the overall expression profiles of FT1 and VRN1 in the elf3 and elf3/phyC mutants were similar throughout the day. This is in
contrast to the phyC mutant in which FT1 and VRN1 mRNA levels were lower than wild type throughout the day consistent with the
delayed flowering phenotype of phyC. Although the elevated levels of FT1 and VRN1 in both elf3 and elf3/phyC are consistent with
their rapid flowering, the expression of the floral repressor, VRN2, exhibits a similar elevated expression profile throughout the day
in both elf3 and elf3/phyC relative to wild-type or phyC single-mutants (Fig 2E). The elevated VRN2 expression levels in 
plants are consistent with previous results in B. distachyon and other grasses [23,29,30,40,64]. The transcriptional profile of 
was similar in both the elf3 and elf3/phyC mutants with elevated expression compared to wild-type between zt4-8 and then lower
than wild-type between zt12-20 (Fig 2C). A similar expression pattern was found for Hd1 (the rice CO homolog) in the 
double mutant in rice [40]. Consistent with previous reports, CO1 expression levels remained low in Brachypodium phyC
throughout a diurnal cycle [58]. By contrast CO1 expression is increased in the phyC mutants in wheat [57] indicating another
difference in the regulation of CO1 between these two species. Lastly, the CO2 expression profiles were similar between wild-type,
elf3, and elf3/phyC, whereas CO2 mRNA levels were lower in phyC throughout a diurnal cycle (Fig 2F). In summary, the
transcriptional profiles of FT1, VRN1, VRN2, CO1, and CO2 are similar between elf3 and elf3/phyC mutants consistent with 
acting downstream from PHYC in the photoperiod flowering pathway.

Fig 2. Effect of loss-of-function mutations in ELF3 and PHYC on the transcriptional profiles of six flowering time genes in 16h LD.
Normalized expression of (A) FT1, (B) PPD1, (C) CO1, (D) VRN1, (E) VRN2, and (F) CO2 during a 24h diurnal cycle in
Bd21-3 (black line), elf3 (blue line), phyC (gray line) and elf3/phyC double mutant (orange line). Plants were grown in LDs
until the fourth-leaf stage was reached (Zadoks = 14) at which point the newly expanded fourth leaf was harvested at zt0, zt4,
zt8, zt12, zt16, and zt20. Note the zt0 value and zt24 value are the same. The average of four biological replicates is shown
(three leaves per replicate). Error bars represent standard deviation of the mean. Data were normalized using UBC18
done in [49].
https://doi.org/10.1371/journal.pgen.1010706.g002

The transcriptional profile of PPD1 indicates a more complex interaction between PHYC and ELF3. In wild type, the expression
levels of PPD1 peak at zt12 with the lowest expression level at dawn and during the evening consistent with previous reports of
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PPD1 expression patterns in B. distachyon [29,30] (Fig 2B). In both the elf3 and elf3/phyC mutants, we observed increased 
expression relative to wild-type at dawn and during the evening with expression levels similar to wild-type at zt12. Interestingly, the
increased expression of PPD1 observed at dawn and during the night in the elf3/phyC background was significantly lower than that
of the elf3 single mutant suggesting PHYC may impact PPD1 expression via additional genes beyond ELF3. In contrast, 
expression levels were reduced in the phyC mutant relative to wild type, elf3, and elf3/phyC mutants throughout a diurnal cycle,
consistent with the reduced FT1 expression and delayed flowering phenotype of the phyC mutant.

Identification and mapping of a ppd1 mutant in B. distachyon

To determine the role of PPD1 in flowering in B. distachyon, the genome-sequenced, sodium-azide mutant line NaN610 with a
predicted high-effect mutation impacting a splice acceptor donor site in PPD1 (BdiBd21-3.1G0218200) was obtained from the Joint
Genome Institute (JGI) ([65]; https://phytozome-next.jgi.doe.gov/jbrowse/). A quarter of the NaN610 M3 seeds received were
segregating for an extremely delayed flowering phenotype (Fig 3B–3D).

Due to the high mutant load of these NaN mutant lines, we validated through mapping that the delayed flowering phenotype is
associated with PPD1 (Fig 3E and 3F). We backcrossed NaN610 with Bd21-3 and confirmed a quarter of the plants in the BC1F2
population (n = 380) were delayed flowering, demonstrating the recessive nature of the mutant. Three Derived Cleaved Amplified
Polymorphic Sequences (dCAPs) markers closely linked with PPD1 were developed based on the variant’s information for the
NAN610 line, with one of the dCAPs primers located within the PPD1 locus itself (Fig 3E and S1 Table). This approach allowed us
to map the causative lesion to within a 1Mb interval (13.1Mb-14.2Mb) on the top arm of chromosome 1, demonstrating the delayed
flowering phenotype is tightly linked with PPD1 (Fig 3E).

Fig 3. Identification of a ppd1 mutant.
(A) Gene structure of PPD1 showing the location of the nucleotide change of the sodium azide-induced mutation; orange bar
indicates the region that encodes the CCT domain. Below the gene structure diagram is a gel image of the reverse
transcription polymerase chain reaction (PCR) (30 cycles of amplification) showing PCR products of PPD1 cDNA in Bd21-3
and ppd1 mutant plants. The location of primers used in each reaction are shown in the diagram above the gel image. (
Representative photo of Bd21-3, heterozygous, and homozygous ppd1 plants grown in a 20h LD. Picture was taken 60d after
germination in 20h LD, bar = 5cm. (C and D) Flowering time was measured as days to heading (C) and the number of leaves
on the parent culm at time of heading (D), ** indicates statistical differences (p < 0.01), *** indicates statistical differences (p <
0.001) by Student’s t-test. (E) Fine mapping of ppd1 in a population of 380 BC1F2 individuals. Individuals with seven different
haplotypes were identified by three dCAPS markers and flowering times of each haplotype were determined in the F3
generation. Black, grey, and light grey rectangles represent NAN610, heterozygous, and Bd21-3 genotypes, respectively.
Variants around the PPD1 locus from the NAN610 line are shown with black dots, and yellow arrows indicate the coding
genes within the mapped interval with the specific effect on the coding region indicated.
https://doi.org/10.1371/journal.pgen.1010706.g003
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To confirm that the predicted splice site mutation does in fact impact the splicing of PPD1, we sequenced the mRNA products of the
ppd1 NaN610 mutant line and Bd21-3 (Fig 3A). We found that the splice site mutation resulted in the mis-splicing of the sixth intron,
generating a reading frame shift resulting in a truncated protein lacking the conserved CCT domain (Fig 3A). The extremely
delayed flowering of the B. distachyon ppd1 mutant is consistent with the ppd1 null mutants described in wheat, which take >120
days to head under inductive LD conditions [16,43], demonstrating PPD1 is required for LD flowering broadly within temperate
grasses.

Genetic interactions between ELF3 and PPD1 under long and short days

We and others have shown that PPD1/PRR37 expression is increased in an elf3 mutant background in B. distachyon
wheat (Fig 2B; [29,30,40,66]). Moreover, a CHIPseq analysis of ELF3 demonstrated that PPD1 is directly bound by ELF3 in a time-
of-day-responsive manner [29,40]. Thus, ELF3 acts as a direct transcriptional repressor of PPD1 but the extent to which this
explains the rapid flowering in the elf3 mutant has not been tested. Therefore, we generated an elf3/ppd1 double mutant to explore
the genetic interactions of these two genes under a highly inductive 20h LD, inductive 16h LD, and non-inductive 8h SD (

Fig 4. Genetic interactions between the delayed flowering ppd1 mutant and the rapid flowering elf3 mutant.
Representative image of Bd21-3 wild-type, rapid flowering elf3 mutant, delayed flowering ppd1 mutant, and delayed flowering
elf3/ppd1 double mutant grown in a 20h photoperiod (A), 16h photoperiod (D), and 8h photoperiod (G). Picture was taken
after 110d, for the 20h LD (A) and 140d after germination for the 16h LD and (D) 8h SD. Scale bar = 5cm. (B, E, 
times under 20h (B), 16h (E), 8h (G) measured as days to heading of Bd21-3, elf3, ppd1, and elf3/ppd1. Flowering times
under 20h (C), 16h (F), and 8h (I) measured as the number of leaves on the parent culm at time of heading. The 8h
experiment was repeated three times. The first experiment resulted in ppd1 plants that stopped producing new leaves before
wild type. One possibility for the cessation of new leaf production in ppd1 plants in this experiment is that the meristem
transitioned to flowering, but then did not proceed to heading. However, in two subsequent experiments ppd1 plants
continually produced new leaves for the duration of the experiment similar to wild type and this data is shown in (I). Data for
all three experiments are shown in S1 Data for Fig 4. When grown under non-inductive conditions for 120 days or more, a few
B. distachyon plants flower; we consider this a stochastic flowering response because the majority of plants do not flower.
Bars represent the average of 8 plants ± SD. Arrows above bars indicate that none of the plants flowered at the end of the
experiment (150d, >20 leaves). Letters (a, b, c, d) indicate statistical differences (p < 0.05) according to a Tukey’s HSD test
used to perform multiple comparisons.
https://doi.org/10.1371/journal.pgen.1010706.g004

Under all photoperiods, the elf3/ppd1 double mutant flowered significantly later than the elf3 single mutant (Fig 4). Interestingly,
under 20h LD, the elf3/ppd1 double mutant flowered earlier than ppd1 by 16.2 days forming 3.0 fewer leaves whereas under 16h
days elf3/ppd1 mutant flowered significantly later than ppd1 by 13.7 days with 2.5 more leaves. In 8h SD, only elf3 mutant plants
were able to flower; Bd21-3, ppd1, and elf3/ppd1 all failed to flower by the end of the experiment. It is also worth noting that
elf3/ppd1 double mutants are still able to respond to different photoperiods, with longer days resulting in significantly earlier
flowering plants than under shorter days (Fig 4B and 4E and 4H). These results indicate that there are strong genetic interactions
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between ELF3 and PPD1 under different photoperiods, that PPD1 is a key flowering regulator downstream of ELF3, and that there
is a residual photoperiodic response that is independent of these two genes.

Effect of mutations in ELF3 and PPD1 on the transcriptional profiles of flowering time genes

To understand how ELF3 and PPD1 affect flowering at a molecular level, we measured the mRNA levels of FT1, VRN1
VRN2, CO1, and CO2 in the elf3 and ppd1 single mutants and the elf3/ppd1 double mutant across a diurnal cycle in 16h LD (
As noted before, FT1 and VRN1 expression levels were elevated in the elf3 mutant background; however, in the elf3/ppd1
mutant, expression of these genes remained low and resembled the expression profile of ppd1 single mutants (Fig 5A and 5D
low expression levels of FT1 and VRN1 in ppd1 and ppd1/elf3 mutants is consistent with the delayed flowering phenotype of both
of these mutants in 16h LD. The VRN2 expression profile was similar between wild type and ppd1 mutant plants with low
expression levels at dawn and increased expression throughout the light cycle before expression levels dropped in the dark (
5E). Interestingly, VRN2 expression levels are similarly elevated throughout the day in elf3 and elf3/ppd1 mutants compared to wild
type (Fig 5E).

Fig 5. Effect of loss-of-function mutations in ELF3 and PPD1 on the transcriptional profiles of six flowering-time genes in 16h LD.
The fourth newly expanded leaves were harvested every 4h over a 24-hour period; three biological replicates (two leaves per
replicate) were harvested at each time point for each genotype. Diurnal expression of FT1 (A), PPD1 (B), CO1 (C
VRN2 (E), and CO2 (F) were detected in Bd21-3 (black line), elf3 (blue line), ppd1 (grey line) and elf3/ppd1 double (orange
line). Bars represent the average of three biological replicates ± SD. Letters (a, b, c, d) indicate statistical differences (p <
0.05) according to a Tukey’s HSD test used to perform multiple comparisons, letter color corresponds to the four different
genotypes. The black, gray, and orange lines overlap given the scale used to show ELF3 expression in the same graph; the
orange line is arbitrarily shown on top. Specific expression values are shown below the lettered statistical test. Raw data is
included in S1 Data file.
https://doi.org/10.1371/journal.pgen.1010706.g005

Consistent with the expression patterns of PPD1 in wild type and elf3 shown in Fig 2, the expression levels of PPD1
wild-type and the elf3 mutant has increased PPD1 expression relative to wild type at dawn and during the evening (
expression levels in the ppd1 mutant should be interpreted with caution because we do not know the effect of the splice site
mutation on the mRNA stability. Significantly higher levels of PPD1 expression were observed in ppd1 relative to wild type at ZT8
and ZT16, and in elf3/ppd1 relative to elf3 at dawn. However, the expression patterns of PPD1 were most similar between 
and wild type and between elf3/ppd1 and elf3 (Fig 5B).

CO1 and CO2 expression both exhibit peak expression in wild type at zt12 with expression dampening in the evening consistent
with previous reports [29,58]. Interestingly, expression levels of CO1 and CO2 were elevated between zt4-8 in elf3 compared with
wild-type. However, at zt16 and zt20, expression levels were similar in wild type, elf3, and elf3/ppd1 mutants, whereas at zt12 the
expression of CO1 was reduced in elf3 compared to wild type. In contrast, the expression levels of CO1 and CO2 were lowest in
ppd1 compared to the other lines at zt8. In the elf3/ppd1 mutants, CO1 and CO2 expression was most similar to ppd1
morning and most similar to elf3 in the evening (Fig 5C and 5F). These results indicate complex interactions between PPD1 and
ELF3 in the regulation of CO1 and CO2.

Constitutive expression of ELF3 results in delayed flowering and lower PPD1, FT1, and VRN1 expression levels

In our previous study, we showed that overexpression of ELF3 in the elf3 mutant background results in strongly delayed flowering
([30], Fig 6A). However, this was done in the T0 generation, so we evaluated the flowering time and expression of downstream
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flowering-time genes in the T1 generation. We grew four UBI::ELF3/elf3 transgenic lines alongside Bd21-3 and elf3 in a 16h
photoperiod, and harvested the newly expanded fourth leaf at zt4. This time point was chosen because expression of several
critical genes such as CCA1, TOC1, LUX, PPD1, VRN2, CO1, and CO2 were significantly different in the morning in the 
mutant compared with wild-type [29,30]; Figs 2 and 5). We first confirmed that all of the UBI::ELF3/elf3 transgenic lines had
elevated ELF3 mRNA levels, and found indeed there is a significant increase of ELF3 expression in the transgenic lines (
To understand how UBI::ELF3/elf3 affects flowering, we evaluated expression levels of FT1, VRN1, PPD1, VRN2, CO1
wild type, elf3, and UBI::ELF3/elf3. Consistent with the delayed flowering, FT1 and VRN1 expression levels of UBI::
reduced relative to wildtype compared to elevated levels elf3 relative to wildtype (Fig 6D and 6G). Also, the expression of 
VRN2, CO1, and CO2 were decreased in UBI::ELF3/elf3, indicating ELF3 is playing a broad repressive role in regulating CCT
domain containing genes responding to photoperiodic flowering.

Fig 6. Overexpression of ELF3 in the elf3 mutant delays flowering.
(A) Representative image of Bd21-3 wild type, elf3, and three independent transgenic lines of UBI::ELF3 in the elf3
background grown in a 16h photoperiod. Images were taken 120d after germination. Bar = 5 cm. The fourth newly expanded
leaves were harvested at zt4 in 16h. (B-I), Normalized expression of ELF3 (C), FT1 (D),PPD1 (E), CO1 (F), VRN1
(H) in Bd21-3 wild type, elf3, and three UBI::ELF3/elf3 transgenic lines. Expression of CO2 is shown in S2 Fig. Bars represent
the average of four biological replicates ± SD.
https://doi.org/10.1371/journal.pgen.1010706.g006

Discussion
The phytochromes PHYC/PHYB and ELF3 connection

B. distachyon has an obligate requirement for LD to flower [8,49,67]. Previous studies have shown the important roles that both
PHYC and ELF3 play in photoperiodic flowering in B. distachyon [29,30,58]. Specifically, mutations in phyC result in extremely
delayed flowering whereas loss-of-function mutations in elf3 result in rapid flowering in either LD or SD [30,58]. Furthermore, 
mutants resemble plants grown in SD both morphologically and at the transcriptomic level regardless of day-length whereas 
mutants resemble plants grown in LD both morphologically and at the transcriptomic level regardless of day-length [
Thus, we were interested in exploring the genetic relationships between PHYC and ELF3. The extreme delayed flowering
phenotype observed in phyC mutant plants is mediated by ELF3 because phyC/elf3 double mutants flower rapidly in LD and SD
similar to elf3 mutants. Similar genetic interactions between phyB and elf3 were also found in wheat in the companion study [
suggesting these interactions are likely to be conserved broadly in temperate grasses. Loss-of-function mutations in 
also result in delayed flowering similar to phyC [59]. At present, no null phyB alleles have been reported in B. distachyon;
PHYB is able to heterodimerize with PHYC in B. distachyon and wheat [29, 57], and both phyB [59] and phyC [57] mutants are
extremely late flowering in wheat suggesting that both PHYs are likely required for photoperiodic flowering in the temperate
grasses, perhaps because PHYB/PHYC heterodimers are required for flowering regulation.

Phytochrome regulation of ELF3 at the post-translational level rather than at the transcriptional level is likely to be the critical
interaction impacting flowering. In A. thaliana, B. distachyon, and wheat, phyB/phyC mutants do not impact the circadian oscillation
of ELF3 mRNA levels [29,59,68]. However, in all three species PHYB and PHYC have been shown to interact with the ELF3
protein, but the stability of the ELF3 protein upon exposure to light differs between A. thaliana and temperate grasses [
Specifically, in A. thaliana, PHYB contributes to the stability of the ELF3 protein during light exposure leading to ELF3 accumulation
at the end of the day [63,68], whereas in rice ELF3 is degraded and or modified during light exposure in a PHY-mediated process
[40]. In temperate grasses, ELF3 protein accumulates during the night and is rapidly degraded or modified upon light exposure
[29,67], and this is likely to be a PHY mediated response as well.
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The differences in how phytochromes impact the stability of the ELF3 protein might explain the contrasting flowering phenotypes of
the phyB/phyC mutants between A. thaliana and temperate grasses. In A. thaliana, phyB mutants flower more rapidly than wild type
in either LD or SD and phyC mutants flower earlier under SD [60], whereas in temperate grasses phyB or phyC mutants are
extremely delayed in flowering [57–59]. However, ELF3 acts as a flowering repressor in both A. thaliana and grasses [
thaliana PHYB stabilizes the ELF3 protein; therefore, in phyB mutants, ELF3 is no longer stable leading to rapid flowering. In
contrast, in temperate grasses and rice, in the absence of phyB or phyC the ELF3 protein is more stable leading to delayed
flowering.

Interestingly, overexpression of ELF3 results in extremely delayed flowering in B. distachyon [29,30] (Fig 6A and 6B
regulation of ELF3 appears to occur at the protein level, one might not expect that overexpression would cause such a strong
flowering delay. However, if the ELF3 protein is expressed at a high level such that the degradation machinery is unable to degrade
much of the ELF3 protein during LD, then a strong flowering delay might occur. In support of this idea, the delayed flowering of
overexpression of ELF3 is mitigated when plants are grown under constant light versus 16h LD [29]. It is worth noting that although
overexpression of ELF3 generally leads to delayed flowering in different plant species, there is considerable variation in the
magnitude of this delayed flowering [29,63,66] (Fig 6A and 6B).

Similar genetic interactions between ELF3 and PHYB have also been observed in rice which is a SD-flowering plant that has two
rice-specific ELF3 paralogs [70]. Mutations in either paralog results in delayed flowering in SD or LD in contrast to the rapid
flowering observed in temperate grasses containing elf3 mutations [40,71,72]. Also in contrast to the situation in temperate grasses,
phyB mutants flower more rapidly than wild type in rice [73]. Despite the flowering differences of the elf3 and phyB mutants
between rice and temperate grasses, the flowering phenotype of phy mutants is ELF3 mediated because in both rice and
temperate grasses elf3 is epistatic to phyB or phyC [Fig 1; 40, 67]. Moreover, PHYB and ELF3 proteins interact impacting the
modification of ELF3 by light [40]. The opposite roles that phytochromes and elf3 have on flowering in rice and temperate grasses
is likely due, at least in part, to the reverse role that the downstream PPD1/PRR37 gene has on flowering. PPD1 is a promoter of
flowering in LD temperate grasses but is a repressor of flowering in SD grasses such as rice [11,16,74,75] (Fig 3).

The ELF3 and PPD1 connection

The extremely delayed flowering of B. distachyon ppd1 mutant plants under LD is similar to the extremely delayed heading of 
mutants in wheat [16]. However, a previous study in B. distachyon using a CRISPR induced ppd1 mutant allele which has a 1bp
deletion in the sixth exon of PPD1 has a milder delayed flowering phenotype with plants taking around 40 days to flower under 20h
LD, whereas the mutant ppd1 plants presented here flower around 120 days in 20h LD [29]; Figs 3 and 4). In both studies, wild-
type Bd21-3 plants flower on average between 25–30 days in 20h LD consistent with previous reports in B. distachyon
The differences in flowering time between the two B. distachyon ppd1 mutant alleles suggests that the CRISPR induced 
is a weaker hypomorphic allele than the ppd1 mutant allele characterized in this study. This is further supported by the fact that the
ppd1 allele described here has an extremely delayed flowering phenotype similar to the null ppd1 wheat allele [16].

The ppd1/elf3 double mutant is delayed in flowering relative to elf3 mutant plants indicating that PPD1 is downstream of ELF3 in
photoperiodic flowering. This is also consistent with the elevated PPD1 expression levels observed at dawn and dusk in the 
mutant relative to wild-type in temperate grasses [30,70] (Fig 5). Indeed, ELF3 binds to the PPD1/PRR37 promoter in 
distachyon, wheat, and rice indicating ELF3 is a direct transcriptional repressor of PPD1/PRR37 in grasses [29,40,66
not have any known DNA binding activity and thus, the direct repression is likely to be due to ELF3’s interaction with a LUX
transcription factor which, from studies in A. thaliana, recognizes GATWCG motifs that are also found in the PPD1 promoter in
grasses [37,38,67]. Interestingly, photoperiod insensitivity in wheat is associated with deletions in the PPD1 promoter, which
remove the LUX binding site and results in elevated PPD1 expression at dawn similar to the PPD1 expression dynamics observed
in elf3 and lux mutant plants [10–13,39,77,78]. In the companion wheat paper, ChIP-PCR experiments show ELF3 enrichment of
the DNA region around the LUX binding site in the PPD1 promoter, which is present within the region deleted in photoperiod-
insensitive wheats. These results demonstrate that removal of the evening complex binding site leads to elevated expression in
PPD1 and accelerated heading under SD in many photoperiod-insensitive wheats [66].

The characterization of elf3/ppd1 mutant plants under different photoperiods reveal complex interactions between the two genes
and their downstream targets depending on the environment. For example, elf3/ppd1 mutant plants are earlier flowering than 
mutant plants under 20h day-lengths, but are later flowering under 16h and 8h day-lengths. This is in contrast to elf3/ppd1
in wheat, which head earlier than ppd1 under a 16h day-lengths indicating that ELF3 can delay heading independently of PPD1 in
this condition [66]. Thus, there are differences between B. distachyon and wheat in the effects of ELF3 on heading in the absence
of PPD1. We speculate that these differences may be related to the different interactions observed between CO1 and other
flowering genes (e.g. PHY) in these two species. For example, in wheat phyC and ppd1 mutants, CO1 expression levels are
elevated compared to wild type, whereas in B. distachyon CO1 expression is reduced in both mutants [57,58,66].
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Materials and methods
Plant materials and growth conditions

The rapid flowering mutant elf3 and four UBI::ELF3/elf3 transgenic lines in B. distachyon were previously characterized [
the delayed flowering phyC mutant [58]. All the mutants used for phenotyping and expression in this study were backcrossed at
least twice with the wild-type Bd21-3 accession. Seeds were imbibed in the dark at 5°C for three days before planting in soil. Three
photoperiods 8h-SD (8h light/16h dark), 16h-LD (16h light/ 8h dark), and 20h-LD (20h light/ 4h dark) were used. For Figs 
plants were grown at the University of California-Davis in growth chambers with metal halide and sodium bulbs as the light source
and a temperature of 22°C during light periods and 17°C during dark periods. Light intensity was approximately 300umol m-2s-1 at
plant height. For Figs 4 and 5, plants were grown at the University of Wisconsin-Madison in growth chambers with T5 fluorescent
bulbs (5000 K), and light intensity was approximately 200umol m-2s-1 at plant height. Temperatures averaged 22°C during light
periods and 18°C during dark periods. Flowering time was estimated by measuring days to heading and leaves on the main culm at
time of heading. Recording of days to heading was done as the days from seed germination to the first emergence of the spike.

Generation of elf3/phyC and elf3/ppd1 double-mutant lines

Epistasis analysis between phyC, ppd1, and elf3 was studied by generating elf3/phyC and elf3/ppd1 double mutants. 
were crossed with elf3 and elf3/phyC homozygous double mutant plants were selected in a segregating F2 population by
genotyping using primers in S1 Table. Similarly, ppd1 was crossed with elf3, and elf3/ppd1 homozygous double mutant individuals
were selected by genotyping using primers in S1 Table in the segregating F2 population. Flowering time of elf3/ppd1
were estimated by growing with Bd21-3, elf3, ppd1 side by side in 8h SD, 16h LD, and 20h LD, and elf3/phyC double mutant plants
were grown in 8h SD and 16h LD.

RNA extraction and qPCR

The method for RNA extraction, cDNA synthesis and quantitative PCR (qPCR) is described in [49]. Primers used for gene
expression analyses are listed in S1 Table.

Statistical analyses

Comparison of more than two genotypes were performed by using agricolae package in R [79]. Statistically significant differences
among different genotypes were calculated by using one-way analysis of variance (ANOVA) followed by a Tukey’s HSD test.
Student’s t-test was used for analyzing the difference between two genotypes, significant if P< 0.05.

Supporting information
S1 Fig. Effect of loss of function mutations in PHYC on the transcriptional profile of ELF3.
https://doi.org/10.1371/journal.pgen.1010706.s001
(TIF)

S2 Fig. Normalized expression of CO2 detected in Bd21-3, elf3, and three UBI::ELF3/elf3 transgenic lines.
https://doi.org/10.1371/journal.pgen.1010706.s002
(TIF)

S1 Table. Primers used in this study.
https://doi.org/10.1371/journal.pgen.1010706.s003
(PDF)

S1 Data. S1_Data.xlsx file contains all raw data used in this study.
https://doi.org/10.1371/journal.pgen.1010706.s004
(XLSX)
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