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Abstract

Machine learning models have difficulty generalizing to data outside of the distribution they
were trained on. In particular, vision models are usually vulnerable to adversarial attacks or
common corruptions, to which the human visual system is robust. Recent studies have
found that regularizing machine learning models to favor brain-like representations can
improve model robustness, but it is unclear why. We hypothesize that the increased model
robustness is partly due to the low spatial frequency preference inherited from the neural
representation. We tested this simple hypothesis with several frequency-oriented analyses,
including the design and use of hybrid images to probe model frequency sensitivity directly.
We also examined many other publicly available robust models that were trained on adver-
sarial images or with data augmentation, and found that all these robust models showed a
greater preference to low spatial frequency information. We show that preprocessing by
blurring can serve as a defense mechanism against both adversarial attacks and common
corruptions, further confirming our hypothesis and demonstrating the utility of low spatial fre-
quency information in robust object recognition.

Author summary

Though artificial intelligence has achieved high performance on various vision tasks, its
ability to generalize to out-of-distribution data is limited. Most remarkably, machine
learning models are extremely sensitive to input perturbations such as adversarial attacks
and common corruptions. Previous studies have observed that imposing an inductive bias
towards brain-like representations can improve the robustness of models, but the reasons
underlying this benefit were left unknown. In this work, we propose and test the hypothe-
sis that the robustness of brain-like models can be accounted for by a low frequency
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feature preference inherited from the neural representation. We designed a novel machine
learning task to probe the frequency bias of different models and observed a strong corre-
lation between that and model robustness. We believe this work serves as a first step
towards understanding why biological visual systems generalize well to out-of-distribu-
tion data and provides an explanation for the robustness of state-of-the-art machine
learning models trained with various methods. It also opens the door to applying compu-
tational principles of the brain in artificial intelligence, hence helping to overcome the
fundamental difficulties faced by current AT methods.

Introduction

Currently, deep neural networks are the state-of-the-art models for numerous computer vision
tasks such as object detection [1], image recognition [2], semantic segmentation [3], etc. How-
ever, these models are often not robust, as demonstrated by their inability to generalize to new
data distributions. For instance, current neural networks are not able to generalize to common
corruption noise such as ImageNet-C [4], where network performance is stress tested against
15 different kinds of image corruption applied to the ImageNet dataset. Furthermore, these
models seem to be extremely sensitive to targeted noise such as adversarial attacks [5]. In con-
trast, the human visual system does not seem to suffer from such problems: in particular, rec-
ognizing object identity is little affected by the common corruptions [6], and adversarial
perturbations that break machine learning models are imperceptible to humans [5]. This dif-
ference in behavior between the brains and deep learning algorithms might be explained by
differences in inductive bias, i.e. they learn different features from data. Accordingly, natural
vision has an inductive bias, a bias towards which fixed network are learned by the optimiza-
tion algorithm from a class of models given the set of training data, towards robust features,
which means insensitivity to perturbations that do not change the perceptual relevant latent
variables such as object identities. How can we instill the brain’s inductive bias towards robust
to targeted and random noise distortions to these deep learning algorithms? Recent work has
shown that machine learning models that are encouraged to learn brain-like representations, a
paradigm known as neural regularization, are also more robust to certain common corrup-
tions such as Gaussian noise and adversarial attacks [7, 8]. Furthermore, other work has
shown that models that explain more variation in primate primary visual cortical (V1)
responses also tend to be more robust to adversarial attacks [9].

Much recent parallel work has also attempted to produce models that are robust to com-
mon corruptions (ANT [10], SIN [11], DeepAugment, AugMix [4]) and to adversarial attacks
(PGD Training [12], TRADES [13]). These models achieve significant improvements upon
baseline models by employing several other methods, including data augmentation, adversarial
training, and anti-aliasing [14]. AutoAugment, a data augmentation method for common cor-
ruption robustness, has produced improvements mainly for high frequency common corrup-
tion noises [15]. Consistent with this work, we hypothesize that one of the reasons for the
success of current robustness methods for both common corruption and adversarial attacks
can be explained by a simple computational principle: models that are biased to rely on low
spatial frequency information for object recognition are more robust. Here, we tested this
hypothesis with several frequency-oriented analyses. Finally, we introduced a simple prepro-
cessing step based on these principles that produced robust models with comparable perfor-
mance to these more sophisticated methods.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010932 March 27, 2023

2/15


https://doi.org/10.1371/journal.pcbi.1010932

PLOS COMPUTATIONAL BIOLOGY Robust deep models rely on low frequency information

Results

Neural regularization boosts model robustness

There are many ways to bias a machine learning model toward brain-like computations, such
as architecture, learning rules, the training dataset or task’s objective functions [16]. Among
them, methods that use auxiliary loss functions to bias models towards brain-like representa-
tions are called neural regularization. We will focus on two particular forms of neural regulari-
zation: neural similarity regularization [7, 17] and neural response regularization [8]. Both
methods directly encourage a model to learn a brain-like representation of the visual stimuli.

The neural responses of natural images are located on a low dimension manifold in the
response space [18]. Similarly, for any machine learning model, features of images stimuli also
form their own manifold embedded in model feature space. Neural similarity regularization
adjusts the manifold in the model’s hidden layers so that it is biased towards the same geome-
try as the manifold in the neural response space (Fig 1), while performing benchmark tasks
like image classification at the same time. Li et al. [7] showed that a ResNet18 model regular-
ized to incentivize its representational similarity [19], which is the pair-wise cosine similarity
between the representation for a set of images, to be more like the one measured in mouse V1
is more robust against Gaussian noise and adversarial attacks. Another way to induce brain-
like representations is to request the model to predict neural responses of the visual input as an
auxiliary task. Safarani et al. [8] showed that a VGG19 model co-trained with monkey V1 data,
where the VGG19’s core was used to predict neural responses directly, is able to improve
robustness against common corruptions on Tiny ImageNet. Since the neural readout module
is shallow, the VGG19 core has to encode neural features to make the co-training work.

In this study, we expanded both neural regularization, either using mouse’s representational
similarity matrix or using the monkey responses directly, by testing model robustness against
various common corruptions and adversarial attacks.

Since neurally regularized models are trained on grayscale images, we used grayscale ver-
sions of the CIFAR10-C and TinyImageNet-C datasets for evaluation. Models regularized with
either mouse or monkey V1 representations have higher accuracy at different severity levels of
common corruptions compared to baseline models (Fig 2a and 2e), though their performance
on clean images is slightly worse. Targeted gradient-based boundary attacks [20] were per-
formed to find the minimum perturbations needed to change model predictions to wrong cat-
egories. The use of strong attacks is critical in evaluating adversarial robustness, as weak
attacks such as FGSM only provide a loose upper bound on the minimum adversarial

Model features f; Neural responses r;

Fig 1. Schematic of neural similarity regularization. Machine learning models are trained so that the stimuli manifold in the model feature space
resembles the manifold in the neural response space. The most simple version considers only pairwise relationships among stimuli instances. Two
images that are close in the neural response space should also be close in the model feature space.

https://doi.org/10.1371/journal.pchi.1010932.9001
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Fig 2. Neural regularization boosts model robustness and makes it less sensitive to high frequency component of the input. A ResNet18 model
(orange in a-d) was trained for grayscale CIFAR10 with mouse neural similarity regularization [7], a VGG19 model (orange in e-h) was trained for
grayscale TinyImageNet with monkey neural response regularization [8]. (a) Grayscale CIFAR10 classification accuracy against common corruptions at
different severity levels. Average accuracy over all corruptions are reported for a baseline ResNet model (black) and a mouse regularized model
(orange). (b) Success rate of targeted attacks at different perturbation budget ¢, using the boundary attack [20] with an L, metric. (c) Classification
accuracy against different types of corruptions, broken down into three groups based on their frequency characteristics (Table A in S1 Appendix).
Model performance is averaged over all severity levels. (d) Radial profile of the Fourier spectrum of adversarial perturbations. We found the minimal
adversarial perturbations of all testing images, and calculated the averaged Fourier spectrum thereof, where blue is minimum and red is maximum
values of each heat map respectively (insets), a logarithm scale color map is used for better visualization. The portion of power under different
frequency thresholds are compared between baseline and neurally regularized models. The abscissa is the absolute value of the spatial frequency,
normalized by sampling frequency f,. (e-h) Same as a-d, except comparing a baseline VGG model with a model co-trained with monkey neural data on
the grayscale TinylmageNet dataset [21].

https://doi.org/10.1371/journal.pcbi.1010932.9002

perturbation size. We verified the effectiveness of boundary attacks by extensive comparison
between many off-the-shelf methods, and are confident it characterizes the adversarial robust-
ness of models. Evaluation on the testing set showed that neurally regularized models need
larger adversarial perturbations on average (Fig 2b and 2f), i.e. they are more robust against
adversarial attacks. The attack size that gives 50% success rate is € = 1.25/255 for the baseline
ResNet and € = 2.89/255 for the mouse regularized one. If we look at the distribution of mini-
mum perturbation size needed for each image, the mean and standard deviation is € =

(1.34 +£ 0.70)/255 for the baseline ResNet, and € = (3.09 + 1.61)/255 for the mouse regularized
one. Similarly, the attack size that gives 50% success rate is € = 1.84/255 for the baseline VGG
and € = 2.46/255 for the monkey regularized one. And the minimum perturbation size for all
images is € = (1.93 £ 0.89)/255 for the baseline VGG, and € = (2.64 £ 1.26)/255 for the monkey
regularized one. In the following text, we use the mean value of minimum perturbation sizes
to characterize adversarial robustness of the model.

A natural question is: what does the neural regularization do? First, we decided to
explore the structure of the neural similarity matrix of mouse V1 responses with a simple
decomposition analysis. We calculated the eigenvalues and eigenvectors of the similarity
matrix and computed the linear approximation of each principal component with respect to
the image. We observed that geometry of mouse V1 representation is well approximated by
a small number of principal components, and the spatial tuning of them reveals low fre-
quency structure (Fig D in S1 Appendix). This has led us to ask if the bias towards low fre-
quency features is inherited by neurally regularized models. We divided the 15 common
corruptions in the CIFAR10-C and TinyImageNet-C datasets [22] into three categories
based on their frequency spectra (Table A in S1 Appendix). Low-frequency corruptions:
‘snow’, ‘frost’, ‘fog’, ‘brightness’, ‘contrast’; medium-frequency corruptions: ‘motion_blur’,
‘zoom_blur’, ‘defocus_blur’, ‘glass_blur’, ‘elastic_transform’, ‘jpeg_compression’, ‘pixelate’;
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high-frequency corruptions: ‘gaussian_noise’, ‘shot_noise’, ‘impulse_noise’. Fourier spectra
of different corruptions are shown in Fig A in S1 Appendix. The biggest performance boost
in model classification accuracy comes from the category with the high-frequency corrup-
tions (Fig 2c and 2g).

We also compared the adversarial perturbations for baseline models and neurally regular-
ized ones. We performed a Fourier analysis on the minimal adversarial perturbation found
through our boundary attack [20], and calculated the average frequency spectrum for different
models (insets of Fig 2d and 2h). We observed that the mouse and monkey neurally regular-
ized models contain relatively higher low-frequency components than the baseline model. To
quantify this frequency shift, we characterized the frequency preference by a radial profile of
the spectrum of the adversarial perturbation, i.e. the power of all Fourier components whose
frequency is smaller than certain values. We found the radial profile of the adversarial pertur-
bation spectrum for the neurally regularized model is shifted toward lower frequencies (Fig 2d
and 2h). Furthermore, we can quantify this shift by the half power frequency f; 5, which is the
frequency where half of the Fourier power lies below (marked by the dashed line in Fig 2d and
2h). fo.s = 0.316 + 0.015 for mouse regularized ResNet and f; 5 = 0.442 + 0.009 for baseline,
with mean and standard deviation estimated from 1000 images (Fig 2d). Similarly, f, 5 = 0.306
+ 0.020 for monkey regularized VGG and f; 5 = 0.316 + 0.034 for baseline (Fig 2h). The half
power frequency fq 5 is smaller for the neurally regularized model compared with baseline,
though effect on the monkey regularized model is much weaker than the mouse regularized
one.

Hybrid image experiment

To directly probe the frequency bias of models, we next designed a new dataset of hybrid
images constructed by mixing the low-frequency components and high-frequency compo-
nents from two different images [23]. We select two images belonging to two different catego-
ries, and examine whether the model prediction on the mixed image is consistent with either
component. For a given mixing frequency f,,;,, we combine the Fourier components of an
image whose frequencies are smaller than f,;; with Fourier components of another image
whose frequencies are larger than f,;,, and then use an inverse Fourier transformation to get a
hybrid image (Fig 3a, see Methods for more details).

We denote the probability that a hybrid image is classified as the low-/high-frequency seed
image class as pjo, and py;gp, respectively, and calculate the probability difference piw — Phigh at
different mixing frequency values. When the mixing frequency is very small, the hybrid image
is close to the high frequency seed image, therefore pyg, is high for a properly trained model.
Likewise, when the mixing frequency is big, pio. is high. We are interested in the mixing fre-
quency when piq,, = Phigh» as it characterizes the frequency bias of a model. We term this fre-
quency the reversal frequency f.e,. The result shows that f,., is smaller for a mouse regularized
model (0.371 £ 0.0006, mean * standard deviation estimated from 4 randomly permuted
hybrid image datasets) than a baseline model (0.528 + 0.0009), indicating that the neurally reg-
ularized model is more likely to classify the hybrid image as the class of the low-frequency
component (Fig 3b). This provides strong evidence that the reason behind the robustness gain
by mouse neural regularization could be a bias towards low-frequency features. The same
experiments and analysis were done for monkey regularized models as well, but the low-fre-
quency bias is smaller compared to mice. f,. is 0.376 + 0.003 and 0.426 + 0.002 for monkey
regularized VGG19 and a baseline model, respectively (Fig B in S1 Appendix).

Since it appears the neural induced robustness can be largely accounted for by effectively
changing the sensitivity to different spatial frequency, it is straightforward to implement such

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010932 March 27, 2023 5/15


https://doi.org/10.1371/journal.pcbi.1010932

PLOS COMPUTATIONAL BIOLOGY Robust deep models rely on low frequency information

a Hybrid image classification
S
— 50 -
<
= 0
T
2 _50- —— Baseline
= —— Mouse reg
I 1 I 1 1
0 0.5 1

Normalized mixing freq.

Fig 3. Probing frequency sensitivity of mouse regularized model using hybrid images. (a) Examples of hybrid images at different mixing
frequencies. Hybrid images are constructed by mixing the low-frequency component of one image and the high-frequency component of another,
while the two seed images belong to different categories. The range of mixing frequency’s values are normalized by the Nyquist frequency. (b) Model
predictions on hybrid images at different mixing frequencies. As more low-frequencies from one image are included, the probability that a network
reports its label py,,, increases. The reversal frequency fre, where pio,, = phign is smaller for the mouse regularized model (‘neural’) than for the baseline
model (‘base’).

https://doi.org/10.1371/journal.pchi.1010932.g003

principle via a simple preprocessing of images. We propose two simple methods for filtering
images and will describe them in the next section.

Frequency analysis on robust models

We then asked if other models that are not regularized with neural data, but engineered to be
robust to common corruptions and adversarial attacks also have this low frequency bias. To
this end, we analyzed and compared several robust models trained on CIFAR10, most of
which were downloaded from RobustBench [24]. Some of the models are trained for adversar-
ial robustness and some are trained for common corruption robustness. A full description of
models is listed in Table B in S1 Appendix. Since the mouse regularized model in Fig 2 was
trained on grayscale CIFARI0, it is not included in this comparison.

Two additional models were trained and included in this comparison. Both models were
constructed by attaching a preprocessing layer before a ResNet18 model. The parameters of
the preprocessing are not trainable but fixed beforehand. One is called the ‘blur’ model as the
preprocessing is a convolution with a Gaussian kernel of standard deviation o. The other is
called the ‘PCA’ model as the preprocessing keeps only the first K principal components (PCs)
calculated from all training images. 0 and K are chosen such that the classification accuracy on
CIFARI10 of both models are around 90%, similar to other robust models. More details are
included in the Methods section.

The ‘blur’ model directly biases the model towards low-frequency features, because the high
frequency features are attenuated during the preprocessing step. The filtering of features based
on their spatial frequency can be treated as a special form of reweighting of input principal
components, since principal component analysis on natural images with translation invariance
recovers the Fourier basis, and the variance explained by a feature usually decreases monotoni-
cally as frequency increases. Hence a ‘PCA’ model that explicitly projects the original image
onto a low dimensional space spanned by the first PCs is also included in the comparison. The
hypothesis behind ‘PCA’ model is that the directions parallel to the data manifold are robust
features, and perturbations that are orthogonal to the manifold can be safely removed. Since
natural images have the greatest variance in low frequencies, the distance of any data point to a
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class boundary are longest along low frequency dimensions, and thus a model that mainly uses
these low frequencies should be the more robust. Previous work also found that this kind of
PCA data preprocessing increases robustness to adversarial attacks [25].

Similar to the analysis done on neurally regularized models, we calculated the Fourier spec-
trum of minimum adversarial perturbations for all robust models. A fixed set of 1000 images
were selected from testing set, and the incorrect class targets for each image was also fixed. The
adversarial perturbations for robust models, including the ones not specifically trained for
adversarial robustness, contained more low spatial frequency components, while in the base-
line models, adversarial perturbations were dominated by high spatial frequency components
(Fig 4a). To better visualize the differences of adversarial spectrum shape, we plotted the radial
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Fig 4. Frequency analysis of adversarial attacks on robust models trained on CIFARI10. (a) The Fourier spectrum of the minimal adversarial
perturbations of different models, including six baseline models (‘base’), seven models trained for adversarial robustness (‘adv’), two models for
corruption robustness (‘crp’), one model with preprocessing by blurring (‘blur’), and one with preprocessing by PCA compression (‘pca’). Model details
are listed in Table B in S1 Appendix. The spectrum is averaged over 1000 images, and color maps are normalized separately for each panel. (b) Radial
profiles of adversarial perturbation spectra. Light thin lines represent each individual model, while thick lines are the average within each group. The
frequency where each line crosses 50% is denoted as half power frequency fj 5. (c) Scatter plot of minimum adversarial perturbation size versus f, 5 for
all models.

https://doi.org/10.1371/journal.pcbi.1010932.9004
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group. (b) Scatter plot of model accuracy on CIFAR10-C dataset versus reversal frequency f., in hybrid image classification. The dashed green line is
the performance of a series of ‘blur’ models, using different degree of low-pass filtering. The left end corresponds to o = 3 pixels and the right end
corresponds to o = 1 pixel, while the green dot is the model with ¢ = 1.5 pixel listed in Table B in S1 Appendix.

https://doi.org/10.1371/journal.pcbi.1010932.9005

spectrum for each model. The portions of the spectral power within different spatial frequen-
cies are compared (Fig 4b), and the half power frequency f; 5 is marked by the dashed line.
Compared with the baseline model, all robust models have smaller f, s, indicating the mini-
mum adversarial perturbations for them have lower frequencies. The size of average minimal
perturbations are plotted against f; 5 in Fig 4c, revealing a negative correlation between adver-
sarial robustness and the frequency bias of the model.

We next tested model predictions on hybrid images. Hybrid images for RGB CIFAR10 are
constructed similarly as in Fig 3a. The reversal frequencies f., for all models are plotted against
the classification accuracy on the CIFAR10-C dataset (averaged over all corruptions and sever-
ity levels) in Fig 5b. The result shows that all models are more robust to common corruptions
than the baseline, even those trained for adversarial robustness. They all have a low frequency
bias characterized by f,.., which suggests that low frequency information is more important to
these models. However, one interesting observation is that compared to adversarial attacks,
common corruption robustness seems to cap in an specific f,.. For example the adversarially
robust models (blue) have smaller corruption accuracy compared to the other robust models.
This seems to indicate a trade-off, where using too few frequencies ends up affecting perfor-
mance. We decided to explore this by using different ‘blur’ models with increasing blurring
kernels’ size. In Fig 5b, we observe that most models except the ones trained for common cor-
ruption robustness lie close to the curve (light green) fit to ‘blur’ models (light green crosses).
This is an indication that the decrease in performance as a function of f,., can be partly
explained through the frequency preference of the models.

Next we explored this relationship between robustness and frequency bias on models
trained for ImageNet classification. In addition to a baseline model, we analyzed two adversa-
rially trained models, six models trained for robustness to common corruption and a model
with blurring preprocessing layer (Table C in S1 Appendix). In Fig 6a, we plot the minimum
adversarial perturbation size € with respect to the half-power frequencies, f; s, of adversarial
perturbation spectra. We can observe that the minimum perturbation size is negatively
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frequency fy 5 calculated from adversarial perturbation spectra. (b) Model accuracy on ImageNet-C dataset versus reverse frequency fye,
calculated from hybrid image experiment.

https://doi.org/10.1371/journal.pchi.1010932.g006

correlated with half-power frequencies, this indicates that robustness to adversarial attacks is
correlated with adversarial attacks that have more energy in low frequencies.

Furthermore, Fig 6b shows corruption accuracy versus the reverse frequency, f,e,, for the
ImageNet-C dataset. Here we observe that the common corruption robust models are more
robust than the baseline and have smaller f,.., consistent with our findings in CIFAR10 mod-
els. However the adversarially robustness models are less robust than baseline even though
they have smaller f,... This is probably because the clean performance of adversarially robust
models on this dataset is too low, therefore they are not comparable to baseline (Table C in S1
Appendix).

Similar to the analysis done for CIFAR10 models, we trained a series of ‘blur’ models with
different blurring o (light green crosses in Fig 6b). We observe the same ‘Goldilocks’ behavior
in Fig 6b, that either too much or too little blurring decreases model performance on cor-
rupted images. Other models deviate from this ‘blur’ model manifold more compared with the
results for CIFAR10 dataset (Fig 5b), suggesting that a simple low-/high-frequency view on the
robustness is less accurate for models trained on larger images. For example, perhaps some
robust features in such dataset are not entirely low-frequency. While ‘blur’ models for
CIFARI1O0 are trained from scratch, ‘blur’ models for ImageNet are initialized by a pre-trained
baseline ResNet50 model (‘base’ in Fig 6) and fine-tuned after the fixed blurring layer is added.
This might induces some bias on the ‘blur’ models towards the baseline model and affects the
frequency tuning properties.

Discussion

Recent studies have linked brain-like representations to robustness of deep network models
[7-9]. By introducing a novel hybrid image task, we were able to study the frequency prefer-
ence of a neural networks, and show that these brain-like models were more robust mainly
through a preference towards low spatial frequency features. This work follows in spirit the
approach of Geirhos et al. [11], where the authors combined the shape of an input and the tex-
ture of another one to produce an input that had features with “conflicting information”
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towards different classes. This approach of producing cue-conflict style tasks seems to be useful
for understanding the model preference towards certain features and not others.

Furthermore, we have shown that this bias is present in an extensive group of machine
learning models trained for robustness: we found that robustness to common corruptions and
adversarial examples are correlated with this low frequency bias. However, there seems to be a
difference between robust models on CIFAR10 vs ImageNet. Adversarially robust models are
more robust to common corruptions on CIFAR10 but not on ImageNet. Previous work has
also shown that adversarially robust models are not robust to common corruptions [26]. How-
ever, they attributed this behavior to both perturbations having qualitative different properties.
In our case, we argue that adversarial robustness in ImageNet dataset is more difficult to
achieve, and therefore the models we analyzed cannot handle perturbations as large as the
ones in common corruptions compared to CIFAR10 trained models. All of this seem to indi-
cate that robustness to different datasets might be achieved through different methods but
low-frequency preference seem to be a key component of current robust models.

The mouse regularized model shows a clear bias towards low spatial frequency compared
with the baseline (Figs 2d and 3b), which must be inherited from the neural representation of
mouse V1. We hence decomposed the mouse V1 manifold and looked at the spatial tuning of
major components. We found that the dominant dimensions of neural population responses
can be approximately described by linear receptive fields with low spatial frequency (Fig D in
S1 Appendix), and that is the origin of low frequency preference of mouse regularized model.
Although we do observe statistically significant effect of low frequency bias in monkey regular-
ized model, it is much weaker than that in the mouse regularized one. We speculate it is
because monkey V1 representation encodes other robust features that are not low spatial fre-
quency. Analysis in Safarani et al. [8] shows monkey regularized model emphasizes the salient
regions of images more than other control models, which suggests that the robustness is due to
more than just a change on frequency sensitivity.

Previous physiological experiments [27-29] have measured the tuning properties of neu-
rons in mouse and monkey visual cortices. Here we take the values from Table 1 of Van den
Bergh et al. [29] regarding the preferred spatial frequency of a neuron, which are 0.04 cycles/
deg for mouse V1 and 2.43 cycles/deg for monkey V1. We can safely assume each natural
image used in the neural regularization studies [7, 8] contains one object, and treat the image
size as a universal length unit. In the mouse regularization work, each image used in the exper-
iment is approximately 67.5 visual degrees in height, therefore the preferred frequency of V1
neuron is about 2.7 cycles per image. In the monkey regularization work, each image is
approximately 6.7 visual degrees, hence the preferred frequency of V1 neuron is about 16.3
cycles per image. The difference in normalized preferred spatial frequencies is also consistent
with the observation that mouse regularized model shows more low frequency bias and robust-
ness than the monkey regularized counterpart.

In addition, we were able to use the strategy of biasing towards low spatial frequencies and
enforced it with a simple preprocessing layer to produce robustness on par with this group of
robust machine learning methods. Previous work has also tried to use frequency information
to produce robust models for ImageNet [14, 30, 31]. For example, antialising has been shown
to improve robustness to common corruptions when introduced before or after the nonlinear-
ities of different models [14, 31]. However, this method seems to behave differently than our
preprocessing models. For example, these anti-aliasing models decrease in performance as you
go into the high frequency corruptions, similar to the baseline models. This is in contrast to
the other robust models that perform better on high frequency corruptions compared to low
frequency ones. As the authors explained in their work, the anti-aliasing methods focus more
on producing shift-invariant models while preserving as much high frequency information as
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possible. This might be the reason why this model behaves differently than the ‘blur’ or ‘PCA’
models which explicitly attenuate high frequency information from the input, and why our
models behave more similarly to neurally regularized and data augmented models. This indi-
cates that there can be different approaches to producing robust models to common corrup-
tions with focus on different properties of the frequency spectrum.

However, as previous work has shown, using low frequency bias has its limitations. For
example, Yin et al. [15] have shown that training a model on the “Fog” common corruption
only using the frequency, but not the spatial information is insufficient to generalize to the
same “Fog” common corruption during testing. This makes sense given that the corruption
has a very specific spatial structure that does not depend only on the frequency. In addition, as
we observed in Figs 5b and 6b, the bias towards low frequencies can be too strong, such that
the performance deteriorates. This suggests that to reduce the gap between humans and
machine learning models in out-of-distribution generalization, we must move beyond this low
frequency-based preference found in current robust machine learning models and find a better
and more principled inductive bias.

One possibility to achieve this grand goal is to use ideas from neuroscience. As our and pre-
vious work has suggested, neuroscience has provided inspiration to machine learning, but spe-
cific paradigms to directly translate biological scientific insights and data into a performance
improvement in machine learning are largely absent. The neural regularization approach is a
demonstration that this direction can help engineer more intelligent algorithms to usher the
new field of NeuroAlI. Furthermore, given that current machine learning models are still not
robust to adversarial attacks and common corruptions, this work is just the start of bridging
the gap between natural and artificial intelligence.

Besides making the model representation be more brain-like, recent research has also intro-
duced other neural features into machine learning models to make it more robust, for example
using biologically-constrained Gabor filters as the first layer and adding stochasticity to mimic
the spiking responses in neural systems [9]. The more biological Gabor filters functions much
like our blurring preprocessing layer, since they both gains Fourier components to enhance
features in certain spatial frequency interval. We do not put too much effort on the the stochas-
ticity as there have been evidence that such defense mechanism usually cause gradient masking
as obfuscated gradients [32] and overestimated the model robustness. When properly attacked,
for example computing the expectation over instantiations of randomness, the appeared
adversarial robustness is gone [32]. Evaluation of stochastic models does not follow the same
protocol as that of deterministic ones [24], we therefore focus only deterministic models as
they gain the robustness through using different representation from that in baseline models.

One recent research [33] measured the preferred spatial frequency of individual model
units via in-silico electrophysiology experiments, and showed that representation of robust
models are more aligned with macaque V1 neurons in terms of the distribution of preferred
spatial frequencies compared with non-robust models. Based on the eigenspectrum analysis,
they suggested that the robustness is due to smaller portion of high-frequency tuning units in
the robust models. Our work is complementary to their results as we analyze the model fre-
quency preference on the behavioral aspect instead of individual model units.

Methods
Hybrid images
We randomly select two images Ijo and I;gh from two different categories as seed images for

low-frequency and high-frequency components respectively. The 2D Fourier transform of

these two images are denoted as I, and T nign> and we define a binary mask on frequency

low
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domain as

Lo AN < foe
M(f) = { (1)

0. otherwise

and I nign through M,
according to hybrid = I,,OM+I nign © (1 — M), where © denotes an element-wise product.

The Fourier transform of the hybrid image is thus the combination of T

low
The hybrid image Iytyiq is calculated from I, ;; using an inverse Fourier transform.

Blur model

We designed a blur model to explicitly implement a frequency bias. Our blur model is simply a
ResNet model prepended with a blurring layer. The blurring layer is a linear convolutional
layer whose kernel weight is fixed as

M) 2)

1
w(Ax, Ay) = - €XP <— 57

in which Z is the normalization factor. The blurring layer can pass a gradient back to the input
image, so gradient-based adversarial attacks can be performed. Clean performance of the ‘blur’
model decreases as o increases because more information is discarded. We choose the value of
o such that the trained model has a similar classification accuracy on CIFARIO0 testing set com-
pared with other robust methods; o = 1.5 pixel is selected.

PCA model

Similar to the blurring model, the PCA model is also a ResNet model with a non-trainable pre-
processing layer. Treating the input image as a vector x whose dimension N is the number of
pixels, we first performed principal component analysis (PCA) on the training set and
obtained the eigenvectors v; (1 < i < N) sorted by their eigenvalues. We took the first K eigen-
vectors, denoted by a K x N matrix Wy, and constructed the filtering matrix

W=w, W, (3)

The PCA preprocessing layer is a linear layer whose input and output dimensions are both N,
with its weights given by the matrix W. This layer projects the original image onto the subspace
spanned by the first K eigenvectors, and effectively denoises the image. Similarly to the blur
model, the PCA model allows gradient backward passes to the input image, and can be
attacked with gradient-based adversarial attacks. The value of K is chosen so that the trained
model has a similar clean performance compared with other models, and K = 512 was selected
for the CIFAR10 dataset.

Model training and evaluation

The details about training mouse regularized models can be found in Li et al. [7]. The details
about training monkey regularized models can be found in Safarani et al. [8]. Models for stan-
dard CIFAR10 and ImageNet tasks are fetched through RobustBench [24] except for the pre-
processing ones.

To evaluate adversarial robustness of models, we used Foolbox [34, 35] to perform targeted
attacks using both gradient-based boundary attacks and projected gradient descent attacks
(PGD) on a fixed subset of testing images. For each image, the attack target class is predeter-
mined in a random way. We gather all candidates proposed by different attack algorithms and
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random seeds for each image, and pick the one with minimum perturbation size as the final
adversarial example.

Codes for training ‘blur’ and ‘PCA’ models, robustness evaluation of all models can be
found in https://github.com/lizhe07/blur-net.

Disclaimer

The U.S. Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright annotation thereon. The views and conclusions con-
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