A Sparse Distributed Gigascale Resolution Material Point Method

YUXING QIU, University of California, Los Angeles

SAMUEL TEMPLE REEVE, Oak Ridge National Laboratory

MINCHEN LI, University of California, Los Angeles & Timestep Technologies

YIN YANG, University of Utah & Timestep Technologies

STUART RYAN SLATTERY, Oak Ridge National Laboratory
CHENFANFU JIANG, University of California, Los Angeles & Timestep Technologies

In this article, we present a four-layer distributed simulation system and
its adaptation to the Material Point Method (MPM). The system is built
upon a performance portable C++ programming model targeting major
High-Performance-Computing (HPC) platforms. A key ingredient of our
system is a hierarchical block-tile-cell sparse grid data structure that is
distributable to an arbitrary number of Message Passing Interface (MPI)
ranks. We additionally propose strategies for efficient dynamic load bal-
ance optimization to maximize the efficiency of MPI tasks. Our simulation
pipeline can easily switch among backend programming models, including
OpenMP and CUDA, and can be effortlessly dispatched onto supercomput-
ers and the cloud. Finally, we construct benchmark experiments and ab-
lation studies on supercomputers and consumer workstations in a local
network to evaluate the scalability and load balancing criteria. We demon-
strate massively parallel, highly scalable, and gigascale resolution MPM
simulations of up to 1.01 billion particles for less than 323.25 seconds per
frame with 8 OpenSSH-connected workstations.

CCS Concepts: « Computing methodologies — Parallel algorithms;

Additional Key Words and Phrases: Material Point Method, High Perfor-
mance Computing, distributed system and computing

This work has been supported in part by NSF CAREER 2153851, CCF2153863, ECCS-
2023780, DOE ORNL contract 4000171342, NSF 2244651 and 2301040. Additionally,
this work was supported by the Exascale Computing Project (17-SC-20-SC), a collab-
orative effort of the U.S. DOE Office of Science and the NNSA. This research used
resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science of the U.S. Department of En-
ergy under Contract No. DE-AC05-000R22725. This manuscript has been authored by
UT-Battelle, LLC under Contract No. DE-AC05-000R22725 with the U.S. Department
of Energy (DOE). The publisher, by accepting the article for publication, acknowl-
edges that the United States Government retains a non-exclusive, paid-up, irrevocable,
world-wide license to publish or reproduce the published form of this manuscript, or
allow others to do so, for United States Government purposes. The DOE will provide
public access to these results of federally sponsored research in accordance with the
DOE Public Access Plan.

Authors’ addresses: Y. Qiu, M. Li, and C. Jiang, 603 Charles E Young Dr E,
UCLA Slichter Hall 3860, Los Angeles, CA 90095; emails: yuxqiu@gmail.com,
yxqiu@g.ucla.edu, minchernl@gmail.com, cffjiang@math.ucla.edu; S. T. Reeve and
S. R. Slattery, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN
37830; emails: {reevest, slatterysr}@ornl.gov; Y. Yang, 201 Presidents’ Cir, The Uni-
versity of Utah, MEB 3454; Salt Lake City, UT 84112; emails: yin.yang@utah.edu,
yangzzzy @gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2023/01-ART22 $15.00

https://doi.org/10.1145/3570160

Application : Scenario Design MPI Topology and :

(MultiSim) 0 and Initialization Initial Partitioning o

1 1

PIC Algorithms !]

(MultiSim) 1 1

1]

1 1

. .]]

Particle/Grid i B

Data, Algorithms "= = = = = = = = = = = = = = = E

and Particle Dense Grid 1 SparseGrid 3

C tion . Data « Data 1 . Data Structures :
(Cabana) + Migrate & Halo « Interpolation 1 * Sparse Interpolation

C icati « Halo C ication + Sparse Halo Comm 1

1

Programming

Model Data Management Parallel Execution
(Kokkos)

= = = Created in this work

Fig. 1. Hierarchical System Architecture. Our distributed MPM simu-
lation system is designed and implemented hierarchically. In this article,
we will use Particle/Grid data layer in short for the Particle/Grid Data, Al-
gorithms and Communication layer. Different layers are implemented in
separated codebases. Library names are labeled below layer names.

ACM Reference format:

Yuxing Qiu, Samuel Temple Reeve, Minchen Li, Yin Yang, Stuart Ryan Slat-
tery, and Chenfanfu Jiang. 2023. A Sparse Distributed Gigascale Resolution
Material Point Method. ACM Trans. Graph. 42, 2, Article 22 (January 2023),
21 pages.

https://doi.org/10.1145/3570160

1 INTRODUCTION

High-resolution simulations are of high demand in both the VFX
industry and scientific research. In recent years, the Material
Point Method (MPM), due to its flexibility and versatility, has
shown a great potential for modeling a wide range of continuum
materials.

To reduce computational cost and programming efforts, re-
searchers have explored modern computational platforms and im-
proved MPM in both parallelization schemes and latent particle/
grid data management. Dedicated code design examples in graph-
ics include threaded CPU MPM [Fang et al. 2018], single-GPU
MPM [Gao et al. 2018; Hu et al. 2019, 2021], and multiple-GPU
implementations [Fei et al. 2021; Wang et al. 2020]. These state-of-
the-art solvers still focus on exploiting a single machine with lim-
ited memory and computing power, leading to restrictions from
several perspectives. On one hand, CPU-based computation is less
efficient due to the limited number of threads despite the hundred-
GB memory to support large-scale data. GPU-based computation,
on the other hand, can significantly reduce the simulation time, but
the onboard memory makes it challenging to go large-scale. While

ACM Transactions on Graphics, Vol. 42, No. 2, Article 22. Publication date: January 2023.

22:2 .

Y. Qiu et al.

Rank 0-0-0

Frame 9 Frame 31

Frame 19 Frame 87

Rank 1-0-0

Rank 2-0-0

Rank 3-0-0

Fig. 2. 1B-Fluid with more than 1.01B particles. We use 4 x 1 x 2 MPI ranks (eight in total) to handle the simulation domain. The weakly compressible
fluid particles are colored by the volume change ratio. We show representative frames (left) and sub-domains handled by eight workers (right).

using additional GPUs can relieve the intense memory usage [Fei
et al. 2021; Wang et al. 2020], the number of GPUs that a sin-
gle motherboard can hold is still capped. Furthermore, both CPU
and GPU MPM require skillful programming dedicated design
efforts.

Together, these restrictions motivate our exploration of a
device-portable distributed simulation system, which allows
researchers with minimal software experience to customize
large-scale simulations and maximally leverage their devices.
Specifically, we aim to build a distributed MPM system that
pursues the following design goals:

— Device portability for high performance. Many existing
simulations using only CPU or GPU resources require ded-
icated design, implementation, and optimization of code. It
is also challenging to perform device-related code migration
if new needs arise. Our design goal is to support effortless
hardware switching according to users’ needs, i.e., to allow
switching the latent programming models and parallel
platforms for the simulations by modifying very few lines
of code.

— Distributed dispatch for large-scale simulation. We al-
low the simulation system to scale up according to available
hardware. To achieve this goal, we need to establish reliable
and efficient grid/particle data structures and build com-
munication machinery among multiple separate-memory
computing nodes. To further improve the scalability, we aim
to reduce unnecessary memory usage by developing new
sparse data structures.

— Dynamic workload decomposition. Distributing computa-
tions to multiple workers is challenging from two standpoints.
First, from the performance perspective, calculation time is
bounded by the device with the highest workload. While
other nodes are busy, idle nodes with tasks completed earlier
simply wait, wasting time and resources. Second, robustness
and system stability are crucial. An imbalanced partitioning
strategy may cause run-time failure by exhausting the mem-
ory of some overloaded node. In simulations, the topology of

ACM Transactions on Graphics, Vol. 42, No. 2, Article 22. Publication date: January 2023.

the activated grids and the particles can dramatically differ
from their initial settings. Thus, static partitioning can be-
come extremely ineffective and non-robust, working only for
carefully designed scenes as in Fei et al. [2021] and Wang et al.
[2020]. Therefore, we demand dynamic workload partitioning
for better distributed performance and robustness.

— Programming simplicity. A typical parallel simulation
code requires great programming effort in memory manage-
ment and parallel execution. We prefer the system’s users
with different simulation and programming skill levels can all
focus on their primary goals, ranging from setting up scenes
and designing numerical algorithms to exploring novel data
structures.

1.1 Key Insight

These assumptions and design goals lead us to a hierarchical archi-
tectural design principle as shown in Figure 1. We divide the whole
system into four layers: the programming model layer, the particle/-
grid data layer, the PIC algorithm layer, and the application layer.
This hierarchical design allows users with various experimental
goals to focus on distinct layers and to extrapolate the system’s
potential. Below we discuss each layer in more details.

Programming Model. This bottom layer focuses on developing
device-portable specializations on (1) memory alloca-
tion and access, and (2) parallel execution operations.
Specifically, it allows upper layers to use unified inter-
faces to perform parallel computations with the desired
backend computational models (e.g., OpenMP or CUDA)
and manipulate data stored on user-preferred comput-
ing devices (e.g., CPU or GPU).

Particle/Grid Data. Generally, Lagrangian particles, Eulerian
grids, and/or their combinations are used for simula-
tion schemes considered in this work. However, de-
signing and implementing these data structures and
related algorithms on distributed systems require in-
tensive efforts. Thus, we use an independent layer to
implement particle/grid distributed data structures that

A Sparse Distributed Gigascale Resolution Material Point Method « 22:3

Fig. 3. Mudflow. Our distributed MPM enables this over-207.8 M-particle
mudflow simulation using averagely only 159.34 seconds per frame. Here,
we employ four workstations connected through OpenSSH.

allow users to customize the latent memory layout and
the attributes stored for each element. Furthermore, par-
ticle and grid inter-rank communications are integrated
for distributed systems. In addition, since particle/grid
number determines the total workload on each rank, we
also attach dynamic load balancing as another crucial
component in this layer.

PIC Algorithm. Simulating dynamic physical systems typically
requires a time integration scheme. In our case, for ex-
ample, MPM adopts a Particle-In-Cell (PIC) paradigm.
Users can switch to other schemes by modifying the in-
tegration strategy. Additional components in this layer
include constitutive models for material versatility and
a particle sourcing module for time-dependent particle
injection.

Application. Users can customize the scene setup and material
parameters inside this layer based on all lower-layer
components. The user also chooses an MPI topology
according to the host hardware.

1.2 Background

To avoid reinventing the wheel, we employ two libraries,
Kokkos [Edwards et al. 2014; Trott et al. 2022] and Cabana
[Mniszewski et al. 2021; Slattery et al. 2022] to satisfy part of the
requirements of the bottom two layers.

Kokkos provides support for basic data structures on all ma-
jor heterogeneous and high-performance computing architec-
tures [Edwards et al. 2014; Trott et al. 2022]. Users can allocate
multidimensional arrays on different computing devices such as
CPUs and GPUs in a relatively easy and unified manner. In ad-
dition, Kokkos contains abstractions for most general parallel ex-
ecution patterns that are portable across hardware. Kokkos fully
satisfies the design goal of our programming model layer, en-
abling adoptions on modern hardware including NVIDIA GPUs
and multi-core CPUs which are both used in this work.

Cabana is a particle-specific library based on Kokkos. It provides
particle data structures, particle algorithms, and MPI communi-
cation operations. It also supports dense-grid and dense-particle-
grid operations with a static partitioning. Thus, Cabana satisfies
the particle-related requirements in our particle/grid data layer;

however, we require extra components for the grid components.
First, the dense grid is not suitable for simulations with significant
empty space since a large amount of memory and resources would
be wasted. Second, static partitioning limits the performance and
scalability as analyzed in the design goals.

1.3 Contributions

Following the hierarchical approach above, we develop a dis-
tributed simulation framework specialized for MPM kernels, em-
phasizing scalability and performance portability. Our system is
built on top of a modern C++ programming model (Kokkos) and
allows users to write and dispatch performant code on HPC plat-
forms with CPU- and GPU-based parallelization. In order to sup-
port the generality for users to switch back-end devices effort-
lessly, we do not pursue extensive performance improvement on
problems that can be well-solved by dedicated-designed single-
rank CPU or GPU devices, as did in Fei et al. [2021], Gao et al.
[2018], Klar et al. [2017], and Wang et al. [2020]. Instead, we con-
centrate on properly resolving large-scale scenarios where inter-
communication is unavoidable and single-rank machines are un-
able to handle.

In addition, for the particle/grid data layer, we utilize Cabana
for particle-related operations. We extend the Cabana library by
designing and implementing a novel distributed sparse grid data
structure with highly efficient allocation, access, and communica-
tion algorithms. Furthermore, we customize a dynamic load bal-
ancing partitioner to improve the simulation performance by en-
suring a balanced workload distribution on all MPI ranks. Based
on these implementations, we develop a fully open-source simu-
lation library that supports multiple MPM-related algorithms and
application designs, leading to gigascale resolution simulations for
a wide range of solid and fluid materials. We further provide com-
prehensive computational experiments that demonstrate

— the scalability of the proposed distributed system,

— the benefits of dynamic load balancing on sparse simulations,
and

— the performance variance with different MPI topologies.

In addition, we demonstrate large-scale simulation examples for
designers to customize their scenes with versatile application-level
components.

1.4 Overview

Following the hierarchy proposed in Section 1.1, we introduce
each system layer in the paper’s main body. First, in Section 3, we
overview the background needed to understand our article and cor-
responding implementations, including an introduction of MPM
(Section 3.1), the Kokkos programming model (Section 3.2), and Ca-
bana particle-related implementations (Section 3.3). This section
thus covers the programming model layer and part of the particle/-
grid data layer. Next, we introduce two new features we integrated
into the particle/grid data layer: Section 4 presents the proposed
MPI-dedicated distributed sparse grid and Section 5 shows our dis-
tributed dynamic load balancing scheme. After that, we describe
additional details related to the PIC algorithm and application
layers in Section 6. We then offer performance analysis in Section 7:

ACM Transactions on Graphics, Vol. 42, No. 2, Article 22. Publication date: January 2023.

22:4 o Y.Qiuetal

Fig. 4. High-resolution Sand Injection with grid resolution 512 X 512 X 512 and 266.5M particles. Sand particles are rainbow-colored by their positions.
We use four MPI ranks (2 X 2 X 1) for computation and show the partition status on the left-top corner of each sub-figure.

(1) weak and (2) strong scaling of the proposed distributed MPM
scheme, (3) the performance improvement with our distributed dy-
namic load balancing algorithm, (4) performance comparison with
different MPI rank topologies, and (5) large-scale simulation re-
sults with up to 1B particles. Finally, we conclude this article with
limitations, discussion, and possible future work.

2 RELATED WORK
2.1 HPC-Oriented Simulation Programming Model

Modern hardware makes it possible to improve simulation per-
formance with dedicated data structure and parallel kernels. One
primary attempt is to use multiple CPU cores with tools like
OpenMP [Dagum and Menon 1998] and Intel TBB [Willhalm and
Popovici 2008]. Further explorations are built upon GPUs for faster
computations. For example, GPU-based schemes were designed for
Eulerian and Lagrangian fluids [Amada et al. 2004; Chentanez and
Miiller 2011, 2013; Cohen et al. 2010; Goswami et al. 2010; Pfaff
et al. 2010; Vantzos et al. 2018; Winchenbach et al. 2016], as well as
for hybrid solvers [Chentanez et al. 2015; Gao et al. 2018; Hu et al.
2019, 2021; Wu et al. 2018]. Multi-GPU platforms [Fei et al. 2021;
Wang et al. 2020] were developed for MPM as well.

For scalability, researchers also explored distributed simula-
tions [Bauer et al. 2012; Liu et al. 2016; Qu et al. 2020; Shah et al.
2018]. Kale and Krishnan [1993] introduced Charm++, an object-
oriented portable C++-based parallel programming language that
is still being actively maintained by researchers from multiple
fields. Additionally, supportive systems such as Canary [Qu et al.
2018] and Nimbus [Mashayekhi et al. 2017, 2018] distribute tasks
onto computing nodes. For most systems, MPI [Snir et al. 1998] is
adopted as the message communication library. It provides various
communication primitives for sending and receiving data among
ranks. For example, Lesser et al. [2022] proposes a multi-physics
framework named Loki, which can be used as a generalized tool to
simulate various material phenomena ranging from elastic solids
to fluids with multi-CPU-core clusters. However, Loki leaves GPU
usage as future work. Similarly, for other systems, whether single-
machine-based or distributed, data arrangement and computations
are limited to specific back-end devices, and the performance opti-
mization is only architecture-oriented.

There have been many efforts for performance portability, i.e.,
enabling high performance across different architectures with a
single source code. For example, Hu et al. [2019] developed a com-

ACM Transactions on Graphics, Vol. 42, No. 2, Article 22. Publication date: January 2023.

piler that allows users to switch CPU/GPU backend by changing
a single line of code. Medina et al. [2014] provided a unified API
for interacting with backend devices with a C-extended kernel
language. Additionally, Zenker et al. [2016] implemented an ab-
stract hierarchical redundant parallelism model that supports ap-
plications on many hardware types ranging from multi-core CPUs
to GPUs. Furthermore, libraries such as Kokkos [Edwards et al.
2014; Trott et al. 2022] with its extensions like Cabana [Mniszewski
et al. 2021; Slattery et al. 2022] support the manipulation of array-
based data structures and their corresponding parallel patterns
on multiple underlying computing devices in a distributed man-
ner. These libraries relieve researchers’ effort in backend-oriented
maintenance and their usage is becoming a trend for next genera-
tion high-performance simulations.

2.2 Sparse Grid Data Structures

In many Eulerian and hybrid simulations, the grids are sparsely
activated, ie., only part of the grids contains non-zero entries.
Thus, sparse grid data structures have been developed to improve
memory bandwidth and data access efficiency. For instance, Open-
VDB [Museth 2013], sparse paged grids [Setaluri et al. 2014], and
Bifrost’s volume tools [Bojsen-Hansen et al. 2021] enable efficient
interactions of time-varying sparse quantities over large grid with
dedicated grid representation design on CPUs. Furthermore, Hoet-
zlein [2016], Museth [2021], and Gao et al. [2018] broaden the spar-
sity idea of VDB and sparse paged grids to GPUs. These exten-
sions vastly improve the simulation scalability and efficiency on
NVIDIA GPUs with limit-sized RAMs. Moreover, developing a data
hierarchy is an important addition to improve sparse data access
efficiency, such as in Hu et al. [2019] and Liu et al. [2018].

2.3 Load Balancing for Simulations

Load balancing and workload distribution are crucial for the per-
formance of distributed systems. Traditional load balancing algo-
rithms perform either geometric-based [Berger and Bokhari 1987]
or graph-based [Catalyurek et al. 2007; Karypis and Kumar 1997]
optimization. Some other works consider the temporal aspect
when deciding partition boundaries. Shah et al. [2018] proposed
speculative balancing for fluid simulation. It computes partition-
to-worker assignments by performing a low-resolution simula-
tion substitution and predicting the high-resolution workload
distribution in the upcoming steps. Their partitioning overhead is

A Sparse Distributed Gigascale Resolution Material Point Method « 22:5

Rank o Communicatior Rank 1
Particle Domain Grid View Grid View Particle Domain
Ouned Ghasted Ghosted Owned
P2G g Pl e

Grid Halo
Comm.

T
ERmmE
m |
I

MPI Comm

External Force § } External Force

Grid]
Update =

G2P
+
Particle
Advection

¢ W

Need N SiGio Need

= x[x 5
Repartition?] yes

00/0]ox
oo To o ofxx

R
x[x

x[x
§——————plo 0 0 0[0po o
Tololo o

7

ololo[olo

MPI Reduce * [olofolo]o]

load Local Worl

Dynamic
Load
Balancing

0
x
x
o
o
a

y ... [0ToTolo
e »x o

o
o
o
o
o

olclololo

X o
x x
x <|x [x
x o
x o

x
x
olox|x|x
ololxx|x[o]
artition Optimized Partition

No No

Optimize

Particle
Comm.

MPI Comm

Fig. 5. Our distributed MPM simulation pipeline, using two ranks as an
illustrative example. In the figure, Comm. is short for Communication.

polynomial in the number of ranks. Additionally, Qu et al. [2020]
proposed a birdshot scheduling method for partitioning. It splits
the simulation domain into many micro-partitions and assigns
them to nodes randomly. Based on cloud computing nodes’ high
latency, high throughput, and full bisection bandwidth, birdshot
scheduling was shown to outperform static partitioning in many
fluid simulation schemes including SPH, Eulerian, and hybrid
methods.

2.4 Fast MPM in Computer Graphics

MPM was introduced to graphics by Stomakhin et al. [2013] for
simulating snow dynamics. Scaling MPM to higher resolution
is promising since a regular Cartesian grid is used to discretize
fields [Jiang et al. 2016]. Many research efforts investigated tech-
niques to acclerate MPM. For example, Klar et al. [2017] con-
structed production-ready GPU MPM solvers in the Dreamworks
animation pipeline with adaptive particle advection. Gao et al.
[2018] studied design choices for explicit and implicit MPM paral-
lelism utilizing GPU. Based on that, Wang et al. [2020] harnessed
the power of multiple GPUs and achieved one-hundred-million-
particle simulations on an eight-GPU workstation. Recently, Fei
et al. [2021] summarized various principles for accelerating single-
and multi-GPU MPM implementations. They achieved real-time
performance for a one-million-particle simulation on four NVIDIA
GPUs with NVLinks.

Taking a different path toward performance optimization, Hu
et al. [2019] proposed the Taichi programming language as a

high-level interface to process spatially sparse multi-level data
structures. By decoupling data structures from computations,
users can perform experiments using different data structures
without changing much code. Hu et al. [2021] further improved
this compiler by introducing low-precision numerical data types
for reduced memory occupation and bandwidth consumption.
It enabled faster and higher-scale simulations by sacrificing
numerical accuracy.

3 BACKGROUND
3.1 Material Point Method (MPM)

MPM is a hybrid simulation method that uses particle and grid
representations to discretize the simulation domain. Typically,
physical attributes including mass (m,), velocity (v), deformation
gradient (Fp), and affine velocities (Cp) are stored on particles; grid
nodes that stores mass (m;) and momentum (m;v;), transferred
from particles, are treated as auxiliary scratchpad variables to
perform spatial derivative computations and boundary condition
enforcement.

To demonstrate our programming model without loss of gen-
erality, we implement the most basic first-order MPM time inte-
gration scheme with the following essential steps for incremental
dynamics.

(1) Particles-to-Grid (P2G). Compute grid mass and momen-
tum from particles: {m, mpv[’}} — {m;, m;ol}. In addition,
transfer force contributions to grid nodes from elastic stresses
of the nearby particles and project particle deformation gradi-
ents for plasticity (if any).

(2) Grid Update. Update grid velocities with either explicit or
implicit time integration: ©!" — »*!, taking boundary con-
ditions and collision objects into account.

(3) Grid-to-Particles and Particle Advection (G2P). Transfer
velocities from grid nodes to particles, evolve particle strains,
and then update particle positions with their new velocities:
(0*1) > (oL ER), (phop) - (ppt).

These three steps are the major computing components in MPM.

We show how these computations are performed on each MPI rank

in our distributed system in Figure 5.

3.2 Performance Portable Parallel Programming with
Kokkos

As introduced in Section 1.2, we employ the Kokkos library [Ed-
wards et al. 2014; Trott et al. 2022] as the device-portable program-
ming model layer that supports multidimensional array allocation
and access and parallel execution patterns. Using Kokkos, our sim-
ulation pipeline can switch among different backend programming
models, including OpenMP and CUDA, using C++ template argu-
ments. For example, we can make the following definitions and
pass them into both particle and grid data structures and related
parallel kernels to invoke an NVIDIA GPU for data management
and computation. The comments show how we can quickly switch
to CPU with OpenMP.
1 using EXECSPACE = Kokkos::Cuda; // Kokkos::OpenMP

using MEMSPACE = Kokkos::CudaSpace; // Kokkos::HostSpace
3 using DEVICE = Kokkos::Device<EXECSPACE, MEMSPACE>;

ACM Transactions on Graphics, Vol. 42, No. 2, Article 22. Publication date: January 2023.

22:6 « Y.Qiuetal.

The particle data structure, our new sparse grid, and all other
supporting arrays are implemented based on Kokkos::View, which
defines a multidimensional array based on user-specified memory
space. We can set the array size at compile time or run time. One
example of defining a 2-dimensional array with Kokkos::View is
listed in the first line of the code patch below. It defines an NUM X3
array, with the first dimension size (NUM) specified during run
time and the second during compile time.

To dispatch parallel computations, one can use various Kokkos
parallel patterns with a specified execution policy to perform
defined kernels on different architectures, as shown below.
In line 2, we get particle position data slices (detailed parti-
cle definitions are listed in Section 3.3), and then dispatch a
Kokkos::parallel_for pattern with a range policy to assign particle
positions to the pre-defined Kokkos::View. By changing the con-
tent of KOKKOS_LAMBDA, one can easily modify the behavior of
the computing kernel. Finally, in line 12, we create a host copy of
the View data so that the CPU-side (host-side) code can also access
or further output the data to files for visualization.

Kokkos::View<T*[3], MEMSPACE> pos("positions", NUM);
auto x_p = Cabana::slice<P::pos>(particles);
/* dispatch a parallel for to assign data from x_p to pos */
4 Kokkos::parallel_for(
Kokkos::RangePolicy <EXECSPACE>(@, particle_num),
KOKKOS_LAMBDA(const int idx) { // compute kernel

pos(idx, @) = x_p(idx, @); // element access
8 pos(idx, 1) = x_p(idx, 1);
) pos(idx, 2) = x_p(idx, 2);

Y s
Kokkos:: fence();
12 auto host_view =
13 Kokkos::create_mirror_view(Kokkos::HostSpace(), pos);

// fence execution space

In addition to Kokkos::parallel_for, other parallel execution pat-
ters are supported in Kokkos, including parallel reduce and par-
allel_scan. We refer to Edwards et al. [2014] and Trott et al. [2022]
for further details.

3.3 Distributed Particles with Cabana

With the device-portable programming model, we are able to
build the particle/grid data layer. As mentioned in Section 3, we
utilize Cabana library for particle memory management and
communication.

Built upon the Kokkos::View, the Cabana::AoSoA enables
Array-of-Structure-of-Array (AoSoA) layout [Wang et al. 2020]
to manage particle storage with user-specified properties. The
Ao0SoA structure exploits the advantages of both Structure-of-
Array and Array-of-Structure to conserve both coalesced threads
calculations and performant random memory access patterns
when parallelizing MPM. The following code sample shows
how to declare particle storage with MPM-essential properties
such as mass, position, velocity, deformation gradient, APIC
transformation matrix, and plastic volumetric strain (lines 1-4).
Additionally, lines 5-8 illustrate how to use Cabana::slice to access
individual particle properties. The readers can find more details
in Mniszewski et al. [2021].

using particle_members =
2 Cabana::MemberTypes<T, T[3], TC3]1, TC31[31, TC31C31, T>;
using particle_list = Cabana::AoSoA<particle_members,
MEMSPACE >;
4 particle_list particles;
// access single particle properties with Cabana::slice

ACM Transactions on Graphics, Vol. 42, No. 2, Article 22. Publication date: January 2023.

auto position = Cabana::slice<1>(particles);
auto velocity = Cabana::slice<2>(particles);
auto affine = Cabana::slice<4>(particles);

3.4 MPI Communication

Handling particle and grid data communication is another crucial
ingredient of the particle/grid data layer. We use MPI [Snir et al.
1998], a message passing interface widely used for multi-node ap-
plications, to perform data communication among distinct ranks.
In the rest of this article, we use MPI rank, rank, and worker as in-
terchangeable terms of the logically independent computing unit
that handles non-overlapped work.

In practice, we divide the whole simulation domain spatially
and distribute the corresponding workload (particles and grids)
to ranks with a user-specified MPI communicator topology. MPI
ranks can be mapped to a single or multiple computing devices ac-
cording to the hardware setup and the options provided when run-
ning the simulation executable with mpirun/mpiexec command.
Generally, one individual process will handle one rank during exe-
cution. In our system, we use non-blocking MPI_Isend/MPI_Irecv
pairs for particle and grid data exchanges among workers. Also,
MPI_ALLReduce with operators like MPI_SUM or MPI_MIN
are employed for inter-rank grids/particles reductions. Moreover,
MPI_Barrier is called for synchronization to ensure data consis-
tency and computation correctness.

4 DISTRIBUTED SPARSE GRID

In MPM simulations, the valid domain is generally sparsely
occupied by material particles. As a result, it may cause an
unnecessary waste of computing time and memory occupation
in large-scale simulations if a dense grid is used. Therefore, we
develop a distributed sparse grid data structure to represent
the sparsely populated uniform grids in the particle/grid data
layer to more effectively leverage the computing resources on
multiple MPI ranks. Our sparse-grid approach shares kernel-level
interfaces with the dense grid data structures implemented in
Cabana, making it effortless for Cabana users to switch in their
simulation implementations.

We distribute the simulation work to multiple MPI ranks by
dividing the entire domain into rectangular partitions. Each MPI
rank needs to have panoramic information to guide its local com-
putations. Some essential global knowledge includes the size and
position of the entire simulation domain and the rectangle range
each MPI rank handles. To clarify the descriptions, we propose the
following concepts to represent the logical simulation domain and
uniform grid. Each concept is implemented as a separate C++ class
in practice.

— Global Mesh: The actual position and size of the entire sim-
ulation domain.

— Global Grid: The entire logical uniform grid, indexing from 0
to the grid resolution in each dimension. The global grid also
contains the domain partition information, indicating the grid
range that the current MPI rank is in charge of.

— Local Mesh: The position and rectangle sub-domain size of
the current MPI rank.

— Local Grid: The valid owned and shared grid indexing space
of the current worker. The owned space represents all the grids

A Sparse Distributed Gigascale Resolution Material Point Method « 22:7

2 X 2 Rank Topology

y

D Grid tile [] Grid cell

L.

D Rank 1-1

Tile = {Cell,, Cell,, ..}

Rank 1-0

Rank 0-1

Ranko-o

For Rank 1-1 []

Owned-shared space

Global index for involved tiles Local index inside each tile

Ghosted-shared space

(Owned by Rank 1-0)

Ghosted-shared space

(Owned by Rank 0-1)

Ghosted-shared space

Tile (i, j, k) = Tile key = Tile id Cell (i, j, k) = Cell id
- = 1
or i
= N S vy
N N ! i
Morton Lexicographic

(Owned by Rank 0-0)

Fig. 6. Hierarchical sparse grid representation. We use a 2D MPI topology as an example. The entire simulation domain is divided into four blocks,
each handled by a unique MPI rank. The blocks are further divided into tiles, which contains N X N grid cells (in this example, N = 4). Local cell indexing
inside each tile is lexicographical. The tile ijks are mapped to 1D keys through a user-specified manner (either lexicographical or using a Morton curve).
In addition, the halo regions, i.e., the shared spaces of different MPI ranks, are classified as owned-shared space and ghosted-shared spaces as illustrated in

shaded colors.

exclusively accessed by the rank, while the shared space in-
dicates the halo range with which multiple MPI ranks may
interact. As illustrated in Figure 6, we have two shared space
types: (1) owned-shared space to represent all the grids that
are owned and managed by the current MPI rank but may
interact with particles residing on the neighbor ranks, and
(2) ghosted-shared space to denote the grid range that owned
by some other MPI ranks, but the current worker may read
from or write to.

To further improve the flexibility of grid data management, we
propose a hierarchical block-tile-cell representation of the simula-
tion grid domain. Block is defined as the reference to the entire
local grid domain on a single MPI rank. It is further divided into
tiles, as shown in Figure 6, where each tile contains a user-defined
number of cells (4 X4 x4 in our examples). This hierarchical design
allows users to customize the grid data allocation and access with
coalesced data access patterns that could potentially benefit par-
allel particle-grid interpolations. It can also fit the special design
needs in user-customized simulation pipelines such as Gao et al.
[2018]; Wang et al. [2020].

Before performing the grid array allocation, we define a sparse
grid layout to specify the following information:

(1) the entity type on the sparse grid (i.e., whether to store the
value on grid nodes, cell centers, faces, or edges);

(2) the valid grid tiles in the current simulation step; and

(3) the halo status in the current simulation step.

The first piece of information is consistent throughout the entire
simulation process. In practice, we define multiple overloading
functions in the local grid concept to deal with the minor indexing
and grid ownership disparity caused by different entity types. By
contrast, the second and third status varies along with the simu-
lation and, thus, require recalculation in every time step. In the
following subsections, we explain how the sparsity is registered

(Section 4.1) and how the halo communications are achieved
(Section 4.2).

4.1 Sparse Map

In MPM simulations, the valid/activated grids, i.e., the grids that
will be allocated and accessed in the upcoming step, are the grids
that will interact with particles. The grid range each particle will
activate is determined by the particle position and the Eulerian
interpolating functions. We adopt the quadratic kernel for parti-
cle/grid data transfer in all examples. Thus, we can ensure that
each particle will activate only 27 grid cells nearby. Since we use
grid tile as the minimum unit of actual allocation, each correspond-
ing tile of these cells is mapped to an array index inside the grid
memory by spatial hashing before MPM time integration in each
step. We first map the global 3D tile index to a hashing key using
either the lexicographical order or a space-filling Morton curve
(Figure 6) [Gao et al. 2018; Setaluri et al. 2014; Wang et al. 2020]
according to user’s choice. This process ensures that every logi-
cally independent grid tile has a unique identifier on whichever
worker. Then, the tile key is registered in a device portable hash ta-
ble (Kokkos::UnorderedMap) in a specified execution manner. This
way, the 3D indices of all valid tiles will be mapped to a linear mem-
ory span indexing from 0 to the total valid-tile number.

4.2 Sparse Halo

To decide whether two adjacent MPI ranks need to exchange grid
data and how much to communicate, we need to consider the fol-
lowing factors:

— entity type stored on the grids,

— particle-grid interpolation kernel size,

— whether the grid halo region contains valid tiles, and
— halo size.

Concretely, the first two factors correspond to how the MPI neigh-
bor topology is defined by the entity type and the kernel size to

ACM Transactions on Graphics, Vol. 42, No. 2, Article 22. Publication date: January 2023.

22:8 « Y.Qiuetal.

Fig. 7. Elastic Playground. Numerous letters, symbols, and numbers are
poured onto the toy playground. At most, 394M particles are involved, and
the average simulation time is 229.56 seconds per frame.

transfer particle-grid data. Specifically, in 3D with kernel size 1,
the workers would share data with all 26 neighbor ranks if data
is stored on grid nodes or cell centers, while only six neighbors
require communication for edge and face cases. Our MPM system
stores all the attributes on grid nodes with a quadratic kernel, and
thus each worker needs to communicate data with all topologically
adjacent ranks.

The next two factors correspond to the following. Considering
the sparsity of the grid data, halo communication happens only
when there are commonly registered tiles in the ghosted-shared
spaces and owned-shared space of two neighboring ranks. And the
size of the owned- and ghosted- shared space is decided by the
halo size. Under this circumstance, we introduce two types of halo
communications:

— Halo Scatter. Scatter the data in the ghosted-shared space of
the current MPI rank to their owner rank and perform the
specified grid reduction (such as summation or computing the
minimum/maximum value). Note that the reduction happens
on the owned-shared space of the owner worker.

— Halo Gather. Gather grid attributes in the ghosted-shared space
of the current worker from the owned-shared space of the
neighboring owners.

The halo scatter happens after the P2G transfer in MPM time inte-
gration. The grid owner ranks collect and reduce all valid grid data
during this process. Afterwards, all owner ranks will contain com-
plete grid information transferred from simulation particles, in-
cluding in owned space and owned-shared spaces. Then, halo gather
is performed before grid update to ensure all MPI ranks hold the
entire and correct grid data in shared spaces.

To reduce the MPI communication overhead, we first count the
valid tiles in the ghosted- and owned- shared space before halo gath-
er/scatter, and broadcast the counting results to the neighbor ranks.
For halo scatter, workers will send halo data to a specific neighbor
only if both the counting in its ghosted-shared space and the count-
ing in the neighbor’s owned-shared space are non-zero. Addition-
ally, a worker will wait to receive data from a neighbor only when
the owned-shared space and the corresponding neighbor’s ghosted-
shared space are non-empty. Similar verification is also performed
before actual data transfer in halo gather operation, with the role
of ghosted- and owned- shared space switched.

ACM Transactions on Graphics, Vol. 42, No. 2, Article 22. Publication date: January 2023.

4.3 Sparse Array Allocation

Based on the information provided by the grid layout (specifies
entity type, grid activation, and sparse halo), the sparse grid array
is created and allocated. The grid is managed in an AoSoA manner,
with each tile serving as a basic Structure-of-Array unit, i.e., the cell
properties inside each tile are organized in an SoA manner while
the tile structures are listed in an outer array. By controlling the tile
size, user can switch grid data to either SoA (when tile size equals
to the block size) or AoS (when tile size equals to 1 X 1 X 1 cell).
As proposed in Wang et al. [2020], this design helps improve data
vectorization inside a contiguous array of member variables and
overall device cache efficiency with small grid tiles.

The following code example shows how to define and allocate
the sparse grid in the proposed programming model. In line 1, we
specify the primary value type of grid attributes. Moreover, in lines
2-3, we define the attributes stored on grids by listing all mem-
ber types (mass (1D) and grid momentum/velocity (3D)). Users can
easily adjust data channels by modifying the template definitions.
Then, in lines 4-5, we create a sparse map (Section 4.1) to record
valid grid tiles in each simulation step. Here, the MEMSPACE in-
dicates whether the hashing data is on CPU or GPU and further
decides whether the hash insertions or queries are performed or
paralleled within the host or device kernels.

using T = float; // or other types like double
2 using node_members = // mass and momentum in MPM simulation
Cabana::MemberTypes<T, T[3]>;
1 auto sparse_map = // hash table, Sec 4.1

Cajita::createSparseMap <MEMSPACE >(global_mesh, reserve_size);
6 /* create grid array layout edwards2@14kokkos, contains sparse
halo (Sec 4.2); the entity type Cajita::Node() indicates
values are stored on grid nodes x/
auto layout =
8 Cajita::createSparseArraylLayout<node_members>(local_grid,
sparse_map, Cajita::Node());
// allocated grid AoSoA
10 Cajita::createSparseArray<DEVICE >("nodes", layout);
1 nodes.reserve(pre_allocate_cell_num); // optional

auto nodes =

Later in lines 7-8, we need to specify the grid layout from the local
grid, sparse map, and the entity type to support the actual array al-
location. In detail, entity type guides the halo communication and
array allocation (Section 4); while local grid computes the owned-
/ghosted- tile ranges. Note the tile ranges in shared spaces require
update once the simulation domain is partitioned (Section 5) to en-
sure the communication correctness. Finally, an AoSoA array is cre-
ated with the pre-prepared information in lines 9-10. Automatic
reallocation will be triggered during simulation if the valid grid
array size exceeds the allocated capacity. We recommend explic-
itly reserving spaces for grid data by providing an estimation of
the maximum valid cell number (line 11) to reduce performance
drop caused by unnecessary reallocation.

5 DISTRIBUTING AND LOAD BALANCING

For performance-portable large-scale simulations, evenly distribut-
ing the workload to multiple ranks is essential. Considering the
significance of load balancing, simulation communities have for-
mulated the partitioning as a domain optimization problem [Sur-
min et al. 2015]. However, most existing works focus on the the-
ory and formulation. In this section, we propose and demonstrate
a detailed dynamic load balancing algorithm as an essential com-
ponent of most distributed computing systems. The corresponding

A Sparse Distributed Gigascale Resolution Material Point Method « 22:9

Static DGP-50

DGP-200 DGP-1000 DGP-2000

DGP-4000 DPP-50

DPP-200 DPP-1000 DGP-2000 DGP-4000

Fig. 8. Sand injection with different partition algorithms (133.2M particles in total, grid resolution 256x256%256). The first column shows static partitioning
result, and DGP-N refers to Dynamic Grid Partitioning per N simulation steps. Similarly, DPP refers to Dynamic Particle Partitioning. Row 1 to 3 shows the
results for frames 25, 99, and 145, respectively. Different color refers to particles (simulation sub-domain) handled by different MPI ranks.

ALGORITHM 1: Dynamic Load Balancing

Input: Sparse map map > for dynamic grid partitioning
Input: Particle positions pos, > for dynamic particle partitioning
Input: MPI communicator comm
Output: Optimized partition P = {I,], K}
Output: Optimization iteration times performed n
COMPUTELOCALWORKLOAD(map or posy)
COMPUTEGLOBALWORKLOAD(comm)
COMPUTEPREFIXSUM
n«o0
while n < np gy do > Nmax: Max iteration time
dim_sequence « random permutation of {0, 1, 2}
for all d € dim_sequence do
is_changed « false
is_dim_changed < opTIMIZATION1D(d)
is_changed « is_changed || is_dim_changed
end for
nen+l
if NOT is_changed then
return n
end if
end while

> Section 5.1.1
> Section 5.1.2
> Section 5.1.3

implementation is integrated into our particle/grid data layer, i.e.,
into the Cabana library. It will be fully open-sourced with detailed
documentation and unit tests. In the following article, we first in-
troduce two definitions of simulation workload in Section 5.1, and
then explain our 3D partition optimization in Section 5.2. The com-
plete dynamic load balance optimization algorithm is summarized
in Algorithm 1.

5.1 Workload Computation

As introduced in Section 4, the entire work is distributed by par-
titioning the simulation domain into non-overlapped rectangular
sub-regions according to the MPI topology, with every indepen-
dent MPI rank handling each sub-region. To perform the parti-
tion optimization, we need to evaluate the workload on each MPI
worker, ie., inside each rectangular sub-region, which changes

dynamically throughout the simulation. In addition, the optimiza-
tion process requires frequent workload analysis of the partitioned
attempts. Thus, we need a representation that supports efficient
workload computation within any rectangle regions.

We construct a 3D matrix to realize this goal, with each element
referring to the workload value inside the corresponding area. The
granularity of the workload matrix influences the accuracy and
performance of the load balancing optimization. A matrix with el-
ements representing smaller-sized regions helps the optimizer to
make a more accurate and flexible choice but may increase the com-
putation and communication overhead.

5.1.1 Local Workload Computation. First, we count the work-
load handled locally on each MPI rank. In hybrid simulation meth-
ods, particles and grids are two crucial representations. Thus, both
can measure the work amount, leading to two types of workload
computing methods.

Particle-based workload computation. In this case, each particle
is treated as a work unit. We make a parallel loop over particle
positions and perform atomic addition to corresponding elements
in the workload matrix. This method finally leads to a partition
where all MPI ranks contain a similar number of particles. Gen-
erally, hybrid methods use dramatically more particles than valid
grids (typically, each grid cell contains at least eight particles in
3D, and sometimes more to increase details and reduce numeri-
cal fractures). Thus, computations involving particles and atomic
additions consume more computing and time resources for work-
load statistics. Nevertheless, balanced particle distribution can po-
tentially benefit the timing of particle-grid data transfer if parti-
cles per cell are similar all over the domain because particle num-
ber decides the number of parallel kernels and majority memory
accesses.

Grid-based workload computation. In order to improve the load
balancing time efficiency, we also support the workload computa-
tion based on valid grid tiles. The compute kernel loops over the
hash table in the sparse map and sets the workload matrix element
to 1 if the tile is valid, i.e., no atomic additions are required, and
fewer matrix elements are involved compared to particle-based
computation.

ACM Transactions on Graphics, Vol. 42, No. 2, Article 22. Publication date: January 2023.

22:10 « Y.Qiuetal.

DPP-200

Static DGP-200

oY n"y* o

S

e e

Fig. 9. Elastic toys with different partition algorithms distributed on
4 (2 X 2 X 1) MPI ranks (22.4M particles in total, grid resolution 256 x
256 X 256). Row 1 to 3 shows the results for frames 6, 12, and 22, respec-
tively. Particles are colored yellow, blue, purple, and pink to indicate the
MPI ranks they belong to. Minor hue differences are applied to separate
toys.

Discussion on the choices. Generally speaking, both methods es-
timate the workload distribution from different perspectives in a
given domain. When particles are relatively evenly distributed in
grids, e.g., in elastic simulations, these two representations will
generate similar load balancing results. In this situation, grid-based
workload outperforms as it uses fewer computing resources. How-
ever, in simulations for granular media and fluids, the particles
can splash out dramatically or gather locally. In this case, particle-
based method standouts because valid grid tiles are likely to con-
tain significantly different numbers of particles, leading to distinct
P2G and G2P time and memory requirement on different ranks.
This may influence the simulation performance, as demonstrated
in Section 7, or cause run-time particle memory allocation errors
after particle communication for large-scale scenes.

In the rest of this article, we refer to the load balancing algo-
rithm as dynamic grid partitioning (DGP) if the workload is
computed from the valid grid tiles, and as dynamic particle par-
titioning (DPP) for the particle-based case. See Section 7 for de-
tailed comparison results.

5.1.2 Global Workload Computation. All MPI ranks need to
know the workload distribution in the whole simulation domain
to perform global optimization. Thus, we need to gather all the
computed local workload matrices to form a global matrix. We
achieve this calculation by performing MPI reduction among all
ranks with the MPI_Allreduce interface. Note that CUDA-aware
MPI is required if the simulation uses CUDA memory and GPU
execution space.

5.1.3 Global Workload Prefix Summation. We must scan all
dimensions to perform load balancing optimization and ana-
lyze if the current partition is optimal. This process requires
frequent workload counting inside any arbitrary rectangle
sub-regions. Inspired by Surmin et al. [2015], we compute the
3D prefix summation of the global workload matrix, pursuing

ACM Transactions on Graphics, Vol. 42, No. 2, Article 22. Publication date: January 2023.

a constant-time workload estimation. Specifically, we adopt
Kokkos::parallel_scan interface as an efficient solution for dis-
patching parallel inclusive/exclusive scans with a user-defined
functor and a parallel-execution policy. We scan the 3D workload
matrix in three dimensions separately to compute the 3D prefix
summation matrix, i.e., the first scan is in the x direction, and then
the second and third scans are based on the intermediate matrices
in y and z direction individually. The concrete algorithm is listed
in the supplemental document.

5.2 Partition Optimization

In this section, we first summarize the formulation of the 3D par-
tition optimization process and then introduce the detailed algo-
rithm we used for dynamic load balancing implementation. We use
I,], K to represent the partition in dimension x, y, and z, with I =
(@0, i1y - - - ,iNx),] = (osJ1»- - - ,jNy), and K = (ko,k1,... ’sz)
indicating the dividing boundary sets. Here, Nx, Ny, and N, are
the total number of MPI ranks in corresponding dimensions, and
i+, jx, ks refers to the tile indices. Specifically, iy = jo = ko = 0 and
Ny JNy» kn, equals to the total number of tilesin x, y, and z dimen-
sion, respectively. Note that the workload matrix granularity will
influence the unit of the pre-mentioned indices in the proposed
implementation. In practice, to make implementations easily un-
derstandable and consistent, we use grid tile as the atomic unit of
(1) workload matrix, (2) partition boundary index, and (3) grid data
communication.

For any given rank (a, 5, y), the local grid domain it in charges is
given by grid tiles {(i, j. k)liq <1 < ig+1,jp <J <jpr1.ky <k <
ky+1}. Suppose the starting tile of the current rank are optimized
and fixed; the proposed load balancing algorithm will find the op-
timal ending tile indices by solving the following optimization.

i1 JB+1 ky+1 o
min : W, ir—-W
. ; i,j,k
la+1,]/3+1»ky+1 =iy J:]ﬂ k=ky
Here, W, ; i is the workload in tile (i,j,k) and W refers to the

Nx 5Ny $Nz
average rank workload computed by Zizd Zjmo Ry Wik

N XNy XN,
As discussed in Surmin et al. [2015], this optimization is
an NP-complete problem. With previous partitions (ig, ..., i),

(o, ---.jp), and (ko,...,ky) fixed, there are three degree-of-
freedoms to decide, i.e., the optimal partition iy +1,Jj L1 and k),+1,
for the current rank. In addition, the results will influence the com-
putation for later ranks with larger rank indexing values. To solve
this problem with three unknowns, we iteratively alternate among
each variable and perform 1D optimizations. The iteration will stop
when the partitioning results are unchanged or the maximum iter-
ation number is reached, as shown in Algorithm 1. In the supple-
mental document, we present a validation example to show that
this iterative algorithm can generate the optimal solution with sev-
eral iterations when the ground truth is unique.

5.2.1 1D Load Balancing Optimization. Inside each 1D opti-
mization, we randomly choose one dimension of interest that is
never covered in the current iteration. This randomness reduces
the possibility for the algorithm to be trapped into local optimal
and potentially reduces the iteration times. Then, the partition in

A Sparse Distributed Gigascale Resolution Material Point Method « 22:11

the non-chosen two dimensions is fixed. All partition boundaries
in the dimension-of-interest will be reanalyzed individually for a
more even workload division. The detailed algorithm is summa-
rized in the supplemental document.

In practice, it is possible to have a range of consecutive tiles
where there are no valid particles. In theory, any tile indices in
this range can be treated as optimal partition positions. How-
ever, because dynamic load balancing is not performed in every
simulation time step, if we choose the pre-mentioned tile range
boundaries as the partition position, the particles may move over
the range boundaries before the next round of partitioning. This
choice will cause extra particle communications in the upcom-
ing steps, especially for solid simulations, where many particles
tend to gather together, and the particle communication overhead
would be considerable. Therefore, we always set the partition point
as the middle point of the equivalent tile range where there are
no particles. This simple operation reduces the potential parti-
cle communications among MPI ranks and improves the overall
performance.

6 DISTRIBUTED MPM IMPLEMENTATION
6.1 Time Integration

As mentioned in Section 3, we implement the first-order MPM time
integration scheme including three basic computation kernels, i.e.,
P2G, Grid Update, and G2P. For distributed systems, another two
communication kernels, Grid Halo Communication and Parti-
cle Communication are required to guarantee the correctness.
In detail, Grid Halo Communication is performed before Grid
Update to ensure the completeness of the grid data on each MPI
worker. It consists of the halo scatter and gather operations in-
troduced in Section 4.2. Then, after updating particle positions in
G2P, we end up time integration step with Particle Communi-
cation to distribute particles to the ranks in charge of the corre-
sponding grid sub-domain. Additionally, Dynamic Partition Op-
timization is performed right before Particle Communication at
certain time steps to ensure a relatively balanced load distribution.
The entire pipeline is illustrated in Figure 5.

6.2 PIC Algorithms and Application Implementation

To make a more complete distributed MPM simulation system, we
add the PIC Algorithm layer to further support the application layer
in building up versatile large-scale scenes. In addition to the core
time integration routines, we add components like device-portable
sparse collision object, particle sourcing, analytic/VDB-based
shape, and multi-material constitutive modeling with elasticity
and plasticity, forming the MultiSim library (Figure 1). We sup-
port four types of constitutive models, including fixed-corotated
model [Stomakhin et al. 2013] for elasticity, Drucker-Prager elasto-
plasticity [Klar et al. 2016] for sand simulations, Non-Associated
Cam-Clay (NACC) [Li et al. 2022; Wolper et al. 2019] for
snow/mud-like behaviors, and furthermore, weakly compressible
fluids [Tampubolon et al. 2017] for liquids. Users can easily specify
the component or even extend the current PIC Algorithm layer for
more applications. In the supplemental document, we provide a
concrete example showing how to use the components in applica-
tion level. More demos can be found in our open-source code.

Fig. 10. Weak Scalability scene setup with 1-8 workstations. Different
colors refer to different MPI ranks in each sub-figure.

[CUDA] 28.8M Particles, Weak Scalability

W Grid Halo W Particle W Partitioner G2P M Grid Update W P2G

125
e mm pmas S R aew e R

100

Average Time [ms/step]

1 2 3 4 5 6 7 8

x Grid Halo x Particle
125

Partitioner x G2P x Grid Update ~ P2G A Aggregated

100.00% 99.11% 99.20% 96.92% 98.66% 99.38%

96.00% 95.12%
100 X — e — —
-
X 75
g
2
g 50
&
> .
o
1 2 3 4 5 6 7 8
MPI Rank Number

Fig. 11. Weak Scalability on local workstations with GPU(CUDA). Here,
Particle is the short for Particle Communication kernel; and similarly, Grid
Halo for Grid Halo Communication and Partitioner for Dynamic Partition
Optimization. The listed numbers in the lower figure are the efficiency val-
ues for aggregated timing (summation of all six kernels).

7 RESULTS AND EVALUATIONS

This section evaluates the proposed distributed MPM framework
with scaling tests, load balancing comparisons, MPI Cartesian
topology comparisons, and large-scale demonstrations. We use at
most eight workstations (each as one MPI rank) in our experiments.
The workstation has one Intel Core i9-10920X (12 core, 24 threads,
base clock 3.50Hz) and one NVIDIA GeForce RTX 3090 GPU. We
adopt 10-Gigabit bandwidth Ethernet to support inter-rank com-
munications, with OpenSSH [developers 2021] and CUDA-aware
OpenMPI 4.1.2 [Members 2021]. All the evaluations and demon-
strations are conducted under this setup unless stated otherwise.

7.1 Multi-MPI Scalability

Scalability with increased computing resources is a widely adopted
test to evaluate the effectiveness and robustness of a distributed

ACM Transactions on Graphics, Vol. 42, No. 2, Article 22. Publication date: January 2023.

22:12 « Y.Qiuetal.

Fig. 12. Strong Scalability scene setup with 1-8 workstations. Differ-
ent colors refer to the particles handled by different MPI ranks in each
sub-figure.

algorithm. Ideally, performance should scale up with the number
of involved MPI ranks. However, a perfect scaling is not practical.
Specifically, Amdahl’s law and Gustafson’s law demonstrate the
limitation of parallel computing; furthermore, the communication
bandwidth also constrains the upper bound of multi-rank accelera-
tion. To analyze the performance of the proposed distributed MPM
system, we present the scaling results on local workstations with
CUDA as a latent programming model. Additionally, experiments
distributed with OpenMP are summarized in the supplemental
document.

7.1.1 Weak Scaling. Inspired by Gao et al. [2018], we set up the
experiment by placing an elastic cuboid at the center of each rank’s
local mesh and let it fall with gravity, as illustrated in Figure 10. All
cuboids are of the same size with 28.8M particles. The MPI rank
topology is nx 1x 1 for rank numbern = 1,2,3,5,7, and n/2xX 1X 2
for n = 4, 6, 8. We summarize the experiment timing and efficiency
of each computing/communication kernel in Figure 11. For com-
munication kernels (Particle Communication, Dynamic Partition
Optimization, and Grid Halo Communication), efficiency is com-
puted with 2-rank timings as the 100% base, since there’s little
communication overhead for the 1-rank case. As demonstrated,
the aggregated weak efficiency is over 95% regardless of the rank
numbers. To further illustrate the scaling potential of the proposed
model, we run the test with up to 120 ranks (20 nodes) with CUDA
on the Summit supercomputer and show the results in the supple-
mental document.

7.1.2 Strong Scaling. For the strong scaling test, we assign a
falling cuboid at the center of the global mesh as a fixed-size prob-
lem and bring different numbers of MPI ranks into the computa-
tion. The cuboid contains 159M particles for the CUDA test. The
entire workload is automatically divided and assigned to ranks by
applying the proposed dynamic load balancing algorithm given a
user-specified MPI topology, as shown in Figure 12. We conduct
the experiments with the same MPI rank topology settings as in
Section 7.1.1. The timing and speedup analysis are illustrated in
Figure 13. Our system can pursue an almost linear overall speedup
as the MPI rank increases.

7.2 Load Balancing Studies

Dynamic load balancing generally boosts the simulation perfor-
mance of a distributed system from several perspectives, as stated
before. However, partition optimization and the commensurate

ACM Transactions on Graphics, Vol. 42, No. 2, Article 22. Publication date: January 2023.

[CUDA] 159M Particles, Strong Scalability

Grid Halo W Particle W Partitioner
600

G2P M Grid Update W P2G

400

Average Time [ms/step]

x Grid Halo x Particle
10

8 /
793.61%

Partitioner x G2P x Grid Update

P2G A Aggregated

o

379.27%

Speedup [*100%]
S

o 100-:00% o
1 2 3 4 5 6 7 8
MPI Rank Number

Fig. 13. Strong Scalability on local workstations with GPU(CUDA). All
ranks handle a huge elastic box with 159M particles.

particle relocation may require significant computation and com-
munication time. In addition, various material behaviors may lead
to divergent partition results when using different workload ele-
ments. Therefore, we conduct several experiments with multiple
material behaviors to evaluate the proposed load balancing algo-
rithms in this section. The results and discussions can help users
find the best choice for their simulation objectives.

7.2.1 Sand Injection. In this experiment, we focus on compar-
ing the behavior of the static, dynamic grid, and DPP methods and
analyzing how partitioning frequency influences the performance.
As displayed in Figure 8, we design a 4-MPI-rank sand injection
scene, where each rank injects sand from two sourcing points with
random velocities pointing toward the shelf (collision object) sit-
ting at the domain center. Throughout the simulation, sand mate-
rial sometimes splashes and finally settles down, leading to dynam-
ically varying workload distribution.

Dynamic Partitioning V.S. Static Partitioning. For a thorough
analysis, we illustrate the detailed timing on all four ranks for
static, dynamic grid, and dynamic particle partitions in Figure 14.
In addition to the timing of each separate kernel, we also show
waiting time, which refers to the duration when faster ranks finish
computation/communication and wait for other ranks. We show
the data with dynamic partitions performed every 50 steps with-
out loss of generality. In the first row of Figure 14, static partition-
ing pushes more work to lower ranks (rank 0-0-0 and 1-0-0) as
the sand particles fall to the ground. The upper ranks (rank 0-1-0
and 1-1-0), on the other hand, contain fewer and fewer particles
and thus sit idle, wasting time waiting for the lower ranks. This
issue is mitigated when dynamic partition is adopted (rows 2-3 in
Figure 14).

In this test, some sand particles splash out in the upper sub-
domains while the others pile up at the bottom. This uneven

A Sparse Distributed Gigascale Resolution Material Point Method « 22:13

Rank 0-0-0

Rank 0-1-0
Static

DGP

Caow o ® @& ® o® ow owomoow b omoom o om s & omo® o oW owow b

Rank 1-0-0

Rank 1-1-0
- B Waiting

W Partition

B Particle

B Grid Halo
G2P

B Grid Update

B P2G

DPP
E - o0 =
g %
e = = e e wr r Jare e a r s p mr
Frame ID
Fig. 14. Detailed timing per step (in milliseconds) of sand injection with static partitioning, DGP, and DPP.
Speedup Over Static Partition (Sand Injection with CUDA, 133M Particles) Elastic Toys Aggregated Time Elastic Toys Speedup
550 250
#0000 DPP-50
® DPP-200 T 40 X \
DPP-1000 3 5 200 e
200.00% © DPP-2000 E a0 g v \/"'-\—h_—_
_ ® DPP-4000 E /\‘_,_,__._—-——— g o
& DGP-50 & o v 8
& i5000% ® DGP-200 o g |
é © DGP-1000 z) g 100 <
3 DGP-2000 h &
g- 100.00% ® DGP-4000
0
i @ Frame ID Ll o Frame ID o
d ® Static ® DGP_200 © DPP_200
50.00% I
Fig. 16. Elastic Toys. (Left) Aggregated simulation time statistic, aver-
0.00%

pa P N w0 pe p
Fig. 15. Aggregated time speed up of dynamic load balancing over static
partitioning. DGP-N and DPP-N refer to dynamic grid partitioning and dy-
namic particle partitioning performed every N steps, respectively.

particle-per-grid-tile distribution leads to different behaviors of
DGP and DPP. When applying DGP, each rank contains a similar
number of grids, but the upper ranks need to handle more particles.
This fact means that more parallel work is required for upper ranks
to perform P2G and G2P, and thus the lower ranks become idle, es-
pecially after frame 90. For DPP the roles reverse as the lower ranks
need to handle more of the grid, making the upper ones wait.

Dynamic Partition Frequency. We compare the speedup of dy-
namic grid/particle partitioning with different frequencies to static
partitioning in Figure 15. This specific simulation takes around
233 steps per frame, and the sand particles are continuously in-
jected until frame 80. We choose partitioning step intervals to be
50, 200, 1000, 2000, and 4000 for testing, i.e., performing dynamic
load balancing per about 0.25, 1, 4, 8, and 17 frames.

As illustrated in Figure 15, all choices achieve over 1.4x speedup
and can reach 2.3x in some frame ranges. In theory, the best
speedup would be about 2x, as the extreme case is that the
lower two ranks handle all workload and the upper two do
nothing but wait. This speedup can be better in practice when
considering the overhead of parallel scheduling, memory access,
and communication.

Overall, DPP outperforms the grid-based method for the splash-
ing materials. Moreover, each partitioning frequency has differ-
ent speedup trend through frames 0-25, 25-80, and 80-150. This
indicates that the particle/grid number (problem scale), material

aged on each step. (Right) Speedup of dynamic partitioning over the static
partitioning.

Table 1. Sand Inject Speedup

Method Static DPP-50 DPP-200 DPP-1000 DPP-2000 DPP-4000
Time (h) 6.15 3383 3.82 3.83 3.62 3.64
Speedup (%) | - 16049% 160.87% 160.30% 169.89% 169.10%
Method (k) — DGP-50 DGP-200 DGP-1000 DGP-2000 DGP-4000
Time (h) - 4.26 4.25 437 425 426
Speedup (%) | - 144.28% 144.68% 140.69% 144.49% 144.13%

We summarize the total simulation time of the 150 frames in hours and the
speedup of partition methods with different partitioning frequencies. DPP and
DGP achieve the best overall speedup 2000 and 200 steps, separately.

behavior (sourcing, splashing, and falling), as well as the motion
(if particles are moving toward the same direction as the parti-
tion boundaries) will all influence the actual performance. Despite
the partitioning frequency, our dynamic load balancing algorithm,
compared to the static case, can always accelerate the simulation
process as summarized in Table 1, and it can gain more speedup
for large-scale cases that consume more time (after frame 80 when
sourcing stops as in Figure 15).

In particular, we observe that DPP per 4000 steps behaves
better than other cases after frame 80. There are two possible
reasons. First, frequent partition changes prompt immediate
particle relocation among ranks. It will also introduce extra
particle communication work in the following steps, especially
when particles and partition boundaries move in the same
direction. Second, a relatively perfect particle partition leads to
an undesirable grid partition for splashing sands. Nevertheless,
delayed partitioning alleviates this situation by pushing more
particles to lower ranks but more grid to the upper ranks, thus

ACM Transactions on Graphics, Vol. 42, No. 2, Article 22. Publication date: January 2023.

22:14 « Y.Qiuetal.

TOPO 4x1x1 DGP-200

TOPO 4x1x1 Static

TOPO 4x1x1 DPP-200

TOPO 1x4x1 DGP-200 TOPO 1x1x4 DGP-200 TOPO 2x2x1 DGP-200

e AR
-

M

Fig. 17. Sand dambreak with different partition algorithms and MPI topology settings (17M particles in total, grid resolution 256 x 256 x 256). TOPO in
the figure refers to MPI Cartesian topology. Rows 1 and 2 show the results of frames 21 and 49, respectively. Different color refers to particles (simulation

sub-domain) handled by different MPI ranks.

leading to more rank-balanced particle-grid computations. DGP,
however, cannot benefit from this partitioning delay.

7.2.2 Elastic Toys. This experiment shows how partition meth-
ods behave when materials splash considerably less. Initially, we
assign four MPI ranks the same number and type of toys and
thus the same amount of particles, and we drop them as shown in
Figure 9. With toys falling down, particles are communicated to
lower ranks if they pass the upper-lower partition interface. Here,
the overall acceleration rates (173% for DGP and 180% for the par-
ticle case) are similar and are close to the best theoretical speedup
(200%). In a detailed timing statistics (Figure 16), we notice better
acceleration with DPP before frame 30. It happens because the toys
are of irregular shape and random orientation. Thus, some active
grid tiles contain only a sharp toy corner with few particles. Lower
toys reach the bottom while falling, but the upper ones are still
placed evenly in the sky. As a result, more grids will be activated in
the upper domain, leading to a partition boundary closer to the up-
per toy group. The toy’s falling direction makes the workload less
balanced in the steps prior to the next round of partitioning. One
of the representative frames is shown in the first row of Figure 9.

7.2.3 Sand Dam Break. Another classic scene we test is sand
dam break illustrated in Figure 17. Initially, two sand columns are
located at the diagonal corner of the entire domain. Unlike previ-
ous settings, we use MPI rank topology 4 X 1 X 1 to evaluate the
behavior of dynamic load balancing algorithms. In this simulation,
the sand flows toward the domain center and settles down onto
the floor at last. There is no splashing or extreme deformations
throughout this process. Thus the two dynamic partition methods
achieve similar speedups as demonstrated in Figure 18. In addition,
with more and more sands gathering into the middle domain, static
partitioning gradually becomes a naturally appropriate approach
(after frame 50). In this case, the dynamic load balancing methods
exhibit only 10%-15% performance improvement.

7.3 Cartesian Topology of MPI Ranks

Here we observe another factor that strongly influences the perfor-
mance of distributed simulators: the initial MPI Cartesian topology
setting. In this section, we use the Sand Dam break example intro-
duced in Section 7.2.3 for illustration. We rerun the simulation with
MPI topology 1 X4 X 1,1X1Xx4, and 2x 2X 1 (Figure 17) and com-
pare the timing to the case 4 X 1 1. To make a fair comparison, we

ACM Transactions on Graphics, Vol. 42, No. 2, Article 22. Publication date: January 2023.

Sand Dambreak (with CUDA, 17M Particles) Aggregated Time
TOPO-x1x1, DPP-200
® TOPO-4x1x1, DGP-200
= A A TOPO-1x4x1, DGP-200

Ave. Time [ms/step]

Speedup Over Topo 4x1x1 Static Partition

Speedup Percentage [%]

7 100 125 150 FrameID

Fig. 18. Sand Dambreak. (Top) Aggregated simulation time statistic, av-
eraged on each step. (Bottom) Speedup over static partitioning with MPI
rank topology 4 X 1 X 1.

adopt DGP for all the new topology settings and summarize the
timings in Figure 18.

With identical computing resources, the simulation perfor-
mance reduces significantly with inappropriate MPI topologies
(1x4x1and2x2x1). There are several reasons leading to this re-
sult in this specific simulation scene. First, sands move with grav-
ity toward the —y direction. If there are rank boundaries on the
y dimension, particles must be relocated to other ranks when flow-
ing down, increasing the particle communication overhead. Second,
diverse rank topologies lead to a different number of neighbors
and the size of halo areas, causing performance variance. Conse-
quently, the takeaway is that we should always carefully consider
the particle distribution and motion tendency in the scene to set
the initial MPI topology for the best performance.

7.4 Large-Scale Simulations

This part demonstrates the scalability of the proposed distributed
MPM scheme with a suite of large-scale simulations. The corre-
sponding settings and average time per frame are summarized in
Table 2, while the precise kernel timings are in the supplemental
document.

1B-Fluid. Example in Figure 2 exemplifies a complex fluid scenes
containing 1.01 billion particles falling onto chip-shaped boards.
To the best of our knowledge, this is the first MPM simulation be-
yond the scale of 1B. Initially, there is a water layer on the ground

A Sparse Distributed Gigascale Resolution Material Point Method

Table 2. Parameters and Timings

22:15

Example Particle # Rank# Grid Resolution Ave sec/frame Atgame Ax max Algtep material parameters
(Figure 2) 1B-Fluid 1, 006, 766, 992 8 256 X 266 X 256 323.25 1/4 100/256 1.01x 1073 Fluid: (500)-(3 x 10°, 3)
(Figure 3) Mudflow 207, 810, 349 4 256 X 256 X 256 159.34 1/10 200/256 3.36x10™* NACC: (1500, 1.5 x 107, 0.3)-(—0.007, 0.05, 30, 30)
(Figure 4) High-resolution Sand Injection 266, 507, 608 4 512x512x512 1, 072.95 1/60 1/512 3.58x 107° Sand: (20, 1 x 10%, 0.4)-(30.0, 0.0)
(Figure 7) Elastic Playground 393, 954, 516 4 512x512x512 229.56 1/4 200/512 8.42x107* Fix-corotated: (1000, 9 x 10°, 0.4)

We summarize the parameters of particle numbers, grid resolutions, MPI rank numbers, grid cell size Ax, and the average time per frame for various experiments described in

Section 7.4. The material-related parameters are listed as well. In addition to the basic material settings (density p, Youngs Modulus E, and Poisson Ratio v), parameters
needed by specific materials are provided. We refer to the corresponding papers for a physical explanation of the parameters. For fix-corotated model, we simply show
(p, E, v); while for NACC, parameters are given with format (p, E, v)-(ao, B, &, friction angle); sand model (Drucker-Prager elastoplasticity) includes parameters

(p, E, v)-(friction angle, cohesion), and finally, we provide (p)-(k, y) for fluids.

Table 3. CPU/GPU SOTA Comparison

Device Method Particle # Timing (ms/step)
[Wolper et al. 2019] 10M 1034.98
CPU
Ours 10M 2261.39
GPU [Gao et al. 2018] 20M 39.89
Ours 20M 73.17

Note that the particle number is rounded.

and eight liquid cubes falling on top. We use eight workstations to
solve this challenging problem, with MPI topology 4x1x2 through
CUDA parallelization. In order to maintain a balanced fluid dis-
tribution, we use the DGP (per 50 steps). As a result, every MPI
rank consistently uses 22 to 23 Gigabytes of GPU memory over
the span of the simulation. The fluid’s turbulence is recorded in a
large amount of detail, as shown in Figure 2.

Mud flow. We simulate natural mud flow (Figure 3) with NACC
models. The domain is of size 200 x 200 X 200 meters, with a bumpy
slope serving as a collision object. Mud particles are injected into
the scene in the first 500 of the total 1000 frames and reach 207.8M
at maximum. The simulation is performed with 4x1x1 MPI ranks,
and DGP every 200 steps. Figure 3 also visualizes the mud flow
damage propagation.

High-resolution Sand Injection. Figure 4 demonstrates the scala-
bility with a high-resolution version of Sand Injection. We increase
the spatial resolution to 512 X 512 X 512, and the scene reaches
266.5M particles at the middle point of the simulation time. Com-
pared to Figure 8, there are more splashing and collision details in
Figure 4. This demo has the same MPI rank topology as the low-res
case.

Playground. Another scene involving more than 393.95M par-
ticles shows elastic jellos spreading onto the ground. We visual-
ize some frames from different viewpoints in Figure 7. In this test,
numerous elastic letters, numbers, and symbols are continuously
poured into a toy playground. Four workstations (4 X 1 X 1) are
adopted for computation.

7.5 Single-Machine Performance

For completeness, we also compare our distributed MPM pipeline
with the state-of-the-art (SOTA) C++ MPM simulation pipeline
implementations that are heavily hand-optimized for single
architectures: CPU [Wolper et al. 2019] and GPU [Gao et al. 2018].
As the test example, we use a simple scene, an elastic box falling
down to the ground, with grid resolution 256 X 256 X 256. Table 3
summarizes the particle number, testing device, and timing results.
Indeed, our distributed system cannot outperform the separate
CPU- and GPU- implementations, which have CPU-tailored

SPGrid [Setaluri et al. 2014] and CUDA kernel optimizations [Gao
et al. 2018], but is near 50% performance for both. Nevertheless,
our target is a generalized distributed and scalable system that can
be executed on most HPC platforms without code modification,
while the compared implementations have adopted sophisticated
hardware specific code optimizations focusing on their specialized
single-machine platforms.

8 CONCLUSION AND DISCUSSION

We proposed a distributed simulation framework specialized for
MPM computations. Based on the hierarchical system architecture
design, we make it possible to achieve multiple advancements
in each layer. The programming model layer uses Kokkos to
enable fast switching between various latent devices and dispatch
the MPM pipeline to many major HPC platforms. Additionally,
particle/grid data, algorithms, and communication layer with our
dedicated distributed sparse grid design makes it simpler for
hybrid simulation mechanics. Furthermore, we propose the dy-
namic load balancing algorithm to improve overall performance.
Multiple experiments and comparisons are conducted to demon-
strate the effectiveness and serve as a reference for simulation
setups. Finally, we demonstrated that the proposed distributed
MPM system can handle extremely large-scale simulations of
complex elastoplastic materials with more than 1 billion particles,
which has never been achieved before in computer graphics or
computational mechanics.

Limitations and Future Work. First, there is still space to im-
prove communication efficiency. We adopt MPI_Isend/MPI_Irecv
for data transmission among MPI ranks. However, better commu-
nication scaling could be achieved if more efficient MPI interfaces
are studied and explored. Second, as discussed in Section 7, the
initial settings of MPI topology and dynamic load balancing fre-
quency will strongly influence the overall performance. Making
this decision process automatic according to initial particle sam-
ples is a valuable direction to explore. Furthermore, the workload
computation in dynamic load balancing can be improved. Grid or
particle alone are both insufficient to form a perfect workload de-
scription to fit all general simulation scenes. Therefore, combing
these two pieces of information and conducting a better represen-
tation could provide more benefits. Finally, it is also meaningful to
further improve the performance for individual parallel backends
and within the particle/grid layers on specific devices to support
faster application systems. Indeed, because the simulation frame-
work is built on Kokkos and Cabana, testing and leveraging ad-
ditional hardware architectures is straightforward. This includes
AMD GPUs as deployed in the recent Frontier supercomputer, as
well as future systems.

ACM Transactions on Graphics, Vol. 42, No. 2, Article 22. Publication date: January 2023.

22:16 « Y.Qiuetal.

Sampled
Partition
GT

Sampled Gird Cells
W Anchor Cells Other Sampled Cells

Sampled Particles
* Anchor Particles

Other Sampled Particles

Average
Partition
Initialization

Optimization Result

| !

Load

- =

Balancing
Optimization

D Grid Tiles Grid Cells w=== Randomly Sampled GT Partition

Fig. A.1.

= Average (Initial) Partition = Average (Initial) Partition

Load balancing unit test. In this 2D example, we sample six grid cells in each rank for dynamic grid partition test, and we sample 15 particles for

dynamic particle partition. Each case will contain two fixed anchor grid cells or particles to ensure the uniqueness of the partition results.

ALGORITHM 2: Compute Workload in a Given Sub-Domain

Input:
Input:

Dimension label d; and tile range I;, h;
Dimension label d; and tile range [}, h;
Input: Dimension label dj, and tile range Iy, hy,
Input: Workload prefix sum matrix WS
Output: Workload in tile range [I;, hi] X [Ij, hj] X [Ii, hi]
function CoMPUTEWORKLOAD(d;, I3, hi, dj, 1j, hj, d., Ii., hi)
S[di] — li, S[dj] — lj, S[dk] — lk
e[di] « hi, e[d;] < hj, e[di] < hy
return WS(e[0], e[1], e[2]) — WS(s[0], e[1],e[2])
—WS(e[0], s[1], e[2]) — WS(e[0], e[1], s[2])
+WS(s[0],s[1], e[2]) + WS(e[0], s[1],s[2])
+WS(s[0], e[1], s[2]) — WS(s[0], s[1], s[2])
end function

APPENDICES
A DYNAMIC LOAD BALANCING

Here, we present algorithm details and the unit tests of the pro-
posed dynamic load balancing method. Also, a 2D example is
shown in Figure A.2 to visualize the dynamic optimization pro-
cess. We first compute the workload matrix locally on each rank
and then use MPI_ALLReduce to get the global workload matrix.
Then, we compute the prefix summation for constant-time work-
load computation in any given rectangle region. After that, we per-
form iterations of 1D rectangle partition optimization. We first fix
the position of the previous partition boundary p;_1, then we move
current partition boundary p; to the right until finding the optimal
partition position argmln 2k IWP’ vP_ W;‘ll:)e .

A.1 Validation

To validate the partition optimization algorithm, we design a grid/
particle distribution that leads to a unique ground truth of the par-
tition boundary set. Figure A.1 illustrates a 2D case of this unit

ACM Transactions on Graphics, Vol. 42, No. 2, Article 22. Publication date: January 2023.

test process. We first generate a ground truth partition by ran-
dom sampling. Then, we sample the same number of valid grid
cells or particles inside each partitioned sub-domain. To ensure
the uniqueness of this partition, two anchor grid cells or parti-
cles are included and placed at the top-left and bottom-right cor-
ners. After that, we use the average partition for initialization
and perform the dynamic load balancing algorithm. The testing
results show that our partition optimization algorithm can con-
verge to the ground truth within several (usually 1-4) optimization
iterations.

A.2 Workload Computation

Once the 3D prefix summation matrix of the global workload is
obtained, we can calculate the workload in any given rectangle
domain within constant time as shown in Algorithm 2.

A.3 Partition Optimization

We apply three separate 1D optimizations to approximate the op-
timal solution of the 3D partition optimization. Details of the 1D
case is shown in Algorithm 3.

B RESULTS AND EVALUATIONS

The scalability tests on local workstations with OpenMP as latent
programming model are shown in Figures B.4 and B.5. The scene
setups are the same as the CUDA cases except for the size of the
elastic cuboid. The fixed-corotated constitutive model [Stomakhin
et al. 2012] and DGP (per 200 simulation steps) are adopted for all
scaling tests.

We also test the weak scalability with more cuboids on the
Summit supercomputer, which contains six NVIDIA Tesla V100
GPUs per compute node. One Summit node has two sockets,
each containing three GPUs or three MPI ranks. Thus, various
levels of latencies are incurred for both cross- and within-node
communications. The results are shown in Figure B.6.

A Sparse Distributed Gigascale Resolution Material Point Method « 22:17

Compute workload matrix: Local == ALLReduce ==> Global

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
Compute workload prefix summation matrix
0 0 0
2 2 2
6 6 6
2 2 12
1 1 21

Find 1D optimal rectilinear decomposition (in each dimension)

0 0 0 0 0 0 0 0 0 0 0
2 2 2 2 2 2 2 2 2,
6 6 6 6 6 6 6

21 21 21 21

Pi-1 pi

Fig. A.2. lllustration of the dynamic load balancing algorithm. In this
2D example, we visualize how the dynamic partition is performed on the
entire simulation domain. Here, we use the grid as the workload unit for il-
lustration, where gray grids refer to activated grid nodes, and the numbers
represent the element values of the matrix.

B.1 Large-Scale Simulations

In this section, we show detailed timing statistics for large-scale
simulations in Figures B.1-B.3. The high-resolution sand injection
has similar detailed timing proportions as the low-res version and
is not repeatedly illustrated.

C APPLICATION IMPLEMENTATION

Here, we show an example of setting up a scenario with collision
objects in the application level.

1 // define latent programming model

2 using EXECSPACE = Kokkos::Cuda;

3 using MEMSPACE = Kokkos::CudaSpace;

4 using DEVICE = Kokkos::Device<Kokkos::Cuda, Kokkos::CudaSpace>;
5 // data type

6 using T = float;

7 // define particles

8 using particle_members =

9 Cabana::MemberTypes<T, T[3], T[3], TC31[3]1, T[31[31, T>;
10 using particle_list = Cabana::AoSoA<particle_members, MEMSPACE>;
11 using particle_type = typename particle_list::tuple_type;

12 struct particle_index

13 {

14 enum Names

15 {

16 mass = 0,

17 pos = 1,

18 vel = 2,

19 F =3,

20 affine = 4,

21 loglp = 5,

22 total = 6,

ALGORITHM 3: 1D Rectangle Partition Optimization

Input: Dimension-of-interest: d
Output: Optimized partition: P, with Py =I,P; = J,P, = K
Output: If partition is updated: is_changed
function orTIMIZATION1D(d)
> solve 1D rectangle optimization given partitions in the other
two dimensions fixed
di —d
dj « (d+1) mod 3
dp <« (d+2) mod3
for all j € [0,Nj), k € [0, Nj) do > in parallel
Wani (j, k) «
CoMPUTEWORKLOAD(d}, 0, Nj, d;, Py, (), Py, (j+1),dg,
Py, (K), Pg, (k + 1))
Wave(j k) < W (i,j) / Ni
end for
> Nj, Nj and Np: rank number in corresponding dimensions
pi-1 <0
pi—1
eqstart < 1 > record equivalent partition range
last_dif f « INT_MAX
Pg,(0)=0
forall rank =1,...,N; — 1 do
while true do
for all j € [0,Nj), k € [0, Nj) do > in parallel
W(j, k) «
CoMPUTEWORKLOAD(d;, Pr_1, P> dj, Py,), Pq, (+1),
di. Pg,. (k), Py, (k + 1))
end for
dif f < ¥j kIW(j,k) = Wave(j, k)| > parallel reduce
if dif f < last_dif f then
€qstart < Pk
last_dif f « dif f
else
if P(d;,rank) # (pi — 1 + eqstart)/2 then
P(di,rank) < (pi — 1+ eqstart)/2
is_changed = true
end if
Pi-1 < pi
break while loop
end if
pi—pi + 1
end while
end for
end function

23 };

24 Y

25 // basic parameter settings

26 namespace Settings

27 {

28 // domain corners

29 static constexpr T low_x = 0.0;

30 static constexpr T low_y = 0.0;

31 static constexpr T low_z = 0.0;

32 static constexpr T high_x = 200.0;
33 static constexpr T high_y = 200.0;
34 static constexpr T high_z = 200.0;
35 // spatial resolutions

36 static constexpr int res_x = 512;

ACM Transactions on Graphics, Vol. 42, No. 2, Article 22. Publication date: January 2023.

22:18 « Y.Qiuetal.

1B-Fluid Simulation Time

Rank 0-0-1 Rank 1-0-1

Rank 2-0-1

Rank 3-0-1

- waiting

Fig. B.1. 1B-Fluid. Detailed timing per frame (in seconds).

Mudflow Simulation Time

Rank 0-0-0 Rank 1-0-0

Rank 2-0-0 Rank 3-0-0

o
g
 Sorcing

Lad W Partition.
W e

0o W Grdalo
W Gap
W G Uit
e

Fig. B.2. Mudflow. Detailed timing per frame (in seconds). Some Ethernet instability happened during particle communications in frames 495, 840, and

875, which can be regarded as external noises.

Playground Simulation Time

Rank 0-0-0

Rank 1-0-0

Rank 2-0-0 Rank 3-0-0

W waiing
0 Saurcing.
W arition
W Paricle
W Grid Halo

Fig. B.3. Playground. Detailed timing per frame (in seconds).

37 static constexpr int res_y = 512;

38 static constexpr int res_z = 512;

39 static constexpr T dx = high_x / res_x;

40 // halo and partition control

41 static constexpr int halo_size = 4;

42 static constexpr int num_step_rebalance = 200;

43 static constexpr bool partition_op_on = true;

44 // boundary type

45 static constexpr MultiSim::BCTypes boundary_type = MultiSim::
BCTypes::STICKY;

46 // temporal settings

47 static constexpr int frame_num = 170

48 static constexpr T cfl = 0.3

49 static constexpr T fps = 4;

50 // material related settings

51 static constexpr MultiSim::MaterialTypes material_type =

52 MultiSim::MaterialTypes::FIX_COROTATED;

53 static constexpr T par_density = 1000.;

54 static constexpr T E = 9e6;

55 static constexpr T PR = 0.4;

56 // physical parameters

57 static constexpr T gravity = -9.8

58 // particle info

59 static constexpr int PPC = 8

60 static constexpr T par_volume =

61 (high_x / res_x) * (high_y / res_y) * (high_z / res_z) /

PPC;

62 static constexpr T par_mass = par_density * par_volume;

63 static constexpr T init_y_vel = 100;

64 // sourcing related info

65 static constexpr T source_init_vel = 50;

66 // static constexpr T source_init_vel = 13;

ACM Transactions on Graphics, Vol. 42, No. 2, Article 22. Publication date: January 2023.

83
84
85

86
87
88
89

90
91
92

// static constexpr int source_step = 800
static constexpr int source_step_@ = 1;

// static constexpr int source_step_1 = 297;
static constexpr int source_step_1 = 98;
static constexpr int source_step_2 = 199;

}; // end namespace Settings

// customized particle initialization
template <typename Scalar, class ExecSpace>
struct InitParticleFunc
{
using execution_space = ExecSpace;
using memory_spcae = MEMSPACE;

template <class ParticlelList>
int operator()(ParticlelList& particles, const Kokkos::Array<
Scalar, g_dim>& local_low_corner, const Kokkos::Array<Scalar,
g_dim>& local_high_corner, const Scalar cell_size, const int
ppc)
{
// sample from Analytical Level Set
MultiSim::Analytic_Shape::AnalyticlLevelSet<MultiSim::
Analytic_Shape::cuboid, Scalar, 3>
cube(half_size, mid_pt, { @, @, @ });
std::vector<std::array<T, 3>> points;
MultiSim::Particle_Sample::Sampler<T, 3> sampler;
int particle_num = sampler.sample_particle_pos(points,
cube, ppc, cell_size);

// sampled particles to Kokkos:View
Kokkos::View<Tx [3], memory_spcae> poses("particles",
particle_num);

A Sparse Distributed Gigascale Resolution Material Point Method « 22:19

[OPENMP] 1M Particles, Weak Scalability

W Grid Halo W Particle W Partitioner 1 G2P M Grid Update W P2G
300

Average Time [ms/step]

1 2 3 4 5 6 7 8
x Grid Halo x Particle ~ Partitioner x G2P x Grid Update » P2G A Aggregated

150
100.00% 100.04% SRLOG 100.08% 98:07% 6% 95.05% e
< 100 - —_— i
&
[y
=]
B
=
o
1 2 3 4 5 6 7 8
MPI Rank Number

Fig. B.4. Weak Scalability on local workstations with CPU (OpenMP).

Each rank handles an elastic box with 1M particles.

[OPENMP] 10M Particles, Strong Scalability

W Grid Halo W Particle M Partitioner % G2P M Grid Update M P2G
2500

2000
1500

1000

Average Time [ms/step]

1 2 3 4 5 6 7 8
x Grid Halo x Particle ~ Partitioner x G2P x Grid Update » P2G A Aggreated

1000
800 734767%
X
600
=t 455.09%
g 394.58%
% 400 280.85%
k=) 198.68%
= 00
wo.‘ooA”
o—e—— —— %
0
1 2 3 4 5 6 4 8
MPI Rank Number

Fig. B.5. Strong Scalability on local workstations with CPU(OpenMP).

All ranks handle a huge elastic box with T0M particles.

93 auto host_view = Kokkos::create_mirror_view(Kokkos::
HostSpace (), poses);

94 for (int i = @; i < particle_num; ++i)

95 for (int d = @; d < 3; ++d)

96 host_view(i, d) = points[i][d];

97 Kokkos::deep_copy(poses, host_view);

98

99 // Initialize Particles

100 using particle_type = typename ParticlelList::tuple_type;

101 using P = particle_index;

[Summit-CUDA] 1M Particles, Weak Scalability

W Grid Halo W Particle W Partitioner 1 G2P M Grid Update W P2G
20

Average Time [ms/step]

1 2 3 4 5 6 12 30 60 120

x Grid Halo x Particle » Partitioner x G2P x Grid Update * P2G A Aggregated

125
—
100.00%
G 79.46%
o 71.52%
5 50
é'j
8.65%
M 25 38.65'
o
1 2 4 6 8 10 20 40 60 80 100
MPI Rank Number

Fig. B.6. Weak Scalability on Summit with GPU(CUDA). Each rank han-
dles an elastic box with 1M particles.

102 particles.resize(particle_num);

103 Kokkos::parallel_for(Kokkos::RangePolicy<execution_space
>(0, particle_num),

104 KOKKOS_LAMBDA(const int idx) {

105 particle_type p;

106 // mass

107 Cabana::get<P::mass>(p) = Settings::par_mass;

108 // pos

109 Cabana::get<P::pos>(p, @) = poses(idx, @);

110 Cabana::get<P::pos>(p, 1) = poses(idx, 1);

111 Cabana::get<P::pos>(p, 2) = poses(idx, 2);

112 // vel

113 for (int d = @; d < g_dim; ++d)

114 Cabana::get<P::vel>(p, d) = _v[d];

115 //F

116 for (int do = @; do < g_dim; ++do)

117 for (int d1 = @; d1 < g_dim; ++d1)

118 Cabana::get<P::F>(p, do, d1) =

119 do == d1 ? (Scalar)1 (Scalar)o;

120 // C

121 for (int do = @; do < g_dim; ++do)

122 for (int d1 = @; d1 < g_dim; ++d1)

123 Cabana::get<P::affine>(p, do, d1) = (
Scalar)o;

124 // loglp

125 Cabana::get<P::logip>(p) = 0;

126 // init particle

127 particles.setTuple(idx, p);

128)

129 Kokkos:: fence();

130 return particle_num;

131 3}

132 };

133 // customized scene initialization

134 template <typename Scalar>

135 struct InitSceneFunc

136 {

137 using data_type = Scalar;

138 // set all

139 template <class BoundaryCondition, class ProblemManager, class
MeshType >

140 void operator()(BoundaryCondition& bc, ProblemManager& pm_ptr

, MeshType& mesh_ptr)
141 {
142 set_bc(bc, mesh_ptr);
143 set_mat(pm_ptr);

ACM Transactions on Graphics, Vol. 42, No. 2, Article 22. Publication date: January 2023.

22:20

190

191

193

194

195

208
209
210

211

212

213

214

ACM Transactions on Graphics, Vol. 42, No. 2, Article 22. Publication date: January 2023.

X

« Y.Qiuetal

pm_ptr->set_gravity(Settings::gravity);

private:
// set boundary condition - if each side has different
settings
template <class BoundaryCondition, class MeshType>
std::enable_if_t<BoundaryCondition::bc_type == MultiSim::
BCTypes::MIX, void>
set_bc(BoundaryCondition& bc, MeshType& mesh_ptr)
{
using BCT = MultiSim::BCTypes;
auto& gm = mesh_ptr->globalMeshPtr();
std::array<BCT, g_dim * 2> bc_types;

bc_types[@] = BCT::STICKY;
bc_types[1] = BCT::STICKY;
bc_types[2] = BCT::STICKY;
bc_types[3] = BCT::STICKY;
bc_types[4] = BCT::STICKY;
bc_types[5] BCT:: NONE;

bc.set_bc(bc_types[@], bc_types[1], bc_types[2], bc_types

E3TP5
bc_types[4], bc_types[5], o, 0, 0,
(gm->highCorner(@) - gm->lowCorner(@)) /
mesh_ptr->cell_size(),
(gm->highCorner(1) - gm->lowCorner(1)) /
mesh_ptr->cell_size(),
(gm->highCorner(2) - gm->lowCorner(2)) /
mesh_ptr->cell_size());
¥

// set boundary conditon - if all sides share the same setting
template <class BoundaryCondition, class MeshType>
std::enable_if_t<BoundaryCondition::bc_type != MultiSim::
BCTypes::MIX, void>
set_bc(BoundaryCondition& bc, MeshType& mesh_ptr)
{
auto& gm = mesh_ptr->globalMeshPtr();
bc.set_bc(@, 0, 0,
(gm->highCorner(@) - gm->lowCorner(@)) /
mesh_ptr->cell_size(),
(gm->highCorner(1) - gm->lowCorner(1)) /
mesh_ptr->cell_size(),
(gm->highCorner(2) - gm->lowCorner(2)) /
mesh_ptr->cell_size());
¥
// set material
template <class ProblemManager>
void set_mat(ProblemManager& pm_ptr)
{
auto& mat = pm_ptr->materialFunc();
// material parameters
mat.density = Settings::par_density;
mat.ys = Settings::E;
mat.pr = Settings::PR;
mat.lambda = Settings::E x Settings::PR /
((1 + Settings::PR) * (1 - 2 % Settings::
PR D);
mat.mu = Settings::E / (2 x (1 + Settings::PR));
mat.volume = Settings::par_volume;

void test_example()

{

Kokkos::Array<T, g_dim % 2> global_bounding_box(
{ Settings::low_x, Settings::low_y, Settings::low_z,
Settings::high_x,
Settings::high_y, Settings::high_z });
std::array<int, g_dim> global_num_cell(
{ Settings::res_x, Settings::res_y, Settings::res_z });
// initializer
InitParticleFunc<T, EXECSPACE> parpos_init_functor;
InitSceneFunc<T> scene_init_functor;
MultiSim::Init_Partitioner::InitUniformPartitionerFunc
partition_init_functor;
// solver
auto solver = MultiSim::createMPMSolver<DEVICE, Settings::
boundary_type,
Settings::
material_type,
particle_members,
particle_index>(
global_bounding_box, global_num_cell, Settings::halo_size,

218 parpos_init_functor, scene_init_functor,
partition_init_functor,

219 Settings::PPC, Settings::res_x * Settings::res_y,

220 Settings::num_step_rebalance, Settings::partition_op_on,
Settings::cfl);

221 // collision object

222 MultiSim::VDB_Shape::VdbLevelSet<T, 3> vdb_1s(

INPUT_DATA_PATH, "/collision_object.vdb", { ©.0, 0.0, 0.0

3

224 MultiSim::CollisionObject<MultiSim::CollisionTypes::STICKY, T,
g_dim, DEVICE> collision_obj(global_num_cell, Settings::dx,
vdb_1s);

225 solver->solve(Settings::frame_num, Settings::fps, std::string
(OUTPUT_DATA_PATH) + "out_rank", Settings::init_y_vel,
collision_obj, LOGGER_PATH);

226 }

228 int main(int argc, char* argv[])
{

230 using T = typename Examples::T;
231 MPI_Init(&argc, &argv);

232 Kokkos::initialize(argc, argv);
233

234 test_example();

235

236 Kokkos:: finalize();

23 MPI_Finalize();

238 return @;

)3 3

ACKNOWLEDGMENTS

We appreciate Feng Gao’s helpful advice and assistance in helping
us set up the Ethernet-related hardware. We are grateful to Kayvon
Fatahalian for his notes on “What Makes a (Graphics) Systems Pa-
per Beautiful,” which served as a guideline for us while preparing
our system paper. We appreciate Microsoft Azure’s text-to-speech
technology for narrating the additional video. We would also like
to express our gratitude to the anonymous reviewers for their in-
sightful criticism.

REFERENCES

T. Amada, M. Imura, Y. Yasumuro, Y. Manabe, and K. Chihara. 2004. Particle-based
fluid simulation on GPU. In Proceedings of the ACM Workshop on General-Purpose
Computing on Graphics Processors. Vol. 41, 42.

Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. 2012. Legion: Ex-
pressing locality and independence with logical regions. In Proceedings of the In-
ternational Conference on High Performance Computing, Networking, Storage and
Analysis. IEEE, 1-11.

Marsha J. Berger and Shahid H. Bokhari. 1987. A partitioning strategy for nonuniform
problems on multiprocessors. IEEE Transactions on Computers 36, 05 (1987), 570—
580.

Morten Bojsen-Hansen, Michael Bang Nielsen, Konstantinos Stamatelos, and Robert
Bridson. 2021. Spatially adaptive volume tools in bifrost. In Proceedings of the ACM
SIGGRAPH 2021 Talks. 1-2.

Umit V. Catalyurek, Erik G. Boman, Karen D. Devine, Doruk Bozdag, Robert Heaphy,
and Lee Ann Riesen. 2007. Hypergraph-based dynamic load balancing for adap-
tive scientific computations. In Proceedings of the 2007 IEEE International Parallel
and Distributed Processing Symposium. IEEE, 1-11.

N. Chentanez and M. Miiller. 2011. Real-time Eulerian water simulation using a re-
stricted tall cell grid. ACM Transactions on Graphics 30, 4 (2011), 82.

N. Chentanez and M. Miiller. 2013. Mass-conserving eulerian liquid simulation. [EEE
Transactions on Visualization and Computer Graphics 20, 1 (2013), 17-29.

N. Chentanez, M. Miiller, and T. Kim. 2015. Coupling 3D eulerian, heightfield and
particle methods for interactive simulation of large scale liquid phenomena. IEEE
Transactions on Visualization and Computer Graphics 21, 10 (2015), 1116-1128.

J. M. Cohen, S. Tariq, and S. Green. 2010. Interactive fluid-particle simulation using
translating Eulerian grids. In Proceedings of the 2010 Symposium on Interactive 3D
Graphics and Games. ACM, 15-22.

L. Dagum and R. Menon. 1998. OpenMP: An industry-standard API for shared-
memory programming. [EEE Computing in Science & Engineering 5, 1 (1998), 46—
55.

OpenBSD developers. 2021. OpenSSH. Retrieved October 20, 2022 from https://www.
openssh.com/.

A Sparse Distributed Gigascale Resolution Material Point Method « 22:21

H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. 2014. Kokkos: Enabling
manycore performance portability through polymorphic memory access patterns.
Journal of Parallel and Distributed Computing 74, 12 (2014), 3202-3216.

Yu Fang, Yuanming Hu, Shi-Min Hu, and Chenfanfu Jiang. 2018. A temporally adap-
tive material point method with regional time stepping. Computer Graphics Fo-
rum 37, 8 (2018), 195-204.

Yun Fei, Yuhan Huang, and Ming Gao. 2021. Principles towards real-time simulation of
material point method on modern GPUs. arXiv:2111.00699. Retrieved from https:
//arxiv.org/abs/2111.00699.

Ming Gao, Xinlei Wang, Kui Wu, Andre Pradhana, Eftychios Sifakis, Cem Yuksel, and
Chenfanfu Jiang. 2018. GPU optimization of material point methods. ACM Trans-
actions on Graphics 37, 6 (2018), 1-12.

P. Goswami, P. Schlegel, B. Solenthaler, and R. Pajarola. 2010. Interactive SPH simula-
tion and rendering on the GPU. In Proceedings of the 2010 ACM SIGGRAPH/Eu-
rographics Symposium on Computer Animation. Eurographics Association,
55-64.

R. Hoetzlein. 2016. GVDB: Raytracing sparse voxel database structures on the GPU. In
Proceedings of the High Performance Graphics. Eurographics Association, 109-117.

Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-Kelley, and Frédo Du-
rand. 2019. Taichi: A language for high-performance computation on spatially
sparse data structures. ACM Transactions on Graphics 38, 6 (2019), 1-16.

Yuanming Hu, Jiafeng Liu, Xuanda Yang, Mingkuan Xu, Ye Kuang, Weiwei Xu, Qiang
Dai, William T. Freeman, and Fredo Durand. 2021. Quantaichi: A compiler for
quantized simulations. ACM Transactions on Graphics 40, 4 (2021), 1-16.

Chenfanfu Jiang, Craig Schroeder, Joseph Teran, Alexey Stomakhin, and Andrew Selle.
2016. The material point method for simulating continuum materials. In Proceed-
ings of the ACM SIGGRAPH 2016 Courses. 1-52.

Laxmikant V. Kale and Sanjeev Krishnan. 1993. Charm++ a portable concurrent ob-
ject oriented system based on c++. In Proceedings of the 8th Annual Confer-
ence on Object-Oriented Programming Systems, Languages, and Applications. 91—
108.

George Karypis and Vipin Kumar. 1997. A Coarse-Grain parallel formulation of mul-
tilevel k-way graph partitioning algorithm. In Proceedings of the 8th SIAM Confer-
ence on Parallel Processing for Scientific Computing.

Gergely Klar, Jeff Budsberg, Matt Titus, Stephen Jones, and Ken Museth. 2017. Pro-
duction ready MPM simulations. In Proceedings of the ACM SIGGRAPH 2017 Talks.
1-2.

G.Klar, T. Gast, A. Pradhana, C. Fu, C. Schroeder, C. Jiang, and J. Teran. 2016. Drucker-
prager elastoplasticity for sand animation. ACM Transactions on Graphics 35,
4(2016), 103.

Steve Lesser, Alexey Stomakhin, Gilles Daviet, Joel Wretborn, John Edholm, Noh-
Hoon Lee, Eston Schweickart, Xiao Zhai, Sean Flynn, and Andrew Moffat. 2022.
Loki: A unified multiphysics simulation framework for production. ACM Trans-
actions on Graphics 41, 4 (2022), 1-20.

Xuan Li, Minchen Li, and Chenfanfu Jiang. 2022. Energetically consistent inelastic-
ity for optimization time integration. ACM Transactions on Graphics 41, 4 (2022),
1-16.

H. Liu, Y. Hu, B. Zhu, W. Matusik, and E. Sifakis. 2018. Narrow-band topology opti-
mization on a sparsely populated grid. In Proceedings of the SSGGRAPH Asia 2018.
ACM, 251.

Haixiang Liu, Nathan Mitchell, Mridul Aanjaneya, and Eftychios Sifakis. 2016. A scal-
able schur-complement fluids solver for heterogeneous compute platforms. ACM
Transactions on Graphics 35, 6 (2016), 1-12.

Omid Mashayekhi, Hang Qu, Chinmayee Shah, and Philip Levis. 2017. Execution tem-
plates: Caching control plane decisions for strong scaling of data analytics. In Pro-
ceedings of the 2017 USENIX Conference on USENIX Annual Technical Conference.
513-526.

Omid Mashayekhi, Chinmayee Shah, Hang Qu, Andrew Lim, and Philip Levis. 2018.
Automatically distributing eulerian and hybrid fluid simulations in the cloud.
ACM Transactions on Graphics 37, 2 (2018), 1-14.

David S. Medina, Amik St-Cyr, and Tim Warburton. 2014. OCCA: A unified approach
to multi-threading languages. arXiv:1403.0968. Retrieved from https://arxiv.org/
abs/1403.0968.

OpenMPI Team Members. 2021. OpenMPL Retrieved November 24, 2021 from https:
//www.open-mpi.org/

Susan M. Mniszewski, James Belak, Jean-Luc Fattebert, Christian F. A. Negre, Stu-
art R. Slattery, Adetokunbo A. Adedoyin, Robert F. Bird, Choongseok Chang,
Guangye Chen, Stéphane Ethier, Shane Fogerty, Salman Habib, Christoph Jung-
hans, Damien Lebrun-Grandié, Jamaludin Mohd-Yusof, Stan G. Moore, Daniel
Osei-Kuffuor, Steven J. Plimpton, Adrian Pope, Samuel Temple Reeve, Lee Rick-
etson, Aaron Scheinberg, Amil Y. Sharma, and Michael E. Wall. 2021. Enabling
particle applications for exascale computing platforms. The International Journal

of High Performance Computing Applications 35, 6 (2021), 572-597. DOI : https://
doi.org/10.1177/10943420211022829

Ken Museth. 2013. VDB: High-resolution sparse volumes with dynamic topology.
ACM Transactions on Graphics 32, 3 (2013), 1-22.

Ken Museth. 2021. NanoVDB: A GPU-friendly and portable VDB data structure for
real-time rendering and simulation. In Proceedings of the ACM SIGGRAPH 2021
Talks. 1-2.

T. Pfaff, N. Thuerey, J. Cohen, S. Tariq, and M. Gross. 2010. Scalable fluid simulation
using anisotropic turbulence particles. ACM Transactions on Graphics 29, 6 (2010),
1-8.

Hang Qu, Omid Mashayekhi, Chinmayee Shah, and Philip Levis. 2018. Decoupling
the control plane from program control flow for flexibility and performance in
cloud computing. In Proceedings of the 13th EuroSys Conference. 1-13.

Hang Qu, Omid Mashayekhi, Chinmayee Shah, and Philip Levis. 2020. Accelerating
distributed graphical fluid simulations with micro-partitioning. Computer Graph-
ics Forum 39, 1 (2020), 375-388.

Rajsekhar Setaluri, Mridul Aanjaneya, Sean Bauer, and Eftychios Sifakis. 2014. SPGrid:
A sparse paged grid structure applied to adaptive smoke simulation. ACM Trans-
actions on Graphics 33, 6 (2014), 1-12.

Chinmayee Shah, David Hyde, Hang Qu, and Philip Levis. 2018. Distributing and load
balancing sparse fluid simulations. Computer Graphics Forum 37, 8 (2018), 35-46.

Stuart Slattery, Samuel Temple Reeve, Christoph Junghans, Damien Lebrun-Grandié,
Robert Bird, Guangye Chen, Shane Fogerty, Yuxing Qiu, Stephan Schulz, Aaron
Scheinberg, Austin Isner, Kwitae Chong, Stan Moore, Timothy Germann, James
Belak, and Susan Mniszewski. 2022. Cabana: A performance portable library for
particle-based simulations. Journal of Open Source Software 7, 72 (2022), 4115.
DOI:https://doi.org/10.21105/joss.04115

Marc Snir, William Gropp, Steve Otto, Steven Huss-Lederman, Jack Dongarra, and
David Walker. 1998. MPI-The Complete Reference: The MPI Core. Vol. 1, MIT Press.

Alexey Stomakhin, Russell Howes, Craig Schroeder, and Joseph M. Teran. 2012. En-
ergetically consistent invertible elasticity. In Proceedings of the 11th ACM SIG-
GRAPH/Eurographics Conference on Computer Animation. 25-32.

Alexey Stomakhin, Craig Schroeder, Lawrence Chai, Joseph Teran, and Andrew Selle.
2013. A material point method for snow simulation. ACM Transactions on Graph-
ics 32,4 (2013), 1-10.

Igor Surmin, Alexei Bashinov, Sergey Bastrakov, Evgeny Efimenko, Arkady Gonoskov,
and Josif Meyerov. 2015. Dynamic load balancing based on rectilinear partitioning
in particle-in-cell plasma simulation. In Proceedings of the International Conference
on Parallel Computing Technologies. Springer, 107-119.

A. P. Tampubolon, T. Gast, G. Klar, C. Fu,]J. Teran, C. Jiang, and K. Museth. 2017.
Multi-species simulation of porous sand and water mixtures. ACM Transactions
on Graphics 36, 4 (2017), 105.

Christian R. Trott, Damien Lebrun-Grandié, Daniel Arndt, Jan Ciesko, Vinh Dang,
Nathan Ellingwood, Rahulkumar Gayatri, Evan Harvey, Daisy S. Hollman, Dan
Ibanez, Nevin Liber, Jonathan Madsen, Jeff Miles, David Poliakoff, Amy Powell,
Sivasankaran Rajamanickam, Mikael Simberg, Dan Sunderland, Bruno Turcksin,
and Jeremiah Wilke. 2022. Kokkos 3: Programming model extensions for the ex-
ascale era. IEEE Transactions on Parallel and Distributed Systems 33, 4 (April 2022),
805-817. DOI : https://doi.org/10.1109/TPDS.2021.3097283.

0. Vantzos, S. Raz, and M. Ben-Chen. 2018. Real-time viscous thin films. ACM Trans-
actions on Graphics 37, 6 (2018), 1-10.

Xinlei Wang, Yuxing Qiu, Stuart R. Slattery, Yu Fang, Minchen Li, Song-Chun Zhu,
Yixin Zhu, Min Tang, Dinesh Manocha, and Chenfanfu Jiang. 2020. A massively
parallel and scalable multi-GPU material point method. ACM Transactions on
Graphics 39, 4 (2020), 30-1.

T. Willhalm and N. Popovici. 2008. Putting intel® threading building blocks to work.
In Proceedings of the International Workshop on Multicore Software Engineering.
ACM, 3-4.

R. Winchenbach, H. Hochstetter, and A. Kolb. 2016. Constrained neighbor lists for
SPH-based fluid simulations. In Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation. Eurographics Association, 49-56.

J. Wolper, Y. Fang, M. Li, J. Lu, M. Gao, and C. Jiang. 2019. CD-MPM: Continuum dam-
age material point methods for dynamic fracture animation. ACM Transactions
on Graphics 38, 4 (2019), 1-15.

K. Wu, N. Truong, C. Yuksel, and R. Hoetzlein. 2018. Fast fluid simulations with sparse
volumes on the GPU. Computer Graphics Forum 37, 2 (2018), 157-167.

Erik Zenker, Benjamin Worpitz, René Widera, Axel Huebl, Guido Juckeland, Andreas
Knipfer, Wolfgang E. Nagel, and Michael Bussmann. 2016. Alpaka—An abstrac-
tion library for parallel kernel acceleration. In Proceedings of the 2016 IEEE Inter-
national Parallel and Distributed Processing Symposium Workshops. IEEE, 631-640.

Received 7 August 2022; revised 7 August 2022; accepted 18 October 2022

ACM Transactions on Graphics, Vol. 42, No. 2, Article 22. Publication date: January 2023.

