
22

A Sparse Distributed Gigascale Resolution Material Point Method

YUXING QIU, University of California, Los Angeles

SAMUEL TEMPLE REEVE, Oak Ridge National Laboratory

MINCHEN LI, University of California, Los Angeles & Timestep Technologies

YIN YANG, University of Utah & Timestep Technologies

STUART RYAN SLATTERY, Oak Ridge National Laboratory

CHENFANFU JIANG, University of California, Los Angeles & Timestep Technologies

In this article, we present a four-layer distributed simulation system and

its adaptation to the Material Point Method (MPM). The system is built

upon a performance portable C++ programming model targeting major

High-Performance-Computing (HPC) platforms. A key ingredient of our

system is a hierarchical block-tile-cell sparse grid data structure that is

distributable to an arbitrary number of Message Passing Interface (MPI)

ranks. We additionally propose strategies for efficient dynamic load bal-

ance optimization to maximize the efficiency of MPI tasks. Our simulation

pipeline can easily switch among backend programming models, including

OpenMP and CUDA, and can be effortlessly dispatched onto supercomput-

ers and the cloud. Finally, we construct benchmark experiments and ab-

lation studies on supercomputers and consumer workstations in a local

network to evaluate the scalability and load balancing criteria. We demon-

strate massively parallel, highly scalable, and gigascale resolution MPM

simulations of up to 1.01 billion particles for less than 323.25 seconds per

frame with 8 OpenSSH-connected workstations.

CCS Concepts: • Computing methodologies→ Parallel algorithms;

Additional Key Words and Phrases: Material Point Method, High Perfor-

mance Computing, distributed system and computing

This work has been supported in part by NSF CAREER 2153851, CCF2153863, ECCS-
2023780, DOE ORNL contract 4000171342, NSF 2244651 and 2301040. Additionally,
this work was supported by the Exascale Computing Project (17-SC-20-SC), a collab-
orative effort of the U.S. DOE Office of Science and the NNSA. This research used
resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science of the U.S. Department of En-
ergy under Contract No. DE-AC05-00OR22725. This manuscript has been authored by
UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department
of Energy (DOE). The publisher, by accepting the article for publication, acknowl-
edges that the United States Government retains a non-exclusive, paid-up, irrevocable,
world-wide license to publish or reproduce the published form of this manuscript, or
allow others to do so, for United States Government purposes. The DOE will provide
public access to these results of federally sponsored research in accordance with the
DOE Public Access Plan.
Authors’ addresses: Y. Qiu, M. Li, and C. Jiang, 603 Charles E Young Dr E,
UCLA Slichter Hall 3860, Los Angeles, CA 90095; emails: yuxqiu@gmail.com,
yxqiu@g.ucla.edu, minchernl@gmail.com, cffjiang@math.ucla.edu; S. T. Reeve and
S. R. Slattery, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN
37830; emails: {reevest, slatterysr}@ornl.gov; Y. Yang, 201 Presidents’ Cir, The Uni-
versity of Utah, MEB 3454; Salt Lake City, UT 84112; emails: yin.yang@utah.edu,
yangzzzy@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2023/01-ART22 $15.00
https://doi.org/10.1145/3570160

Fig. 1. Hierarchical System Architecture. Our distributed MPM simu-

lation system is designed and implemented hierarchically. In this article,

we will use Particle/Grid data layer in short for the Particle/Grid Data, Al-

gorithms and Communication layer. Different layers are implemented in

separated codebases. Library names are labeled below layer names.

ACM Reference format:

Yuxing Qiu, Samuel Temple Reeve, Minchen Li, Yin Yang, Stuart Ryan Slat-

tery, and Chenfanfu Jiang. 2023. A Sparse Distributed Gigascale Resolution

Material Point Method. ACM Trans. Graph. 42, 2, Article 22 (January 2023),

21 pages.

https://doi.org/10.1145/3570160

1 INTRODUCTION

High-resolution simulations are of high demand in both the VFX

industry and scientific research. In recent years, the Material

Point Method (MPM), due to its flexibility and versatility, has

shown a great potential for modeling a wide range of continuum

materials.

To reduce computational cost and programming efforts, re-

searchers have explored modern computational platforms and im-

proved MPM in both parallelization schemes and latent particle/

grid data management. Dedicated code design examples in graph-

ics include threaded CPU MPM [Fang et al. 2018], single-GPU

MPM [Gao et al. 2018; Hu et al. 2019, 2021], and multiple-GPU

implementations [Fei et al. 2021; Wang et al. 2020]. These state-of-

the-art solvers still focus on exploiting a single machine with lim-

ited memory and computing power, leading to restrictions from

several perspectives. On one hand, CPU-based computation is less

efficient due to the limited number of threads despite the hundred-

GB memory to support large-scale data. GPU-based computation,

on the other hand, can significantly reduce the simulation time, but

the onboard memory makes it challenging to go large-scale. While

ACM Transactions on Graphics, Vol. 42, No. 2, Article 22. Publication date: January 2023.

22:2 • Y. Qiu et al.

Fig. 2. 1B-Fluid with more than 1.01B particles. We use 4 × 1 × 2 MPI ranks (eight in total) to handle the simulation domain. The weakly compressible

fluid particles are colored by the volume change ratio. We show representative frames (left) and sub-domains handled by eight workers (right).

using additional GPUs can relieve the intense memory usage [Fei

et al. 2021; Wang et al. 2020], the number of GPUs that a sin-

gle motherboard can hold is still capped. Furthermore, both CPU

and GPU MPM require skillful programming dedicated design

efforts.

Together, these restrictions motivate our exploration of a

device-portable distributed simulation system, which allows

researchers with minimal software experience to customize

large-scale simulations and maximally leverage their devices.

Specifically, we aim to build a distributed MPM system that

pursues the following design goals:

— Device portability for high performance. Many existing

simulations using only CPU or GPU resources require ded-

icated design, implementation, and optimization of code. It

is also challenging to perform device-related code migration

if new needs arise. Our design goal is to support effortless

hardware switching according to users’ needs, i.e., to allow

switching the latent programming models and parallel

platforms for the simulations by modifying very few lines

of code.

— Distributed dispatch for large-scale simulation. We al-

low the simulation system to scale up according to available

hardware. To achieve this goal, we need to establish reliable

and efficient grid/particle data structures and build com-

munication machinery among multiple separate-memory

computing nodes. To further improve the scalability, we aim

to reduce unnecessary memory usage by developing new

sparse data structures.

— Dynamic workload decomposition.Distributing computa-

tions to multiple workers is challenging from two standpoints.

First, from the performance perspective, calculation time is

bounded by the device with the highest workload. While

other nodes are busy, idle nodes with tasks completed earlier

simply wait, wasting time and resources. Second, robustness

and system stability are crucial. An imbalanced partitioning

strategy may cause run-time failure by exhausting the mem-

ory of some overloaded node. In simulations, the topology of

the activated grids and the particles can dramatically differ

from their initial settings. Thus, static partitioning can be-

come extremely ineffective and non-robust, working only for

carefully designed scenes as in Fei et al. [2021] andWang et al.

[2020]. Therefore, we demand dynamic workload partitioning

for better distributed performance and robustness.

— Programming simplicity. A typical parallel simulation

code requires great programming effort in memory manage-

ment and parallel execution. We prefer the system’s users

with different simulation and programming skill levels can all

focus on their primary goals, ranging from setting up scenes

and designing numerical algorithms to exploring novel data

structures.

1.1 Key Insight

These assumptions and design goals lead us to a hierarchical archi-

tectural design principle as shown in Figure 1.We divide the whole

system into four layers: the programming model layer, the particle/-

grid data layer, the PIC algorithm layer, and the application layer.

This hierarchical design allows users with various experimental

goals to focus on distinct layers and to extrapolate the system’s

potential. Below we discuss each layer in more details.

Programming Model. This bottom layer focuses on developing

device-portable specializations on (1) memory alloca-

tion and access, and (2) parallel execution operations.

Specifically, it allows upper layers to use unified inter-

faces to perform parallel computations with the desired

backend computational models (e.g., OpenMP or CUDA)

and manipulate data stored on user-preferred comput-

ing devices (e.g., CPU or GPU).

Particle/Grid Data. Generally, Lagrangian particles, Eulerian

grids, and/or their combinations are used for simula-

tion schemes considered in this work. However, de-

signing and implementing these data structures and

related algorithms on distributed systems require in-

tensive efforts. Thus, we use an independent layer to

implement particle/grid distributed data structures that

ACM Transactions on Graphics, Vol. 42, No. 2, Article 22. Publication date: January 2023.

A Sparse Distributed Gigascale Resolution Material Point Method • 22:3

Fig. 3. Mudflow.Our distributed MPM enables this over-207.8M-particle

mudflow simulation using averagely only 159.34 seconds per frame. Here,

we employ four workstations connected through OpenSSH.

allow users to customize the latent memory layout and

the attributes stored for each element. Furthermore, par-

ticle and grid inter-rank communications are integrated

for distributed systems. In addition, since particle/grid

number determines the total workload on each rank, we

also attach dynamic load balancing as another crucial

component in this layer.

PIC Algorithm. Simulating dynamic physical systems typically

requires a time integration scheme. In our case, for ex-

ample, MPM adopts a Particle-In-Cell (PIC) paradigm.

Users can switch to other schemes by modifying the in-

tegration strategy. Additional components in this layer

include constitutive models for material versatility and

a particle sourcing module for time-dependent particle

injection.

Application. Users can customize the scene setup and material

parameters inside this layer based on all lower-layer

components. The user also chooses an MPI topology

according to the host hardware.

1.2 Background

To avoid reinventing the wheel, we employ two libraries,

Kokkos [Edwards et al. 2014; Trott et al. 2022] and Cabana

[Mniszewski et al. 2021; Slattery et al. 2022] to satisfy part of the

requirements of the bottom two layers.

Kokkos provides support for basic data structures on all ma-

jor heterogeneous and high-performance computing architec-

tures [Edwards et al. 2014; Trott et al. 2022]. Users can allocate

multidimensional arrays on different computing devices such as

CPUs and GPUs in a relatively easy and unified manner. In ad-

dition, Kokkos contains abstractions for most general parallel ex-

ecution patterns that are portable across hardware. Kokkos fully

satisfies the design goal of our programming model layer, en-

abling adoptions on modern hardware including NVIDIA GPUs

and multi-core CPUs which are both used in this work.

Cabana is a particle-specific library based on Kokkos. It provides

particle data structures, particle algorithms, and MPI communi-

cation operations. It also supports dense-grid and dense-particle-

grid operations with a static partitioning. Thus, Cabana satisfies

the particle-related requirements in our particle/grid data layer ;

however, we require extra components for the grid components.

First, the dense grid is not suitable for simulations with significant

empty space since a large amount of memory and resources would

be wasted. Second, static partitioning limits the performance and

scalability as analyzed in the design goals.

1.3 Contributions

Following the hierarchical approach above, we develop a dis-

tributed simulation framework specialized for MPM kernels, em-

phasizing scalability and performance portability. Our system is

built on top of a modern C++ programming model (Kokkos) and

allows users to write and dispatch performant code on HPC plat-

forms with CPU- and GPU-based parallelization. In order to sup-

port the generality for users to switch back-end devices effort-

lessly, we do not pursue extensive performance improvement on

problems that can be well-solved by dedicated-designed single-

rank CPU or GPU devices, as did in Fei et al. [2021], Gao et al.

[2018], Klár et al. [2017], and Wang et al. [2020]. Instead, we con-

centrate on properly resolving large-scale scenarios where inter-

communication is unavoidable and single-rank machines are un-

able to handle.

In addition, for the particle/grid data layer, we utilize Cabana

for particle-related operations. We extend the Cabana library by

designing and implementing a novel distributed sparse grid data

structure with highly efficient allocation, access, and communica-

tion algorithms. Furthermore, we customize a dynamic load bal-

ancing partitioner to improve the simulation performance by en-

suring a balanced workload distribution on all MPI ranks. Based

on these implementations, we develop a fully open-source simu-

lation library that supports multiple MPM-related algorithms and

application designs, leading to gigascale resolution simulations for

a wide range of solid and fluid materials. We further provide com-

prehensive computational experiments that demonstrate

— the scalability of the proposed distributed system,

— the benefits of dynamic load balancing on sparse simulations,

and

— the performance variance with different MPI topologies.

In addition, we demonstrate large-scale simulation examples for

designers to customize their scenes with versatile application-level

components.

1.4 Overview

Following the hierarchy proposed in Section 1.1, we introduce

each system layer in the paper’s main body. First, in Section 3, we

overview the background needed to understand our article and cor-

responding implementations, including an introduction of MPM

(Section 3.1), the Kokkos programmingmodel (Section 3.2), and Ca-

bana particle-related implementations (Section 3.3). This section

thus covers the programming model layer and part of the particle/-

grid data layer. Next, we introduce two new features we integrated

into the particle/grid data layer : Section 4 presents the proposed

MPI-dedicated distributed sparse grid and Section 5 shows our dis-

tributed dynamic load balancing scheme. After that, we describe

additional details related to the PIC algorithm and application

layers in Section 6.We then offer performance analysis in Section 7:

ACM Transactions on Graphics, Vol. 42, No. 2, Article 22. Publication date: January 2023.

22:4 • Y. Qiu et al.

Fig. 4. High-resolution Sand Injection with grid resolution 512 × 512 × 512 and 266.5M particles. Sand particles are rainbow-colored by their positions.

We use four MPI ranks (2 × 2 × 1) for computation and show the partition status on the left-top corner of each sub-figure.

(1) weak and (2) strong scaling of the proposed distributed MPM

scheme, (3) the performance improvement with our distributed dy-

namic load balancing algorithm, (4) performance comparison with

different MPI rank topologies, and (5) large-scale simulation re-

sults with up to 1B particles. Finally, we conclude this article with

limitations, discussion, and possible future work.

2 RELATED WORK

2.1 HPC-Oriented Simulation Programming Model

Modern hardware makes it possible to improve simulation per-

formance with dedicated data structure and parallel kernels. One

primary attempt is to use multiple CPU cores with tools like

OpenMP [Dagum and Menon 1998] and Intel TBB [Willhalm and

Popovici 2008]. Further explorations are built upon GPUs for faster

computations. For example, GPU-based schemeswere designed for

Eulerian and Lagrangian fluids [Amada et al. 2004; Chentanez and

Müller 2011, 2013; Cohen et al. 2010; Goswami et al. 2010; Pfaff

et al. 2010; Vantzos et al. 2018; Winchenbach et al. 2016], as well as

for hybrid solvers [Chentanez et al. 2015; Gao et al. 2018; Hu et al.

2019, 2021; Wu et al. 2018]. Multi-GPU platforms [Fei et al. 2021;

Wang et al. 2020] were developed for MPM as well.

For scalability, researchers also explored distributed simula-

tions [Bauer et al. 2012; Liu et al. 2016; Qu et al. 2020; Shah et al.

2018]. Kale and Krishnan [1993] introduced Charm++, an object-

oriented portable C++-based parallel programming language that

is still being actively maintained by researchers from multiple

fields. Additionally, supportive systems such as Canary [Qu et al.

2018] and Nimbus [Mashayekhi et al. 2017, 2018] distribute tasks

onto computing nodes. For most systems, MPI [Snir et al. 1998] is

adopted as the message communication library. It provides various

communication primitives for sending and receiving data among

ranks. For example, Lesser et al. [2022] proposes a multi-physics

framework named Loki, which can be used as a generalized tool to

simulate various material phenomena ranging from elastic solids

to fluids with multi-CPU-core clusters. However, Loki leaves GPU

usage as future work. Similarly, for other systems, whether single-

machine-based or distributed, data arrangement and computations

are limited to specific back-end devices, and the performance opti-

mization is only architecture-oriented.

There have been many efforts for performance portability, i.e.,

enabling high performance across different architectures with a

single source code. For example, Hu et al. [2019] developed a com-

piler that allows users to switch CPU/GPU backend by changing

a single line of code. Medina et al. [2014] provided a unified API

for interacting with backend devices with a C-extended kernel

language. Additionally, Zenker et al. [2016] implemented an ab-

stract hierarchical redundant parallelism model that supports ap-

plications on many hardware types ranging from multi-core CPUs

to GPUs. Furthermore, libraries such as Kokkos [Edwards et al.

2014; Trott et al. 2022] with its extensions like Cabana [Mniszewski

et al. 2021; Slattery et al. 2022] support the manipulation of array-

based data structures and their corresponding parallel patterns

on multiple underlying computing devices in a distributed man-

ner. These libraries relieve researchers’ effort in backend-oriented

maintenance and their usage is becoming a trend for next genera-

tion high-performance simulations.

2.2 Sparse Grid Data Structures

In many Eulerian and hybrid simulations, the grids are sparsely

activated, i.e., only part of the grids contains non-zero entries.

Thus, sparse grid data structures have been developed to improve

memory bandwidth and data access efficiency. For instance, Open-

VDB [Museth 2013], sparse paged grids [Setaluri et al. 2014], and

Bifrost’s volume tools [Bojsen-Hansen et al. 2021] enable efficient

interactions of time-varying sparse quantities over large grid with

dedicated grid representation design on CPUs. Furthermore, Hoet-

zlein [2016], Museth [2021], and Gao et al. [2018] broaden the spar-

sity idea of VDB and sparse paged grids to GPUs. These exten-

sions vastly improve the simulation scalability and efficiency on

NVIDIAGPUswith limit-sized RAMs.Moreover, developing a data

hierarchy is an important addition to improve sparse data access

efficiency, such as in Hu et al. [2019] and Liu et al. [2018].

2.3 Load Balancing for Simulations

Load balancing and workload distribution are crucial for the per-

formance of distributed systems. Traditional load balancing algo-

rithms perform either geometric-based [Berger and Bokhari 1987]

or graph-based [Catalyurek et al. 2007; Karypis and Kumar 1997]

optimization. Some other works consider the temporal aspect

when deciding partition boundaries. Shah et al. [2018] proposed

speculative balancing for fluid simulation. It computes partition-

to-worker assignments by performing a low-resolution simula-

tion substitution and predicting the high-resolution workload

distribution in the upcoming steps. Their partitioning overhead is

ACM Transactions on Graphics, Vol. 42, No. 2, Article 22. Publication date: January 2023.

A Sparse Distributed Gigascale Resolution Material Point Method • 22:5

Fig. 5. Our distributed MPM simulation pipeline, using two ranks as an

illustrative example. In the figure, Comm. is short for Communication.

polynomial in the number of ranks. Additionally, Qu et al. [2020]

proposed a birdshot scheduling method for partitioning. It splits

the simulation domain into many micro-partitions and assigns

them to nodes randomly. Based on cloud computing nodes’ high

latency, high throughput, and full bisection bandwidth, birdshot

scheduling was shown to outperform static partitioning in many

fluid simulation schemes including SPH, Eulerian, and hybrid

methods.

2.4 Fast MPM in Computer Graphics

MPM was introduced to graphics by Stomakhin et al. [2013] for

simulating snow dynamics. Scaling MPM to higher resolution

is promising since a regular Cartesian grid is used to discretize

fields [Jiang et al. 2016]. Many research efforts investigated tech-

niques to acclerate MPM. For example, Klár et al. [2017] con-

structed production-ready GPU MPM solvers in the Dreamworks

animation pipeline with adaptive particle advection. Gao et al.

[2018] studied design choices for explicit and implicit MPM paral-

lelism utilizing GPU. Based on that, Wang et al. [2020] harnessed

the power of multiple GPUs and achieved one-hundred-million-

particle simulations on an eight-GPU workstation. Recently, Fei

et al. [2021] summarized various principles for accelerating single-

and multi-GPU MPM implementations. They achieved real-time

performance for a one-million-particle simulation on four NVIDIA

GPUs with NVLinks.

Taking a different path toward performance optimization, Hu

et al. [2019] proposed the Taichi programming language as a

high-level interface to process spatially sparse multi-level data

structures. By decoupling data structures from computations,

users can perform experiments using different data structures

without changing much code. Hu et al. [2021] further improved

this compiler by introducing low-precision numerical data types

for reduced memory occupation and bandwidth consumption.

It enabled faster and higher-scale simulations by sacrificing

numerical accuracy.

3 BACKGROUND

3.1 Material Point Method (MPM)

MPM is a hybrid simulation method that uses particle and grid

representations to discretize the simulation domain. Typically,

physical attributes including mass (mp), velocity (vp), deformation

gradient (Fp), and affine velocities (Cp) are stored on particles; grid

nodes that stores mass (mi) and momentum (mivi), transferred

from particles, are treated as auxiliary scratchpad variables to

perform spatial derivative computations and boundary condition

enforcement.

To demonstrate our programming model without loss of gen-

erality, we implement the most basic first-order MPM time inte-

gration scheme with the following essential steps for incremental

dynamics.

(1) Particles-to-Grid (P2G). Compute grid mass and momen-

tum from particles: {mp ,mpv
n
p } → {mi ,miv

n
i }. In addition,

transfer force contributions to grid nodes from elastic stresses

of the nearby particles and project particle deformation gradi-

ents for plasticity (if any).

(2) Grid Update. Update grid velocities with either explicit or

implicit time integration: vn
i → v

n+1
i , taking boundary con-

ditions and collision objects into account.

(3) Grid-to-Particles and Particle Advection (G2P). Transfer

velocities from grid nodes to particles, evolve particle strains,

and then update particle positions with their new velocities:

{vn+1
i } → {vn+1

p , Fn+1p }, {pnp ,v
n+1
p } → {pn+1p }.

These three steps are the major computing components in MPM.

We show how these computations are performed on eachMPI rank

in our distributed system in Figure 5.

3.2 Performance Portable Parallel Programming with

Kokkos

As introduced in Section 1.2, we employ the Kokkos library [Ed-

wards et al. 2014; Trott et al. 2022] as the device-portable program-

ming model layer that supports multidimensional array allocation

and access and parallel execution patterns. Using Kokkos, our sim-

ulation pipeline can switch among different backend programming

models, including OpenMP and CUDA, using C++ template argu-

ments. For example, we can make the following definitions and

pass them into both particle and grid data structures and related

parallel kernels to invoke an NVIDIA GPU for data management

and computation. The comments show howwe can quickly switch

to CPU with OpenMP.

1 using EXECSPACE = Kokkos ::Cuda; // Kokkos :: OpenMP

2 using MEMSPACE = Kokkos :: CudaSpace; // Kokkos :: HostSpace

3 using DEVICE = Kokkos ::Device <EXECSPACE , MEMSPACE >;

ACM Transactions on Graphics, Vol. 42, No. 2, Article 22. Publication date: January 2023.

22:6 • Y. Qiu et al.

The particle data structure, our new sparse grid, and all other

supporting arrays are implemented based on Kokkos::View, which

defines a multidimensional array based on user-specified memory

space. We can set the array size at compile time or run time. One

example of defining a 2-dimensional array with Kokkos::View is

listed in the first line of the code patch below. It defines an NUM×3

array, with the first dimension size (NUM) specified during run

time and the second during compile time.

To dispatch parallel computations, one can use various Kokkos

parallel patterns with a specified execution policy to perform

defined kernels on different architectures, as shown below.

In line 2, we get particle position data slices (detailed parti-

cle definitions are listed in Section 3.3), and then dispatch a

Kokkos::parallel_for pattern with a range policy to assign particle

positions to the pre-defined Kokkos::View. By changing the con-

tent of KOKKOS_LAMBDA, one can easily modify the behavior of

the computing kernel. Finally, in line 12, we create a host copy of

the View data so that the CPU-side (host-side) code can also access

or further output the data to files for visualization.

1 Kokkos ::View <T*[3], MEMSPACE > pos("positions", NUM);

2 auto x_p = Cabana ::slice <P::pos >(particles);

3 /* dispatch a parallel for to assign data from x_p to pos */

4 Kokkos :: parallel_for(

5 Kokkos :: RangePolicy <EXECSPACE >(0, particle_num),

6 KOKKOS_LAMBDA(const int idx) { // compute kernel

7 pos(idx , 0) = x_p(idx , 0); // element access

8 pos(idx , 1) = x_p(idx , 1);

9 pos(idx , 2) = x_p(idx , 2);

10 });

11 Kokkos :: fence (); // fence execution space

12 auto host_view =

13 Kokkos :: create_mirror_view(Kokkos :: HostSpace (), pos);

In addition to Kokkos::parallel_for, other parallel execution pat-

ters are supported in Kokkos, including parallel_reduce and par-

allel_scan. We refer to Edwards et al. [2014] and Trott et al. [2022]

for further details.

3.3 Distributed Particles with Cabana

With the device-portable programming model, we are able to

build the particle/grid data layer. As mentioned in Section 3, we

utilize Cabana library for particle memory management and

communication.

Built upon the Kokkos::View, the Cabana::AoSoA enables

Array-of-Structure-of-Array (AoSoA) layout [Wang et al. 2020]

to manage particle storage with user-specified properties. The

AoSoA structure exploits the advantages of both Structure-of-

Array and Array-of-Structure to conserve both coalesced threads

calculations and performant random memory access patterns

when parallelizing MPM. The following code sample shows

how to declare particle storage with MPM-essential properties

such as mass, position, velocity, deformation gradient, APIC

transformation matrix, and plastic volumetric strain (lines 1–4).

Additionally, lines 5–8 illustrate how to use Cabana::slice to access

individual particle properties. The readers can find more details

in Mniszewski et al. [2021].

1 using particle_members =

2 Cabana :: MemberTypes <T, T[3], T[3], T[3][3] , T[3][3] , T>;

3 using particle_list = Cabana ::AoSoA <particle_members ,

MEMSPACE >;

4 particle_list particles;

5 // access single particle properties with Cabana :: slice

6 auto position = Cabana ::slice <1>(particles);

7 auto velocity = Cabana ::slice <2>(particles);

8 auto affine = Cabana ::slice <4>(particles);

3.4 MPI Communication

Handling particle and grid data communication is another crucial

ingredient of the particle/grid data layer. We use MPI [Snir et al.

1998], a message passing interface widely used for multi-node ap-

plications, to perform data communication among distinct ranks.

In the rest of this article, we use MPI rank, rank, and worker as in-

terchangeable terms of the logically independent computing unit

that handles non-overlapped work.

In practice, we divide the whole simulation domain spatially

and distribute the corresponding workload (particles and grids)

to ranks with a user-specified MPI communicator topology. MPI

ranks can be mapped to a single or multiple computing devices ac-

cording to the hardware setup and the options provided when run-

ning the simulation executable with mpirun/mpiexec command.

Generally, one individual process will handle one rank during exe-

cution. In our system, we use non-blocking MPI_Isend/MPI_Irecv

pairs for particle and grid data exchanges among workers. Also,

MPI_ALLReduce with operators like MPI_SUM or MPI_MIN

are employed for inter-rank grids/particles reductions. Moreover,

MPI_Barrier is called for synchronization to ensure data consis-

tency and computation correctness.

4 DISTRIBUTED SPARSE GRID

In MPM simulations, the valid domain is generally sparsely

occupied by material particles. As a result, it may cause an

unnecessary waste of computing time and memory occupation

in large-scale simulations if a dense grid is used. Therefore, we

develop a distributed sparse grid data structure to represent

the sparsely populated uniform grids in the particle/grid data

layer to more effectively leverage the computing resources on

multiple MPI ranks. Our sparse-grid approach shares kernel-level

interfaces with the dense grid data structures implemented in

Cabana, making it effortless for Cabana users to switch in their

simulation implementations.

We distribute the simulation work to multiple MPI ranks by

dividing the entire domain into rectangular partitions. Each MPI

rank needs to have panoramic information to guide its local com-

putations. Some essential global knowledge includes the size and

position of the entire simulation domain and the rectangle range

each MPI rank handles. To clarify the descriptions, we propose the

following concepts to represent the logical simulation domain and

uniform grid. Each concept is implemented as a separate C++ class

in practice.

— Global Mesh: The actual position and size of the entire sim-

ulation domain.

— Global Grid: The entire logical uniform grid, indexing from 0

to the grid resolution in each dimension. The global grid also

contains the domain partition information, indicating the grid

range that the current MPI rank is in charge of.

— Local Mesh: The position and rectangle sub-domain size of

the current MPI rank.

— Local Grid: The valid owned and shared grid indexing space

of the current worker. The owned space represents all the grids

ACM Transactions on Graphics, Vol. 42, No. 2, Article 22. Publication date: January 2023.

A Sparse Distributed Gigascale Resolution Material Point Method • 22:7

Fig. 6. Hierarchical sparse grid representation. We use a 2D MPI topology as an example. The entire simulation domain is divided into four blocks,

each handled by a unique MPI rank. The blocks are further divided into tiles, which contains N × N grid cells (in this example, N = 4). Local cell indexing

inside each tile is lexicographical. The tile i jks are mapped to 1D keys through a user-specified manner (either lexicographical or using a Morton curve).

In addition, the halo regions, i.e., the shared spaces of different MPI ranks, are classified as owned-shared space and ghosted-shared spaces as illustrated in

shaded colors.

exclusively accessed by the rank, while the shared space in-

dicates the halo range with which multiple MPI ranks may

interact. As illustrated in Figure 6, we have two shared space

types: (1) owned-shared space to represent all the grids that

are owned and managed by the current MPI rank but may

interact with particles residing on the neighbor ranks, and

(2) ghosted-shared space to denote the grid range that owned

by some other MPI ranks, but the current worker may read

from or write to.

To further improve the flexibility of grid data management, we

propose a hierarchical block-tile-cell representation of the simula-

tion grid domain. Block is defined as the reference to the entire

local grid domain on a single MPI rank. It is further divided into

tiles, as shown in Figure 6, where each tile contains a user-defined

number of cells (4×4×4 in our examples). This hierarchical design

allows users to customize the grid data allocation and access with

coalesced data access patterns that could potentially benefit par-

allel particle-grid interpolations. It can also fit the special design

needs in user-customized simulation pipelines such as Gao et al.

[2018]; Wang et al. [2020].

Before performing the grid array allocation, we define a sparse

grid layout to specify the following information:

(1) the entity type on the sparse grid (i.e., whether to store the

value on grid nodes, cell centers, faces, or edges);

(2) the valid grid tiles in the current simulation step; and

(3) the halo status in the current simulation step.

The first piece of information is consistent throughout the entire

simulation process. In practice, we define multiple overloading

functions in the local grid concept to deal with the minor indexing

and grid ownership disparity caused by different entity types. By

contrast, the second and third status varies along with the simu-

lation and, thus, require recalculation in every time step. In the

following subsections, we explain how the sparsity is registered

(Section 4.1) and how the halo communications are achieved

(Section 4.2).

4.1 Sparse Map

In MPM simulations, the valid/activated grids, i.e., the grids that

will be allocated and accessed in the upcoming step, are the grids

that will interact with particles. The grid range each particle will

activate is determined by the particle position and the Eulerian

interpolating functions. We adopt the quadratic kernel for parti-

cle/grid data transfer in all examples. Thus, we can ensure that

each particle will activate only 27 grid cells nearby. Since we use

grid tile as the minimum unit of actual allocation, each correspond-

ing tile of these cells is mapped to an array index inside the grid

memory by spatial hashing before MPM time integration in each

step. We first map the global 3D tile index to a hashing key using

either the lexicographical order or a space-filling Morton curve

(Figure 6) [Gao et al. 2018; Setaluri et al. 2014; Wang et al. 2020]

according to user’s choice. This process ensures that every logi-

cally independent grid tile has a unique identifier on whichever

worker. Then, the tile key is registered in a device portable hash ta-

ble (Kokkos::UnorderedMap) in a specified execution manner. This

way, the 3D indices of all valid tileswill be mapped to a linear mem-

ory span indexing from 0 to the total valid-tile number.

4.2 Sparse Halo

To decide whether two adjacent MPI ranks need to exchange grid

data and how much to communicate, we need to consider the fol-

lowing factors:

— entity type stored on the grids,

— particle-grid interpolation kernel size,

— whether the grid halo region contains valid tiles, and

— halo size.

Concretely, the first two factors correspond to how the MPI neigh-

bor topology is defined by the entity type and the kernel size to

ACM Transactions on Graphics, Vol. 42, No. 2, Article 22. Publication date: January 2023.

22:8 • Y. Qiu et al.

Fig. 7. Elastic Playground. Numerous letters, symbols, and numbers are

poured onto the toy playground. At most, 394M particles are involved, and

the average simulation time is 229.56 seconds per frame.

transfer particle-grid data. Specifically, in 3D with kernel size 1,

the workers would share data with all 26 neighbor ranks if data

is stored on grid nodes or cell centers, while only six neighbors

require communication for edge and face cases. Our MPM system

stores all the attributes on grid nodes with a quadratic kernel, and

thus eachworker needs to communicate data with all topologically

adjacent ranks.

The next two factors correspond to the following. Considering

the sparsity of the grid data, halo communication happens only

when there are commonly registered tiles in the ghosted-shared

spaces and owned-shared space of two neighboring ranks. And the

size of the owned- and ghosted- shared space is decided by the

halo size. Under this circumstance, we introduce two types of halo

communications:

— Halo Scatter. Scatter the data in the ghosted-shared space of

the current MPI rank to their owner rank and perform the

specified grid reduction (such as summation or computing the

minimum/maximum value). Note that the reduction happens

on the owned-shared space of the owner worker.

— Halo Gather.Gather grid attributes in the ghosted-shared space

of the current worker from the owned-shared space of the

neighboring owners.

The halo scatter happens after the P2G transfer in MPM time inte-

gration. The grid owner ranks collect and reduce all valid grid data

during this process. Afterwards, all owner ranks will contain com-

plete grid information transferred from simulation particles, in-

cluding in owned space and owned-shared spaces. Then, halo gather

is performed before grid update to ensure all MPI ranks hold the

entire and correct grid data in shared spaces.

To reduce the MPI communication overhead, we first count the

valid tiles in the ghosted- and owned- shared space before halo gath-

er/scatter, and broadcast the counting results to the neighbor ranks.

For halo scatter, workers will send halo data to a specific neighbor

only if both the counting in its ghosted-shared space and the count-

ing in the neighbor’s owned-shared space are non-zero. Addition-

ally, a worker will wait to receive data from a neighbor only when

the owned-shared space and the corresponding neighbor’s ghosted-

shared space are non-empty. Similar verification is also performed

before actual data transfer in halo gather operation, with the role

of ghosted- and owned- shared space switched.

4.3 Sparse Array Allocation

Based on the information provided by the grid layout (specifies

entity type, grid activation, and sparse halo), the sparse grid array

is created and allocated. The grid is managed in an AoSoAmanner,

with each tile serving as a basic Structure-of-Array unit, i.e., the cell

properties inside each tile are organized in an SoA manner while

the tile structures are listed in an outer array. By controlling the tile

size, user can switch grid data to either SoA (when tile size equals

to the block size) or AoS (when tile size equals to 1 × 1 × 1 cell).

As proposed in Wang et al. [2020], this design helps improve data

vectorization inside a contiguous array of member variables and

overall device cache efficiency with small grid tiles.

The following code example shows how to define and allocate

the sparse grid in the proposed programming model. In line 1, we

specify the primary value type of grid attributes. Moreover, in lines

2–3, we define the attributes stored on grids by listing all mem-

ber types (mass (1D) and grid momentum/velocity (3D)). Users can

easily adjust data channels by modifying the template definitions.

Then, in lines 4–5, we create a sparse map (Section 4.1) to record

valid grid tiles in each simulation step. Here, the MEMSPACE in-

dicates whether the hashing data is on CPU or GPU and further

decides whether the hash insertions or queries are performed or

paralleled within the host or device kernels.

1 using T = float; // or other types like double

2 using node_members = // mass and momentum in MPM simulation

3 Cabana :: MemberTypes <T, T[3]>;

4 auto sparse_map = // hash table , Sec 4.1

5 Cajita :: createSparseMap <MEMSPACE >(global_mesh , reserve_size);

6 /* create grid array layout edwards2014kokkos , contains sparse

halo (Sec 4.2); the entity type Cajita ::Node () indicates

values are stored on grid nodes */

7 auto layout =

8 Cajita :: createSparseArrayLayout <node_members >(local_grid ,

sparse_map , Cajita ::Node ());

9 auto nodes = // allocated grid AoSoA

10 Cajita :: createSparseArray <DEVICE >("nodes", layout);

11 nodes.reserve(pre_allocate_cell_num); // optional

Later in lines 7–8, we need to specify the grid layout from the local

grid, sparse map, and the entity type to support the actual array al-

location. In detail, entity type guides the halo communication and

array allocation (Section 4); while local grid computes the owned-

/ghosted- tile ranges. Note the tile ranges in shared spaces require

update once the simulation domain is partitioned (Section 5) to en-

sure the communication correctness. Finally, anAoSoA array is cre-

ated with the pre-prepared information in lines 9–10. Automatic

reallocation will be triggered during simulation if the valid grid

array size exceeds the allocated capacity. We recommend explic-

itly reserving spaces for grid data by providing an estimation of

the maximum valid cell number (line 11) to reduce performance

drop caused by unnecessary reallocation.

5 DISTRIBUTING AND LOAD BALANCING

For performance-portable large-scale simulations, evenly distribut-

ing the workload to multiple ranks is essential. Considering the

significance of load balancing, simulation communities have for-

mulated the partitioning as a domain optimization problem [Sur-

min et al. 2015]. However, most existing works focus on the the-

ory and formulation. In this section, we propose and demonstrate

a detailed dynamic load balancing algorithm as an essential com-

ponent of most distributed computing systems. The corresponding

ACM Transactions on Graphics, Vol. 42, No. 2, Article 22. Publication date: January 2023.

A Sparse Distributed Gigascale Resolution Material Point Method • 22:9

Fig. 8. Sand injectionwith different partition algorithms (133.2Mparticles in total, grid resolution 256×256×256). The first column shows static partitioning

result, and DGP-N refers to Dynamic Grid Partitioning per N simulation steps. Similarly, DPP refers to Dynamic Particle Partitioning. Row 1 to 3 shows the

results for frames 25, 99, and 145, respectively. Different color refers to particles (simulation sub-domain) handled by different MPI ranks.

ALGORITHM 1: Dynamic Load Balancing

Input: Sparse mapmap � for dynamic grid partitioning

Input: Particle positions posp � for dynamic particle partitioning

Input: MPI communicator comm

Output: Optimized partition P = {I , J ,K }

Output: Optimization iteration times performed n

computeLocalWorkload(map or posp) � Section 5.1.1

computeGlobalWorkload(comm) � Section 5.1.2

computePrefixSum � Section 5.1.3

n ← 0

while n < nmax do � nmax : max iteration time

dim_sequence ← random permutation of {0, 1, 2}

for all d ∈ dim_sequence do

is_chanдed ← f alse

is_dim_chanдed ← optimization1D(d)

is_chanдed ← is_chanдed | | is_dim_chanдed

end for

n ← n + 1

if NOT is_chanдed then

return n

end if

end while

implementation is integrated into our particle/grid data layer, i.e.,

into the Cabana library. It will be fully open-sourced with detailed

documentation and unit tests. In the following article, we first in-

troduce two definitions of simulation workload in Section 5.1, and

then explain our 3D partition optimization in Section 5.2. The com-

plete dynamic load balance optimization algorithm is summarized

in Algorithm 1.

5.1 Workload Computation

As introduced in Section 4, the entire work is distributed by par-

titioning the simulation domain into non-overlapped rectangular

sub-regions according to the MPI topology, with every indepen-

dent MPI rank handling each sub-region. To perform the parti-

tion optimization, we need to evaluate the workload on each MPI

worker, i.e., inside each rectangular sub-region, which changes

dynamically throughout the simulation. In addition, the optimiza-

tion process requires frequent workload analysis of the partitioned

attempts. Thus, we need a representation that supports efficient

workload computation within any rectangle regions.

We construct a 3D matrix to realize this goal, with each element

referring to the workload value inside the corresponding area. The

granularity of the workload matrix influences the accuracy and

performance of the load balancing optimization. A matrix with el-

ements representing smaller-sized regions helps the optimizer to

make amore accurate and flexible choice butmay increase the com-

putation and communication overhead.

5.1.1 Local Workload Computation. First, we count the work-

load handled locally on each MPI rank. In hybrid simulation meth-

ods, particles and grids are two crucial representations. Thus, both

can measure the work amount, leading to two types of workload

computing methods.

Particle-based workload computation. In this case, each particle

is treated as a work unit. We make a parallel loop over particle

positions and perform atomic addition to corresponding elements

in the workload matrix. This method finally leads to a partition

where all MPI ranks contain a similar number of particles. Gen-

erally, hybrid methods use dramatically more particles than valid

grids (typically, each grid cell contains at least eight particles in

3D, and sometimes more to increase details and reduce numeri-

cal fractures). Thus, computations involving particles and atomic

additions consume more computing and time resources for work-

load statistics. Nevertheless, balanced particle distribution can po-

tentially benefit the timing of particle-grid data transfer if parti-

cles per cell are similar all over the domain because particle num-

ber decides the number of parallel kernels and majority memory

accesses.

Grid-based workload computation. In order to improve the load

balancing time efficiency, we also support the workload computa-

tion based on valid grid tiles. The compute kernel loops over the

hash table in the sparse map and sets the workload matrix element

to 1 if the tile is valid, i.e., no atomic additions are required, and

fewer matrix elements are involved compared to particle-based

computation.

ACM Transactions on Graphics, Vol. 42, No. 2, Article 22. Publication date: January 2023.

22:10 • Y. Qiu et al.

Fig. 9. Elastic toys with different partition algorithms distributed on

4 (2 × 2 × 1) MPI ranks (22.4M particles in total, grid resolution 256 ×

256 × 256). Row 1 to 3 shows the results for frames 6, 12, and 22, respec-

tively. Particles are colored yellow, blue, purple, and pink to indicate the

MPI ranks they belong to. Minor hue differences are applied to separate

toys.

Discussion on the choices. Generally speaking, both methods es-

timate the workload distribution from different perspectives in a

given domain. When particles are relatively evenly distributed in

grids, e.g., in elastic simulations, these two representations will

generate similar load balancing results. In this situation, grid-based

workload outperforms as it uses fewer computing resources. How-

ever, in simulations for granular media and fluids, the particles

can splash out dramatically or gather locally. In this case, particle-

based method standouts because valid grid tiles are likely to con-

tain significantly different numbers of particles, leading to distinct

P2G and G2P time and memory requirement on different ranks.

This may influence the simulation performance, as demonstrated

in Section 7, or cause run-time particle memory allocation errors

after particle communication for large-scale scenes.

In the rest of this article, we refer to the load balancing algo-

rithm as dynamic grid partitioning (DGP) if the workload is

computed from the valid grid tiles, and as dynamic particle par-

titioning (DPP) for the particle-based case. See Section 7 for de-

tailed comparison results.

5.1.2 Global Workload Computation. All MPI ranks need to

know the workload distribution in the whole simulation domain

to perform global optimization. Thus, we need to gather all the

computed local workload matrices to form a global matrix. We

achieve this calculation by performing MPI reduction among all

ranks with the MPI_Allreduce interface. Note that CUDA-aware

MPI is required if the simulation uses CUDA memory and GPU

execution space.

5.1.3 Global Workload Prefix Summation. We must scan all

dimensions to perform load balancing optimization and ana-

lyze if the current partition is optimal. This process requires

frequent workload counting inside any arbitrary rectangle

sub-regions. Inspired by Surmin et al. [2015], we compute the

3D prefix summation of the global workload matrix, pursuing

a constant-time workload estimation. Specifically, we adopt

Kokkos::parallel_scan interface as an efficient solution for dis-

patching parallel inclusive/exclusive scans with a user-defined

functor and a parallel-execution policy. We scan the 3D workload

matrix in three dimensions separately to compute the 3D prefix

summation matrix, i.e., the first scan is in the x direction, and then

the second and third scans are based on the intermediate matrices

in y and z direction individually. The concrete algorithm is listed

in the supplemental document.

5.2 Partition Optimization

In this section, we first summarize the formulation of the 3D par-

tition optimization process and then introduce the detailed algo-

rithmwe used for dynamic load balancing implementation.We use

I , J ,K to represent the partition in dimension x , y, and z, with I =

(i0, i1, . . . , iNx
), J = (j0, j1, . . . , jNy

), and K = (k0,k1, . . . ,kNz
)

indicating the dividing boundary sets. Here, Nx , Ny , and Nz are

the total number of MPI ranks in corresponding dimensions, and

i∗, j∗,k∗ refers to the tile indices. Specifically, i0 = j0 = k0 = 0 and

iNx
, jNy
,kNz

equals to the total number of tiles inx ,y, and z dimen-

sion, respectively. Note that the workload matrix granularity will

influence the unit of the pre-mentioned indices in the proposed

implementation. In practice, to make implementations easily un-

derstandable and consistent, we use grid tile as the atomic unit of

(1) workload matrix, (2) partition boundary index, and (3) grid data

communication.

For any given rank (α , β ,γ), the local grid domain it in charges is

given by grid tiles {(i, j,k) |iα ≤ i < iα+1, jβ ≤ j < jβ+1,kγ ≤ k <

kγ+1}. Suppose the starting tile of the current rank are optimized

and fixed; the proposed load balancing algorithm will find the op-

timal ending tile indices by solving the following optimization.

min
iα+1, jβ+1,kγ +1

:

iα+1∑

i=iα

jβ+1∑

j=jβ

kγ +1∑

k=kγ

|Wi, j,k −W |

Here, Wi, j,k is the workload in tile (i, j,k) and W refers to the

average rank workload computed by

∑Nx
i=0

∑Ny
j=0

∑Nz
k=0

Wi, j,k

Nx×Ny×Nz
.

As discussed in Surmin et al. [2015], this optimization is

an NP-complete problem. With previous partitions (i0, . . . , iα),

(j0, . . . , jβ), and (k0, . . . ,kγ) fixed, there are three degree-of-

freedoms to decide, i.e., the optimal partition iα+1, jβ+1, and kγ+1,

for the current rank. In addition, the results will influence the com-

putation for later ranks with larger rank indexing values. To solve

this problemwith three unknowns, we iteratively alternate among

each variable and perform 1D optimizations. The iterationwill stop

when the partitioning results are unchanged or the maximum iter-

ation number is reached, as shown in Algorithm 1. In the supple-

mental document, we present a validation example to show that

this iterative algorithm can generate the optimal solution with sev-

eral iterations when the ground truth is unique.

5.2.1 1D Load Balancing Optimization. Inside each 1D opti-

mization, we randomly choose one dimension of interest that is

never covered in the current iteration. This randomness reduces

the possibility for the algorithm to be trapped into local optimal

and potentially reduces the iteration times. Then, the partition in

ACM Transactions on Graphics, Vol. 42, No. 2, Article 22. Publication date: January 2023.

A Sparse Distributed Gigascale Resolution Material Point Method • 22:11

the non-chosen two dimensions is fixed. All partition boundaries

in the dimension-of-interest will be reanalyzed individually for a

more even workload division. The detailed algorithm is summa-

rized in the supplemental document.

In practice, it is possible to have a range of consecutive tiles

where there are no valid particles. In theory, any tile indices in

this range can be treated as optimal partition positions. How-

ever, because dynamic load balancing is not performed in every

simulation time step, if we choose the pre-mentioned tile range

boundaries as the partition position, the particles may move over

the range boundaries before the next round of partitioning. This

choice will cause extra particle communications in the upcom-

ing steps, especially for solid simulations, where many particles

tend to gather together, and the particle communication overhead

would be considerable. Therefore, we always set the partition point

as the middle point of the equivalent tile range where there are

no particles. This simple operation reduces the potential parti-

cle communications among MPI ranks and improves the overall

performance.

6 DISTRIBUTED MPM IMPLEMENTATION

6.1 Time Integration

Asmentioned in Section 3, we implement the first-orderMPM time

integration scheme including three basic computation kernels, i.e.,

P2G,GridUpdate, andG2P. For distributed systems, another two

communication kernels, Grid Halo Communication and Parti-

cle Communication are required to guarantee the correctness.

In detail, Grid Halo Communication is performed before Grid

Update to ensure the completeness of the grid data on each MPI

worker. It consists of the halo scatter and gather operations in-

troduced in Section 4.2. Then, after updating particle positions in

G2P, we end up time integration step with Particle Communi-

cation to distribute particles to the ranks in charge of the corre-

sponding grid sub-domain. Additionally, Dynamic Partition Op-

timization is performed right before Particle Communication at

certain time steps to ensure a relatively balanced load distribution.

The entire pipeline is illustrated in Figure 5.

6.2 PIC Algorithms and Application Implementation

To make a more complete distributed MPM simulation system, we

add the PIC Algorithm layer to further support the application layer

in building up versatile large-scale scenes. In addition to the core

time integration routines, we add components like device-portable

sparse collision object, particle sourcing, analytic/VDB-based

shape, and multi-material constitutive modeling with elasticity

and plasticity, forming the MultiSim library (Figure 1). We sup-

port four types of constitutive models, including fixed-corotated

model [Stomakhin et al. 2013] for elasticity, Drucker-Prager elasto-

plasticity [Klár et al. 2016] for sand simulations, Non-Associated

Cam-Clay (NACC) [Li et al. 2022; Wolper et al. 2019] for

snow/mud-like behaviors, and furthermore, weakly compressible

fluids [Tampubolon et al. 2017] for liquids. Users can easily specify

the component or even extend the current PIC Algorithm layer for

more applications. In the supplemental document, we provide a

concrete example showing how to use the components in applica-

tion level. More demos can be found in our open-source code.

Fig. 10. Weak Scalability scene setup with 1–8 workstations. Different

colors refer to different MPI ranks in each sub-figure.

Fig. 11. Weak Scalability on local workstations with GPU(CUDA). Here,

Particle is the short for Particle Communication kernel; and similarly, Grid

Halo for Grid Halo Communication and Partitioner for Dynamic Partition

Optimization. The listed numbers in the lower figure are the efficiency val-

ues for aggregated timing (summation of all six kernels).

7 RESULTS AND EVALUATIONS

This section evaluates the proposed distributed MPM framework

with scaling tests, load balancing comparisons, MPI Cartesian

topology comparisons, and large-scale demonstrations. We use at

most eight workstations (each as oneMPI rank) in our experiments.

The workstation has one Intel Core i9-10920X (12 core, 24 threads,

base clock 3.50Hz) and one NVIDIA GeForce RTX 3090 GPU. We

adopt 10-Gigabit bandwidth Ethernet to support inter-rank com-

munications, with OpenSSH [developers 2021] and CUDA-aware

OpenMPI 4.1.2 [Members 2021]. All the evaluations and demon-

strations are conducted under this setup unless stated otherwise.

7.1 Multi-MPI Scalability

Scalability with increased computing resources is a widely adopted

test to evaluate the effectiveness and robustness of a distributed

ACM Transactions on Graphics, Vol. 42, No. 2, Article 22. Publication date: January 2023.

22:12 • Y. Qiu et al.

Fig. 12. Strong Scalability scene setup with 1–8 workstations. Differ-

ent colors refer to the particles handled by different MPI ranks in each

sub-figure.

algorithm. Ideally, performance should scale up with the number

of involved MPI ranks. However, a perfect scaling is not practical.

Specifically, Amdahl’s law and Gustafson’s law demonstrate the

limitation of parallel computing; furthermore, the communication

bandwidth also constrains the upper bound of multi-rank accelera-

tion. To analyze the performance of the proposed distributedMPM

system, we present the scaling results on local workstations with

CUDA as a latent programming model. Additionally, experiments

distributed with OpenMP are summarized in the supplemental

document.

7.1.1 Weak Scaling. Inspired by Gao et al. [2018], we set up the

experiment by placing an elastic cuboid at the center of each rank’s

local mesh and let it fall with gravity, as illustrated in Figure 10. All

cuboids are of the same size with 28.8M particles. The MPI rank

topology is n×1×1 for rank number n = 1, 2, 3, 5, 7, and n/2×1×2

for n = 4, 6, 8. We summarize the experiment timing and efficiency

of each computing/communication kernel in Figure 11. For com-

munication kernels (Particle Communication, Dynamic Partition

Optimization, and Grid Halo Communication), efficiency is com-

puted with 2-rank timings as the 100% base, since there’s little

communication overhead for the 1-rank case. As demonstrated,

the aggregated weak efficiency is over 95% regardless of the rank

numbers. To further illustrate the scaling potential of the proposed

model, we run the test with up to 120 ranks (20 nodes) with CUDA

on the Summit supercomputer and show the results in the supple-

mental document.

7.1.2 Strong Scaling. For the strong scaling test, we assign a

falling cuboid at the center of the global mesh as a fixed-size prob-

lem and bring different numbers of MPI ranks into the computa-

tion. The cuboid contains 159M particles for the CUDA test. The

entire workload is automatically divided and assigned to ranks by

applying the proposed dynamic load balancing algorithm given a

user-specified MPI topology, as shown in Figure 12. We conduct

the experiments with the same MPI rank topology settings as in

Section 7.1.1. The timing and speedup analysis are illustrated in

Figure 13. Our system can pursue an almost linear overall speedup

as the MPI rank increases.

7.2 Load Balancing Studies

Dynamic load balancing generally boosts the simulation perfor-

mance of a distributed system from several perspectives, as stated

before. However, partition optimization and the commensurate

Fig. 13. Strong Scalability on local workstations with GPU(CUDA). All

ranks handle a huge elastic box with 159M particles.

particle relocation may require significant computation and com-

munication time. In addition, various material behaviors may lead

to divergent partition results when using different workload ele-

ments. Therefore, we conduct several experiments with multiple

material behaviors to evaluate the proposed load balancing algo-

rithms in this section. The results and discussions can help users

find the best choice for their simulation objectives.

7.2.1 Sand Injection. In this experiment, we focus on compar-

ing the behavior of the static, dynamic grid, and DPP methods and

analyzing how partitioning frequency influences the performance.

As displayed in Figure 8, we design a 4-MPI-rank sand injection

scene, where each rank injects sand from two sourcing points with

random velocities pointing toward the shelf (collision object) sit-

ting at the domain center. Throughout the simulation, sand mate-

rial sometimes splashes and finally settles down, leading to dynam-

ically varying workload distribution.

Dynamic Partitioning V.S. Static Partitioning. For a thorough

analysis, we illustrate the detailed timing on all four ranks for

static, dynamic grid, and dynamic particle partitions in Figure 14.

In addition to the timing of each separate kernel, we also show

waiting time, which refers to the duration when faster ranks finish

computation/communication and wait for other ranks. We show

the data with dynamic partitions performed every 50 steps with-

out loss of generality. In the first row of Figure 14, static partition-

ing pushes more work to lower ranks (rank 0-0-0 and 1-0-0) as

the sand particles fall to the ground. The upper ranks (rank 0-1-0

and 1-1-0), on the other hand, contain fewer and fewer particles

and thus sit idle, wasting time waiting for the lower ranks. This

issue is mitigated when dynamic partition is adopted (rows 2–3 in

Figure 14).

In this test, some sand particles splash out in the upper sub-

domains while the others pile up at the bottom. This uneven

ACM Transactions on Graphics, Vol. 42, No. 2, Article 22. Publication date: January 2023.

A Sparse Distributed Gigascale Resolution Material Point Method • 22:13

Fig. 14. Detailed timing per step (in milliseconds) of sand injection with static partitioning, DGP, and DPP.

Fig. 15. Aggregated time speed up of dynamic load balancing over static

partitioning. DGP-N and DPP-N refer to dynamic grid partitioning and dy-

namic particle partitioning performed every N steps, respectively.

particle-per-grid-tile distribution leads to different behaviors of

DGP and DPP. When applying DGP, each rank contains a similar

number of grids, but the upper ranks need to handle more particles.

This fact means that more parallel work is required for upper ranks

to perform P2G and G2P, and thus the lower ranks become idle, es-

pecially after frame 90. ForDPP the roles reverse as the lower ranks

need to handle more of the grid, making the upper ones wait.

Dynamic Partition Frequency. We compare the speedup of dy-

namic grid/particle partitioning with different frequencies to static

partitioning in Figure 15. This specific simulation takes around

233 steps per frame, and the sand particles are continuously in-

jected until frame 80. We choose partitioning step intervals to be

50, 200, 1000, 2000, and 4000 for testing, i.e., performing dynamic

load balancing per about 0.25, 1, 4, 8, and 17 frames.

As illustrated in Figure 15, all choices achieve over 1.4x speedup

and can reach 2.3x in some frame ranges. In theory, the best

speedup would be about 2x, as the extreme case is that the

lower two ranks handle all workload and the upper two do

nothing but wait. This speedup can be better in practice when

considering the overhead of parallel scheduling, memory access,

and communication.

Overall, DPP outperforms the grid-based method for the splash-

ing materials. Moreover, each partitioning frequency has differ-

ent speedup trend through frames 0–25, 25–80, and 80–150. This

indicates that the particle/grid number (problem scale), material

Fig. 16. Elastic Toys. (Left) Aggregated simulation time statistic, aver-

aged on each step. (Right) Speedup of dynamic partitioning over the static

partitioning.

Table 1. Sand Inject Speedup

Method Static DPP-50 DPP-200 DPP-1000 DPP-2000 DPP-4000

Time (h) 6.15 3.83 3.82 3.83 3.62 3.64

Speedup (%) – 160.49% 160.87% 160.30% 169.89% 169.10%

Method (h) – DGP-50 DGP-200 DGP-1000 DGP-2000 DGP-4000

Time (h) – 4.26 4.25 4.37 4.25 4.26

Speedup (%) – 144.28% 144.68% 140.69% 144.49% 144.13%

We summarize the total simulation time of the 150 frames in hours and the
speedup of partition methods with different partitioning frequencies. DPP and
DGP achieve the best overall speedup 2000 and 200 steps, separately.

behavior (sourcing, splashing, and falling), as well as the motion

(if particles are moving toward the same direction as the parti-

tion boundaries) will all influence the actual performance. Despite

the partitioning frequency, our dynamic load balancing algorithm,

compared to the static case, can always accelerate the simulation

process as summarized in Table 1, and it can gain more speedup

for large-scale cases that consume more time (after frame 80 when

sourcing stops as in Figure 15).

In particular, we observe that DPP per 4000 steps behaves

better than other cases after frame 80. There are two possible

reasons. First, frequent partition changes prompt immediate

particle relocation among ranks. It will also introduce extra

particle communication work in the following steps, especially

when particles and partition boundaries move in the same

direction. Second, a relatively perfect particle partition leads to

an undesirable grid partition for splashing sands. Nevertheless,

delayed partitioning alleviates this situation by pushing more

particles to lower ranks but more grid to the upper ranks, thus

ACM Transactions on Graphics, Vol. 42, No. 2, Article 22. Publication date: January 2023.

22:14 • Y. Qiu et al.

Fig. 17. Sand dambreak with different partition algorithms and MPI topology settings (17M particles in total, grid resolution 256 × 256 × 256). TOPO in

the figure refers to MPI Cartesian topology. Rows 1 and 2 show the results of frames 21 and 49, respectively. Different color refers to particles (simulation

sub-domain) handled by different MPI ranks.

leading to more rank-balanced particle-grid computations. DGP,

however, cannot benefit from this partitioning delay.

7.2.2 Elastic Toys. This experiment shows how partition meth-

ods behave when materials splash considerably less. Initially, we

assign four MPI ranks the same number and type of toys and

thus the same amount of particles, and we drop them as shown in

Figure 9. With toys falling down, particles are communicated to

lower ranks if they pass the upper-lower partition interface. Here,

the overall acceleration rates (173% for DGP and 180% for the par-

ticle case) are similar and are close to the best theoretical speedup

(200%). In a detailed timing statistics (Figure 16), we notice better

acceleration withDPP before frame 30. It happens because the toys

are of irregular shape and random orientation. Thus, some active

grid tiles contain only a sharp toy corner with few particles. Lower

toys reach the bottom while falling, but the upper ones are still

placed evenly in the sky. As a result, more grids will be activated in

the upper domain, leading to a partition boundary closer to the up-

per toy group. The toy’s falling direction makes the workload less

balanced in the steps prior to the next round of partitioning. One

of the representative frames is shown in the first row of Figure 9.

7.2.3 Sand Dam Break. Another classic scene we test is sand

dam break illustrated in Figure 17. Initially, two sand columns are

located at the diagonal corner of the entire domain. Unlike previ-

ous settings, we use MPI rank topology 4 × 1 × 1 to evaluate the

behavior of dynamic load balancing algorithms. In this simulation,

the sand flows toward the domain center and settles down onto

the floor at last. There is no splashing or extreme deformations

throughout this process. Thus the two dynamic partition methods

achieve similar speedups as demonstrated in Figure 18. In addition,

with more andmore sands gathering into the middle domain, static

partitioning gradually becomes a naturally appropriate approach

(after frame 50). In this case, the dynamic load balancing methods

exhibit only 10%–15% performance improvement.

7.3 Cartesian Topology of MPI Ranks

Here we observe another factor that strongly influences the perfor-

mance of distributed simulators: the initial MPI Cartesian topology

setting. In this section, we use the Sand Dam break example intro-

duced in Section 7.2.3 for illustration.We rerun the simulationwith

MPI topology 1× 4× 1, 1× 1× 4, and 2× 2× 1 (Figure 17) and com-

pare the timing to the case 4×1×1. To make a fair comparison, we

Fig. 18. Sand Dambreak. (Top) Aggregated simulation time statistic, av-

eraged on each step. (Bottom) Speedup over static partitioning with MPI

rank topology 4 × 1 × 1.

adopt DGP for all the new topology settings and summarize the

timings in Figure 18.

With identical computing resources, the simulation perfor-

mance reduces significantly with inappropriate MPI topologies

(1×4×1 and 2×2×1). There are several reasons leading to this re-

sult in this specific simulation scene. First, sands move with grav-

ity toward the −y direction. If there are rank boundaries on the

y dimension, particles must be relocated to other ranks when flow-

ing down, increasing the particle communication overhead. Second,

diverse rank topologies lead to a different number of neighbors

and the size of halo areas, causing performance variance. Conse-

quently, the takeaway is that we should always carefully consider

the particle distribution and motion tendency in the scene to set

the initial MPI topology for the best performance.

7.4 Large-Scale Simulations

This part demonstrates the scalability of the proposed distributed

MPM scheme with a suite of large-scale simulations. The corre-

sponding settings and average time per frame are summarized in

Table 2, while the precise kernel timings are in the supplemental

document.

1B-Fluid. Example in Figure 2 exemplifies a complex fluid scenes

containing 1.01 billion particles falling onto chip-shaped boards.

To the best of our knowledge, this is the first MPM simulation be-

yond the scale of 1B. Initially, there is a water layer on the ground

ACM Transactions on Graphics, Vol. 42, No. 2, Article 22. Publication date: January 2023.

A Sparse Distributed Gigascale Resolution Material Point Method • 22:15

Table 2. Parameters and Timings

Example Particle # Rank # Grid Resolution Ave sec/frame ∆tframe ∆x max∆tstep material parameters

(Figure 2) 1B-Fluid 1, 006, 766, 992 8 256 × 266 × 256 323.25 1/4 100/256 1.01 × 10−3 Fluid: (500)-(3 × 106, 3)

(Figure 3) Mudflow 207, 810, 349 4 256 × 256 × 256 159.34 1/10 200/256 3.36 × 10−4 NACC: (1500, 1.5 × 107, 0.3)-(−0.007, 0.05, 30, 30)

(Figure 4) High-resolution Sand Injection 266, 507, 608 4 512 × 512 × 512 1, 072.95 1/60 1/512 3.58 × 10−5 Sand: (20, 1 × 104, 0.4)-(30.0, 0.0)

(Figure 7) Elastic Playground 393, 954, 516 4 512 × 512 × 512 229.56 1/4 200/512 8.42 × 10−4 Fix-corotated: (1000, 9 × 106, 0.4)

We summarize the parameters of particle numbers, grid resolutions, MPI rank numbers, grid cell size ∆x , and the average time per frame for various experiments described in
Section 7.4. The material-related parameters are listed as well. In addition to the basic material settings (density ρ , Youngs Modulus E , and Poisson Ratio ν), parameters
needed by specific materials are provided. We refer to the corresponding papers for a physical explanation of the parameters. For fix-corotated model, we simply show
(ρ, E, ν); while for NACC, parameters are given with format (ρ, E, ν)-(α0, β, ξ , friction angle); sand model (Drucker-Prager elastoplasticity) includes parameters
(ρ, E, ν)-(friction angle, cohesion), and finally, we provide (ρ)-(k, γ) for fluids.

Table 3. CPU/GPU SOTA Comparison

Device Method Particle # Timing (ms/step)

CPU
[Wolper et al. 2019] 10M 1034.98

Ours 10M 2261.39

GPU
[Gao et al. 2018] 20M 39.89

Ours 20M 73.17

Note that the particle number is rounded.

and eight liquid cubes falling on top. We use eight workstations to

solve this challenging problem, withMPI topology 4×1×2 through

CUDA parallelization. In order to maintain a balanced fluid dis-

tribution, we use the DGP (per 50 steps). As a result, every MPI

rank consistently uses 22 to 23 Gigabytes of GPU memory over

the span of the simulation. The fluid’s turbulence is recorded in a

large amount of detail, as shown in Figure 2.

Mud flow. We simulate natural mud flow (Figure 3) with NACC

models. The domain is of size 200×200×200 meters, with a bumpy

slope serving as a collision object. Mud particles are injected into

the scene in the first 500 of the total 1000 frames and reach 207.8M

at maximum. The simulation is performed with 4×1×1 MPI ranks,

and DGP every 200 steps. Figure 3 also visualizes the mud flow

damage propagation.

High-resolution Sand Injection. Figure 4 demonstrates the scala-

bility with a high-resolution version of Sand Injection. We increase

the spatial resolution to 512 × 512 × 512, and the scene reaches

266.5M particles at the middle point of the simulation time. Com-

pared to Figure 8, there are more splashing and collision details in

Figure 4. This demo has the sameMPI rank topology as the low-res

case.

Playground. Another scene involving more than 393.95M par-

ticles shows elastic jellos spreading onto the ground. We visual-

ize some frames from different viewpoints in Figure 7. In this test,

numerous elastic letters, numbers, and symbols are continuously

poured into a toy playground. Four workstations (4 × 1 × 1) are

adopted for computation.

7.5 Single-Machine Performance

For completeness, we also compare our distributed MPM pipeline

with the state-of-the-art (SOTA) C++ MPM simulation pipeline

implementations that are heavily hand-optimized for single

architectures: CPU [Wolper et al. 2019] and GPU [Gao et al. 2018].

As the test example, we use a simple scene, an elastic box falling

down to the ground, with grid resolution 256 × 256 × 256. Table 3

summarizes the particle number, testing device, and timing results.

Indeed, our distributed system cannot outperform the separate

CPU- and GPU- implementations, which have CPU-tailored

SPGrid [Setaluri et al. 2014] and CUDA kernel optimizations [Gao

et al. 2018], but is near 50% performance for both. Nevertheless,

our target is a generalized distributed and scalable system that can

be executed on most HPC platforms without code modification,

while the compared implementations have adopted sophisticated

hardware specific code optimizations focusing on their specialized

single-machine platforms.

8 CONCLUSION AND DISCUSSION

We proposed a distributed simulation framework specialized for

MPM computations. Based on the hierarchical system architecture

design, we make it possible to achieve multiple advancements

in each layer. The programming model layer uses Kokkos to

enable fast switching between various latent devices and dispatch

the MPM pipeline to many major HPC platforms. Additionally,

particle/grid data, algorithms, and communication layer with our

dedicated distributed sparse grid design makes it simpler for

hybrid simulation mechanics. Furthermore, we propose the dy-

namic load balancing algorithm to improve overall performance.

Multiple experiments and comparisons are conducted to demon-

strate the effectiveness and serve as a reference for simulation

setups. Finally, we demonstrated that the proposed distributed

MPM system can handle extremely large-scale simulations of

complex elastoplastic materials with more than 1 billion particles,

which has never been achieved before in computer graphics or

computational mechanics.

Limitations and Future Work. First, there is still space to im-

prove communication efficiency. We adopt MPI_Isend/MPI_Irecv

for data transmission among MPI ranks. However, better commu-

nication scaling could be achieved if more efficient MPI interfaces

are studied and explored. Second, as discussed in Section 7, the

initial settings of MPI topology and dynamic load balancing fre-

quency will strongly influence the overall performance. Making

this decision process automatic according to initial particle sam-

ples is a valuable direction to explore. Furthermore, the workload

computation in dynamic load balancing can be improved. Grid or

particle alone are both insufficient to form a perfect workload de-

scription to fit all general simulation scenes. Therefore, combing

these two pieces of information and conducting a better represen-

tation could provide more benefits. Finally, it is also meaningful to

further improve the performance for individual parallel backends

and within the particle/grid layers on specific devices to support

faster application systems. Indeed, because the simulation frame-

work is built on Kokkos and Cabana, testing and leveraging ad-

ditional hardware architectures is straightforward. This includes

AMD GPUs as deployed in the recent Frontier supercomputer, as

well as future systems.

ACM Transactions on Graphics, Vol. 42, No. 2, Article 22. Publication date: January 2023.

22:16 • Y. Qiu et al.

Fig. A.1. Load balancing unit test. In this 2D example, we sample six grid cells in each rank for dynamic grid partition test, and we sample 15 particles for

dynamic particle partition. Each case will contain two fixed anchor grid cells or particles to ensure the uniqueness of the partition results.

ALGORITHM 2: Compute Workload in a Given Sub-Domain

Input: Dimension label di and tile range li ,hi
Input: Dimension label dj and tile range lj ,hj
Input: Dimension label dh and tile range lh ,hh
Input: Workload prefix sum matrixWS

Output: Workload in tile range [li ,hi] × [lj ,hj] × [lk ,hk]

function ComputeWorkload(di , li , hi , dj , lj , hj , dk , lk , hk)

s[di]← li , s[dj]← lj , s[dk]← lk
e[di]← hi , e[dj]← hj , e[dk]← hk
returnWS (e[0], e[1], e[2]) −WS (s[0], e[1], e[2])

−WS (e[0], s[1], e[2]) −WS (e[0], e[1], s[2])

+WS (s[0], s[1], e[2]) +WS (e[0], s[1], s[2])

+WS (s[0], e[1], s[2]) −WS (s[0], s[1], s[2])

end function

APPENDICES

A DYNAMIC LOAD BALANCING

Here, we present algorithm details and the unit tests of the pro-

posed dynamic load balancing method. Also, a 2D example is

shown in Figure A.2 to visualize the dynamic optimization pro-

cess. We first compute the workload matrix locally on each rank

and then use MPI_ALLReduce to get the global workload matrix.

Then, we compute the prefix summation for constant-time work-

load computation in any given rectangle region. After that, we per-

form iterations of 1D rectangle partition optimization. We first fix

the position of the previous partition boundarypi−1, thenwemove

current partition boundary pi to the right until finding the optimal

partition position arдmin
pi

∑
jk |w

pi−1:pi
jk

−wave
jk
|.

A.1 Validation

To validate the partition optimization algorithm, we design a grid/

particle distribution that leads to a unique ground truth of the par-

tition boundary set. Figure A.1 illustrates a 2D case of this unit

test process. We first generate a ground truth partition by ran-

dom sampling. Then, we sample the same number of valid grid

cells or particles inside each partitioned sub-domain. To ensure

the uniqueness of this partition, two anchor grid cells or parti-

cles are included and placed at the top-left and bottom-right cor-

ners. After that, we use the average partition for initialization

and perform the dynamic load balancing algorithm. The testing

results show that our partition optimization algorithm can con-

verge to the ground truth within several (usually 1–4) optimization

iterations.

A.2 Workload Computation

Once the 3D prefix summation matrix of the global workload is

obtained, we can calculate the workload in any given rectangle

domain within constant time as shown in Algorithm 2.

A.3 Partition Optimization

We apply three separate 1D optimizations to approximate the op-

timal solution of the 3D partition optimization. Details of the 1D

case is shown in Algorithm 3.

B RESULTS AND EVALUATIONS

The scalability tests on local workstations with OpenMP as latent

programming model are shown in Figures B.4 and B.5. The scene

setups are the same as the CUDA cases except for the size of the

elastic cuboid. The fixed-corotated constitutive model [Stomakhin

et al. 2012] and DGP (per 200 simulation steps) are adopted for all

scaling tests.

We also test the weak scalability with more cuboids on the

Summit supercomputer, which contains six NVIDIA Tesla V100

GPUs per compute node. One Summit node has two sockets,

each containing three GPUs or three MPI ranks. Thus, various

levels of latencies are incurred for both cross- and within-node

communications. The results are shown in Figure B.6.

ACM Transactions on Graphics, Vol. 42, No. 2, Article 22. Publication date: January 2023.

A Sparse Distributed Gigascale Resolution Material Point Method • 22:17

Fig. A.2. Illustration of the dynamic load balancing algorithm. In this

2D example, we visualize how the dynamic partition is performed on the

entire simulation domain. Here, we use the grid as the workload unit for il-

lustration, where gray grids refer to activated grid nodes, and the numbers

represent the element values of the matrix.

B.1 Large-Scale Simulations

In this section, we show detailed timing statistics for large-scale

simulations in Figures B.1–B.3. The high-resolution sand injection

has similar detailed timing proportions as the low-res version and

is not repeatedly illustrated.

C APPLICATION IMPLEMENTATION

Here, we show an example of setting up a scenario with collision

objects in the application level.

1 // define latent programming model

2 using EXECSPACE = Kokkos::Cuda;

3 using MEMSPACE = Kokkos:: CudaSpace;

4 using DEVICE = Kokkos::Device <Kokkos::Cuda , Kokkos::CudaSpace >;

5 // data type

6 using T = float;

7 // define particles

8 using particle_members =

9 Cabana::MemberTypes <T, T[3], T[3], T[3][3] , T[3][3] , T>;

10 using particle_list = Cabana::AoSoA <particle_members , MEMSPACE >;

11 using particle_type = typename particle_list :: tuple_type;

12 struct particle_index

13 {

14 enum Names

15 {

16 mass = 0,

17 pos = 1,

18 vel = 2,

19 F = 3,

20 affine = 4,

21 logJp = 5,

22 total = 6,

ALGORITHM 3: 1D Rectangle Partition Optimization

Input: Dimension-of-interest: d

Output: Optimized partition: P , with P0 = I , P1 = J , P2 = K

Output: If partition is updated: is_chanдed

function optimization1D(d)

� solve 1D rectangle optimization given partitions in the other

two dimensions fixed

di ← d

dj ← (d + 1) mod 3

dk ← (d + 2) mod 3

for all j ∈ [0,Nj), k ∈ [0,Nk) do � in parallel

Wall (j,k) ←

ComputeWorkload(di , 0,Ni ,dj , Pdj (j), Pdj (j+1),dk ,

Pdk (k), Pdk (k + 1))

Wave (j,k) ←Wall (i, j) / Ni

end for

� Ni , Nj and Nk : rank number in corresponding dimensions

pi−1 ← 0

pi ← 1

eqstar t ← 1 � record equivalent partition range

last_di f f ← INT_MAX

Pdi (0) = 0

for all rank = 1, . . . ,Ni − 1 do

while true do

for all j ∈ [0,Nj), k ∈ [0,Nk) do � in parallel

W (j,k) ←

ComputeWorkload(di ,pk−1,pk ,dj , Pdj (j), Pdj (j+1),

dk , Pdk (k), Pdk (k + 1))

end for

di f f ←
∑
j,k |W (j,k) −Wave (j,k) | � parallel reduce

if di f f < last_di f f then

eqstar t ← pk
last_di f f ← di f f

else

if P (di , rank) � (pi − 1 + eqstar t)/2 then

P (di , rank) ← (pi − 1 + eqstar t)/2

is_chanдed = true

end if

pi−1 ← pi
break while loop

end if

pi ← pi + 1

end while

end for

end function

23 };

24 };

25 // basic parameter settings

26 namespace Settings

27 {

28 // domain corners

29 static constexpr T low_x = 0.0;

30 static constexpr T low_y = 0.0;

31 static constexpr T low_z = 0.0;

32 static constexpr T high_x = 200.0;

33 static constexpr T high_y = 200.0;

34 static constexpr T high_z = 200.0;

35 // spatial resolutions

36 static constexpr int res_x = 512;

ACM Transactions on Graphics, Vol. 42, No. 2, Article 22. Publication date: January 2023.

22:18 • Y. Qiu et al.

Fig. B.1. 1B-Fluid. Detailed timing per frame (in seconds).

Fig. B.2. Mudflow. Detailed timing per frame (in seconds). Some Ethernet instability happened during particle communications in frames 495, 840, and

875, which can be regarded as external noises.

Fig. B.3. Playground. Detailed timing per frame (in seconds).

37 static constexpr int res_y = 512;

38 static constexpr int res_z = 512;

39 static constexpr T dx = high_x / res_x;

40 // halo and partition control

41 static constexpr int halo_size = 4;

42 static constexpr int num_step_rebalance = 200;

43 static constexpr bool partition_op_on = true;

44 // boundary type

45 static constexpr MultiSim:: BCTypes boundary_type = MultiSim::

BCTypes:: STICKY;

46 // temporal settings

47 static constexpr int frame_num = 170;

48 static constexpr T cfl = 0.3;

49 static constexpr T fps = 4;

50 // material related settings

51 static constexpr MultiSim:: MaterialTypes material_type =

52 MultiSim:: MaterialTypes :: FIX_COROTATED;

53 static constexpr T par_density = 1000.;

54 static constexpr T E = 9e6;

55 static constexpr T PR = 0.4;

56 // physical parameters

57 static constexpr T gravity = -9.8;

58 // particle info

59 static constexpr int PPC = 8;

60 static constexpr T par_volume =

61 (high_x / res_x) * (high_y / res_y) * (high_z / res_z) /

PPC;

62 static constexpr T par_mass = par_density * par_volume;

63 static constexpr T init_y_vel = 100;

64 // sourcing related info

65 static constexpr T source_init_vel = 50;

66 // static constexpr T source_init_vel = 13;

67 // static constexpr int source_step = 800;

68 static constexpr int source_step_0 = 1;

69 // static constexpr int source_step_1 = 297;

70 static constexpr int source_step_1 = 98;

71 static constexpr int source_step_2 = 199;

72 }; // end namespace Settings

73

74 // customized particle initialization

75 template <typename Scalar , class ExecSpace >

76 struct InitParticleFunc

77 {

78 using execution_space = ExecSpace;

79 using memory_spcae = MEMSPACE;

80

81 template <class ParticleList >

82 int operator()(ParticleList& particles , const Kokkos::Array <

Scalar , g_dim >& local_low_corner , const Kokkos::Array <Scalar ,

g_dim >& local_high_corner , const Scalar cell_size , const int

ppc)

83 {

84 // sample from Analytical Level Set

85 MultiSim:: Analytic_Shape :: AnalyticLevelSet <MultiSim::

Analytic_Shape ::cuboid , Scalar , 3>

86 cube(half_size , mid_pt , { 0, 0, 0 });

87 std::vector <std::array <T, 3>> points;

88 MultiSim:: Particle_Sample::Sampler <T, 3> sampler;

89 int particle_num = sampler.sample_particle_pos(points ,

cube , ppc , cell_size);

90

91 // sampled particles to Kokkos:View

92 Kokkos::View <T* [3], memory_spcae > poses("particles",

particle_num);

ACM Transactions on Graphics, Vol. 42, No. 2, Article 22. Publication date: January 2023.

A Sparse Distributed Gigascale Resolution Material Point Method • 22:19

Fig. B.4. Weak Scalability on local workstations with CPU (OpenMP).

Each rank handles an elastic box with 1M particles.

Fig. B.5. Strong Scalability on local workstations with CPU(OpenMP).

All ranks handle a huge elastic box with 10M particles.

93 auto host_view = Kokkos:: create_mirror_view(Kokkos::

HostSpace (), poses);

94 for (int i = 0; i < particle_num; ++i)

95 for (int d = 0; d < 3; ++d)

96 host_view(i, d) = points[i][d];

97 Kokkos:: deep_copy(poses , host_view);

98

99 // Initialize Particles

100 using particle_type = typename ParticleList:: tuple_type;

101 using P = particle_index;

Fig. B.6. Weak Scalability on Summitwith GPU(CUDA). Each rank han-

dles an elastic box with 1M particles.

102 particles.resize(particle_num);

103 Kokkos:: parallel_for(Kokkos:: RangePolicy <execution_space

>(0, particle_num),

104 KOKKOS_LAMBDA(const int idx) {

105 particle_type p;

106 // mass

107 Cabana::get <P::mass >(p) = Settings:: par_mass;

108 // pos

109 Cabana::get <P::pos >(p, 0) = poses(idx , 0);

110 Cabana::get <P::pos >(p, 1) = poses(idx , 1);

111 Cabana::get <P::pos >(p, 2) = poses(idx , 2);

112 // vel

113 for (int d = 0; d < g_dim; ++d)

114 Cabana::get <P::vel >(p, d) = _v[d];

115 // F

116 for (int d0 = 0; d0 < g_dim; ++d0)

117 for (int d1 = 0; d1 < g_dim; ++d1)

118 Cabana::get <P::F>(p, d0, d1) =

119 d0 == d1 ? (Scalar)1 : (Scalar)0;

120 // C

121 for (int d0 = 0; d0 < g_dim; ++d0)

122 for (int d1 = 0; d1 < g_dim; ++d1)

123 Cabana::get <P::affine >(p, d0, d1) = (

Scalar)0;

124 // logJp

125 Cabana::get <P::logJp >(p) = 0;

126 // init particle

127 particles.setTuple(idx , p);

128 });

129 Kokkos::fence();

130 return particle_num;

131 }

132 };

133 // customized scene initialization

134 template <typename Scalar >

135 struct InitSceneFunc

136 {

137 using data_type = Scalar;

138 // set all

139 template <class BoundaryCondition , class ProblemManager , class

MeshType >

140 void operator()(BoundaryCondition& bc, ProblemManager& pm_ptr

, MeshType& mesh_ptr)

141 {

142 set_bc(bc, mesh_ptr);

143 set_mat(pm_ptr);

ACM Transactions on Graphics, Vol. 42, No. 2, Article 22. Publication date: January 2023.

22:20 • Y. Qiu et al.

144 pm_ptr ->set_gravity(Settings:: gravity);

145 }

146

147 private:

148 // set boundary condition - if each side has different

settings

149 template <class BoundaryCondition , class MeshType >

150 std:: enable_if_t <BoundaryCondition :: bc_type == MultiSim::

BCTypes::MIX , void >

151 set_bc(BoundaryCondition& bc, MeshType& mesh_ptr)

152 {

153 using BCT = MultiSim:: BCTypes;

154 auto& gm = mesh_ptr ->globalMeshPtr ();

155 std::array <BCT , g_dim * 2> bc_types;

156 bc_types [0] = BCT:: STICKY;

157 bc_types [1] = BCT:: STICKY;

158 bc_types [2] = BCT:: STICKY;

159 bc_types [3] = BCT:: STICKY;

160 bc_types [4] = BCT:: STICKY;

161 bc_types [5] = BCT::NONE;

162 bc.set_bc(bc_types[0], bc_types[1], bc_types[2], bc_types

[3],

163 bc_types[4], bc_types[5], 0, 0, 0,

164 (gm->highCorner(0) - gm->lowCorner(0)) /

165 mesh_ptr ->cell_size (),

166 (gm->highCorner(1) - gm->lowCorner(1)) /

167 mesh_ptr ->cell_size (),

168 (gm->highCorner(2) - gm->lowCorner(2)) /

169 mesh_ptr ->cell_size ());

170 }

171 // set boundary conditon - if all sides share the same setting

172 template <class BoundaryCondition , class MeshType >

173 std:: enable_if_t <BoundaryCondition :: bc_type != MultiSim::

BCTypes::MIX , void >

174 set_bc(BoundaryCondition& bc, MeshType& mesh_ptr)

175 {

176 auto& gm = mesh_ptr ->globalMeshPtr ();

177 bc.set_bc(0, 0, 0,

178 (gm->highCorner(0) - gm->lowCorner(0)) /

179 mesh_ptr ->cell_size (),

180 (gm->highCorner(1) - gm->lowCorner(1)) /

181 mesh_ptr ->cell_size (),

182 (gm->highCorner(2) - gm->lowCorner(2)) /

183 mesh_ptr ->cell_size ());

184 }

185 // set material

186 template <class ProblemManager >

187 void set_mat(ProblemManager& pm_ptr)

188 {

189 auto& mat = pm_ptr ->materialFunc();

190 // material parameters

191 mat.density = Settings:: par_density;

192 mat.ys = Settings::E;

193 mat.pr = Settings::PR;

194 mat.lambda = Settings::E * Settings::PR /

195 ((1 + Settings::PR) * (1 - 2 * Settings::

PR));

196 mat.mu = Settings::E / (2 * (1 + Settings::PR));

197 mat.volume = Settings:: par_volume;

198 }

199 };

200

201 void test_example()

202 {

203 Kokkos::Array <T, g_dim * 2> global_bounding_box(

204 { Settings::low_x , Settings::low_y , Settings::low_z ,

Settings::high_x ,

205 Settings::high_y , Settings:: high_z });

206 std::array <int , g_dim > global_num_cell(

207 { Settings::res_x , Settings::res_y , Settings::res_z });

208 // initializer

209 InitParticleFunc <T, EXECSPACE > parpos_init_functor;

210 InitSceneFunc <T> scene_init_functor;

211 MultiSim:: Init_Partitioner:: InitUniformPartitionerFunc

212 partition_init_functor;

213 // solver

214 auto solver = MultiSim:: createMPMSolver <DEVICE , Settings::

boundary_type ,

215 Settings::

material_type ,

216 particle_members ,

particle_index >(

217 global_bounding_box , global_num_cell , Settings::halo_size ,

218 parpos_init_functor , scene_init_functor ,

partition_init_functor ,

219 Settings::PPC , Settings::res_x * Settings::res_y ,

220 Settings:: num_step_rebalance , Settings:: partition_op_on ,

Settings::cfl);

221 // collision object

222 MultiSim:: VDB_Shape :: VdbLevelSet <T, 3> vdb_ls(

223 INPUT_DATA_PATH , "/collision_object.vdb", { 0.0, 0.0, 0.0

});

224 MultiSim:: CollisionObject <MultiSim:: CollisionTypes ::STICKY , T,

g_dim , DEVICE > collision_obj(global_num_cell , Settings::dx,

vdb_ls);

225 solver ->solve(Settings::frame_num , Settings::fps , std:: string

(OUTPUT_DATA_PATH) + "out_rank", Settings::init_y_vel ,

collision_obj , LOGGER_PATH);

226 }

227

228 int main(int argc , char* argv[])

229 {

230 using T = typename Examples::T;

231 MPI_Init(&argc , &argv);

232 Kokkos:: initialize(argc , argv);

233

234 test_example();

235

236 Kokkos:: finalize();

237 MPI_Finalize();

238 return 0;

239 }

ACKNOWLEDGMENTS

We appreciate Feng Gao’s helpful advice and assistance in helping

us set up the Ethernet-related hardware.We are grateful to Kayvon

Fatahalian for his notes on “What Makes a (Graphics) Systems Pa-

per Beautiful,” which served as a guideline for us while preparing

our system paper. We appreciate Microsoft Azure’s text-to-speech

technology for narrating the additional video. We would also like

to express our gratitude to the anonymous reviewers for their in-

sightful criticism.

REFERENCES
T. Amada, M. Imura, Y. Yasumuro, Y. Manabe, and K. Chihara. 2004. Particle-based

fluid simulation on GPU. In Proceedings of the ACMWorkshop on General-Purpose
Computing on Graphics Processors. Vol. 41, 42.

Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. 2012. Legion: Ex-
pressing locality and independence with logical regions. In Proceedings of the In-
ternational Conference on High Performance Computing, Networking, Storage and
Analysis. IEEE, 1–11.

Marsha J. Berger and Shahid H. Bokhari. 1987. A partitioning strategy for nonuniform
problems on multiprocessors. IEEE Transactions on Computers 36, 05 (1987), 570–
580.

Morten Bojsen-Hansen, Michael Bang Nielsen, Konstantinos Stamatelos, and Robert
Bridson. 2021. Spatially adaptive volume tools in bifrost. In Proceedings of the ACM
SIGGRAPH 2021 Talks. 1–2.

Umit V. Catalyurek, Erik G. Boman, Karen D. Devine, Doruk Bozdag, Robert Heaphy,
and Lee Ann Riesen. 2007. Hypergraph-based dynamic load balancing for adap-
tive scientific computations. In Proceedings of the 2007 IEEE International Parallel
and Distributed Processing Symposium. IEEE, 1–11.

N. Chentanez and M. Müller. 2011. Real-time Eulerian water simulation using a re-
stricted tall cell grid. ACM Transactions on Graphics 30, 4 (2011), 82.

N. Chentanez and M. Müller. 2013. Mass-conserving eulerian liquid simulation. IEEE
Transactions on Visualization and Computer Graphics 20, 1 (2013), 17–29.

N. Chentanez, M. Müller, and T. Kim. 2015. Coupling 3D eulerian, heightfield and
particle methods for interactive simulation of large scale liquid phenomena. IEEE
Transactions on Visualization and Computer Graphics 21, 10 (2015), 1116–1128.

J. M. Cohen, S. Tariq, and S. Green. 2010. Interactive fluid-particle simulation using
translating Eulerian grids. In Proceedings of the 2010 Symposium on Interactive 3D
Graphics and Games. ACM, 15–22.

L. Dagum and R. Menon. 1998. OpenMP: An industry-standard API for shared-
memory programming. IEEE Computing in Science & Engineering 5, 1 (1998), 46–
55.

OpenBSD developers. 2021. OpenSSH. Retrieved October 20, 2022 from https://www.
openssh.com/.

ACM Transactions on Graphics, Vol. 42, No. 2, Article 22. Publication date: January 2023.

A Sparse Distributed Gigascale Resolution Material Point Method • 22:21

H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. 2014. Kokkos: Enabling
manycore performance portability through polymorphicmemory access patterns.
Journal of Parallel and Distributed Computing 74, 12 (2014), 3202–3216.

Yu Fang, Yuanming Hu, Shi-Min Hu, and Chenfanfu Jiang. 2018. A temporally adap-
tive material point method with regional time stepping. Computer Graphics Fo-
rum 37, 8 (2018), 195–204.

Yun Fei, YuhanHuang, andMingGao. 2021. Principles towards real-time simulation of
material point method on modern GPUs. arXiv:2111.00699. Retrieved from https:
//arxiv.org/abs/2111.00699.

Ming Gao, Xinlei Wang, Kui Wu, Andre Pradhana, Eftychios Sifakis, Cem Yuksel, and
Chenfanfu Jiang. 2018. GPU optimization of material point methods. ACM Trans-
actions on Graphics 37, 6 (2018), 1–12.

P. Goswami, P. Schlegel, B. Solenthaler, and R. Pajarola. 2010. Interactive SPH simula-
tion and rendering on the GPU. In Proceedings of the 2010 ACM SIGGRAPH/Eu-
rographics Symposium on Computer Animation. Eurographics Association,
55–64.

R. Hoetzlein. 2016. GVDB: Raytracing sparse voxel database structures on the GPU. In
Proceedings of the High Performance Graphics. Eurographics Association, 109–117.

Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-Kelley, and Frédo Du-
rand. 2019. Taichi: A language for high-performance computation on spatially
sparse data structures. ACM Transactions on Graphics 38, 6 (2019), 1–16.

Yuanming Hu, Jiafeng Liu, Xuanda Yang, Mingkuan Xu, Ye Kuang, Weiwei Xu, Qiang
Dai, William T. Freeman, and Fredo Durand. 2021. Quantaichi: A compiler for
quantized simulations. ACM Transactions on Graphics 40, 4 (2021), 1–16.

Chenfanfu Jiang, Craig Schroeder, Joseph Teran, Alexey Stomakhin, andAndrew Selle.
2016. The material point method for simulating continuum materials. In Proceed-
ings of the ACM SIGGRAPH 2016 Courses. 1–52.

Laxmikant V. Kale and Sanjeev Krishnan. 1993. Charm++ a portable concurrent ob-
ject oriented system based on c++. In Proceedings of the 8th Annual Confer-
ence on Object-Oriented Programming Systems, Languages, and Applications. 91–
108.

George Karypis and Vipin Kumar. 1997. A Coarse-Grain parallel formulation of mul-
tilevel k-way graph partitioning algorithm. In Proceedings of the 8th SIAM Confer-
ence on Parallel Processing for Scientific Computing.

Gergely Klár, Jeff Budsberg, Matt Titus, Stephen Jones, and Ken Museth. 2017. Pro-
duction ready MPM simulations. In Proceedings of the ACM SIGGRAPH 2017 Talks.
1–2.

G. Klár, T. Gast, A. Pradhana, C. Fu, C. Schroeder, C. Jiang, and J. Teran. 2016. Drucker-
prager elastoplasticity for sand animation. ACM Transactions on Graphics 35,
4 (2016), 103.

Steve Lesser, Alexey Stomakhin, Gilles Daviet, Joel Wretborn, John Edholm, Noh-
Hoon Lee, Eston Schweickart, Xiao Zhai, Sean Flynn, and Andrew Moffat. 2022.
Loki: A unified multiphysics simulation framework for production. ACM Trans-
actions on Graphics 41, 4 (2022), 1–20.

Xuan Li, Minchen Li, and Chenfanfu Jiang. 2022. Energetically consistent inelastic-
ity for optimization time integration. ACM Transactions on Graphics 41, 4 (2022),
1–16.

H. Liu, Y. Hu, B. Zhu, W. Matusik, and E. Sifakis. 2018. Narrow-band topology opti-
mization on a sparsely populated grid. In Proceedings of the SIGGRAPH Asia 2018.
ACM, 251.

Haixiang Liu, Nathan Mitchell, Mridul Aanjaneya, and Eftychios Sifakis. 2016. A scal-
able schur-complement fluids solver for heterogeneous compute platforms. ACM
Transactions on Graphics 35, 6 (2016), 1–12.

Omid Mashayekhi, Hang Qu, Chinmayee Shah, and Philip Levis. 2017. Execution tem-
plates: Caching control plane decisions for strong scaling of data analytics. In Pro-
ceedings of the 2017 USENIX Conference on USENIX Annual Technical Conference.
513–526.

Omid Mashayekhi, Chinmayee Shah, Hang Qu, Andrew Lim, and Philip Levis. 2018.
Automatically distributing eulerian and hybrid fluid simulations in the cloud.
ACM Transactions on Graphics 37, 2 (2018), 1–14.

David S. Medina, Amik St-Cyr, and TimWarburton. 2014. OCCA: A unified approach
to multi-threading languages. arXiv:1403.0968. Retrieved from https://arxiv.org/
abs/1403.0968.

OpenMPI Team Members. 2021. OpenMPI. Retrieved November 24, 2021 from https:
//www.open-mpi.org/

Susan M. Mniszewski, James Belak, Jean-Luc Fattebert, Christian F. A. Negre, Stu-
art R. Slattery, Adetokunbo A. Adedoyin, Robert F. Bird, Choongseok Chang,
Guangye Chen, Stéphane Ethier, Shane Fogerty, Salman Habib, Christoph Jung-
hans, Damien Lebrun-Grandié, Jamaludin Mohd-Yusof, Stan G. Moore, Daniel
Osei-Kuffuor, Steven J. Plimpton, Adrian Pope, Samuel Temple Reeve, Lee Rick-
etson, Aaron Scheinberg, Amil Y. Sharma, and Michael E. Wall. 2021. Enabling
particle applications for exascale computing platforms. The International Journal

of High Performance Computing Applications 35, 6 (2021), 572–597. DOI:https://
doi.org/10.1177/10943420211022829

Ken Museth. 2013. VDB: High-resolution sparse volumes with dynamic topology.
ACM Transactions on Graphics 32, 3 (2013), 1–22.

Ken Museth. 2021. NanoVDB: A GPU-friendly and portable VDB data structure for
real-time rendering and simulation. In Proceedings of the ACM SIGGRAPH 2021
Talks. 1–2.

T. Pfaff, N. Thuerey, J. Cohen, S. Tariq, and M. Gross. 2010. Scalable fluid simulation
using anisotropic turbulence particles. ACM Transactions on Graphics 29, 6 (2010),
1–8.

Hang Qu, Omid Mashayekhi, Chinmayee Shah, and Philip Levis. 2018. Decoupling
the control plane from program control flow for flexibility and performance in
cloud computing. In Proceedings of the 13th EuroSys Conference. 1–13.

Hang Qu, Omid Mashayekhi, Chinmayee Shah, and Philip Levis. 2020. Accelerating
distributed graphical fluid simulations with micro-partitioning. Computer Graph-
ics Forum 39, 1 (2020), 375–388.

Rajsekhar Setaluri, Mridul Aanjaneya, Sean Bauer, and Eftychios Sifakis. 2014. SPGrid:
A sparse paged grid structure applied to adaptive smoke simulation. ACM Trans-
actions on Graphics 33, 6 (2014), 1–12.

Chinmayee Shah, David Hyde, Hang Qu, and Philip Levis. 2018. Distributing and load
balancing sparse fluid simulations. Computer Graphics Forum 37, 8 (2018), 35–46.

Stuart Slattery, Samuel Temple Reeve, Christoph Junghans, Damien Lebrun-Grandié,
Robert Bird, Guangye Chen, Shane Fogerty, Yuxing Qiu, Stephan Schulz, Aaron
Scheinberg, Austin Isner, Kwitae Chong, Stan Moore, Timothy Germann, James
Belak, and Susan Mniszewski. 2022. Cabana: A performance portable library for
particle-based simulations. Journal of Open Source Software 7, 72 (2022), 4115.
DOI:https://doi.org/10.21105/joss.04115

Marc Snir, William Gropp, Steve Otto, Steven Huss-Lederman, Jack Dongarra, and
David Walker. 1998.MPI–The Complete Reference: The MPI Core. Vol. 1, MIT Press.

Alexey Stomakhin, Russell Howes, Craig Schroeder, and Joseph M. Teran. 2012. En-
ergetically consistent invertible elasticity. In Proceedings of the 11th ACM SIG-
GRAPH/Eurographics Conference on Computer Animation. 25–32.

Alexey Stomakhin, Craig Schroeder, Lawrence Chai, Joseph Teran, and Andrew Selle.
2013. A material point method for snow simulation. ACM Transactions on Graph-
ics 32, 4 (2013), 1–10.

Igor Surmin, Alexei Bashinov, Sergey Bastrakov, Evgeny Efimenko, ArkadyGonoskov,
and Iosif Meyerov. 2015. Dynamic load balancing based on rectilinear partitioning
in particle-in-cell plasma simulation. In Proceedings of the International Conference
on Parallel Computing Technologies. Springer, 107–119.

A. P. Tampubolon, T. Gast, G. Klár, C. Fu, J. Teran, C. Jiang, and K. Museth. 2017.
Multi-species simulation of porous sand and water mixtures. ACM Transactions
on Graphics 36, 4 (2017), 105.

Christian R. Trott, Damien Lebrun-Grandié, Daniel Arndt, Jan Ciesko, Vinh Dang,
Nathan Ellingwood, Rahulkumar Gayatri, Evan Harvey, Daisy S. Hollman, Dan
Ibanez, Nevin Liber, Jonathan Madsen, Jeff Miles, David Poliakoff, Amy Powell,
Sivasankaran Rajamanickam, Mikael Simberg, Dan Sunderland, Bruno Turcksin,
and Jeremiah Wilke. 2022. Kokkos 3: Programming model extensions for the ex-
ascale era. IEEE Transactions on Parallel and Distributed Systems 33, 4 (April 2022),
805–817. DOI:https://doi.org/10.1109/TPDS.2021.3097283.

O. Vantzos, S. Raz, and M. Ben-Chen. 2018. Real-time viscous thin films. ACM Trans-
actions on Graphics 37, 6 (2018), 1–10.

Xinlei Wang, Yuxing Qiu, Stuart R. Slattery, Yu Fang, Minchen Li, Song-Chun Zhu,
Yixin Zhu, Min Tang, Dinesh Manocha, and Chenfanfu Jiang. 2020. A massively
parallel and scalable multi-GPU material point method. ACM Transactions on
Graphics 39, 4 (2020), 30–1.

T. Willhalm and N. Popovici. 2008. Putting intel® threading building blocks to work.
In Proceedings of the International Workshop on Multicore Software Engineering.
ACM, 3–4.

R. Winchenbach, H. Hochstetter, and A. Kolb. 2016. Constrained neighbor lists for
SPH-based fluid simulations. In Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation. Eurographics Association, 49–56.

J. Wolper, Y. Fang, M. Li, J. Lu, M. Gao, and C. Jiang. 2019. CD-MPM: Continuum dam-
age material point methods for dynamic fracture animation. ACM Transactions
on Graphics 38, 4 (2019), 1–15.

K.Wu, N. Truong, C. Yuksel, and R. Hoetzlein. 2018. Fast fluid simulations with sparse
volumes on the GPU. Computer Graphics Forum 37, 2 (2018), 157–167.

Erik Zenker, Benjamin Worpitz, René Widera, Axel Huebl, Guido Juckeland, Andreas
Knüpfer, Wolfgang E. Nagel, and Michael Bussmann. 2016. Alpaka–An abstrac-
tion library for parallel kernel acceleration. In Proceedings of the 2016 IEEE Inter-
national Parallel and Distributed Processing SymposiumWorkshops. IEEE, 631–640.

Received 7 August 2022; revised 7 August 2022; accepted 18 October 2022

ACM Transactions on Graphics, Vol. 42, No. 2, Article 22. Publication date: January 2023.

