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Photoactivation: The Light-Driven
Assembly of the Water Oxidation
Complex of Photosystem lI

Han Bao and Robert L. Burnap *

Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA

Photosynthetic water oxidation is catalyzed by the Mn4CaOs cluster of photosystem Il.
The assembly of the MnsO5Ca requires light and involves a sequential process called
photoactivation. This process harnesses the charge-separation of the photochemical
reaction center and the coordination environment provided by the amino acid side
chains of the protein to oxidize and organize the incoming manganese ions to form the
oxo0-bridged metal cluster capable of HyO-oxidation. Although most aspects of this
assembly process remain poorly understood, recent advances in the elucidation of
the crystal structure of the fully assembled cyanobacterial PSIl complex help in the
interpretation of the rich history of experiments designed to understand this process.
Moreover, recent insights on the structure and stability of the constituent ions of the
Mn4CaOs cluster may guide future experiments. Here we consider the literature and
suggest possible models of assembly including one involving single Mn2* oxidation site
for all Mn but requiring ion relocation.
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INTRODUCTION

A decline in the photosynthetic activity of oxygenic photosynthetic organisms due to light
stress has been described as photoinhibition (Bjorkman, 1981; Osmond, 1981; Powles and
Bjorkman, 1981; Ohad et al., 1984). The primary damage occurs within the reaction center of
Photosystem II (PSII). It is distinct from the concurrent oxidative damage to the machinery of
protein synthesis, which compounds the problem since de novo protein synthesis is necessary
for the replacement of damaged PSII proteins (Adir et al., 2003; Lupinkova and and Komenda,
2004; Nishiyama et al., 2004; Edelman and Mattoo, 2008). The precise mechanism of PSII
photoinhibition in vivo remains under debate (Adir et al., 2003; Edelman and Mattoo, 2008;
Vass and Cser, 2009). Despite this uncertainty, it is evident that the D1 reaction center
protein is the primary target for photodamage and this leads to an increased turnover rate
of D1, in comparison to other PSII proteins, upon exposure to high light intensities (Ohad
et al,, 1984). To cope with light stress, all oxygenic photosynthetic organisms have developed
protective mechanisms both to minimize the effects of exposure to excess light and to efficiently
repair the damage when it occurs. Overall, the efficiency of photosynthetic electron transfer
decreases markedly only when the rate of damage exceeds the rate of repair. A crucial phase
of the de novo biogenesis of PSII, as well as the damage repair process, is the assembly of
the MnyCaOs complex. This involves the oxidative assembly of Mn2t and Ca?t ions into
the coordination environment of the PSII water-oxidation complex (WOC) in a light-driven
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process called photoactivation (for previous reviews, see Ono,
2001; Burnap, 2004; Dismukes et al., 2005).

PSIl DAMAGE AND D1 REPLACEMENT
Replacement of Damaged D1

The entire process of PSII damage-repair cycle can be described
as follows: (i) damage occurring to PSII, (ii) signaling of
this damage, (iii) monomerization of PSII dimer and partial
disassembly of PSII monomer, (iv) degradation of DI and
insertion of a newly synthesized D1 into PSII sub-complex,
and (v) reassembly of holoenzyme and photoactivation of the
Mn4CaOs cluster (Aro et al., 1993; Koivuniemi et al., 1995; Nixon
et al., 2005; Figure 1). We briefly outline some features of the
overall PSII assembly and repair process to place the assembly
of the MnsCaOs cluster in context. For more comprehensive
information the reader is advised to examine several recent
review articles (Nixon et al., 2010; Becker et al., 2011; Nickelsen
and Rengstl, 2013; Heinz et al., 2016).

Monomerization of dimeric PSII has been suggested to result
from the detachment or rearrangement of PsbO, one of three
luminal extrinsic subunits of PSII (Nixon et al., 2010). The basis
of this assessment is the failure to accumulate dimeric PSII in
a mutant of Synechocystis sp. PCC 6803 (hereafter Synechocystis
6803) lacking PsbO (Komenda et al., 2010). In plants and green
algae, it has also been proposed that PSII core phosphorylation
might trigger disassembly of PSII dimer to form monomer by
acting alone or in conjunction with PsbO (Puthiyaveetil and
Kirchhoff, 2013). Detachment of CP43 from PSII monomer leads
to the formation of so-called RC47 complex which is a pivotal
sub-complex for further replacement of damaged D1 during PSII
repair (Komenda et al., 2005). Given the fact that PsbO functions
as PSII manganese-stabilizing protein and CP43 participates
with D1 in ligating the Mn4CaOs cluster, it is conceivable that
photodamage to Mn4CaOjs cluster might cause the detachment of
these two subunits. It is also interesting to note that the assembly
and disassembly of the MnsO5Ca regulates the coupling of the
phycobilisome to the cyanobacterial PSII reaction center such
that centers without an intact metal cluster are not efficiently
coupled with respect to energy transfer from the phycobilisome
(Hwang et al., 2008).

Radioactive pulse-chase experiments (Komenda and Barber,
1995) showed that translation inhibitors slow D1 degradation,
suggesting that D1 degradation and new DI synthesis are
synchronized. Increased turnover of D1 could be a generalized
response to damage-promoting light conditions, with all D1
copies prone to increased probability of replacement or there
could be a specific targeting mechanism that replaces only
damaged D1 copies. Intuitively, a targeting mechanism seems
more likely. However, despite good circumstantial evidence,
direct evidence for the specific targeting of PSII centers with
damaged D1 has not been obtained, mainly because it is
technically difficult to separately track damaged and undamaged
forms of D1 through the replacement process. Recently, targeting
has been inferred from experiments where cells are allowed to
express two alternative forms of the D1 protein in the same cell,
with one wild-type form and the other a light-sensitive form. The

-l Damage recognition
& disassembly

Membrane lateral migration
(—tojoin with assembly factors?

nascent D1
degradation/
replacement

assembly

|
%J&i factors . Q

Re-assembly &
Photoactivation
of Mn,0Ca

FIGURE 1 | Schematic repair pathway for photodamaged PSII. The
process can be divided into the three main phases: (1) damage recognition
and partial disassembly of photodamage PSIl complexes, (2) D1 degradation
and replacement, and (3) reassembly of the subunits and light-driven assembly
(photoactivation) of the Mn,OsCa metal cluster.

analysis indicates that only the light-sensitive version of D1 and
not the wild-type version is turned over very rapidly (Nagarajan
and Burnap, 2014).

FtsH proteases play an important role in degradation of
damaged D1 during PSII repair (Mann et al, 2000; Bailey
et al., 2002; Silva et al., 2003). Mutants lacking FtsH proteases
display impaired D1 degradation and thus accumulate damaged
D1 (Bailey et al., 2002; Silva et al., 2003; Komenda et al.,
2006; Kato et al., 2009). Additionally, the AAA-type protease,
FtsH is crucial for the degradation of D1 protein (Silva
et al, 2003; Nixon et al, 2005). Without it efficient repair
ceases. How newly synthesized D1 subunit is integrated into
the RC47 sub-complex is still a matter of debate. Studies in
chloroplasts have led to the conclusion that DI replacement
occurs co-translationally (Zhang et al., 1999, 2000). Following
initiation of psbA mRNA translation, nascent D1 protein is
targeted to the thylakoid membrane by the chloroplast signal
recognition particle (cpSRP54) and then released after interacting
with a putative SRP receptor (Zhang and Aro, 2002). It was
demonstrated that cpSRP54 can be efficiently crosslinked to
nascent D1 chains that are still attached to ribosomes (Nilsson
et al., 1999; Nilsson and van Wijk, 2002). Polypeptide chain
elongation of the docked complex results in precursor D1
(pD1, see below) insertion into the thylakoid translocation
channel (cpSecY) (Zhang et al, 2001). During translocation,
the transmembrane domains of nascent pD1 appear to interact
with existing PSII sub-complexes containing D2, Psbl, and
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cytochrome bssg, CP47, but lacking CP43 (van Wijk et al,
1996, 1997; Zhang and Aro, 2002) and subsequently incorporate
into PSII complex. Pulse-labeling studies indicated that this
association already exists before the synthesis of the pD1 protein
is complete (Zhang et al., 1999, 2000).

There is still uncertainty about where the repair of damaged
PSII takes place and it is worth noting that PSII assembly for
repair and PSII de novo assembly appear to involve distinct PSII
assembly pathways (reviewed in Heinz et al, 2016). Regions
of connection between the plasma membrane and thylakoid
membrane appear to be sites of PSII assembly (Klinkert et al.,
2004; Schottkowski et al., 2009; Nickelsen et al., 2011; Stengel
et al., 2012; Heinz et al, 2016). These studies have led to
the suggestion that regions of the thylakoid membrane are
differentiated by being specifically enriched in assembly proteins,
which are designated PratA-defined membranes (PDMs) being
especially relevant to the photoassembly of the MnsCaOs as
discussed below. The idea of localized region of the thylakoid
membrane enriched in assembly factors fits with the report
that FtsH proteins are localized in thylakoids (Komenda et al.,
2006; Krynicka et al., 2014) in distinct patches that are less
enriched in chlorophyll (Sacharz et al., 2015). Thus, from an
ultrastructural perspective, a reasonable working hypothesis is
that the repair processes, including photoactivation, are located
in discreet regions of the thylakoid enriched in the factors
facilitating reassembly.

Processing of the D1 Carboxy Terminus

D1 protein is synthesized in a precursor form (pD1) with
a carboxyl-terminal extension (C-terminal) whose length and
sequence vary among different organisms (Diner et al., 1988b;
Seibert et al., 1989; Nixon et al.,, 1992; Anbudurai et al., 1994;
Shestakov et al., 1994; Ivleva et al., 2000; Zhang and Aro, 2002).
The pD1 protein is subsequently cleaved on the carboxyl side
of residue Ala344, resulting in the removal of the extension
(Nixon and Diner, 1992; Nixon et al., 1992), which is carried
out by carboxy terminal protease (CtpA), which is dedicated
to this post-translational processing (Diner et al., 1988a; Seibert
et al., 1989; Nixon et al., 1992; Taguchi et al., 1995; Trost et al.,
1997; Ivleva et al., 2000). In plants, an extension consisting of
9 residues is cleaved in a single proteolytic step, whereas in
Synechocystis 6803 a 16 amino acid extension is removed in
two steps (Komenda et al., 2007; Satoh and Yamamoto, 2007).
Although the extension is not essential for assembly of functional
PSII complex (Nixon et al., 1992; Satoh and Yamamoto, 2007),
it is required for optimal photosynthetic performance implying
that it might plays an important role in PSII repair (Diner,
2001). For example, Synechocystis mutants lacking the C-terminal
extension exhibit decreased fitness and are more susceptible
to photodamage (Ivleva et al., 2000; Kuvikova et al., 2005).
D1 maturation is a prerequisite for assembly of the Mn4CaOs
cluster (Diner et al., 1991; Nixon et al., 1992) and binding of
the PSII extrinsic proteins (Roose and Pakrasi, 2004), thus is
essential for oxygen evolution activity (Taylor et al., 1988). The
extension must be cleaved before the MnsCaOs cluster can be
functionally assembled (Nixon et al., 1992; Anbudurai et al.,
1994; Komenda et al., 2007), suggesting the C-terminus of the

mature D1 polypeptide is involved in assembly of the Mn;CaOs
cluster. In recent X-ray structures (Umena et al., 2011), Ala344
is shown to coordinate the Mn(2) and the Ca atom of Mn4CaOs
through its backbone a-carboxyl moiety. These assignments are
consistent with mutational analysis that had originally led to this
suggestion (Diner et al., 1991; Nixon et al., 1992)

Accessory Proteins for PSIl Assembly and
Repair

Numerous accessory proteins are being discovered to have roles
in the assembly, maturation and repair of the PSII complex
(Shestakov et al., 1994; Inagaki et al, 2001; Yamamoto, 2001;
Kashino et al., 2002; Silva et al., 2003; Roose and Pakrasi, 2004;
Keren et al, 2005; Chen et al, 2006; Komenda et al., 2006;
Nowaczyk et al., 2006; Park et al., 2007). All full accounting
of these is beyond the scope of this review and for the most
recent summary of the numerous assembly factors the reader
should consult (Heinz et al., 2016). Biochemical approaches (e.g.,
Nowaczyk et al., 2006; Mamedov et al., 2007) and genetic analyses
(e.g., Klinkert et al., 2004; Liu et al, 2011b), have led to the
identification of proteins facilitating the assembly of PSII that
could be of specific relevance to the process of photoactivation,
most notably, PratA and Psb27. Deletion of pratA results in a
dramatic decrease in the accumulation of PSII in Synechocystis
and a defect in the processing of the D1 C-terminus by CtpA.
Moreover, PratA interacts with the D1 C-terminus and may
bind Mn?* possibly facilitating the assembly of the MnsO5Ca
(Klinkert et al., 2004; Schottkowski et al., 2009). Psb27 is found
to bind to forms of the PSII complex thought to represent
assembly and/or disassembly intermediates (Roose and Pakrasi,
2004; Nowaczyk et al.,, 2006; Mamedov et al., 2007; Liu et al.,
2011a,b) and deletion of the protein affects photoactivation of
the complex (Roose and Pakrasi, 2007). Thus, Psb27 and PratA
are especially good candidates for facilitating photoactivation of
the MnyCaOs. Indeed, there is good reason to believe that the
published in vitro assembly experiments are missing assembly
cofactors, which may explain why the yield of active PSII centers
produced by in vitro photoactivation of MnsCaOs clusters by
biochemical methods is invariably lower than intact cells as
discussed below.

MECHANISM OF PHOTOACTIVATION

Coordinating Residues of Mn;CaOs5 Cluster
According to 1.9 A PSII crystal structure (Umena et al.,, 2011),
Mn4Os5Ca cluster coordinated by one nitrogen ligand from D1-
His332 and six carboxylate ligands from D1-Asp170, D1-Glu189,
D1-Glu333, D1-Asp342, D-Ala344, CP43-Glu354 (Figure 2).
Three of them, D1-Glu333, D1-Asp342, and CP43-Glu354, form
pw—carboxylate bridges between Mn (Mn(1)-Mn(2) (Asp342),
Mn(2)-Mn(3) (CP43-Glu354), and Mn(3)-Mn(4) (Glu333)).
D1-Aspl170 and the C-terminal carboxylate group of D1-Ala344
bridge Ca with Mn(4) and Mn(2), respectively. The Mn(4) has
been referred to as the “dangler manganese” (Peloquin et al.,
2000) because it is located outside the semi-cubic cluster formed
by the other four metals of the cluster, Ca, Mn(1), Mn(2), and
Mn(3). Both D1-Glul89 and D1-His332 serve as monodentate
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FIGURE 2 | Coordination environment of the assembled Mn,4CaO5 H,0-oxidation complex of PSII. The high affinity site of Mn2* binding and photooxidation
during the initial phase of the assembly process minimally involves D1-Asparate170 (Nixon and Diner, 1992; Campbell et al., 2000) located in the vicinity of Mn4 in the
final complex. The initial state of the complex for photoassembly appears to involve the binding of one Mn2+ at the high affinity site (Ono and Mino, 1999) together
with one Ca2™ ion that modulates the ligand environment of the Mn2+ possibly via the formation of a bridging water or hydroxide, although the presence of the Ca2t
does not appreciably change the binding affinity of the Mn2+ at the high affinity site (Tyryshkin et al., 2006). The C-terminal polypeptide backbone carboxylate of
D1-Alanine344, which is available only following proteolytic cleavage of the precursor form of the D1 protein (pD1), is also critical for the assembly process, although it
too does not markedly alter the binding of Mn2+ at the high affinity site (Nixon et al., 1992; Cohen et al., 2007). Figures developed upon 3D coordinates (PDB 4UB6)

of the published X-ray diffraction model (Umena et al., 2011).

ligands to Mn(1). The D1-Asp170 plays an especially crucial role
during the assembly process since it helps form the so-called
“high affinity site” involved in the initial photooxidation of Mn?"
(Nixon and Diner, 1992).

Two-Quantum Model of Photoactivation

The assembly of the metals of the MnsOsCa requires light to
induce charge separation to oxidize and strongly bind the Mn
ions. It is important to note that the assembly is an oxidative
process that involves removal of electrons from the Mn ions
and the formation of oxo-bridges between the metals of the
cluster with the bridging oxygen atoms (shown in red, Figure 2)
derived from water molecular coordinated to the metal ions.
The oxidative assembly utilizes the same light-driven charge
separation events within the photochemical reaction center
that subsequently drive photosynthetic electron transfer in the
fully functional enzyme. Apart from the definition of the Mn-
binding site characteristics and some very well-defined kinetic
features that govern the development of H,O-oxidation activity,
photoactivation remains poorly understood. The quantum
efficiency of photoactivation is very low, typically in the range
of ~1%, which is much lower than for photosynthetic water
oxidation in the assembled PSII (>90%) even in intact systems
(Cheniae and Martin, 1971a,b; Cheniae and Martin, 1972;
Radmer and Cheniae, 1971; Ono and Inoue, 1982, 1983). The
kinetic model of photoactivation, termed as “two-quantum
series model” (Radmer and Cheniae, 1971), was originally
observed during photoactivation as a function of either light
intensity or flash interval using fixed numbers of Xe light

flashes (Cheniae and Martin, 1971a,b; Cheniae and Martin, 1972;
Radmer and Cheniae, 1971). These pioneering studies showed
that the quantum efficiency for photoactivation is low at low
light intensities, reached a maximum at intermediate intensities,
and were again low at high light intensities. Equivalently, the
quantum efficiency is low when saturating, single turnover flashes
are given at long intervals, maximum at intermediate flash
frequencies (~1 per second), and were again low when the
flashes are given with short intervals between flashes. From these
features, Cheniae derived a minimal model, the so-called two-
quantum model that postulated the light-induced Mn assembly
with at least one unstable chemical intermediate as depicted
in Figure 3. The first photoevent involves the high quantum
yield photooxidation of a single Mn?** to Mn** ion (Ono
and Mino, 1999) at the unique high affinity Mn-binding site
(see below). The resultant Mn>* species (B) can spontaneously
convert to C in the dark with a 100-150 mshalf-time, with
a kinetic constant designated kg in the scheme in Figure 3.
A second quantum of light must be absorbed to convert the
nascent complex into the first stable intermediate D as shown
in Figure 3 as C=D. The formation of a labile intermediate,
ti, ~1-2s, accounted for the optimum in light intensity
or, alternatively, flash frequency, utilized for the assembly
process. Photoactivation using saturating single turnover flashes
is optimal with flash spacing of ~1's, which is enough time to
allow the dark rearrangement to occur (kg), but short enough
to minimize the decay of the intermediate(s). If, however, the
flash interval is too long, the second flash is not in time to trap
forward progress and the reactants decay (kp;, Kpy, Figure 3).
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FIGURE 3 | Kinetic scheme of basic two-quantum mechanism. Double
arrows indicate light-activated processes with the quantum efficiencies ®4 and
d, representing the first and second photooxidative events in the assembly
sequence, kg representing the still ill-defined “dark” rearrangement, and kp1,
kpo representing the decay of intermediates. After the initial two Mn are
photoligated, subsequent Mn appear to be added with high quantum yield.

The molecular nature of the process occurring during this dark
rearrangement period (B— C) is not clear, and its understanding
is key to understanding the overall molecular mechanism. After
the initial two Mn are photoligated, subsequent Mn appear to be
added with high quantum yield.

Of the many examples providing experimental support for
the two quantum mechanism, perhaps the most striking are the
experiments of Miyao, which showed a minimal two quantum
requirement in an experiment where as few as five flashes
restored nearly 20% of the maximal activity (Miyaotokutomi
and Inoue, 1992). This amounts to several percent assembly per
flash, which is remarkable given that the typical per flash yield
is often on the order of 1% or even lower. That experiment and
others also showed that the instability of the intermediates could
be minimized by preventing the back-reaction of the electrons
from the acceptor side of the PSII reaction center (Miyao and
Inoue, 1991; Miyaotokutomi and Inoue, 1992). This also fits with
another early result showing that the intermediates of assembly
are highly sensitive to reductant (Ono and Inoue, 1987) and
fits with the concept that the formation of state C (eligible
for utilizing the second quantum) occurs with low frequency
and/or once formed, the quantum yield of photooxidation of the
second Mn?* occurs with low quantum yield (also see Miller and
Brudvig, 1989, for relevant model).

It has been speculated the rearrangement (kg involves a
protein conformational change required for the binding and
subsequent photooxidation of the second Mn?* (Chen et al.,
1995a; Ananyev and Dismukes, 1996b; Qian et al., 1999; Burnap,
2004). However, if (B—C) is indeed a protein structural change,
then it is unlikely a large scale conformational rearrangement
since carboxy terminal ligands are already close to high affinity
site ligand D1-Asp170 during the first photooxidation (A=B)
(Cohen etal., 2007). Also, whether the dark unstable intermediate
is B or C (or both) remains unresolved. Given this uncertainty,
Figure 3 shows both decays are possible (kp; and kp,) (Miller
and Brudvig, 1989). The development of a highly sensitive and
fast Clark-type oxygen electrode (Ananyev and Dismukes, 1996b)
led to the assignment of additional photoactivation intermediates
and has provided alternative parameter estimates for the kinetic

components (Ananyev and Dismukes, 1996a,b, 1997; Zaltsman
et al.,, 1997; Baranov et al., 2000, 2004). At the same time, the
use of this apparatus makes comparisons difficult because to the
different illumination regimes. Most of the original experiments
utilized single turnover Xe flashes for actinic illumination. In
contrast, the photoactivation studies using the fast Clark-type
oxygen electrode employed 30 ms red LED pulses promote
optimum yields of assembled center (Ananyev and Dismukes,
1996b). This relatively long duration of the LED light pulses
allows greater mixing of different assembly states because of the
possibility of having multiple “hits” per center per pulse. That
said, the 30 ms duration of the pulse is relatively short with
respect to the t;; ~150 ms of the B—C rearrangement and
therefore the majority of those centers in the initial state that
were excited (i.e., those undergoing A=>B), will not be ready to
utilize the second quantum and would thus the LED pulse would
be effectively similar to a single turnover flash distributed in time
over the population of centers. Variations and refinements of the
original two-quantum model have been advanced based upon
alternative techniques for illumination and O, detection during
photoactivation (Miller and Brudvig, 1989; Meunier et al., 1995;
Ananyev and Dismukes, 1996b; Zaltsman et al., 1997; Hwang
and Burnap, 2005). The multiflash experiments of Hwang and
Burnap (2005) using staggered Xe single turnover flashes revealed
a new kinetic intermediate, more rapid rearrangement, although
where it is in the sequence could not be established owing to
high miss factor (low quantum efficiency) and the associated
de-phasing of the assembly during the flash induced assembly
process.

Are the Complicated “Two-Quantum”
Kinetics Of Photoactivation an Artifact of

In vitro Experimental Procedures?

Many of the insights into the mechanism, including the
nature of the cofactor requirements, were from experiments
performed in vitro using biochemical techniques, including
detergent solublization, that yield simplified PSII preparations.
Such preparations allowed a range of information from the better
definition of the affinity constants for the cofactors (Tamura
and Cheniae, 1986, 1987; Miller and Brudvig, 1989; Tamura
et al., 1989; Ananyev and Dismukes, 1996a,b, 1997; Zaltsman
et al, 1997; Baranov et al., 2000, 2004) to the comparative
efficiency of artificial electron acceptors (Miyao and Inoue, 1991;
Miyaotokutomi and Inoue, 1992). However, the most efficient
in vitro protocols explicitly involve the remove of extrinsic
proteins or involve procedures that would also cause the loss of
extrinsic proteins, although the authors may not have evaluated
the degree to which this loss may have occurred. Importantly,
the simplified preparations also likely lack the multiple assembly
factors that are now identified. Since photoactivation is a low
quantum yield process, even in vivo, it has been important for
technical reasons to maximize the in vitro efficiency to estimate
its kinetic parameters. For example, a Mn?* concentration
dependence assays require modest increments in yield, which can
only be experimentally distinguished if the procedures provide
materials with sufficiently high rates of O, evolution to allow
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discrimination beyond to envelope of experimental errors. Thus,
in the development of the procedures, removal of the extrinsic
proteins provided researchers with a system that satisfied these
requirements. The mutational loss of the extrinsic proteins
increases the quantum efficiency of photoactivation (Burnap
et al., 1996; Shen et al., 1998) as do mutations that weaken
the binding of the extrinsic proteins (Qian et al., 1997, 1999).
This appears to be due greater access of the Mn?T ions to
their site of photooxidation on the donor side of PSII (Chu
et al., 1994a). However, this begs the question of how much
the “natural” physiological kinetics are distorted by the loss
of the extrinsic proteins and what other factors that might
be removed or inactivated in the process. Indeed, it is almost
certain that important assembly factors may have been absent
in many of the defining photoactivation experiments. From
this standpoint, it is clear that the in vitro photoactivation
experiments have been decidedly non-physiological. Then what
are the implications for the kinetics that have defined the
mechanism to date? Here it is worth noting that the basic
two quantum mechanism was first discovered using intact cells
and chloroplasts. This includes experiments in samples that
were not extracted with chemical reductant to remove the
Mn4Os5Ca. For example, these include using intact chloroplasts
from leaves grown under intermittent light to promote de-
etiolation, but remaining un-photoactivated (Ono and Inoue,
1982, 1983) and cyanobacterial cells grown under conditions of
Mn-deficiency, and dark grown (with glucose) Chlorella cells
(Cheniae and Martin, 1973). These samples are likely have the full
complement of extrinsic proteins and assembly factors. Similarly,
the extraction of whole cyanobacterial cells and chloroplasts
with the hydroxylamine probably preserves many if not most
assembly factors as operational. This probably explains the
fact that nearly 100% of PSII centers become reactivated by
photoactivation in these more intact preparations, but in vitro
preparations typically have considerably lower total yields. The
more “physiological” preparations still exhibit (1) low quantum
efficiency and (2) the requirement for optimal flash spacing.
However, inspection of data involving dark grown Chlorella
indicates that photoactivation occurs more quickly, although
optimal flash spacing is still required. Clearly, the role of assembly
factors needs to be further pursued. One might imagine in this
case that a closely associated assembly factor, like PratA, provides
Mn?* ions at critical times during the formation of intermediates
and thereby mitigates potential losses due to intermediate decay.
Except for one instance where the Psb27 mutant was analyzed
(Roose and Pakrasi, 2007), a careful side-by-side comparisons
of photoactivation in mutants and wild-type remain to be
performed.

High Affinity Binding Site

Biochemical preparations of PSII that have been depleted of
their MnsOsCa have been used to test the binding affinity for
Mn?*. The principal finding is that a single binding site, termed
the high affinity site, dominates the kinetics. The dissociation
constant for Mn?* at this site is estimated to be in the range
of 0.1-2 uM (Hsu et al., 1987; Diner, 2001) and is strongly pH
dependent (pK, 6-7) (Ono and Mino, 1999). As described below,

these are accurate, but essentially, non-equilibrium assays. In
one of the few examples of an estimate of the true equilibrium
binding constant, a significantly higher value of 40-50 LM was
estimated. In this case, binding was allowed to occur in the
dark and the samples were frozen to —20°C, where diffusion
was eliminated and an EPR binding photoxoidation signal could
be detected, thereby giving a “snapshot” of the amount of
photooxidizable Mn?* bound at equilibrium (Tyryshkin et al.,
2006). Notably, the binding affinity was found to be independent
of the binding of Ca*". Almost all other assays have been
performed utilizing the ability of Mn** to donate electrons
to photochemically generated Yz°. Therefore, the high affinity
site has been largely defined biochemically based upon the
combination of affinity and the ability to be photooxidized by
Yz® during charge separation, rather that equilibrium binding
assays alone (see older review Debus, 1992, for still up-to-date
discussion). -This high affinity/efficient oxidation site remains
intact in the mutant without processing of D1 carboxy terminus
(Nixon et al.,, 1992), although subtle differences in the affinity
characteristics of these mutants are observed when the biphasic
kinetics of the binding/oxidation are fully taken into account
(Cohen et al., 2007). On the other hand, the access of Mn?*t
to this site is significantly increased in the carboxyterminal
processing mutants as well as mutants lacking extrinsic proteins
(Chu et al, 1994a; Semin et al., 2015). Mutagenesis of D1-
Aspl70 has shown that the residue clearly has the strongest
effect upon on the affinity of Mn?* and the ability to assemble
a fully functional Mn4CaOs cluster (Boerner et al., 1992; Diner
and Nixon, 1992; Nixon and Diner, 1992; Chu et al., 1994b;
Whitelegge et al., 1995; Campbell et al., 2000; Cohen et al., 2007).
This is consistent with the crystal structures of PSII (Umena
et al., 2011; Suga et al.,, 2015), which have shown that Asp170
is a ligand to the Mn(4) of assembled (intact) MnsCaOs cluster
(Figure 2). Notably, the other carboxyl O of the D1-Asp170 side
chain provides a monodentate ligand to the adjacent Ca®* ion
of the assembled cluster, which probably relates to the Ca’*
requirement photoactivation, as discussed below. Other residues,
notably the other main amino acid ligand to Mn(4), D1-Glu333
affect the affinity characteristics of the high affinity binding site,
but none as decisively as mutations of D1-Asp170 (Cohen et al.,
2007).

D1-Glu333 is a ligand to Mn(4) presumptive the first photo-
oxidized Mn?* at the high affinity binding site (Umena et al.,
2011). In all mutants of Glu333, substantial fractions of PSII
complexes lack photooxidizable Mn ions in vivo (Chu et al.,
1995), showing that Glu333 influences the assembly or stability
of the MnsCaOs cluster. Nevertheless, mutations of Glu333 do
not display the large changes in Mn?" affinity compared to
D1-Aspl70 mutations, at least as measured using single turn-
over methods to assay affinity (Nixon and Diner, 1994; Cohen
et al,, 2007). One possibility to accommodate these observations
is that Glu333 provides some coordination of Mn?* ions at
the high affinity site, but play an even greater role in the
subsequent assembly process. Pulsed electron-electron double
resonance (PELDOR) experiments have recently provided the
evidence to support this hypothesis that the high-affinity Mn?>*
site is located at the position denoted by Mn(4) in the crystal

Frontiers in Plant Science | www.frontiersin.org

May 2016 | Volume 7 | Article 578


http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive

Bao and Burnap

Photoactivation of PSII

structure and the first photooxidized Mn?* bound to the apo-
WOC is coordinated with axial ligands Asp170 and Glu333 in
the DI protein (Asada and Mino, 2015). These results thus
substantiate and extend the initial assessments of the high affinity
site based upon site-directed mutagenesis, yet deepen the puzzle
about the seeming modest influence this axial ligand has to
the affinity/photooxidation characteristics of the site. For the
C-terminal residues D1-Ala344, neither mutations in the C-
terminal region of D1 nor the processing of the C-terminal
extension (Ala344stop and Ser345Pro mutants) has a large
influence on the ability to bind and oxidize the first Mn?* in the
assembly of the cluster (Nixon et al., 1992). These observations
indicate that these C-terminal residues do not participate in the
coordination of the first bound Mn, though they certainly must
contribute to the coordination of those bound later on in the
assembly process (Diner, 2001). In the recent crystal structure
of PS 11, His337 residue is sufficiently close to MnsCaOs cluster
and engage in H-bonding interactions with the p3-oxo bridge
connecting Mn(1), Mn(2), and Mn(3) (Umena et al., 2011).

Trapping Intermediates of Photoassembly
Britt and coworkers (Campbell et al, 2000) provided the
first direct EPR spectral evidence for the initial photooxidized
intermediate formed at the high affinity site in Synechocystis
6803 PSII core complexes. Conventional perpendicular-mode
EPR in X-band is used to detect spin transitions in half
integer spin systems which satisfy the selection rules AM; =
+ 1. Accordingly, the first light induced Mn>*t species, due
to the integer spin S = 2 of Mn®*", is an EPR-silent species
for perpendicular polarization EPR spectroscopy at X-band
frequencies. X-band parallel polarization EPR spectroscopy,
however, can be used to investigate integral spin systems with
S > 1 where the spin transitions satisfy the selection rules
AM; = = 2 and higher. This latter technique is therefore well-
suited to examine the coordination environment of this Mn>*
intermediate (high spin S = 2). A six-line signal with a hyperfine
splitting of ~45 G that was only visible in parallel mode. This
signal clearly arises from Mn3* as it closely resembles that
observed for Mn3* in superoxide dismutase (Campbell et al,,
1999). The parallel mode EPR spectrum of this photooxidation
species consists of six well-resolved transitions split by a relatively
small >>Mn hyperfine coupling (44 G). The Mn>** parallel mode
EPR signal gives an axial zero-field splitting value of D =~
—2.5 cm™! and a rhombic zero-field splitting value of |E| ~
0.269 cm™!. The negative D value for this d* ion is indicative
of either an octahedral Mn®** geometry or a five-coordinate
square-pyramidal Mn>* geometry. In contrast to wild-type, a
different parallel polarization EPR signal of Mn>* ion without a
resolved hyperfine structure was observed in Asp170His mutant,
suggesting a modified coordination environment of Mn**. In
the case of Asp170Glu mutant, instead of a parallel mode Mn>*
signal, a perpendicular mode signal generated by Mn** ion was
detectable (Campbell et al., 2000), which indicates an impact of
glutamate on the redox property of the photo-oxidized Mn?* ion.
As noted previously (Hoganson et al., 1989), coordination by oxo
anions as would have effect of lowering the redox potential of the
Mn?* ion into the range that the oxidizing potential of Y7°.

The weak EPR signal found by Dismukes et al. in the dark apo-
PSIT samples upon binding of Mn?* in the absence of Ca?™ is
characterized by six-line **Mn hyperfine structure and geg. =
8.3, which indicates a high-spin electronic ground state (S = 5/2)
of Mn?* bound in a low-symmetry environment (Ananyev and
Dismukes, 1997). This signal is likely arise from a Mn** bound
in the high-affinity site. Dismukes et al. (Ananyev et al., 1999)
later suggested using competitive inhibition studies that the first
species that initiated photoactivation (Ananyev et al., 1999) is
hydroxide of Mn?*, [MnOH] ", bound to the apo-WOC at high
affinity site. Subsequent work by the same group would provide
evidence that the hydroxide formation was modulated by Ca?*
(Tyryshkin et al., 2006).

Role of Ca2* and the Ca2t Bound

Intermediate

Ca’™ is an indispensable cofactor of the water-splitting
Mn4CaOs cluster. As noted in the previous section, biophysical
studies attempting to trap early intermediates showed
that Ca?" exerts pronounced, and possibly physiologically
significant effects upon the structure of Mn ions undergoing
photooxidation at the high affinity site. However, from the
biochemical perspective, the roles of Ca?* ion in the process of
photoactivation initially appeared contradictory: A requirement
for Ca** in photoactivation was also noted using cyanobacterial
preparations (Pistorius and Schmid, 1984). Ono and Inoue
(1983) proposed that photoactivation occurs in one stage with
Ca’*t essential for the assembly process itself using isolated
intact chloroplasts depleted of Mn. According to the one-stage
model the first-order rate constant for the assembly of O,-
evolving centers is dependent on the extent of occupancy of both
Mn?* and Ca?* bound to their specific binding sites during
photoactivation. Later experiments seemed to indicate that
the Ca**-binding site is “created” during the photoassembly
(Shinohara et al, 1992). For example, Tamura and Cheniae
(1987) found that only light and Mn?>* were essential for
Mn re-ligation to the apo-WOC-PSII, but Ca?* addition was
required for maximal expression of water oxidation activity by
the photoligated Mn. In other words, it appeared that Ca?™ was
not required for proper assembly, but was needed as a cofactor
that readily diffused into its site of action after the assembly of
the Mn cluster was completed and, once in place, activated its
catalytic function. However, this conclusion was later modified
to account for the complicating effects of the artificial electron
acceptor used in the assay (Chen et al., 1995a). Ultimately, it
was thus concluded that Ca** is indeed absolutely required
during the assembly of functional clusters, not simply being
added in after assembly (Chen et al., 1995a). The same work
provides what may be another important clue about the role of
Ca’*. It was found that photoactivation of PSII membranes in
the absence of Ca’" led to the formation of inactive PSII with
more than four Mn ion per PSII center (5-10 non-functional
Mn per PSII). Thus, when Ca?* is left out of the photoactivation
medium, binding and photooxidation of many more Mn?"
to the apo-WOC-PSII protein occurs, but no O, evolution
activity is observable (Chen et al., 1995a). Manganese bound
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in this way could be released with reductant indicating that it
was bound oxidatively, but it clearly cannot bind to specific
protein binding sites. Instead, probably resembles amorphous
oxides which are multinucleate metal-oxo deposits produced by
inorganic processes (Sauer and Yachandra, 2002). This suggests
that one role for Ca?* is to guide assembly or simply block Mn?*
oxidation at the Ca®* site, which prevents “inappropriately
assembled” Mn (Chen et al., 1995a). Interestingly, mutants that
are defective in processing the D1 carboxy terminus also seem
to assemble centers with excess Mn (Seibert et al., 1989). Recent
X-ray crystallographic studies (Umena et al., 2011) provides a
structural explanation for the Seibert result. The PSII structure
reveals that mature D1 C-terminal residue Ala344 ligate the Ca?™
and Mn(2) of MnyCaOs cluster, thus without the availability
of the mature C-terminus Ala344, Ca®* cannot bind and the
destructive photoligation of Mn?** to inappropriate sites can
proceed. Additionally, competition between Ca?* and Mn?* for
each other’s binding sites has been indicated by many studies
(Cheniae and Martin, 1971b; Radmer and Cheniae, 1971; Ono
and Inoue, 1983; Tamura and Cheniae, 1987; Miller and Brudvig,
1989; Chen et al, 1995a,b; Ananyev and Dismukes, 1996a;
Zaltsman et al., 1997). Since Sr’>* can substitute of Ca®>* in PSII
in vivo, albeit with impaired H,O-oxidation activity (Boussac
et al., 2004), it would be interesting to see how photoactivation
occurs with this substitution. However, only limited information
is currently available (Ananyev et al., 2001).

The effect of Ca’t on the formation of the first
photoactivation intermediate, corresponding to a photooxidized
mononuclear Mn** species bound to apo-WOC-PSII, was
investigated by EPR spectroscopy (Tyryshkin et al, 2006).
In the absence of Ca?*, the Mn3*t species was found to be
generated as two forms in a pH-dependent equilibrium: an
EPR-invisible low-pH form and an EPR-visible high-pH form.
Note, these spectra of Mn>T species were acquired in parallel
mode and EPR invisible vs. visible is attributable to changes
in the influences in ligand environment rather than the spin
state selection rules noted above. The conversion between
the visible and invisible forms occurs by deprotonation of
an ionizable ligand bound to Mn**, postulated to be a H,O
molecule: [Mn3t(OH,)]<>[Mn>T(OH™)]. The EPR-visible
high-pH form exhibits a strong pH effect (pH 6.5-9) on Mn>"
spectral parameters, including the rhombicity (3) derived from
center field position (gefr), the 5>Mn hyperfine coupling (Ay),
and the signal intensity. A pH-induced protein conformational
change was proposed to account for the observed significant
changes in the symmetry of the ligand field at the Mn>* site.
On the other hand, the EPR-detectable Mn>* induced in the
presence of Ca?™, exhibits a greatly weakened pH dependence of
its ligand-field symmetry with reduced variation of rhombicity
§ and >>Mn hyperfine coupling Azin the pH range of 6.5-9.0.
Moreover, the addition of Ca** moves both g, and Az to a
range of values observed at alkaline pH > 9 without added
Ca?", indicating that Ca?t binding exerts an influence on
the coordination shell of Mn3T species equivalent to the
alkaline pH effect in the absence of Ca?". Therefore, it was
proposed that Ca®t binding induces a second ionization of
the bridging hydroxo ligand bound to Mn** resulting in the

formation of a bridging oxide ion ([Mn**(OH™)-Ca’™] <«
[Mn3*(0%7)-Ca*]). The proton ionization of the water ligand
is postulated to be controlled by a nearby base B~, which serves
as an immediate proton acceptor with a pK, that depends
upon the occupancy of the Ca** effector site. Looking at the
current crystal structure and assuming a similar, although
almost certainly not identical, spatial configuration of the Ca
and Mn, the inferred oxo bridge would join these ions with
D1-Aspl170, Glu333 and the carboxyl terminus in proximity of
one another.

Other Inorganic Cofactors

There is a long debated role of inorganic carbon in
photosynthetic water oxidation. Recently, it has been
demonstrate that bicarbonate (HCO;Z) can act as a mobile
acceptor and transporter of protons produced by photosynthetic
water oxidation PSII (Koroidov et al, 2014). Bicarbonate
also seem to have an impact on photoassembly of MnyCaOs
cluster (reviewed in Dasgupta et al., 2008). The proposed roles
of bicarbonate in facilitating assembly of Mn4sCaOs cluster
during PSII repair include acceleration of the binding and
photooxidation of the first Mn?* at the high affinity Mn site,
putatively by increase the location concentration of Mn?*
and even direct ligation to Mn?* (Baranov et al., 2000, 2004;
Dasgupta et al,, 2007). Bicarbonate has been found not an
essential constituent of the WOC of PSII based on the most
recent PSII crystal structure (Umena et al., 2011), making the
direct ligation seem unlikely. However, this does not necessarily
mean that the possibility of a weakly bound HCO; at the
donor side affecting the PSII repair has been excluded. It is also
important to note that high concentrations of Cl~ also enhance
photoactivation in vitro, but this appears to be an effect distinct
from the known effects on the activation of the photosynthetic
water oxidation catalytic activity. Instead, it more likely relates to
the stabilization of the Mn4CaOs in the absence of the extrinsic
proteins in the studied photoactivation reactions (Miyao and
Murata, 1985; Miyaotokutomi and Inoue, 1992). The catalytic
activation properties of Cl~ are likely to be exerted indirectly
upon water and/or proton movement during H,O-oxidation
given it binding locations in the second ligation sphere of the
assembled Mn4O5Ca.

Possible Models of Assembly

Although the two-quantum model remains solidly at the
foundation of our understanding of photoactivation, the
molecular mechanisms that give rise to these kinetic features
remain almost completely unresolved. A crucial question is
what molecular processes gives rise to the so-called dark
rearrangement. As discussed, consistent models would require
occupancy of the high affinity site by Mn?* and the presence
Ca™ at a nearby site, and the Ca?" probably needs to
be present during the initial photooxidation of the Mn’*,
This first photooxidation (A=B) likely occurs with high
quantum efficiency, yet the photooxidation of the second Mn?*
(C=D) occurring after the rearrangement occurs with low
quantum efficiency. There are essentially two general alternative
hypotheses accounting for the low quantum yield of C=D that
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depend, in part, on the nature of the rearrangement. First,
the rearrangement after A=B forms a binding site for the
second Mn?" that is not optimal for electron transfer to Yz°,
perhaps because it is further away from the high affinity site
and because of this, charge recombination effectively competes
with the low probability of photooxidation of the second Mn?*+
at the new site. Please note that the charge recombination may
actually be the ‘rearrangement’ and could be important for
removing mis-assembled clusters (Hwang et al., 2007). Second,
the rearrangement is again a slow process, but this time leads to
formation of efficient site for Mn?* photooxidation, but its initial
product, the first Mn3* fails to convert efficiently into a stable
chemical product. This could happen if, for example, a requisite
oxo bridge forms inefficiently and the new Mn>" diffuses away
or is re-reduced. Based upon the finding that the C-terminus of
D1 is already in a conformation close to the final configuration in
the fully assembled enzyme (Cohen et al., 2007), then the dark
rearrangement is unlikely to be a major rearrangement of the
D1 polypeptide backbone. With this constraint, we imagine these
two alternative assembly mechanisms as follows. One alternative
is that the slow rearrangement corresponds to slow oxo bridge
formation chemistry that is kinetically very sluggish, occurring
with the rate constant kp, after the initial photooxidation. Further,
once the first Mn** is produced at the high affinity site, the
new binding site for the second Mn?" is at a more distal site
where the quantum yield of its photooxidation lower. In this case,
the first Mn>* at the high affinity site is already engaged oxo
linkage with the Ca?* (Tyryshkin et al., 2006) and one of its other
coordination positions occupied by a water must deprotonate to
form a stable linkage with the second Mn?". According to this
hypothesis, the slow formation of the second oxo corresponds
to kg and the low quantum yield of C=D is due to the more
distal location from Yz°. However, one problem with this model
is that each of the subsequent two Mn additions would seem to
have to also occur with low quantum yields, since the high affinity
site remains occupied. However, these later photoligations are
thought to occur with high quantum efficiency, although the
evidence even for that remains sparse. A second alternative to a
primarily protein rearrangement is a rearrangement of the ions.
As mentioned above, the high affinity site has been largely defined
biochemically based upon the combination of affinity and the
ability to be photooxidized by Yz* during charge separation.
Perhaps the high affinity site remains the site of oxidation for
each of the photooxidations for the assembly reactions and the
resultant Mn®* ions migrate to their final locations. In this
model, the relocation of the Mn ion, vacating the high affinity
site, and its coordination into its new site accounts for the
“dark rearrangement.” However, the dissociation of the Mn3*
dissociates from its initial binding and oxidation site presents a
problem because of the likely increase in ligand field stabilization
energy. This would not be a problem for Mn?*, which has
no associated LFSE. On the other hand, Mn®*" should bind
with a substantially higher affinity owing to the acquisition of
LFSE in the higher oxidation state. There may be meahisms
to alleviate this problem such as a redox disproportionation
of bound Mn**-Mn?* to (Mn?T-Mn>* so the original Mn>"
is now weakly bound (no LFSE) and can exchange to another

site. The EPR observations consistent with oxo bridge formation
Ca’* jon accompanying the photooxidation of Mn?* ions at
the high affinity site suggest a templating function for Ca®"
during assembly. Based upon the crystal structure, the Ca?*
would be captured between D1-Asp170 and the carboxyterminal
carboxylate of the D1 protein. As noted, there is good evidence
that Ca’" binding induces a second ionization of the bridging
hydroxo ligand bound to Mn®* resulting in the formation of
a bridging oxide ion (IMn*t(OH™)-Ca?t] < [Mn?+(027)-
Ca’*]) (Tyryshkin et al., 2006). If the Mn** leaves the high
affinity site, then Ca?" may tether the new Mn with an oxo
(or hydroxo) bridge and facilitate the movement to the next
site. Moreover, the water molecules coordinated Ca?* may be
provided as the substrate for additional j1-oxo bridge formation.
In this way, Ca?" functions in a manner similar to proposals
for its role in catalytic water oxidation and substrate exchange
though the positioning of coordinated waters (Vrettos et al., 2001;
Hillier and Wydrzynski, 2008; Rappaport et al., 2011; Cox and
Messinger, 2013). According to electrostatic calculations, there
are substantial differences in the redox potentials for each of the
four spatially distributed Mn ions of the assembled Mn4CaOs
cluster due to their specific coordination and large electrostatic
environments (Amin et al., 2015). Based upon these electrostatic
calculations of Amin et al. (2015), it is likely that Mn3" ions
are thermodynamically more stable at coordination positions
elsewhere within the partially assembled cluster in comparison
to their primary site of oxidation at the high affinity site. It also
fits with a variety of biochemical studies showing that one pair of
Mn ions, presumably a binuclear di-p-oxo bridged unit, in the
assembled cluster is more stable and has different accessibility
to external reductants than the other pair (Frankel and Bricker,
1989; Mei and Yocum, 1991, 1992; Riggs et al., 1992). In this
model, the rearrangement time may correspond to the relocation
of the first Mn®* ion to exit the high affinity site and relocate
to another site, perhaps guided via a nascent oxo with the
Ca’t.

AUTHOR CONTRIBUTIONS

HB researched the topic and wrote the initial draft of the
manuscript. RB added materialand made figures, performed
additional research and edited the draft.

FUNDING

The work was generously funded by a grant form the National
Science Foundation (MCB-1244586).

ACKNOWLEDGMENTS

The authors thank Dr. Aparna Nagarajan for providing the
initial sketch of Figurel. We also thank reviewer 2 for the
pointing out the issue with our proposed rearrangement model
regarding ligand field stabilization energy and suggesting
redox disproportionation as a possible mechanism. The
work was funded by the National Science Foundation
MCB-1244586.

Frontiers in Plant Science | www.frontiersin.org

May 2016 | Volume 7 | Article 578


http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive

Bao and Burnap

Photoactivation of PSII

REFERENCES

Adir, N., Zer, H., Shochat, S., and Ohad, 1. (2003). Photoinhibition - a historical
perspective. Photosyn. Res. 76, 343-370. doi: 10.1023/A:1024969518145

Amin, M., Vogt, L., Szejgis, W., Vassiliev, S., Brudvig, G. W., Bruce, D., et al. (2015).
Proton-coupled electron transfer during the S-state transitions of the oxygen-
evolving complex of photosystem II. J. Phys. Chem. B. 119, 7366-7377. doi:
10.1021/jp510948e

Ananyev, G. M., and Dismukes, G. C. (1996a). Assembly of the tetra Mn
site of photosynthetic water oxidation by photoactivation: Mn stoichiometry
and detection of a new intermediate. Biochemistry 35, 4102-4109. doi:
10.1021/bi952667h

Ananyev, G. M., and Dismukes, G. C. (1996b). High-resolution kinetic studies
of the reassembly of the tetra-manganese cluster of photosynthetic water
oxidation: proton equilibrium, cations, and electrostatics. Biochemistry 35,
14608-14617. doi: 10.1021/bi960894t

Ananyev, G. M., and Dismukes, G. C. (1997). Calcium induces binding and
formation of a spin-coupled dimanganese(ILII) center in the apo-water
oxidation complex of photosystem II as precursor to the functional tetra-
Mn/Ca cluster. Biochemistry 36, 11342-11350. doi: 10.1021/bi970626a

Ananyev, G. M., Murphy, A., Abe, Y., and Dismukes, G. C. (1999). Remarkable
affinity and selectivity for Cs+ and uranyl (UO?) binding to the manganese
site of the apo-water oxidation complex of photosystem II. Biochemistry 38,
7200-7209. doi: 10.1021/bi990023u

Ananyev, G. M., Zaltsman, L., Vasko, C., and Dismukes, G. C. (2001). The
inorganic biochemistry of photosynthetic oxygen evolution/water oxidation.
Biochim. Biophys. Acta 1503, 52-68. doi: 10.1016/S0005-2728(00)00215-2

Anbudurai, P. R,, Mor, T. S., Ohad, I, Shestakov, S. V., and Pakrasi, H. B. (1994).
The ctpA gene encodes the C-terminal processing protease for the D1 protein
of the photosystem II reaction center complex. Proc. Natl. Acad. Sci. U.S.A. 91,
8082-8086. doi: 10.1073/pnas.91.17.8082

Aro, E. M., Virgin, I, and Andersson, B. (1993). Photoinhibition of photosystem
II. Inactivation, protein damage and turnover. Biochim. Biophys. Acta 1143,
113-134. doi: 10.1016/0005-2728(93)90134-2

Asada, M., and Mino, H. (2015). Location of the High-Affinity Mn®") Site in
Photosystem II Detected by PELDOR. J. Phys. Chem. B 119, 10139-10144. doi:
10.1021/acs.jpcb.5b03994

Bailey, S., Thompson, E., Nixon, P. J., Horton, P., Mullineaux, C. W., Robinson, C.,
etal. (2002). A critical role for the Var2 FtsH homologue of Arabidopsis thaliana
in the photosystem II repair cycle in vivo. J. Biol. Chem. 277, 2006-2011. doi:
10.1074/jbc.M105878200

Baranov, S. V., Ananyev, G. M., Klimov, V. V., and Dismukes, G. C. (2000).
Bicarbonate accelerates assembly of the inorganic core of the water- oxidizing
complex in manganese-depleted photosystem II: a proposed biogeochemical
role for atmospheric carbon dioxide in oxygenic photosynthesis. Biochemistry
39, 6060-6065. doi: 10.1021/bi992682¢

Baranov, S. V., Tyryshkin, A. M., Katz, D., Dismukes, G. C., Ananyev, G. M.,
and Klimov, V. V. (2004). Bicarbonate is a native cofactor for assembly of the
manganese cluster of the photosynthetic water oxidizing complex. Kinetics of
reconstitution of O, evolution by photoactivation. Biochemistry 43, 2070-2079.
doi: 10.1021/bi034858n

Becker, K., Cormann, K. U., and Nowaczyk, M. M. (2011). Assembly of the water-
oxidizing complex in photosystem II. J. Photochem. Photobiol. B. Biol. 104,
204-211. doi: 10.1016/j.jphotobiol.2011.02.005

Bjorkman, O. (1981). “Responses to different quantum flux densities,” in
Physiological Plant Ecology I: Responses to the Physical Environment, eds O. L.
Lange, P. S. Nobel, C. B. Osmond and H. Ziegler (Berlin; Heidelberg: Springer),
57-107. doi: 10.1007/978-3-642-68090-8_4

Boerner, R. J., Nguyen, A. P., Barry, B. A,, and Debus, R. J. (1992). Evidence
from directed mutagenesis that aspartate 170 of the D1 polypeptide influences
the assembly and-or stability of the manganese cluster in the photosynthetic
water-splitting complex. Biochemistry 31, 6660-6672. doi: 10.1021/bi00144a005

Boussac, A., Rappaport, F., Carrier, P., Verbavatz, J. M., Gobin, R., Kirilovsky,
D., et al. (2004). Biosynthetic Ca’*/Sr>T exchange in the photosystem II
oxygen evolving enzyme of Thermosynechococcus elongatus. J. Biol. Chem. 279,
22809-22819. doi: 10.1074/jbc.M401677200

Burnap, R. L. (2004). D1 protein processing and Mn cluster assembly in light of
the emerging photosystem II structure. Phys. Chem. Chem. Phys. 6, 4803-4809.
doi: 10.1039/b407094a

Burnap, R. L., Qian, M., and Pierce, C. (1996). The manganese-stabilizing
protein (MSP) of photosystem II modifies the in vivo deactivation and
photoactivation kinetics of the H,O-oxidation complex in Synechocystis sp.
PCC6803. Biochemistry 35, 874-882. doi: 10.1021/bi951964;j

Campbell, K. A., Force, D. A., Nixon, P. J., Dole, F., Diner, B. A., and Britt, R.
D. (2000). Dual-mode EPR detects the initial intermediate in photoassembly
of the photosystem II Mn cluster: the influence of amino acid residue 170 of
the D1 polypeptide on Mn coordination. Biochemistry 122, 3754-3761. doi:
10.1021/ja000142t

Campbell, K. A, Yikilmaz, E., Grant, C. V., Gregor, W., Miller, A.-F., and Britt, R.
D. (1999). Parallel polarization EPR characterization of the Mn(III) center of
oxidized manganese superoxide dismutase. J. Am. Chem. Soc. 121, 4714-4715.
doi: 10.1021/ja9902219

Chen, C., Kazimir, J., and Cheniae, G. M. (1995a). Calcium modulates the
photoassembly of photosystem II (Mn)4 clusters by preventing ligation of
nonfunctional high valency states of manganese. Biochemistry 34,13511-13526.

Chen, G. X,, Blubaugh, D. ], Homann, P. H., Golbeck, J. H., and Cheniae,
G. M. (1995b). Superoxide contributes to the rapid inactivation of specific
secondary donors of the photosystem II reaction center during photodamage
of manganese depleted photosystem II membranes. Biochemistry 3470,
2317-2332. doi: 10.1021/bi000072028

Chen, H., Zhang, D., Guo, J, Wu, H, Jin, M., Lu, Q. et al. (2006). A
Psb27 homologue in Arabidopsis thaliana is required for efficient repair
of photodamaged photosystem II. Plant Mol. Biol. 61, 567-575. doi:
10.1007/s11103-006-0031-x

Cheniae, G. M., and Martin, I. F. (1971a). Effects of hydroxylamine on photosystem
II. I. Factors affecting the decay of O, evolution. Plant Physiol. 47, 568-575. doi:
10.1104/pp.47.4.568

Cheniae, G. M., and Martin, I. F. (1971b). Photoactivation of the manganese
catalyst of O, evolution. I. Biochemical and kinetic aspects. Biochim. Biophys.
Acta 253, 167-181. doi: 10.1016/0005-2728(71)90242-8

Cheniae, G. M., and Martin, I. F. (1972). Effects of hydroxylamine on photosystem
II. IT Photoreversal of the NH,OH destruction of O, evolution. Plant Physiol.
50, 87-94. doi: 10.1104/pp.50.1.87

Cheniae, G. M., and Martin, I. F. (1973). Absence of oxygen-evolving capacity
in dark-grown Chlorella: the photoactivation of oxygen evolving centers.
Photochem. Photobiol. 17, 441-459. doi: 10.1111/j.1751-1097.1973.tb06378.x

Chu, H.-A,, Nguyen, A. P., and Debus, R. J. (1994a). Site-directed mutagenesis
of photosynthetic oxygen evolution: increased binding or photooxidation
of manganese in the absence of the extrinsic 33-kDa polypeptide in vivo.
Biochemistry 33, 6150-6157. doi: 10.1021/bi00186a014

Chu, H.-A,, Nguyen, A. P., and Debus, R. J. (1994b). Site-directed mutagenesis
of photosynthetic oxygen evolution: instability or inefficient assembly
of the manganese cluster in vivo. Biochemistry 33, 6137-6149. doi:
10.1021/bi00186a013

Chu, H. A, Nguyen, A. P., and Debus, R. J. (1995). Amino acid residues that
influence the binding of manganese or calcium to photosystem II 2. The
carboxy terminal domain of the D1 polypeptide. Biochemistry 3496, 5859-5882.
doi: 10.1021/bi00017a017

Cohen, R. O., Nixon, P. J., and Diner, B. A. (2007). Participation of the C-
terminal region of the D1-polypeptide in the first steps in the assembly of
the Mn4Ca cluster of photosystem II. J. Biol. Chem. 282, 7209-7218. doi:
10.1074/jbc.M606255200

Cox, N., and Messinger, J. (2013). Reflections on substrate water and
dioxygen formation. Biochim. Biophys. Acta 1827, 1020-1030. doi:
10.1016/j.bbabio.2013.01.013

Dasgupta, J., Ananyev, G. M., and Dismukes, G. C. (2008). Photoassembly of the
water-oxidizing complex in photosystem II. Coord. Chem. Rev. 252, 347-360.
doi: 10.1016/j.ccr.2007.08.022

Dasgupta, J., Tyryshkin, A. M., and Dismukes, G. C. (2007). ESEEM spectroscopy
reveals carbonate and an N-donor protein-ligand binding to Mn?* in the
photoassembly reaction of the Mn4Ca cluster in photosystem II. Angew. Chem.
Int. Ed Engl. 46, 8028-8031. doi: 10.1002/anie.200702347

Frontiers in Plant Science | www.frontiersin.org

May 2016 | Volume 7 | Article 578


http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive

Bao and Burnap

Photoactivation of PSII

Debus, R. J. (1992). The manganese and calcium ions of photosynthetic
oxygen evolution. Biochim. Biophys. Acta 1102, 269-352. doi: 10.1016/0005-
2728(92)90133-M

Diner, B. A. (2001). Amino acid residues involved in the coordination and
assembly of the manganese cluster of photosystem II. Proton-coupled electron
transport of the redox-active tyrosines and its relationship to water oxidation.
Biochim. Biophys. Acta 1503, 147-163. doi: 10.1016/S0005-2728(00)00220-6

Diner, B. A., and Nixon, P. J. (1992). The rate of reduction of oxidized redox-
active tyrosine, ZT, by exogenous Mn?* Is slowed in a site-directed mutant, at
aspartate 170 of polypeptide D1 of photosystem II, inactive for photosynthetic
oxygen evolution. Biochim. Biophys. Acta 1101, 134-138. doi: 10.1016/0005-
2728(92)90196-9

Diner, B. A., Nixon, P. J., and Farchaus, J. W. (1991). Site-directed mutagenesis
of photosynthetic reaction centers. Curr. Opin. Struct. Biol. 1, 546-554. doi:
10.1016/S0959-440X(05)80076-4

Diner, B. A, Ries, D. F,, Cohen, B. N., and Metz, J. G. (1988a). Carboxyl-
terminal processing of polypeptide D of the photosystem II reaction center
of Scenedesmus obliquus is necessary for the assembly of the oxygen-evolving
complex. J. Biol. Chem. 263, 8972-8980.

Diner, B. A., Ries, D. F., Cohen, B. N., and Metz, J. G. (1988b). COOH-
terminal processing of polypeptide D1 of the photosystem II reaction center
of Scenedesmus obliquus is necessary for the assembly of the oxygen-evolving
complex. J. Biol. Chem. 263, 8972-8980.

Dismukes, C. G., Ananyev, G., and Watt, R. (2005). “Photo-assembly of the
catalytic manganese cluster,” in Photosystem II, eds T. Wydrzynski, K. Satoh,
and J. Freeman (Dordrecht: Springer), 609-626.

Edelman, M., and Mattoo, A. K. (2008). D1-protein dynamics in photosystem
II: the lingering enigma. Photosyn. Res. 98, 609-620. doi: 10.1007/s11120-008-
9342-x

Frankel, L. K., and Bricker, T. M. (1989). Epitope mapping of the monoclonal
antibody FAC2 on the apoprotein of Cpa-1 in photosystem II. FEBS Lett. 257,
279-282. doi: 10.1016/0014-5793(89)81552-2

Heinz, S., Liauw, P., Nickelsen, J., and Nowaczyk, M. (2016). Analysis of
photosystem II biogenesis in cyanobacteria. Biochim. Biophy. Acta 1857,
274-287. doi: 10.1016/j.bbabio.2015.11.007

Hillier, W., and Wydrzynski, T. (2008). O'8-Water exchange in photosystem II:
substrate binding and intermediates of the water splitting cycle. Coord. Chem.
Rev. 252, 306-317. doi: 10.1016/j.ccr.2007.09.004

Hoganson, C. W., Ghanotakis, D. F., Babcock, G. T., and Yocum, C. F.
(1989). Manganese ion reduces redox activated tyrosine in manganese-
depleted photosystem II preparations. Photosyn. Res. 22, 285-294. doi:
10.1007/BF00048306

Hsu, B. D., Lee, J. Y., and Pan, R. L. (1987). The high-affinity binding-site for
manganese on the oxidizing side of photosystem-Ii. Biochim. Biophys. Acta 890,
89-96. doi: 10.1016/0005-2728(87)90072-7

Hwang, H. J., and Burnap, R. L. (2005). Multiflash experiments reveal a new
kinetic phase of photosystem II manganese cluster assembly in Synechocystis
sp PCC6803 in vivo. Biochemistry 44, 9766-9774. doi: 10.1021/bi050069p

Hwang, H. J., McLain, A., Debus, R. J., and Burnap, R. L. (2007). Photoassembly
of the manganese cluster in mutants perturbed in the high affinity Mn-
binding site of the H,O-oxidation complex of photosystem II. Biochemistry 46,
13648-13657. doi: 10.1021/bi700761v

Hwang, H. J., Nagarajan, A., McLain, A., and Burnap, R. L. (2008). Assembly
and disassembly of the photosystem II manganese cluster reversibly alters
the coupling of the reaction center with the light-harvesting phycobilisome.
Biochemistry 47, 9747-9755. doi: 10.1021/bi800568p

Inagaki, N., Maitra, R., Satoh, K., and Pakrasi, H. B. (2001). Amino acid residues
that are critical for in vivo catalytic activity of CtpA, the carboxyl-terminal
processing protease for the D1 protein of photosystem II. J. Biol. Chem. 14, 14.
doi: 10.1074/jbc.M 102600200

Ivleva, N. B., Shestakov, S. V., and Pakrasi, H. B. (2000). The carboxyl-terminal
extension of the precursor D1 protein of photosystem II is required for optimal
photosynthetic performance of the cyanobacterium Synechocystis sp. PCC
6803. Plant Physiol. 124, 1403-1412. doi: 10.1104/pp.124.3.1403

Kashino, Y., Lauber, W. M., Carroll, J. A., Wang, Q., Whitmarsh, J., Satoh, K., et al.
(2002). Proteomic analysis of a highly active photosystem II preparation from
the cyanobacterium Synechocystis sp. PCC 6803 reveals the presence of novel
polypeptides. Biochemistry 41, 8004-8012. doi: 10.1021/bi026012+

Kato, Y., Miura, E,, Ido, K., Ifuku, K., and Sakamoto, W. (2009). The variegated
mutants lacking chloroplastic FtsHs are defective in D1 degradation and
accumulate reactive oxygen species. Plant Physiol. 151, 1790-1801. doi:
10.1104/pp.109.146589

Keren, N., Ohkawa, H., Welsh, E. A,, Liberton, M., and Pakrasi, H. B. (2005).
Psb29, a conserved 22-kD protein, functions in the biogenesis of Photosystem
II complexes in Synechocystis and Arabidopsis. Plant Cell 17, 2768-2781. doi:
10.1105/tpc.105.035048

Klinkert, B., Ossenbiihl, F., Sikorski, M., Berry, S., Eichacker, L., and Nickelsen,
J. (2004). PratA, a periplasmic tetratricopeptide repeat protein involved in
biogenesis of photosystem II in Synechocystis sp. PCC 6803. J. Biol. Chem. 279,
44639-44644. doi: 10.1074/jbc.M405393200

Koivuniemi, A., Aro, E. M., and Andersson, B. (1995). Degradation of the D1-
and D2-proteins of photosystem II in higher plants is regulated by reversible
phosphorylation.  Biochemistry 34, 16022-16029. doi: 10.1021/bi00049
a016

Komenda, J., and Barber, J. (1995). Comparison of psbO and psbH deletion
mutants of Synechocystis PCC 6803 indicates that degradation of D1 protein
is regulated by the QB site and dependent on protein synthesis. Biochemistry
34, 9625-9631. doi: 10.1021/bi000292040

Komenda, J., Barker, M., Kuvikova, S., de Vries, R., Mullineaux, C. W., Tichy, M.,
et al. (2006). The FtsH protease slr0228 is important for quality Control of
photosystem II in the thylakoid membrane of Synechocystis sp. PCC 6803. J.
Biol. Chem. 281, 1145-1151. doi: 10.1074/jbc.M503852200

Komenda, J., Knoppova, J., Krynickd, V., Nixon, P. J, and Tichy, M.
(2010). Role of FtsH2 in the repair of Photosystem II in mutants of
the cyanobacterium Synechocystis PCC 6803 with impaired assembly or
stability of the CaMny cluster. Biochim. Biophys. Acta 1797, 566-575. doi:
10.1016/j.bbabio.2010.02.006

Komenda, J., Kuvikova, S., Granvogl, B., Eichacker, L. A., Diner, B. A,, and
Nixon, P. J. (2007). Cleavage after residue Ala352 in the C-terminal extension
is an early step in the maturation of the D1 subunit of Photosystem II
in Synechocystis PCC 6803. Biochim. Biophys. Acta 1767, 829-837. doi:
10.1016/j.bbabio.2007.01.005

Komenda, J., Tichy, M., and Eichacker, L. A. (2005). The PsbH protein is associated
with the inner antenna CP47 and facilitates D1 processing and incorporation
into PSII in the cyanobacterium Synechocystis PCC 6803. Plant Cell Physiol. 46,
1477-1483. doi: 10.1093/pep/pcil59

Koroidov, S., Shevela, D., Shutova, T., Samuelsson, G., and Messinger, J.
(2014). Mobile hydrogen carbonate acts as proton acceptor in photosynthetic
water oxidation. Proc. Natl. Acad. Sci. US.A. 111, 6299-6304. doi:
10.1073/pnas.1323277111

Krynickd, V., Tichy, M., Krafl, J., Yu, J., Kana, R., Boehm, M., et al. (2014). Two
essential FtsH proteases control the level of the Fur repressor during iron
deficiency in the cyanobacterium Synechocystis sp. PCC 6803. Mol. Microbiol.
94, 609-624. doi: 10.1111/mmi.12782

Kuvikovd, S., Tichy, M., and Komenda, J. (2005). A role of the C-terminal
extension of the photosystem II D1 protein in sensitivity of the cyanobacterium
Synechocystis PCC 6803 to photoinhibition. Photochem. Photobiol. Sci. 4,
1044-1048. doi: 10.1039/b506059%a

Liu, H., Huang, R. Y., Chen, J., Gross, M. L., and Pakrasi, H. B. (2011a). Psb27, a
transiently associated protein, binds to the chlorophyll binding protein CP43
in photosystem II assembly intermediates. Proc. Natl. Acad. Sci. U.S.A. 108,
18536-18541. doi: 10.1073/pnas.1111597108

Liu, H., Roose, J. L., Cameron, J. C., and Pakrasi, H. B. (2011b). A genetically
tagged Psb27 protein allows purification of two consecutive photosystem II
(PSII) assembly intermediates in Synechocystis 6803, a cyanobacterium. J. Biol.
Chem. 286, 24865-24871. doi: 10.1074/jbc.M111.246231

Lupinkova, L., and Komenda, J. (2004). Oxidative modifications of the
Photosystem II D1 protein by reactive oxygen species: from isolated protein
to cyanobacterial cells. Photochem. Photobiol. 79, 152-162. doi: 10.1111/j.1751-
1097.2004.tb00005.x

Mamedov, F., Nowaczyk, M. M., Thapper, A., Rogner, M., and Styring, S. (2007).
Functional characterization of monomeric photosystem II core preparations
from Thermosynechococcus elongatus with or without the Psb27 protein.
Biochemistry 46, 5542-5551. doi: 10.1021/bi7000399

Mann, N. H., Novac, N., Mullineaux, C. W., Newman, J., Bailey, S., and Robinson,
C. (2000). Involvement of an FtsH homologue in the assembly of functional

Frontiers in Plant Science | www.frontiersin.org

11

May 2016 | Volume 7 | Article 578


http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive

Bao and Burnap

Photoactivation of PSII

photosystem I in the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett.
479, 72-77. doi: 10.1016/S0014-5793(00)01871-8

Mei, R, and Yocum, C. F. (1991). Calcium retards NH,OH inhibition of
0, evolution activity by stabilization of Mn?* binding to Photosystem II.
Biochemistry 30, 7863-7842. doi: 10.1021/bi00245a025

Mei, R., and Yocum, C. F. (1992). Comparative properties of hydroquinone
and hydroxylamine reduction of the Ca?*stablilized O,-evolving complex of
photosystem II: reductant-dependent Mn?* formation and activity inhibition.
Biochemistry 31, 8449-8454. doi: 10.1021/bi00151a009

Meunier, P. C., Burnap, R. L., and Sherman, L. A. (1995). Modelling of the S-state
mechanism and Photosystem II manganese photoactivation in cyanobacteria.
Photosyn. Res. 47, 61-76. doi: 10.1007/BF00017754

Miller, A. F., and Brudvig, G. W. (1989). Manganese and calcium
requirements for reconstitution of oxygen evolution activity in manganese-
depleted photosystem II membranes. Biochemistry 28, 8181-8190. doi:
10.1021/bi004462a033

Miyao, M., and Inoue, Y. (1991). An improved procedure for photoactivation of
photosynthetic oxygen evolution - effect of artificial electron-acceptors on the
photoactivation yield of NH,OH -treated wheat photosystem II membranes.
Biochim. Biophys. Acta 1056, 47-56. doi: 10.1016/S0005-2728(05)80071-4

Miyao, M., and Murata, N. (1985). The Cl- effect on photosynthetic oxygen
evolution: interaction of Cl- with 18-kDa, 24-kDa and 33-kDa proteins. FEBS
Lett. 180, 303-308. doi: 10.1016/0014-5793(85)81091-7

Miyaotokutomi, M., and Inoue, Y. (1992). Improvement by benzoquinones of
the quantum yield of photoactivation of photosynthetic oxygen evolution -
direct evidence for the 2-quantum mechanism. Biochemistry 31, 526-532. doi:
10.1021/bi00117a032

Nagarajan, A., and Burnap, R. L. (2014). Parallel expression of alternate forms
of psbA2 gene provides evidence for the existence of a targeted D1 repair
mechanism in Synechocystis sp. PCC 6803. Biochim. Biophys. Acta 1837,
1417-1426. doi: 10.1016/j.bbabio.2014.02.022

Nickelsen, J., and Rengstl, B. (2013). Photosystem II assembly: from cyanobacteria
to plants. Annu. Rev. Plant Biol. 64, 609-635. doi: 10.1146/annurev-arplant-
050312-120124

Nickelsen, J., Rengstl, B., Stengel, A., Schottkowski, M., Soll, J., and Ankele,
E. (2011). Biogenesis of the cyanobacterial thylakoid membrane system-an
update. FEMS Microbiol. Lett. 315, 1-5. doi: 10.1111/j.1574-6968.2010.02096.x

Nilsson, R., Brunner, J., Hoffman, N. E., and van Wijk, K. J. (1999). Interactions
of ribosome nascent chain complexes of the chloroplast- encoded D1
thylakoid membrane protein with cpSRP54. EMBO J. 18, 733-742. doi:
10.1093/emboj/18.3.733

Nilsson, R., and van Wijk, K. J. (2002). Transient interaction of cpSRP54 with
elongating nascent chains of the chloroplast-encoded D1 protein; ‘cpSRP54
caught in the act. FEBS Lett. 524, 127-133. doi: 10.1016/S0014-5793(02)
03016-8

Nishiyama, Y., Allakhverdiev, S. I., Yamamoto, H., Hayashi, H., and Murata, N.
(2004). Singlet oxygen inhibits the repair of photosystem II by suppressing
the translation elongation of the D1 protein in Synechocystis sp. PCC 6803.
Biochemistry 43, 11321-11330. doi: 10.1021/bi036178q

Nixon, P. J., Barker, M., Boechm, M., de Vries, R., and Komenda, J. (2005). FtsH-
mediated repair of the photosystem II complex in response to light stress. J.
Exp. Bot. 56, 357-363. doi: 10.1093/jxb/eri021

Nixon, P. J., and Diner, B. A. (1992). Aspartate 170 of the photosystem II
reaction center polypeptide D1 is involved in the assembly of the oxygen
evolving manganese cluster. Biochemistry 31, 942-948. doi: 10.1021/bi001
18a041

Nixon, P. ], and Diner, B. A. (1994). Analysis of water oxidation mutants
constructed in the cyanobacterium Synechocystis sp. PCC 6803. Biochem. Soc.
Trans. 22, 338-343. doi: 10.1042/bst0220338

Nixon, P. J., Michoux, F., Yu, J., Boechm, M., and Komenda, J. (2010). Recent
advances in understanding the assembly and repair of photosystem II. Ann.
Bot. 106, 1-16. doi: 10.1093/a0b/mcq059

Nixon, P. J., Trost, J. T., and Diner, B. A. (1992). Role of the carboxy terminus
of polypeptide D1 in the assembly of a functional water oxidizing manganese
cluster in photosystem II of the cyanobacterium Synechocystis sp. PCC 6803:
assembly requires a free carboxyl group at C terminal position 344. Biochemistry
31, 10859-10871. doi: 10.1021/bi001592029

Nowaczyk, M. M., Hebeler, R., Schlodder, E., Meyer, H. E., Warscheid, B., and
Rogner, M. (2006). Psb27, a cyanobacterial lipoprotein, is involved in the repair
cycle of photosystem II. Plant Cell 18, 3121-3131. doi: 10.1105/tpc.106.042671

Ohad, I, Kyle, D. ], and Arntzen, C. J. (1984). Membrane protein damage and
repair: removal and replacement of inactivated 32-kilodalton polypeptides in
chloroplast membranes. J. Cell Biol. 99, 481-485. doi: 10.1083/jcb.99.2.481

Ono, T. (2001). Metallo-radical hypothesis for photoassembly of (Mn)4-cluster of
photosynthetic oxygen evolving complex. Biochim. Biophys. Acta 1503, 40-51.
doi: 10.1016/S0005-2728(00)00226-7

Ono, T. A., and Inoue, Y. (1982). Photoactivation of the water oxidation system
in isolated intact chloroplasts prepared from wheat triticum-aestivum leaves
grown under intermittent flash illumination. Plant Physiol. 69, 1418-1422. doi:
10.1104/pp.69.6.1418

Ono, T. A, and Inoue, Y. (1983). Requirement of divalent cations for
photoactivation of the latent water oxidation system in intact chloroplasts
from flashed leaves. Biochim. Biophys. Acta 723, 191-201. doi: 10.1016/0005-
2728(83)90119-6

Ono, T. A., and Inoue, Y. (1987). Reductant-sensitive intermediates involved in
multi-quantum process of photoactivation of latent oxygen-evolving system.
Plant Cell Physiol. 28, 1293-1300.

Ono, T. A., and Mino, H. (1999). Unique binding site for Mn?t ion responsible
for reducing an oxidized Y tyrosine in manganese-depleted photosystem II
membranes. Biochemistry 38, 8778-8785. doi: 10.1021/bi982949s

Osmond, C. B. (1981). Photorespiration and photoinhibition. Biochim. Biophys.
Acta 639, 77-98. doi: 10.1016/0304-4173(81)90006-9

Park, S., Khamai, P., Garcia-Cerdan, J. G., and Melis, A. (2007). REP27,
a tetratricopeptide repeat nuclear-encoded and chloroplast- localized
protein, functions in D1/32-kD reaction center protein turnover and
photosystem II repair from photodamage. Plant Physiol. 143, 1547-1560. doi:
10.1104/pp.107.096396

Peloquin, J. M., Campbell, K. A., Randall, D. W., Evanchik, M. A., Pecoraro,
V. L., Armstrong, W. H., et al. (2000). 55Mn ENDOR of the S2-state
multiline EPR signal of photosystem II: implications on the structure of the
tetranuclear Mn cluster. J. Am. Chem. Soc. 122, 10926-10942. doi: 10.1021/ja00
2104f

Pistorius, E. K., and Schmid, G. H. (1984). Effect of Mn?* and Ca*t on O,
evolution and on the variable fluorescence yield associated with Photosystem
II in preparations of Anacystis nidulans. FEBS Lett. 171, 173-178. doi:
10.1016/0014-5793(84)80482-2

Powles, S. B., and Bjérkman, O. (1981). Photoinhibition of photosynthesis:
effect on chlorophyll fluorescence at 77K in intact leaves and in chloroplast
membranes of Nerium oleander. Planta 156, 97-107. doi: 10.1007/BF00395424

Puthiyaveetil, S., and Kirchhoff, H. (2013). A phosphorylation map of
the photosystem II supercomplex C2S2M2. Front. Plant Sci. 4:459. doi:
10.3389/fpls.2013.00459

Qian, M., Al-Khaldi, S. F., Putnam-Evans, C., Bricker, T. M., and Burnap,
R. L. (1997). Photoassembly of the photosystem II (Mn)4 cluster in site
directed mutants impaired in the binding of the manganese stabilizing protein.
Biochemistry 36, 15244-15252.

Qian, M., Dao, L., Debus, R. J., and Burnap, R. L. (1999). Impact of mutations
within the putative Ca’*-binding lumenal interhelical a-b loop of the
photosystem II D1 protein on the kinetics of photoactivation and H,O-
oxidation in Synechocystis sp. PCC6803. Biochemistry 38, 6070-6081. doi:
10.1021/bi982331i

Radmer, R., and Cheniae, G. M. (1971). Photoactivation of the manganese catalyst
of O, evolution. II. A two quantum mechanism. Biochim. Biophys. Acta 253,
182-186. doi: 10.1016/0005-2728(71)90243-X

Rappaport, F., Ishida, N., Sugiura, M., and Boussac, A. (2011). Ca>* determines
the entropy changes associated with the formation of transition states during
water oxidation by Photosystem II. Energy Environ. Sci. 4, 2520-2524. doi:
10.1039/c1ee01408k

Riggs, P. ., Mei, R., Yocum, C. F., and Penner, H. J. E. (1992). Reduced derivatives
of the manganese cluster in the photosynthetic oxygen-evolving complex. J.
Am. Chem. Soc. 114, 10650-10651. doi: 10.1021/ja00052a079

Roose, J. L., and Pakrasi, H. B. (2004). Evidence that D1 processing is required for
manganese binding and extrinsic protein assembly into photosystem II. J. Biol.
Chem. 279, 45417-45422. doi: 10.1074/jbc.M408458200

Frontiers in Plant Science | www.frontiersin.org

May 2016 | Volume 7 | Article 578


http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive

Bao and Burnap

Photoactivation of PSII

Roose, J. L., and Pakrasi, H. B. (2007). The PSB27 protein facilitates manganese
cluster assembly in photosystem II. J. Biol. Chem. 44, 45417-45422. doi:
10.1074/jbc.M408458200

Sacharz, J., Bryan, S. J., Yu, J., Burroughs, N. J., Spence, E. M., Nixon, P. ],
et al. (2015). Sub-cellular location of FtsH proteases in the cyanobacterium
Synechocystis sp. PCC 6803 suggests localised PSII repair zones in the thylakoid
membranes. Mol. Microbiol. 96, 448-462. doi: 10.1111/mmi.12940

Satoh, K., and Yamamoto, Y. (2007). The carboxyl-terminal processing of
precursor D1 protein of the photosystem II reaction center. Photosyn. Res. 94,
203-215. doi: 10.1007/s11120-007-9191-z

Sauer, K., and Yachandra, V. K. (2002). A possible evolutionary origin for the Mn-
4 cluster of the photosynthetic water oxidation complex from natural MnO,
precipitates in the early ocean. Proc. Natl. Acad. Sci. U.S.A. 99, 8631-8636. doi:
10.1073/pnas.132266199

Schottkowski, M., Gkalympoudis, S., Tzekova, N., Stelljes, C., Schiinemann, D.,
Ankele, E., et al. (2009). Interaction of the periplasmic PratA factor and the
PsbA (D1) protein during biogenesis of photosystem I in Synechocystis sp. PCC
6803. J. Biol. Chem. 284, 1813-1819. doi: 10.1074/jbc.M806116200

Seibert, M., Tamura, N., and Inoue, Y. (1989). Lack of photoactivation capacity
in scenedesmus-obliquus Lf-1 results from loss of half the high-affinity
manganese-binding site - relationship to the unprocessed D1 protein. Biochim.
Biophys. Acta 974, 185-191. doi: 10.1016/S0005-2728(89)80371-8

Semin, B. K., Podkovirina, T. E., Davletshina, L. N., Timofeev, K. N., Ivanov,
LI, and Rubin, A. B. (2015). The extrinsic PsbO protein modulates the
oxidation/reduction rate of the exogenous Mn cation at the high-affinity Mn-
binding site of Mn-depleted PSII membranes. J. Bioenerg. Biomembr. 47,
361-367. doi: 10.1007/s10863-015-9618-8

Shen, J. R, Qian, M., Inoue, Y., and Burnap, R. L. (1998). Functional
characterization of Synechocystis sp. PCC 6803 delta psbU and delta psbV
mutants reveals important roles of cytochrome ¢-550 in cyanobacterial oxygen
evolution. Biochemistry 37, 1551-1558. doi: 10.1021/bi971676i

Shestakov, S. V., Anbudurai, P. R., Stanbekova, G. E., Gadzhiev, A., Lind, L. K., and
Pakrasi, H. B. (1994). Molecular cloning and characterization of the ctpA gene
encoding a carboxyl terminal processing protease. Analysis of a spontaneous
photosystem II deficient mutant strain of the cyanobacterium Synechocystis sp.
PCC 6803. J. Biol. Chem. 269, 19354-19359.

Shinohara, K., Ono, T. A., and Inoue, Y. (1992). Photoactivation of oxygen-
evolving enzyme in dark-grown pine cotyledons relationship between assembly
of photosystem II proteins and integration of manganese and calcium. Plant
Cell Physiol. 33, 281-289.

Silva, P., Thompson, E., Bailey, S., Kruse, O., Mullineaux, C. W., Robinson, C.,
et al. (2003). FtsH is involved in the early stages of repair of photosystem II in
Synechocystis sp PCC 6803. Plant Cell 15, 2152-2164. doi: 10.1105/tpc.012609

Stengel, A., Giigel, I. L., Hilger, D., Rengstl, B., Jung, H., and Nickelsen, J. (2012).
Initial steps of photosystem II de novo assembly and preloading with manganese
take place in biogenesis centers in Synechocystis. Plant Cell 24, 660-675. doi:
10.1105/tpc.111.093914

Suga, M., Akita, F., Hirata, K., Ueno, G., Murakami, H., Nakajima, Y., et al. (2015).
Native structure of photosystem II at 1.95 A resolution viewed by femtosecond
X-ray pulses. Nature 517, 99-103. doi: 10.1038/nature13991

Taguchi, F., Yamamoto, Y., and Satoh, K. (1995). Recognition of the structure
around the site of cleavage by the carboxyl terminal processing protease for
D1 precursor protein of the photosystem II reaction center. J. Biol. Chem. 270,
10711-10716.

Tamura, N., and Cheniae, G. (1987). Photoactivation of the water-oxidizing
complex in photosystem II membranes depleted of Mn and extrinsic proteins. I.
Biochemical and kinetic characterization. Biochim. Biophys. Acta 890, 179-194.
doi: 10.1016/0005-2728(87)90019-3

Tamura, N., and Cheniae, G. M. (1986). Requirements for the photoligation of
Mn?* in PSII membranes and the expression of water-oxidizing activity of
the polynuclear Mn-catalyst. Feder. Eur. Biochem. Soc. Lett. 200, 231-236. doi:
10.1016/0014-5793(86)80544-0

Tamura, N., Inoue, Y., and Cheniae, G. (1989). Photoactivation of the water-
oxidizing complex in photosystem II membranes depleted of Mn, Ca, and
extrinsic proteins. II. Studies on the function of Ca?*. Biochim. Biophys. Acta
976, 173-181. doi: 10.1016/S0005-2728(89)80227-0

Taylor, M. A., Nixon, P. J.,, Todd, C. M., Barber, J., and Bowyer, J. R. (1988).
Characterisation of the DI protein in a photosystem II mutant (LF-1) of

Scenedesmus obliquus blocked on the oxidising side Evidence supporting non-
processing of D1 as the cause of the lesion. FEBS Lett. 235, 109-116. doi:
10.1016/0014-5793(88)81243-2

Trost, J. T., Chisholm, D. A., Jordan, D. B., and Diner, B. A. (1997). The
D1 C-terminal processing protease of photosystem II from Scenedesmus
obliquus. Protein purification and gene characterization in wild type and
processing mutants. J. Biol. Chem. 272, 20348-20356. doi: 10.1074/jbc.272.33.
20348

Tyryshkin, A. M., Watt, R. K., Baranov, S. V., Dasgupta, J., Hendrich,
M. P, and Dismukes, G. C. (2006). Spectroscopic evidence for Ca’*
involvement in the assembly of the MnyCa cluster in the photosynthetic
water-oxidizing complex. Biochemistry 45, 12876-12889. doi: 10.1021/bi06
1495t

Umena, Y., Kawakami, K., Shen, J. R, and Kamiya, N. (2011). Crystal structure of
oxygen-evolving photosystem II at a resolution of 1.9 Angstrom. Nature 473,
U55-U65. doi: 10.1038/nature09913

van Wijk, K. J., Andersson, B., and Aro, E. M. (1996). Kinetic resolution of
the incorporation of the D1 protein into photosystem II and localization of
assembly intermediates in thylakoid membranes of spinach chloroplasts. J. Biol.
Chem. 271, 9627-9636. doi: 10.1074/jbc.271.16.9627

van Wijk, K. J., Roobol-Boza, M., Kettunen, R., Andersson, B., and Aro, E.
M. (1997). Synthesis and assembly of the D1 protein into photosystem II:
processing of the C terminus and identification of the initial assembly partners
and complexes during photosystem II repair. Biochemistry 36, 6178-6186. doi:
10.1021/b19629211

Vass, I, and Cser, K. (2009). Janus-faced charge
photosystem II photoinhibition. Trends Plant Sci.
10.1016/j.tplants.2009.01.009

Vrettos, J. S., Limburg, J., and Brudvig, G. W. (2001). Mechanism of photosynthetic
water oxidation: combining biophysical studies of photosystem II with
inorganic model chemistry. Biochim. Biophys. Acta 1503, 229-245. doi:
10.1016/S0005-2728(00)00214-0

Whitelegge, J. P., Koo, D., Diner, B. A., Domian, I, and Erickson, J. M.
(1995). Assembly of the Photosystem II oxygen evolving complex is inhibited
in psbA site directed mutants of Chlamydomonas reinhardtii. Aspartate
170 of the D1 polypeptide. J. Biol. Chem. 270, 225-235. doi: 10.1074/jbc.
270.1.225

Yamamoto, Y. (2001). Quality control of photosystem ii. Plant Cell Physiol. 42,
121-128. doi: 10.1093/pcp/pce022

Zaltsman, L., Ananyev, G. M., Bruntrager, E., and Dismukes, G. C. (1997).
Quantitative kinetic model for photoassembly of the photosynthetic water
oxidase from its inorganic constituents: requirements for manganese and
calcium in the kinetically resolved steps. Biochemistry 36, 8914-8922. doi:
10.1021/bi970187f

Zhang, L., and Aro, E. M. (2002). Synthesis, membrane insertion and assembly of
the chloroplast-encoded D1 protein into photosystem II. FEBS Lett. 512, 13-18.
doi: 10.1016/S0014-5793(02)02218-4

Zhang, L., Paakkarinen, V., Suorsa, M., and Aro, E. M. (2001). A SecY homologue
is involved in chloroplast-encoded D1 protein biogenesis. J. Biol. Chem. 276,
37809-37814. doi: 10.1074/jbc.M105522200

Zhang, L., Paakkarinen, V., van Wijk, K. J., and Aro, E. M. (1999). Co-
translational assembly of the D1 protein into photosystem II. J. Biol. Chem. 274,
16062-16067. doi: 10.1074/jbc.274.23.16062

Zhang, L., Paakkarinen, V., van Wijk, K. J., and Aro, E. M. (2000). Biogenesis
of the chloroplast-encoded D1 protein: regulation of translation elongation,
insertion, and assembly into photosystem II. Plant Cell 12, 1769-1782. doi:
10.1105/tpc.12.9.1769

recombinations in
14, 200-205. doi:

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2016 Bao and Burnap. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) or licensor are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org

May 2016 | Volume 7 | Article 578


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive

	Photoactivation: The Light-Driven Assembly of the Water Oxidation Complex of Photosystem II
	Introduction
	PSII Damage and D1 Replacement
	Replacement of Damaged D1
	Processing of the D1 Carboxy Terminus
	Accessory Proteins for PSII Assembly and Repair

	Mechanism of Photoactivation
	Coordinating Residues of Mn4CaO5 Cluster
	Two-Quantum Model of Photoactivation
	Are the Complicated ``Two-Quantum'' Kinetics Of Photoactivation an Artifact of In vitro Experimental Procedures?
	High Affinity Binding Site
	Trapping Intermediates of Photoassembly
	Role of Ca2+ and the Ca2+ Bound Intermediate
	Other Inorganic Cofactors
	Possible Models of Assembly

	Author Contributions
	Funding
	Acknowledgments
	References


