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Abstract

Several features in the mass spectrum of merging binary black holes (BBHs) have been identified using data from
the Third Gravitational Wave Transient Catalog (GWTC-3). These features are of particular interest as they may
encode the uncertain mechanism of BBH formation. We assess if the features are statistically significant or the
result of Poisson noise due to the finite number of observed events. We simulate catalogs of BBHs whose
underlying distribution does not have the features of interest, apply the analysis previously performed on GWTC-3,
and determine how often such features are spuriously found. We find that one of the features found in GWTC-3,
the peak at ∼35M☉, cannot be explained by Poisson noise alone: peaks as significant occur in 1.7% of catalogs
generated from a featureless population. This peak is therefore likely to be of astrophysical origin. The data is
suggestive of an additional significant peak at ∼10M☉, though the exact location of this feature is not resolvable
with current observations. Additional structure beyond a power law, such as the purported dip at ∼14M☉, can be
explained by Poisson noise. We also provide a publicly available package, GWMockCat, that creates simulated
catalogs of BBH events with correlated measurement uncertainty and selection effects according to user-specified
underlying distributions and detector sensitivities.

Unified Astronomy Thesaurus concepts: Astrophysical black holes (98); Stellar mass black holes (1611); Black
holes (162); Gravitational waves (678); Gravitational wave sources (677); Gravitational wave astronomy (675);
Bayesian statistics (1900); Hierarchical models (1925)

1. Introduction

Gravitational waves (GWs) from more than 70 mergers of
compact objects have now been detected in the data of the
LIGO (Aasi et al. 2015) and Virgo (Acernese et al. 2014)
detectors. A cumulative catalog of these events and their
properties has been produced by the LIGO–Virgo–KAGRA
(LVK) collaborations. This collection of all detections to date is
called the “Third Gravitational-Wave Transient Catalog”
(GWTC-3; Abbott et al. 2021b), and has enabled several
insights into the nature of gravity (Abbott et al. 2021c), the
local expansion of the universe (Abbott et al. 2021d), and the
population of GW sources (Abbott et al. 2021c).
The underlying population of GW sources holds information

about the astrophysical processes that give rise to merging
binaries of compact objects. The mass spectrum of binary black
holes (BBHs), for example, encodes information about
numerous physical processes underlying massive-star evol-
ution, supernova physics, compact object formation, and binary
interactions. For example, the presence or dearth of black holes
with masses between ∼2 and 5 M☉ (Özel et al. 2010; Farr et al.
2011; Fishbach et al. 2020a; Farah et al. 2022a) may unveil the
maximum neutron star mass, the stability of mass transfer, and

the timescales relevant for the engines that drive supernova
explosions (e.g., Fryer et al. 2012; Mandel & Müller 2020;
Zevin et al. 2020; Li et al. 2021; Patton et al. 2022; Siegel et al.
2023; van Son et al. 2022b). On the high-mass end, a sharp
decrease in the mass spectrum for black holes with masses
50 M☉ (Fishbach & Holz 2017; Edelman et al. 2021) would
be a strong indication that the pair instability process is at play
and limiting the core mass of massive stars (Fowler &
Hoyle 1964; Barkat et al. 1967; Heger & Woosley 2002; Heger
et al. 2003; Woosley & Heger 2015; Belczynski et al. 2016;
Woosley 2017, 2019; Marchant et al. 2019; Renzo et al. 2020),
with the location of the decrease in the differential merger rate
acting to constrain relevant nuclear reaction rates (Farmer et al.
2020). Other overdensities and underdensities in the observed
mass distribution (Tiwari & Fairhurst 2021; Edelman et al.
2022, 2022b; Tiwari 2022), as well as the evolution of the mass
distribution with redshift (Fishbach et al. 2021; Karathanasis
et al. 2023; van Son et al. 2022a, 2022b), will further inform
the dominant BBH formation channels, binary evolution
physics, and the metallicity evolution of the universe.
All of the parameters that are measurable from the signal of a

binary merger can provide insight into formation mechanisms
of merging binaries, especially when used in a population
analysis (Stevenson et al. 2015; Zevin et al. 2017). However,
the masses of the objects in the merging system are the best
measured and span the largest dynamic range. Additionally, the
mass distribution of compact objects can be used to measure
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cosmological parameters using the “spectral siren” method,
provided there is structure in the distribution beyond a
boundless power law (Chernoff & Finn 1993; Messenger &
Read 2012; Taylor et al. 2012; Farr et al. 2019; Abbott et al.
2021d; Ezquiaga & Holz 2021, 2022), such as edges, gaps,
peaks, or changes in the power-law slope. Multiple features
must be present to disentangle redshift evolution of the mass
spectrum from cosmology, and more features further aid in
breaking this degeneracy (Ezquiaga & Holz 2022). Therefore,
considerable effort in the field of GW astronomy has gone
toward understanding the mass distribution of GW sources.
There are currently many more detected BBH mergers than
binary neutron star (BNS) or neutron star–black hole (NSBH)
mergers, so much of the activity has been on population
properties of the BBH distribution, though the mass distribu-
tion of BNSs and NSBHs has also been been considered
(Fishbach et al. 2020a; Landry & Read 2021; Biscoveanu et al.
2022b; Farah et al. 2022a; Ye & Fishbach 2022).

The mass distribution of merging BBHs is typically
parameterized by the primary mass m1, the larger of the two
component masses in the binary, and the mass ratio q=m2/m1,
the ratio of the less massive object’s mass to the primary mass;
though, other parameterizations are possible and valid (e.g.,
Fishbach & Holz 2020a; Tiwari & Fairhurst 2021; Farah et al.
2022a). The community has thus far gained a robust under-
standing of the large-scale features of the BBH mass
distribution, and is just beginning to resolve its finer details.
After the release of the First Gravitational-Wave Transient
Catalog (Abbott et al. 2019b), minimum and maximum masses
at ∼5 M☉ and ∼40 M☉ were identified in the BBH primary
mass distribution, but it was not yet possible to distinguish
between a uniform distribution and a power law between those
two bounds (Fishbach & Holz 2017; Talbot & Thrane 2018;
Abbott et al. 2019a). The Second Gravitational-Wave Transient
Catalog (GWTC-2; Abbott et al. 2021d) brought dozens of
additional events, and the BBH mass distribution was found to
have a global maximum at ∼8M☉ and an excess of BHs
between ∼30M☉–40M☉ followed by a steep, although not
infinitely sharp, drop off in the rate at higher masses extending
to ∼80 M☉ (instead of sharp cutoff at ∼40 M☉). At the time,
there were not enough observations to determine whether the
mass distribution had a local maximum at ∼35 M☉, repre-
sented by a Gaussian peak on top of a power law, or whether
the steepening toward higher masses was better described as a
break in the power law (Abbott et al. 2021a).

At the end of the third LIGO–Virgo observing run, the same
two features at ∼8M☉ and ∼35 M☉ remained, and the feature
at 35M☉ was classified as a peak rather than a break in the
power law (Abbott et al. 2021c). Additionally, nonparametric
(Mandel et al. 2017; Edelman et al. 2022b; Payne &
Thrane 2023; Rinaldi & Del Pozzo 2022; Sadiq et al. 2022)
and semiparametric (Edelman et al. 2022) analyses found
robust evidence for an additional peak at ∼10M☉, the same
peak at ∼35M☉, as well as modest evidence for a paucity of
events near ∼14M☉ (Abbott et al. 2021c). These features in the
primary mass distribution correspond to similar ones in the
chirp mass distribution, occurring at ∼9M☉, ∼11M☉, and
∼26M☉, respectively (Tiwari & Fairhurst 2021; Tiwari 2022).
The current picture of the BBH mass distribution is therefore a
decreasing power law from low to high masses, with a global
maximum at m1∼ 10M☉, a potential underdensity at
m1∼ 14M☉, and an overdensity at m1∼ 35M☉. This can be

seen in Figure 1, where we plot the results of fitting two
parameteric models and one semiparametric model to the
BBHs in GWTC-3.
While the existence of this substructure in the current data

set appears robust, its interpretation is less clear. Plausible
explanations for this substructure include (i) Poisson noise,
(ii) modeling systematics, or (iii) astrophysical signatures from
one or several formation channels. We aim to disentangle the
first two possibilities from the third using the POWER LAW +
SPLINE model (Edelman et al. 2022), one of the semiparametric
models used to identify the substructure reported in Abbott
et al. (2021c).
Poisson noise would be caused by the fact that the fiducial

BBH analysis in Abbott et al. (2021c) includes only 69 events
over a mass range that spans more than an order of magnitude,
so the observations may appear to be clumped at some masses
even if the underlying distribution is smooth. We first
determine if this explanation accounts for the data by
simulating catalogs of BBHs whose underlying distribution
does not have the features of interest, applying the analysis
previously performed on GWTC-3, and determining how often
such features are spuriously found. We develop several metrics
comparing observations to simulated data in order to assess the
statistical significance of the “bumps” in the primary mass
distribution found by Abbott et al. (2021c), Edelman et al.
(2022). All of the metrics derived in this work answer the same
general question: how often do we infer the existence of a
feature when analyzing observations of a true population
without that feature? In this sense, these metrics are analogous
to frequentist p-values, as lower values correspond to more
significant features in the data. Readers familiar with gravita-
tional-wave data analysis might find it useful to think of these
metrics as false alarm rates (FARs) because they quantify how
often noise resembles the observed signal.
A similar frequentist analysis on a large number of mock

catalogs was performed by Sadiq et al. (2022) on the peak at
∼35M☉ using an adaptive kernel density estimator (aKDE) to

Figure 1. Distribution of primary BBH masses inferred using GWTC-3 and
three different population models. The smoothed power-law model (gray)
consists of a single power-law slope between a minimum and maximum mass,
with the merger rate set to exactly zero outside of those bounds. It also includes
a smoothing parameter at the low-mass end that allows for an offset between
the minimum BH mass and the global maximum of the distribution. The
POWER LAW + PEAK model is similar to the smoothed power law, but also
includes a Gaussian component. The POWER LAW + SPLINE model adds a
cubic spline modulation to a smoothed power law to allow for additional
substructure. We seek to determine if the perturbations beyond a power law
found by POWER LAW + SPLINE and other semiparametric models can be
explained by random associations in the data due to a finite number of
observations, or if they are features of the true underlying distribution.
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find features in samples drawn from featureless mass models,
as well as from a model with a single peak. They account for
selection effects, but not measurement uncertainty. They find
that an aKDE is able to identify peaks in the data, and that the
peak at ∼35M☉ found in GWTC-2 is statistically significant
within the aKDE model.

The second effect mentioned above, model systematics,
could also plausibly cause spurious inference of features
beyond a power law. It is potentially concerning that the
models considered in Abbott et al. (2021c) that find peaks and
troughs in the mass distribution are inherently “bumpy”: both
POWER LAW + PEAK (Talbot & Thrane 2018) and MULTI
SOURCE employ a smoothed power law with a Gaussian
component (Wysocki & O’Shaughnessy 2021), FLEXIBLE
MIXTURES is a linear combination of Gaussian components,
and POWER LAW + SPLINE employs a smoothed power law
under a cubic spline modulation. The question is then whether
these bumpy models can recover sharp features or if they
instead create peaks and troughs that are morphologically
dissimilar to the true distribution. This is most easily addressed
by cross-checking with independent models such as BROKEN
POWER LAW (Abbott et al. 2021a, 2021c) and the autore-
gressive model presented in Callister & Farr (2023).

Inaccuracies in the selection function are also known to
cause systematic biases when inferring the underlying popula-
tion (e.g., Malmquist 1922, 1925). These biases could, in
principle, also cause an incorrect inference of structure in the
astrophysical distribution of BBH masses. However, selection
effects in GW detectors are remarkably well-characterized, so
we expect this effect to be subdominant to Poisson uncertainty.
As the number of events grows, so will our accuracy in the
estimation of the selection function (Farr 2019; Essick &
Farr 2022).

We provide posterior samples from our simulated catalogs in
an accompanying data release (Farah et al. 2022b), and also
provide a publicly available python package, GWMockCat
(Farah et al. 2022c), to create similar samples according to
user-defined populations.7

Section 2 provides a demonstrative example: it foregoes a
full fit to the astrophysical population of sources, and compares
the observed distribution of masses to possible observed
distributions given an underlying power law in primary mass,
(incorrectly) assuming no measurement uncertainty. This
analysis suggests that the observed peak at ∼35M☉ is
statistically significant, but that all other features beyond a
simple power law might be explainable by Poisson noise. This
motivates a thorough study using a full hierarchical Bayesian
analysis on simulated event posteriors, which we carry out in
Section 3. Section 4 summarizes our conclusions and discusses
their implications for the astrophysical origin of the GWs
observed thus far by the LVK. Readers primarily interested in
the significance of features in the mass distribution may wish to
skip to Section 3.3, whereas those interested in using the
package GWMockCat can find details in Appendices A and B.

2. Motivation

To construct a simple test of feature significance and
motivate further study, we first avoid a fit to the mass
distribution and instead consider the observed distribution of

primary masses and its resemblance to one that would result
from a simple power law. The observed population differs
significantly from the astrophysical one, as current gravita-
tional-wave detectors are subject to selection biases that favor
the detection of closer and more massive systems, as well as
measurement error that affects each system differently. We
construct plausible observed mass distributions that could
occur from detecting 69 BBHs whose astrophysical distribution
is a featureless power law in primary mass. To do this, we use
the samples provided by LIGO Scientific Collaboration et al.
(2021a), which were created for sensitivity estimation for the
LVK’s GWTC-3 analysis. Each of these samples comes with a
probability of being drawn from an assumed underlying
distribution and a FAR assigned by each search used by the
LVK. We can then reweight these samples to our desired
population model (in this case, a power law in m1, q, and z)
using the draw probability, and apply the same FAR threshold
used in Abbott et al. (2021c) to select “found injections.” Of
the ∼6× 104 found injections, we resample to N= 104

independent sets of 69 draws each to directly compare to the
observations.
We then histogram each set of these found injections,

thereby obtaining a distribution of bin heights for our mock
populations. Using several thousand realizations of found
injection sets enables us to construct a null distribution of bin
heights and characterize the effect of Poisson noise on the
shape of the observed distribution. We compare these null
distributions with the observed distribution of BBH masses in
GWTC-38 by assuming the primary masses are measured
perfectly and using the median a posteriori values of their
primary masses as point estimates. The result is shown in the
top panel of Figure 2, which plots the 90% credible interval on
the observed null distributions, along with the distribution of
median primary masses of GWTC-3ʼs BBHs. For the null
distributions, we consider two power-law spectral indices as
representative examples: α= 2.7, and α= 3.25. These are
chosen to represent a range of plausible values for the BBHs in
GWTC-3: a power-law fit to GWTC-3 yields a = -

+2.98 0.28
0.16,

where the bounds represent 1σ deviations.
To obtain a more quantitative measure, we compare bin

heights from the found injections, hinj, to the bin heights of
observed events in GWTC-3, hGWTC−3, obtaining for each bin i
the fraction of simulated bin heights that are lower than those of
GWTC-3 BBHs. Explicitly,



⎧
⎨
⎩

( )å=
< -

-
r

N

h h

h h

1 1 if

0 if
, 1h

i

j

N
i
j

i

i
j

i

,inj ,GWTC 3

,inj ,GWTC 3

where the sum is over the N= 104 sets of found injections, and
rh is defined for each bin. For example, if rh= 0.95 for a given
bin, the observed distribution in that bin is larger than would be
expected from a featureless power law 95% of the time. A
value of rh approaching unity corresponds to a bump in the

7 The data release can be found at doi:10.5281/zenodo.7411991, and
GWMockCat can be installed at https://git.ligo.org/amanda.farah/mock-PE.

8 For all comparisons to real observations, we use the publicly available
posterior samples for the GWTC-2.1 and GWTC-3 data releases (LIGO
Scientific Collaboration & Virgo Collaboration 2022; LIGO Scientific
Collaboration et al. 2021b, respectively). We use samples generated with the
IMRPhenomXPHM waveform and a prior proportional to the square of the
luminosity distances (i.e., the samples were not “cosmologically reweighted”).
To make the most direct comparison with Abbott et al. (2021c), we keep events
with secondary mass larger than 3 M☉ and FAR less than 1 yr−1, resulting in
69 events.
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observed mass distribution, and a value of rh approaching zero
is indicative of a dip.

Note that the comparison between the null distributions and
GWTC-3 is occurring at each bin, rather than across all bins.
We do this because the magnitude of Poisson noise depends on
the value of m1: since the underlying distribution is not
uniform, fewer events are expected at very high m1, and
therefore, the relative standard deviation is larger. This is also a
consequence of Eddington bias (Eddington 1913). Making
comparisons at specific points in m1 does not, however,
properly correct for the look-elsewhere effect. We will address
this effect in Section 3.

The three most significant values of rh
i in the case of α= 3.25

are ☉ =r 0.033h
M15.6 , ☉ =r 0.036h

M27.9 , ☉ >r 0.999h
M36.1 , where

the superscripts indicate the centers of the bins at which r was
calculated. This means that less than 0.1% of mock populations
had more events near 36.1M☉ than GWTC-3 does, 3.3% of
mock populations had fewer events near 15.6M☉ than GWTC-3,
and at 27.9M☉, 3.6% of mock populations had fewer events.
Repeating the exercise for α= 2.7, we find the three most

significant values of rh
i to be ☉ =r 0.935h

M40.2 , ☉ =r 0.020h
M27.9 ,

☉ >r 0.999h
M36.1 . The locations of the significant features differ

when the assumed underlying distribution changes.9 In either
case, the bump at ∼35M☉ is unlikely to be due to Poisson
noise, but other features may be.
To avoid the need to arbitrarily choose bins, we additionally

construct a cumulative distribution function (CDF) of the
primary masses and compare it to the CDFs of the null
distributions, shown in the bottom panel of Figure 2. This
comparison is akin to a posterior predictive check in that it can
highlight where the model fails to predict the data. Importantly,
though, it differs from the conventional posterior predictive
check because we have purposefully left out the effects of
modeling uncertainty and measurement uncertainty in order to
isolate the effects of Poisson noise. The prior distributions are
therefore also not included, since each event is assumed to be
measured with perfect accuracy.
If α= 3.25, the null distributions are consistent with the data

below ∼18M☉ and above ∼35M☉, but not between them,
meaning that the ∼10M☉ and ∼35M☉ peaks can be explained
by Poisson noise, but the underdensity between them could not
be. On the other hand, if α= 2.7, the null distributions are
consistent with the data everywhere except for above ∼40M☉,
suggesting that, under this scenario, Poisson noise can explain
all features except for the ∼35M☉ peak.
For both spectral indices considered, two of the three

features found by Abbott et al. (2021c) can be explained by
Poisson noise from a finite number of observations. However,
this does not mean that exactly two of the features are the result
of Poisson noise, just that no more than two can be caused by
the phenomenon. Additionally, it is not clear which of the
features are more likely to have physical origin, as this method
offers no quantitative way to determine which power-law slope
is preferred.
Importantly, this methodology does not account for the

effects of measurement error, which can cause significant
biases near the edges of sharp distributions when not properly
accounted for (Fishbach et al. 2020b). We therefore turn to a
full hierarchical Bayesian analysis of simulated catalogs, which
will allow us to fit for the population model parameters, take
the measurement uncertainty into account, and directly
compare to the metrics used in Abbott et al. (2021c).

3. Hierarchical Analysis and Results

We determine how often the features inferred in the mass
distribution of BBHs would be spuriously found in data whose

Figure 2. Observed source-frame primary mass distributions. Black solid lines
contain the median a posteriori values for the binary black holes in GWTC-3.
Pink and blue bands indicate the 90% credible interval on the observed
distributions predicted from astrophysical distributions that are power laws in
primary mass with spectral index α = 3.25, and α = 2.7, respectively. The top
panel shows a histogram of observed primary masses. For GWTC-3ʼs
distribution to be consistent with the null distributions, we expect its bin
heights in the top panel to be within the 90% credible intervals in 18 out of the
20 bins. The uncertainties in these predicted distributions are due only to
Poisson noise resulting from a finite number of observations, rather than
modeling uncertainty or uncertainty in parameter estimation. Therefore, the
cumulative distribution functions in the bottom panel are similar to a
conventional posterior predictive check, but with only one source of
uncertainty. The large deviations of the black curve from the shaded bands
in some regions indicate the difficulty that a single power law with Poisson shot
noise has in fully explaining the observations. However, many of the apparent
excursions from a power law are well-contained within the predicted bands.

9 It is also possible to determine the existence of local minima or maxima in
this observed distribution independently of the underlying power law. This can
be done using a dip test for unbinned data (Hartigan & Hartigan 1985) or the
minimum number of components required for a Gaussian mixture model
(McLachlan & Peel 2000). However, features in the observed distribution
would be difficult to disentangle from selection effects, so we recommend only
applying these to the astrophysical distribution, as in Tiwari & Fairhurst
(2021). Since our principal aim is to quantify the significance of excursions
from a power law, we leave such tests for future work.
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underlying distribution does not have those features. To do this,
we construct a null distribution by simulating BBH observations
that would occur if the underlying astrophysical distribution was
a single power law with no substructure in a finite range. The
procedure for creating synthetic BBH observations is described
in Appendix A. Mock observations are combined with
corresponding sensitivity estimates in a hierarchical Bayesian
analysis, described in Loredo (2009), Mandel et al. (2019), and
Thrane & Talbot (2019). We analyze these simulations in the
same way as the BBHs in GWTC-3 to determine how often the
features observed in GWTC-3 would be found from an
underlying distribution without those features.

3.1. POWER LAW + SPLINE Mass Model

We use the POWER LAW + SPLINE semiparametric primary
mass model as a flexible model that is easily capable of finding
peaks and valleys in the mass distribution (Abbott et al. 2021c;
Edelman et al. 2022). This model parameterizes perturbations
or deviations from a simpler underlying distribution with
flexible cubic spline functions. Specifically, given an under-
lying hyper-prior for primary mass, p(m1|Λ), the POWER LAW
+ SPLINE model describes the primary mass distribution as
follows:

( ∣ { } { })
( ∣ ) ( ( ∣{ } { })) ( )

L

µ L

p m m f

p m f m m f

, ,

exp , , 2

i i

i i

spline 1

1 1

where f (m1|{mi}, {fi}) is the function describing the perturba-
tions, which we model with a cubic spline function interpolated
by introduced hyperparameters, {mi}, the locations of spline
knots in mass space, and {fi}, the height of the perturbation
function at each knot. This describes a semiparametric model as
it includes a simple parametric component (the underlying
distribution) in addition to a nonparametric component that
models the perturbation around the simple description. For this
study, we use the simplest primary mass model for the
underlying description, which is the TRUNCATED model,
describing a power law with sharp cutoffs at the lower and
upper mass bounds (Fishbach & Holz 2017; Edelman et al.
2022). While this model has been shown to insufficiently
describe the primary mass distribution, it captures the majority
of the broadest features (Abbott et al. 2021a, 2021c).

To assess the significance of peaks or valleys found with the
POWER LAW + SPLINE model, one can look at the posterior
distribution of the perturbation heights as a function of mass.
This tells us how far off the simple power-law description is
from accounting for the data. Specifically, we can find what
percentile f (m1)= 0 falls in the posterior distribution as a
function of mass. For data exactly distributed as a power law
(the underlying population), the inferred perturbation function
should be symmetric about 0 with widths determined by the
prior distributions on the knot heights and the number of
observed events. At masses where the percentile of zero
perturbation approaches 100% (0%), we can say there is an
overdensity (or underdensity) of events at these masses,
compared to the underlying power-law distribution. This is
identical to the analysis done by Abbott et al. (2021c), who use
the percentile at which the perturbation function excludes zero
at a given location as a metric for how significant a feature is at
that location.

3.2. Metrics of Feature Significance

As described in Section 3.1, the POWER LAW + SPLINE
model makes use of a perturbation function constructed from
cubic splines. The height of the perturbation function, f (m1), at
a point in primary mass, m1, is then a direct measure of the
deviation from a power law at that point. We can determine
how often one would find spurious evidence for substructure by
simulating catalogs from a power law, fitting them with the
POWER LAW + SPLINE model, and examining the resulting
perturbation function.
If the mock catalogs produce perturbation functions with

similar amplitudes to those seen for GWTC-3, the structure in
the GWTC-3 fit might be described by Poisson noise. On the
other hand, if the perturbation functions produced by fits to the
mock catalogs are always lower in amplitude to that of the
GWTC-3 fit, the structure in the GWTC-3 data is likely to be
present in the underlying distribution.
For a given mock catalog, we find the m1 value where the

median a posteriori value of the perturbation function is maximal.
We obtain the posterior distribution of perturbation function
amplitudes at that location, ( )g fmax . We repeat this for all mock
catalogs, obtaining a set of maximal perturbation function
distributions, { ( )}g fj max . These are plotted in light gray on the
left panels of Figure 4. The locations of the three maximal
perturbation function amplitudes in the GWTC-3 fit are, from least
to most Bayesian significance, 13.8M☉, 10.3M☉, and 35.7M☉.
The posterior distributions of perturbation function heights at these
locations are gGWTC−3( f (13.8M☉)), gGWTC−3( f (10.3M☉)), and
gGWTC−3( f (35.7M☉)), and are plotted in orange in the left panels
of Figure 4. The amplitude of the perturbation function at 13.5M☉
is negative (i.e., it is a dip rather than a bump), so we flip its
distribution about zero for more direct comparison. The same is
done for all ( )g fmax whose medians are negative, as the
perturbation function’s prior is symmetric about zero.

3.3. Simulation Study

To determine whether the features in the mass spectrum of
GWTC-3 BBHs are the result of Poisson noise of a finite
number of observations drawn from a featureless power law,
we compare POWER LAW + SPLINE fits using the GWTC-3
catalog and 300 mock catalogs generated from a featureless
power law. The mock catalogs considered in this section are all
generated from the same underlying distribution: a truncated
power law in primary mass, mass ratio, and redshift, with a
smoothing at low component masses to ensure the peak of the
mass distribution is not in the same location as the minimum
mass. The explicit form of the mock catalogs’ population
model, including values of all of its hyperparameters, can be
found in Appendix B.
Full parameter estimation was not performed on each event

in each mock catalog; instead, we use prescriptions for
generating event posteriors that reproduce the correlations
between an event’s parameters, as well as the typical
uncertainties seen in GWTC-3. We show in Appendix C that
the prescriptions used are sufficient to reproduce population
analyses such as the ones scrutinized in this work. In order for
our comparisons to be consistent between featureless mock
catalogs and GWTC-3, we recreate GWTC-3ʼs event posteriors
with the same prescriptions as were used for the mock catalogs,
perform a population analysis on those, and use the resulting
perturbation function for all comparisons to mock catalogs. Our
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population reanalysis of the GWTC-3 events with mock
posteriors appears consistent with the full analysis presented
by the LVK in Abbott et al. (2021c). The lines labeled
“GWTC-3” or depicted in orange in Figures 3, 4, and 5 refer to
the analysis done on the recreated version of GWTC-3. All
analyses presented here were repeated using the original LVK-
released parameter estimation samples in Appendix C, and the
same qualitative conclusions were reached, although with
slightly more statistical significance.

Despite knowing the parameters of the underlying popula-
tion for the mock catalogs, we allow all hyperparameters to
vary when fitting POWER LAW + SPLINE to the mock catalogs.
The resulting perturbation functions are shown in Figure 3 for
10 randomly chosen mock catalogs and GWTC-3. The
perturbation functions deviate from their prior distribution in
the mass range where detections exist (above ∼5M☉ and
below ∼85M☉), even in the case of mock catalogs. This means
that the perturbation functions are informed by the mock data
despite the mock data not inherently requiring a deviation from
a power law. The question still remains whether the
perturbation function heights inferred from mock catalogs with
no substructure are larger than those inferred from GWTC-3.
While nonzero values of the perturbation function are common

in the 10 mock catalog fits shown in Figure 3, only a few
amplitudes appear comparable in height to the three largest
amplitudes of the GWTC-3 perturbation function.
To verify this, we isolate the largest amplitude perturbations

for all 300 mock catalog fits and compare them to the three
largest amplitude perturbations for the GWTC-3 fit. These are
plotted in the leftmost panels of Figure 4. The light gray curves
are the posterior distributions of largest perturbation function
amplitudes { ( )}g fj max for each simulated catalog j. These
appear to have the same general shape as one another, although
with noticeable scatter. The orange curves in each panel are the
posterior distributions of GWTC-3ʼs perturbation function
gGWTC−3( f (m1)) at its three maximal locations: m1= 13.8M☉,
10.3M☉, and 35.7M☉.
The distribution for the ∼14M☉ dip appears qualitatively

similar to that of the simulated catalogs, the ∼10M☉ peak
appears to be slightly shifted with respect to most of the
simulated catalogs but still within their range, and the ∼35M☉
peak is noticeably shifted toward higher values relative to the
bulk of the simulated catalog distributions. This suggests that
the ∼35M☉ peak is unlikely to be the result of Poisson noise or
modeling systematics, while other features could plausibly be
explained by those effects.

Figure 3. Median (top panel) and 90% credible interval (bottom panel) of the perturbation function resulting from the POWER LAW + SPLINE fit to the primary masses
in GWTC-3 (orange) and in 10 mock catalogs (gray). The perturbation function multiplies a smoothed power law in primary mass to add modulations to an otherwise
monotonic distribution, making it a direct measure of deviations from a power law. It is a cubic spline with knots fixed at the locations indicated by the black vertical
tick marks. The prior on the perturbation heights is the unit normal distribution, as can be seen below ∼5 M☉ where there are no detections to constrain the likelihood
and the posterior reverts to the prior. The perturbation function corresponding to GWTC-3 events appears large in amplitude in three locations: ∼10 M☉, ∼14 M☉, and
∼35 M☉. While the medians of the perturbation function at these distributions are comparable in amplitude, the posterior distribution at ∼35 M☉ (∼14 M☉) is the most
(least) tightly constrained.
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3.3.1. Maximum Perturbation Amplitude

To obtain a more quantitative measure, we derive several
metrics from the distributions of maximal perturbation function
amplitudes. The first uses the Kolmogorov–Smirnov (KS) test:
we compute the KS divergence D between each of the{ ( )}g fj max
distributions to obtain a null distribution of KS divergences,
shown in the solid black curve in the middle column of Figure 4.
We then perform a KS test between the { ( )}g fj max distributions
and gGWTC−3( f (m1)) and obtain the orange curves in the middle
column of Figure 4. From this, we find that the KS divergences
for mock catalogs are larger than those of GWTC-3 20%,
11%, and 7% of the time for the 14M☉, 10M☉, and 35M☉

features, respectively. This means, for example, that mock
catalogs can produce perturbation function posteriors as tall as
the one inferred from GWTC-3 at ∼35M☉ only 7% of the
time. Written in terms of g( f ), ( ( )) ( )☉ ¹-g f M g f14 jGWTC 3 max

to 20%, ( ( )) ( )☉ ¹-g f M g f10 jGWTC 3 max to 11%, and
( ( )) ( )☉ ¹-g f M g f35 jGWTC 3 max to 7%. Although none of these

percentages are convincingly small, this indicates that the orange
histograms are more statistically distinct from the black
histograms in the case of the ∼35M☉ peak than they are in
the cases of the features at 10M☉ and 14M☉.
The second metric is obtained by quantifying the shift of

gGWTC−3( f (m1)) relative to the set of { ( )}g fj max . For each point

Figure 4. Three largest deviations from a power law observed in GWTC-3 compared to mock catalogs. Left column: the posterior distribution of perturbation function
heights at the location where the posterior distribution is maximal for mock catalogs (light gray) and GWTC-3 (solid orange). Middle column: null distribution (black)
and GWTC-3 distribution (orange) of Kolmogorov–Smirnov (KS) divergences between the individual distributions in the left column. Smaller values of the KS
divergence indicate more similar distributions. Right column: null distribution (black) and GWTC-3 distribution (orange) of percentiles. Large deviations from the
diagonal indicate a more significant rightward shift of the GWTC-3 distribution relative to the mock catalogs. Each row corresponds to a different local extremum for
GWTC-3: m1 = 13.8 M☉ (top), m1 = 10.3 M☉ (middle), and m1 = 35.7 M☉ (bottom), while the global extrema for each mock catalog are shown in all rows, along
with the aggregated distribution across all mock catalogs (solid black). The ∼35 M☉ peak is an outlier with respect to both the KS and percentile statistics, but the
other two features are more ambiguous.
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in gGWTC−3( f (m1)), we calculate the percentile in which it lies in
each of the { ( )}g fj max , obtaining the orange bands in the
rightmost panels of Figure 4. For comparison, we do the same
for each of the { ( )}g fj max relative to each other, constructing the
gray bands in the rightmost panels of Figure 4. We then take the
mean of the set of light orange bands and light black bands to
obtain the solid orange and solid black curves, respectively. The
black bands serve as null distributions, so large deviations from
those indicate significant shifts. We observe a large deviation for
the ∼35M☉ peak, a moderate deviation for the ∼10M☉ peak,
and only a slight deviation for the ∼14M☉ dip. Quantitatively,

( ( )) ( )☉-g f M g f35 jGWTC 3 max to -
+83 %69
17 (90% credible

interval), meaning that the ∼35M☉ peak lies in the -
+83 69
17rd

percentile of the mock catalogs’ largest perturbation heights. For
the other features, ( ( )) ( )☉-g f M g f10 jGWTC 3 max to -

+74 %60
25 ,

and ( ( )) ( )☉-g f M g f14 jGWTC 3 max to -
+34 %32
52 . In comparison,

the corresponding statistic for the null distributions is
( ) ( )g f g fj imax max to -

+50 %46
47 .

It is not possible to draw firm conclusions from these large
uncertainties. However, the central values indicate that the
∼35M☉ peak is noticeably shifted relative to the mock
catalogs’ perturbation functions, the ∼10M☉ peak is moder-
ately shifted, and the ∼14M☉ dip even has a slightly lower
amplitude than the maximum perturbation functions typical of
mock catalogs. We repeat this analysis with an Anderson–
Darling test rather than a KS test and find similar results.

3.3.2. Inconsistency with a Power Law

The final metric we consider is inspired by the statistic
presented in Abbott et al. (2021c), which states that “the
inferred perturbation f (m1) strongly disfavors zero at both the
10M☉ and 35M☉ peak.” We therefore turn from considering
the full distribution of perturbation function heights at a given
location to the percentile at which it excludes zero. A
perturbation function amplitude of zero is a useful reference

point for several reasons. The most intuitive is that it causes the
population model to behave like a featureless power law, so a
posterior that excludes zero to high credibility indicates an
inconsistency with a power law. Zero is also the mean of the
prior predictive distribution for the perturbation function: the
prior allows for equal upwards and downwards fluctuations,
symmetric about zero perturbation. Similarly, a vanishing
perturbation function amplitude is the state to which we expect
the posterior predictive distribution to asymptote in the limit of
infinite detections from an underlying power-law distribution.
We therefore plot the percentile at which each mock catalog
excludes zero perturbation in Figure 5.
We then calculate how often a simulated catalog’s perturbation

function excludes zero to the same credibility as that of GWTC-3.
This is the same as finding the point along the y-axis of Figure 5
at which each of the vertical orange lines hits the CDF. 1.7%,
10.0%, and 92.7% of the { ( )}g fj max exclude zero to the same
percentile as gGWTC−3( f (35M☉)), gGWTC−3( f (10M☉)), and
gGWTC−3( f (14M☉)), respectively. The fact that, for example,
gGWTC−3( f (14M☉))< 0 to 20.7% but 92.7% of mock catalogs
have a similar or smaller statistical excursion is due in part to the
difference between Bayesian credible intervals and frequentist p-
values, and because our metric corrects for the look-elsewhere
effect by comparing GWTC-3ʼs perturbation function at specific
locations to all possible locations in the mock catalogs.
Combined with the metrics presented in Section 3.3.1, the

results above lead us to conclude that the peak at ∼35M☉ is
difficult to reproduce with featureless catalogs, but it is possible
that the dip at ∼14M☉ is just a large fluctuation rather than a
astrophysical feature. The peak at ∼10M☉ is difficult to
reproduce with featureless catalogs; though, it is easier to
reproduce than the ∼35M☉ peak. We discuss the interpretation
of this feature in more detail in Section 4.
In summary, featureless catalogs can sometimes produce

features as tall as the ∼10M☉ peak, and they can sometimes
produce perturbations constrained away from zero with the
same credibility. The dip at ∼14M☉ could be a Poisson
fluctuation because fits to featureless catalogs can easily
produce perturbations as large, and as credibly constrained
away from zero perturbation. The peak at ∼35M☉ is difficult to
reproduce by mock catalogs in any way: its perturbation
amplitude is too large and too credibly constrained away
from zero.
The fact that we find one of the features explainable by

Poisson noise is consistent with Section 2, which suggests that
up to two of the excursions from a power law can be explained
by Poisson fluctuations. Our conclusions are also in broad
agreement with those presented in Abbott et al. (2021c), as they
report confident detections for the two largest peaks in the mass
distribution but only modest evidence for the dip at ∼14M☉.

4. Discussion

Previous analyses of the BBH mass spectrum by the LVK
and others have found evidence for structure beyond a simple
power law (Abbott et al. 2021a, 2021c). There has been
considerable work exploring possible astrophysical causes of
these identified features. Our aim is instead to determine, from
a statistical viewpoint, whether astrophysical arguments need
be invoked at all.
We first demonstrate that it is only possible for up to two of

the three deviations from a power law to be explained by
Poisson noise about a single power-law distribution. Therefore,

Figure 5. Percentile at which the posterior distribution of the perturbation
function excludes zero for GWTC-3 (orange vertical lines) and catalogs drawn
from a featureless distribution (black histogram). For GWTC-3, we evaluate the
perturbation function’s posterior distribution at primary mass (m1) values of
13.8 M☉ (dotted), 10.3 M☉ (dashed), and 35.7 M☉ (solid). For mock catalogs,
we find the primary mass value at which the perturbation function is maximal
and evaluate its posterior distribution there. The values reported here are the
percentage of the posterior distribution that is greater than zero at those values
in m1. The 13.5 M☉ feature excludes zero to a level comparable to some of the
mock catalogs, but the other two features exclude zero to a level not
reproducible by any mock catalogs.
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at least one feature must be added on top of a power law to
describe the data.

We then perform a more thorough analysis, simulating
thousands of BBHs with measurement uncertainty, selection
effects, and a known underlying distribution. We fit the POWER
LAW + SPLINE model to the resulting catalogs and find that the
data is inconsistent with a single power law, agreeing with the
LVK result. However, we find that one of the previously
identified features, an underdensity at ∼14M☉, may not be
present in the true astrophysical distribution. Instead, it may
have been the result of a Poisson fluctuation around a simple
power law, or an artifact of the models used to fit the mass
spectrum. The metrics constructed in this work differ from
those previously used to assess the significance of features in
the mass distribution because, by virtue of comparing to several
simulated catalogs, they correct for the look-elsewhere effect.
This is only in mild tension with the conclusions reached by
Abbott et al. (2021c), as they report “modest evidence” in favor
of a dip at 14M☉.

We find the other two previously identified peaks, at
∼10M☉ and ∼35M☉, unlikely to be the result of Poisson
noise or modeling artifacts. Simulated catalogs coming from
distributions that do not include these features can reproduce
the height of the ∼10M☉ peak, but not its lack of support for
zero perturbation. The ∼35M☉ peak is difficult to reproduce
from featureless catalogs in any way.

Our conclusions are consistent with a recent study by
Callister & Farr (2023) who fit the BBH mass distribution with
an autoregressive model and find that the primary mass
distribution gradually decreases as a function of mass and
exhibits two local maxima with a relatively flat continuum
between them. They interpret the 14 solar mass dip found by
other analyses to be a flattening of the power-law index at
lower masses rather than a local minimum. We also find similar
results to Edelman et al. (2022b) who construct the mass
distribution entirely from basis splines and find peaks at
∼10M☉ and ∼35M☉. The significance of the peaks near
10M☉ and 35M☉, as well as the lack of significance of the dip
near 14M☉, is also in agreement with those from Sadiq et al.
(2022), Wong & Cranmer (2022).
The dip near ∼14M☉ may be a large Poisson fluctuation or

an artifact of the models used to characterize it. If it is in fact a
feature of the underlying distribution, it is difficult to resolve
with current observations.

The peak near ∼10M☉ is likely an imprint of the true
astrophysical distribution. Its amplitude is slightly larger than
what featureless catalogs can produce with random fluctua-
tions, and it is inconsistent with the power law that describes
the rest of the BBH mass distribution at a level that only a small
fraction of featureless catalogs can achieve. We therefore report
moderate evidence that additional structure beyond a power
law is needed to explain the peak at ∼10M☉.

The ∼10M☉ feature may be either an additional peak that is
distinct from the one created by the underlying smoothed
power law at ∼7M☉ (Abbott et al. 2021c; Edelman et al. 2022;
Tiwari 2022) or the sole peak in the region between ∼5M☉ and
∼20M☉ (Edelman et al. 2022b). These two possibilities can be
seen in Figure 1. The former scenario is the case where we
interpret the first two peaks in the orange band as distinct from
one another, therefore treating the global maximum inferred by
POWER LAW + SPLINE as a different feature from the global
maximum inferred by POWER LAW + PEAK. In the latter

scenario, the role of the perturbation function is to shift the
global maximum from the value inferred by the power-law
component to a slightly higher value without removing the
mass distribution’s support for 5–10M☉ objects. A simple
smoothed power law, such as that employed by the POWER
LAW + PEAK model (see gray and blue bands in Figure 1), may
not be flexible enough to place a global maximum at ∼10M☉
while also fitting the correct slope at larger masses and fitting
the correct merger rate below ∼10M☉, so it places its global
maximum at ∼7M☉. This scenario, in which there is a single
local maximum below ∼12M☉, is consistent with Edelman
et al. (2022b), Callister & Farr (2023), both of whom find only
one significant maximum between approximately 3M☉ and
12M☉ using fully nonparametric methods. If this interpretation
is correct and the global maximum of the BBH mass
distribution is indeed offset from the minimum mass by
∼5M☉, the upper edge of the lower mass gap may not be as
morphologically simple as previously assumed (e.g., Fishbach
et al. 2020a; Ezquiaga & Holz 2022; Farah et al. 2022a),
making it potentially difficult to resolve with parametric models
alone. The marginal evidence for the significance of the
∼10M☉ peak is likely driven by the fact that the current
observations are insufficient to distinguish between these two
scenarios, which is unsurprising considering the lower
sensitivity of GW detectors to low-mass events relative to
high-mass events.
A peak anywhere between ∼7M☉ and ∼10M☉ could be

indicative of particular evolutionary processes that are
dominant within formation environments. van Son et al.
(2022b) showed that a global maximum near this value is
consistent with and robustly predicted by the stable mass
transfer channel in isolated binary evolution, as stability during
mass transfer requires mass ratios between the donor star and
accreting compact object to be relatively symmetric, and the
stellar companions to ∼10 M☉ BHs must be near this mass to
form compact objects above the minimum BH mass. This may
be an indication that the stable mass transfer channel operates
more efficiently than the traditional common envelope channel
for generating merging BBHs. If the stable mass transfer
channel is indeed the cause of the global maximum in the
primary mass distribution, the exact location of this global
maximum will constrain the core mass fraction, mass transfer
stability, and mass transfer efficiency of this process (van Son
et al. 2022b). Although the dynamical formation channels with
low escape velocities, such as globular clusters, struggle to
produce a global maximum at 10 M☉ (Antonini et al. 2023),
the dynamical environments with higher escape velocities may
more readily produce merging BBHs with lower masses around
10 M☉ due to the more prevalent lower-mass BHs preferen-
tially remaining bound to these clusters following supernova
kicks.
We find that the peak centered on 35M☉ is the most likely to

be a feature of the true underlying distribution. This bodes well
for the “spectral siren” (Farr et al. 2019; Ezquiaga & Holz 2022)
method of estimating cosmological parameters from GW
observations, as this peak happens to be the most informative
feature for this method since it is a well-measured, somewhat-
sharp feature in the mass distribution (Abbott et al. 2021d). The
astrophysical process that gives rise to this feature is still a
topic of discussion. The key reason for including a flexible
bump-like feature in the phenomenology of parametric models,
such as the POWER LAW + PEAK model used by the LVK
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(Talbot & Thrane 2018), was to accommodate a potential
build-up of BHs with masses just below the pair instability
mass gap, as pulsational pair instability supernovae are
predicted to efficiently shed material from high-mass stars
with cores in the mass range of –~M 45 65core (Woosley
2017, 2019; Marchant et al. 2019; Renzo et al. 2020). It is
difficult to reconcile the locations of the local maxima found in
the BBH primary mass distribution with predictions of the pair
instability process in the cores of massive stars. The largest
uncertainty determining the location of the lower edge of the
pair instability mass gap is the 12C(α, γ)16O reaction rate,
which determines the abundance of oxygen in stellar
cores (e.g., Farmer et al. 2019). Higher 12C(α, γ)16O reaction
rates lead to a higher oxygen abundance in the stellar core,
which will ignite explosively during core collapse and lead to
(pulsational) pair instability supernovae occurring at lower core
masses. However, even at 3σ deviations above the median
measured value of the 12C(α, γ)16O reaction rate, the lower end
of the mass gap only reaches ≈38 M☉ (Farmer et al. 2020).
This is above where the measured overdensity in the observed
mass spectrum occurs. This may be an indication that the peak
at 35 M☉ is the result of certain isolated binary evolution
scenarios (e.g., chemically homogeneous evolution; see du
Buisson et al. 2020; Zevin et al. 2021; Bavera et al. 2022),
another BBH formation channel entirely (e.g., globular
clusters; see Antonini et al. 2023), or that stellar evolution
models are missing particular ingredients that can shift the
location of the pair instability gap (relaxing the assumption that
the exploding stars are hydrogen-free, adjustments to con-
vective overshooting; see, e.g., Iorio et al. 2023).

Additionally, several studies have suggested that the
observed peaks in the BBH mass distribution can be explained
by successive generations of hierarchical mergers (Tiwari &
Fairhurst 2021; Mahapatra et al. 2022; Tiwari 2022); though,
no correlation has been detected in the spin distribution of
BBHs (Biscoveanu et al. 2022a), which is also necessitated by
the hierarchical merger formation scenario (Fishbach et al.
2017; Gerosa & Berti 2017; Rodriguez et al. 2019; Doctor et al.
2020, 2021; Kimball et al. 2020; Gerosa et al. 2021).
Additionally, for these peaks to correspond to hierarchical
mergers of the same population, the dominant hierarchical
pairing would have to be the first generation BH with a third
generation BH (Mahapatra et al. 2022; Tiwari 2022), whereas
the dominant pairing predicted by Rodriguez et al. (2019) is a
first generation BH generation with a second generation BH.
While it is certainly possible that GWTC-3 contains hierarch-
ical mergers (e.g., Abbott et al. 2020b; though, also see
Fishbach & Holz 2020b), the relative fraction of events formed
this way is likely too small to form the structure observed in the
primary mass distribution (Kimball et al. 2021), and some fine-
tuning may be needed to avoid a cluster catastrophe (Zevin &
Holz 2022). The exact physical reason for the overdensity at
35 M☉ therefore remains unclear. However, we confirm that it
is a robust signature in the observational data; future observing
runs will help to constrain its precise location, width, and
possible redshift evolution.
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Appendix A
Generation of Mock Observations in GWMockCat

We describe the process used to simulate gravitational-wave
event posteriors in mass and redshift, based on the procedure
developed in Fishbach et al. (2020b).
This process neglects the generation of spin posteriors as this

work only seeks to understand the significance of features in
the mass distribution, and individual-event likelihoods are
approximately separable in spin and primary mass for BBHs,
and we do not model any spin populations in this work.
However, spin and mass parameters are not totally uncorrelated
for low-mass or high mass ratio events, so future work
attempting to validate features seen in the mass ratio
distribution, NSBH or BNS populations should consider
simulating spin parameters as well. A lightweight, publicly
available python package that can reproduce these mock
posteriors and generate similar catalogs from arbitrary under-
lying populations and detector sensitivities is available for
download and installation.10 The package is called GWMock-
Cat, and installation instructions, examples, and documenta-
tion are available in the git repository. Several packages exist to

10 https://git.ligo.org/amanda.farah/mock-PE
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draw events from BBH population models (e.g., Belczynski
et al. 2008; Breivik et al. 2020; Riley et al. 2022), some
of which also simulate GW detector selection effects
(Karathanasis et al. 2022). GWMockCat complements these
by additionally simulating event-level posteriors without the
need to run full parameter estimation inference, saving
significant computational time.

To create realizations of catalogs that would reasonably
result from a known underlying astrophysical population, p(m1,
m2, z), we first make independent draws of the event
parameters, {m1, m2, z}, from that population model. Each
draw corresponds to a potential event in the catalog, although
we draw many more potential events than we wish to keep
since not all events generated from the astrophysical distribu-
tion will ultimately be detected. We then convert each event’s
redshift z and source-frame component masses to a detector-
frame (redshifted) chirp mass,det, and symmetric mass ratio,
η. The symmetric mass ratio and source-frame chirp mass
are related to the source-frame component masses via

( )
( )h =

+
m m

m m
; A11 2

1 2
2

( )
( )

( )=
+


m m

m m
. A21 2

3 5

1 2
1 5

All detector-frame masses are related to their source-frame
values via ( )= +M M z1det , where M can describe any
parameter with units of mass (e.g., m1, m2, or).

We then utilize the basic procedure outlined in Fishbach
et al. (2018), Fishbach et al. (2020b) to assign “observed”
parameters for each event, using a measurement uncertainty
that is correlated across parameters and a mock parameter
estimation likelihood. We first calculate an optimally oriented
signal-to-noise ratio (S/N) ρopt from the true event parameters
using a characteristic power spectral density (PSD) of the
LIGO Livingston detector in O3 (Abbott et al. 2020a). ρopt is
the S/N that an event would have if it were “optimally
oriented” with respect to the detector, that is, directly overhead
and with its angular momentum vector pointed along the line of
sight (Chen et al. 2021). In reality, GW sources have varying
sky positions and angular momentum vectors. The effect on the
S/N of a source’s deviation from the optimal orientation can be
summarized by a multiplicative constant, Θ, such that

( )r r= Q, A3opt

where Θ is between zero and unity.
GW sources are typically assumed to be distributed

isotropically in sky position and orientation. For a single
detector, this yields a corresponding distribution for Θ,
described in Finn & Chernoff (1993). Therefore, for each
event i, we assign a true value Q̂i drawn from this distribution
and use it to calculate the event’s true single-detector S/N r̂.
The set of true parameters for each potential event in the
catalog is then ˆ { ˆ ˆ ˆ ˆ }q h r= Q , , ,i idet .

Given the true parameters, the basic procedure of generating
samples from the posterior distribution of each event is to draw
an observation from each event’s likelihood, use that observa-
tion as the central value of the posterior distribution, and then
to draw samples from that posterior, assuming a prior.

To obtain the observed parameters, qi
obs, we need the

likelihood, ( ∣ˆ )q q i itotal
obs . We model each event’s likelihood as

( ∣ˆ ) ( ) ( ) ( ) ( ) ( )q q h r= Qh rQ      , A4i i i i i itotal
obs

det,
obs obs obs obs

where

( )

( ( )∣ ( ˆ ) ) ( ( )∣

( ˆ ) ( ))
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r m s s r

r r r m r s s
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r
r

Q
Q

    



 
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

A5

ln ln , ln

ln , ,

, , , ,

, , , and

, .

i i i i

i i i

i i i i i i i

i i i i i i i

i i i i i

det,
obs

det,
obs

det,
obs

det,
obs

obs obs obs obs

obs,
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Here, ( )m s , is the normal distribution with mean μ and
standard deviation σ.
The standard deviations are determined by assuming the

uncertainties on all parameters except for the S/N scale
inversely with ρobs (Veitch et al. 2015). In stationary, Gaussian
noise, we expect the matched-filter S/N in a single detector to
have unit variance (Allen et al. 2012), i.e., s =r 1i for all i. We
therefore draw ρobs for each event from ( ∣ )r rr i i

obs . This
observed S/N will serve as the detection statistic that
determines whether each event is observable. We assume
events that pass an S/N threshold of ρobs,i> 8 in a single
detector are detected. In this way, we allow for events near the
threshold to fluctuate above or below the threshold, emulating
the actual noise process in the detectors. Of the events that
make it through detection, we randomly select 69 of them to
constitute a mock catalog with the same number of BBHs as
were analyzed by Abbott et al. (2021c). The standard
deviations for det, η, and Θ of the detected events are
calculated via

( )

( )

( ) ( )

s r r

s r r

s r r

=

=

=

h
h

Q
Q


u

u

u

,

,

, A6

i i i

i i i

i i i

obs obs

obs obs

obs obs

where we have chosen ☉=u M0.08 , uη= 0.022, and
uΘ= 0.21 to match uncertainties in these parameters typical
of events observed in O3.
Observed values for all parameters are drawn from

Equation (A4) with standard deviations defined in
Equation (A6). With qi

obs in hand, we are now ready to construct
a posterior distribution. We apply the following priors:

( ) ( )
( ) ( )
( ) ( )

( ) ( ) ( )

☉ ☉p
p h
p
p r

=
=

Q =
=

 U M M
U
U
U

0 , 500 ,
0, 0.25 ,
0, 1 ,

and 0, 300 , A7

det

where U(x1, x2) is the uniform distribution with lower bound x1
and upper bound x2. The bounds on η and Θ are chosen
because those parameters are only physically defined in the
domains [0, 0.25] and [0, 1], respectively. Neither nor ρ are
defined below zero, but the upper bounds were chosen
somewhat arbitrarily: they must only be large enough that the
likelihood has minimal support above them. The posterior
distributions for each parameter are then Gaussians centered on
the observed value, with standard deviations defined in
Equation (A6). They are therefore the same as the distributions
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in Equation (A5), but with the role of the true and observed
values switched. We then simulate multiple-dimensional
posterior samples for each event by drawing 5000 independent
samples11 of detector-frame chirp mass, symmetric mass ratio,
and Θ from the posterior. Explicitly,

( ( ) )

( )

( )
( ) ( )

m s s

h m h s s

m s s

r m r s s

~ = =

~ = =

Q ~ = Q =

~ = =

h

r

Q

  







ln ln , ;

, ;

, ;

, . A8

i i i

i i i

i i i

i i i

det, det,
obs

obs

obs

obs

Realistic correlations between other parameters such as
component masses and redshift are obtained by transforming
samples in { }h rQ , , ,det –space to {m1, m2, z}–space. When
necessary, we convert between luminosity distance and redshift
using the cosmological parameters presented in Planck
Collaboration et al. (2016) so as to maintain consistency with
the conventions used in Abbott et al. (2019b, 2021d, 2021b).

The induced prior on m1, m2, and z is therefore not uniform
in those parameters. This is reasonable, so long as users
appropriately transform the prior when doing population
inference on source-frame component masses and redshift.
We therefore provide a module in GWMockCat that performs
these transformations. For the case of this analysis, we opt to
reweigh the samples to a prior that is uniform in detector-frame
component mass and proportional to the square of the
luminosity distance in order to mimic the priors used in the
standard LVK analysis (Abbott et al. 2019b, 2021d, 2021b).
The fact that Equation (A4) is separable up to dependence on

ρobs,i means that once ρobs,i is calculated for a given event,
samples for h Q , ,det obs obs, and ρobs can be drawn indepen-
dently from each other. This approximate independence is due,
in part, to the fact that detector-frame chirp mass, symmetric
mass ratio, S/N, and Θ are the best-measured parameters of
any compact binary coalescence signal. This fact saves
considerable computational resources, allowing for many mock
event posteriors to be generated quickly on a single CPU.12

We generate sensitivity estimates along with our mock
catalogs to ensure that the selection function is calculated
consistently to the event selection criteria (Essick & Fishbach
2022). To do this, we draw 2× 107 independent samples in m1,
m2, z, and Θ from the following distribution:

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( ) ( ) ( )Q µ + Qa
b

k-p m m z m
m

m

dV

dz
z p, , , 1 , A9c

1 2 1
2

1

1

where we have chosen α= 2.35, β= 1.70, and κ= 2.7, and
p(Θ) is the distribution described in Finn & Chernoff (1993),
which corresponds to isotropically oriented sources that are
also isotropically positioned on the sky. We truncate this
distribution below m2= 1M☉, above m1= 200M☉, and above
z= 4, and confirm that there are no mock posterior samples
outside of those ranges. We will refer to these draws as

injections. We then calculate an optimally oriented S/N for
each injection using the same PSD as was used for the mock
observations, and compute a true S/N using Equation (A3). We
emulate noise fluctuations in S/N in the same way we do for
mock observations, namely by using Equation (A5), so that
each injection has a corresponding observed S/N. Injections
can then be subject to the same selection criteria as our mock
observations when performing a population inference (in our
case, ρobs> 8).
We validate this process by constructing a mock catalog

from a known distribution with fixed hyperparameters, and
then fitting the same distribution to our mock catalog, but
allowing the hyperparameters to vary. We then verify that the
recovered hyperparameters are consistent with those used to
generate the mock catalog. The result is shown in Appendix B,
along with additional validation studies.

Appendix B
Validation of Mock Catalogs

In this appendix, we validate the process of creating mock
event posteriors and catalogs from a known underlying
population outlined in Appendix A. For this process, we use
the same simulated catalogs utilized in Section 3.3. The
simulated underlying population is described by pmock(m1, m2,
z|Λmock), where Λmock is the set of hyperparameters {a d, ,

}b km m, , ,min max ,

( ∣ ) ( ∣ )
( ∣ ) ( ∣ ) ( )

a d
b k

L µ
´
p m m z p m m m

p m m p z

, , , , ,

, , B1
mock 1 2 mock 1 min max

2 1

and the individual mass and redshift distributions are given by
the following:
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Table 1
Hyperparameter Values for the Underlying Population of Mock Catalogs

Described by SMOOTHED POWER LAW (Equations (B1)–B4)

Parameter Description Value

β Spectral index for the power law of the mass ratio
distribution.

1.70

α Negative spectral index for the power law of the
primary mass distribution.

3.14

mmin Minimum mass of the primary mass distribution. 4.56 M☉

mmax Maximum mass of the primary mass distribution. 81.08 M☉

δ Range of mass tapering at the lower end of the mass
distribution.

5.96 M☉

κ Spectral index for the power-law factor of the red-
shift distribution.

2.7

11 We use 5000 samples to optimize the speed of population inference while
also ensuring the number of effective samples used for Monte Carlo sums in
the population inference always satisfies the criterion outlined in Farr (2019).
That criterion has since been shown to be insufficient and has been superseded
by Essick & Farr (2022), but we utilize the former for consistency with the
analysis performed in Abbott et al. (2021c). However, users of the
GWMockCat package can easily modify the number of posterior samples to
suit their needs.
12 For example, a catalog of 100 events can be generated in ( ) 10 s.
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and

( | ) {
( ) ( )

( ) ( )
È

k µ
< >

+ k-p z
z z z

z

0 if 0

1 otherwise
. B4dV

dz

max

1c

This is equivalent to the POWER LAW + PEAK model in Abbott
et al. (2021c), Abbott et al. (2021a), with λpeak set to 0. We will
call the population model described by Equations (B1)–(B4)
SMOOTHED POWER LAW. We generate catalogs from the model
that results from setting Λmock to the values provided in
Table 1. These values were chosen by fitting this population
model to GWTC-3 (gray band in Figure 1) and obtaining the
median a posteriori value for each hyperparameter.

We validate the mock catalogs’ generation by fitting them
with SMOOTHED POWER LAW and allowing the hyperpara-
meters to be inferred from the mock data. We then determine
whether the inferred values of the hyperparameters are
consistent with the values in Table 1. We fit 100 mock
catalogs of 69 events each, 10 results of which are shown in

Figure 6. While there is noticeable scatter about the injected
value, it is generally consistent with the recovered mass
distributions: the hyperparameters of the underlying mass
distribution fall within the inferred mass hyperparameters’ 90%
credible intervals 89.6% of the time. We therefore conclude
that any biases that the mock posterior generation process
introduces in the mass distribution are subdominant to the
statistical uncertainties of the fit.
To further explore systematic differences caused by mock

catalog generation that may be subdominant to the considerable
statistical uncertainties resulting from a fit to only 69 events, we
fit SMOOTHED POWER LAW to a single catalog of that is 5 times
larger. The result is shown in Figure 7. The hyperparameters of
the underlying distribution seem to be consistent with the
inferred hyperposterior, so we conclude that our mock event
posterior generation process produces biases subdominant to
measurement uncertainty typical of 345-event catalogs. We
therefore find this method of generating mock catalogs
sufficient to test the significance of features identified in the
mass distribution of GWTC-3.

Figure 6. Injected (solid black line) and recovered (colored shaded bands) distributions for 10 mock catalogs. Top: probability density function of primary masses.
Bottom left: hyperposterior distribution for β, the power-law spectral index of the mass ratio distribution. Bottom right: hyperposterior distribution for κ, the spectral
index of the power-law factor in the redshift distribution.

13

The Astrophysical Journal, 955:107 (18pp), 2023 October 1 Farah et al.



Appendix C
Accuracy of Mock Catalogs When Used in a Population

Analysis

As a second check of GWMockCatʼs ability to simulate
catalogs accurately enough to be used in a population analysis
of the mass distribution of BBHs, we recreate GWTC-3 with
GWMockCat. We then compare POWER LAW + SPLINEʼs fit to
this mock catalog with its fit to the posterior samples released
by the LVK for GWTC-3 (LIGO Scientific Collaboration et al.
2021b). We find that the two resulting mass distributions are

consistent, and therefore conclude that the approximate
prescriptions used in GWMockCat are sufficient to probe the
mass distribution of BBHs, at least for current GW detector
sensitivities.
To simulate GWTC-3, we reweight all GWTC-3 events to the

same prior as used for sampling in GWMockCat, namely
uniform in detector-frame chirp mass, uniform in symmetric
mass ratio, and uniform in sky angle, as defined in
Equation (A7). We then take the mean of the reweighted
detector frame chirp mass, symmetric mass ratio, sky angle, and
single-detector S/N posteriors as the observed parameters qi

obs

Figure 7. A corner plot of the inferred hyperposterior from a fit to a mock catalog with 345 events. The injected values are shown in orange. The recovered
hyperposterior is consistent with the injected population.
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for each event. Using the priors defined in Equation (A7) and
likelihoods defined in Equations (A5) and (A6), we construct
mock posterior distributions on detector frame chirp mass,
symmetric mass ratio, sky angle, and single-detector
S/N. We then convert these parameters to source-frame
component masses and redshift. Finally, we reweight back to
the standard prior used in LVK’s parameter estimation
process. The end result of this is shown in Figure 8 for
GW191215_223052, an event that was chosen at random from
the catalog and happened to have a primary mass and redshift
near the mode of the detected events. The mock posteriors
appear consistent with the true posteriors, and the degeneracies
between parameters seem to be suitably captured. This behavior
is qualitatively similar for all simulated events; though, some had

mock posteriors that were slightly more consistent with the full
parameter estimation posterior samples, and some had mock
posteriors that were slightly less consistent.
Any population analysis must define criteria for inclusion in

the population. We apply two different criteria and report the
results of both in Figure 9. The first, a cut at S/N> 8 in
Livingston, is chosen to be analogous to the detection criteria
of the other mock catalogs, which use a single-detector S/N cut
since it is impractical to run all of the pipelines necessary to
produce a FAR on mock data. The second criterion, a FAR cut
at 1 yr–1 was used to be consistent with the analysis done by the
LVK on GWTC-3 (Abbott et al. 2021c). Either choice is
reasonable because the selection function is known with respect
to both S/N and FAR. We can therefore use the publicly

Figure 8. Mock posteriors simulated with GWMockCat (red) compared to posteriors made with full parameter estimation as released by the LVK (blue) for the event
GW191215_223052. The two sets of posterior samples appear consistent to the level needed for a population analysis.
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released sensitivity estimates (LIGO Scientific Collaboration
et al. 2021a) to reconstruct the underlying, or astrophysical
distribution of BBHs from either of these catalogs. All of the
metrics of feature significance presented in Section 3 make use
of this astrophysical distribution when comparing GWTC-3ʼs
population fit to that of mock catalogs.

The first criterion (single-detector S/N cut) produced a final
catalog with many fewer events than the second criterion (FAR
cut), with the former resulting in 36 events and the latter

resulting in 69 events. Therefore, the population analysis
performed on the catalog selected by S/N has much wider
hyperposteriors than the one performed on the catalog selected
by FAR. However, these two catalogs do not appear to be
systematically biased with respect to one another, nor are they
systematically biased with respect to the LVK-released
analysis. This is again because the selection function is known
with respect to both of these criteria, and therefore, the
reconstructed astrophysical distributions are consistent.

Figure 9. Perturbation functions of a population fit to GWTC-3 when using LVK-released posterior samples for each event (orange), and when using posterior
samples simulated by GWMockCat (blue and green). Shaded bands correspond to 90% credible intervals, and solid lines are the medians. The two sets of figures
correspond to two selection criteria, one which is analogous to the one used for mock catalogs in this work (S/N >8, top two panels), and one which is identical to that
used for the LVK analysis (FAR<1yr−1, bottom two panels). The main difference between the selection criteria is that they result in catalog sizes that are different by
nearly a factor of 2, and therefore, the statistical error on the perturbation function is noticeably different between them. Using the same number of events in the
simulated catalog as the LVK-released catalog results in a perturbation function that is similar in amplitude to the LVK-released population analysis. We conclude that
the prescriptions used in GWMockCat are sufficient for the purposes of population analyses. We use the green curves in the bottom two panels for the analysis
presented in the body of this paper, and the orange curves in the bottom two panels for the analysis presented in this appendix.
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Interestingly, the mock catalog with only 36 events in it still
finds the peak at ∼35M☉ to be significant, with the
perturbation function excluding zero to <5%. However, other
features are not well enough resolved to appear significant with
only 36 events. We find very little difference between the full
parameter estimation perturbation function fit (orange bands in
Figure 9) and the mock catalog (blue band) in the case of a
single-detector S/N cut (top two panels). We take this to mean
that, for high-S/N events, the mock parameter estimation is
sufficient for use in population analyses of the mass
distribution, at least for O3-like detector sensitivities.

Using the same events in the simulated catalog as the LVK-
released catalog results in a perturbation function that is similar
in amplitude to the LVK-released analysis (lower two panels of
Figure 9). However, the width of the perturbation function’s
hyperposterior is slightly inflated in the mock catalog case. This
may be because the mock parameter estimation scales event
posterior widths inversely with S/N, so the mock posterior
widths are overestimated with respect to full parameter
estimation for the events that meet the FAR threshold but have
low S/N.

In order to be as consistent as possible in our comparisons of
mock catalogs to GWTC-3, we use the perturbation function
obtained by analyzing the GWMockCat version of GWTC-3 for
all comparisons to mock catalogs in Section 3. In this appendix,
we repeat the analysis performed in Section 3, but instead used
the perturbation function released by the LVK in Abbott et al.
(2021c) in lieu of the perturbation function obtained by fitting
POWER LAW + SPLINE to the GWMockCat version of GWTC-3.
In other words, the main text uses the green curves in Figure 9,
and we repeat the analysis using the orange curves in the bottom
two panels of Figure 9 in this appendix.

We find that using the LVK-released perturbation function
increases the Bayesian significance of all features relative to the
GWMockCat reproduction. This is consistent with the conclu-
sions reached in Figure 9: all hyperposteriors narrow slightly
when using the LVK-released version of parameter estimation,
but there is no systematic shift as a function of primary mass or
any other parameter. When using the LVK-released perturbation
function, none of the 300 { ( )}g fj max exclude zero to the same
percentile as gGWTC−3( f (35M☉)) or gGWTC−3( f (10M☉)), and
1.3% of the { ( )}g fj max exclude zero to the same percentile as
gGWTC−3( f (14M☉)). These values are smaller than those
presented in Section 3.3.2, but lead to the same conclusions: the
10M☉ and 35M☉ peaks are difficult to reproduce with
featureless catalogs, but the 14M☉ dip is not. Performing full
parameter estimation on mock catalogs would also likely narrow
the hyperposteriors for those catalogs, in turn increasing the
significance of the peaks seen in their the perturbation functions.
If this were to be the case, the fraction of mock catalogs that can
reproduce features in the GWTC-3 distribution would likely be
similar to those found in Section 3.3.2. A reproduction of the
analysis presented in Section 3.3.1 with the LVK-released
perturbation function also finds similar results to that done on the
GWMockCat perturbation function. We therefore conclude that
the results presented Section 3 are robust to the procedure used
for parameter estimation of GWTC-3 events.

ORCID iDs

Amanda M. Farah https://orcid.org/0000-0002-6121-0285
Bruce Edelman https://orcid.org/0000-0001-7648-1689
Michael Zevin https://orcid.org/0000-0002-0147-0835

Maya Fishbach https://orcid.org/0000-0002-1980-5293
Jose María Ezquiaga https://orcid.org/0000-0002-
7213-3211
Ben Farr https://orcid.org/0000-0002-2916-9200
Daniel E. Holz https://orcid.org/0000-0002-0175-5064

References

Aasi, J., Abbott, B. P., Abbott, R., et al. 2015, CQGra, 32, 074001
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2019a, ApJL, 882, L24
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2020a, LRR, 23, 3
Abbott, B. P., Abbott, R., Abbott, T. D, et al. 2019b, PhRvX, 9, 031040
Abbott, R., Abbott, T. D., Abraham, S., et al. 2020b, PhRvL, 125, 101102
Abbott, R., Abbott, T. D., Abraham, S., et al. 2021a, ApJL, 913, L7
Abbott, R., Abbott, T. D., Abraham, S., et al. 2021d, PhRvX, 11, 021053
Abbott, R., Abbott, T. D., Acernese, F., et al. 2021b, arXiv:2111.03606
Abbott, R., Abbott, T. D., Acernese, F., et al. 2023a, PhRvX, 13, 011048
Abbott, R., Abe, H., Acernese, F., et al. 2023b, ApJ, 949, 76
Abbott, R., Abe, H., Acernese, F., et al. 2021c, arXiv:2112.06861
Acernese, F., Agathos, M., Agatsuma, K., et al. 2014, CQGra, 32, 024001
Allen, B., Anderson, W. G., Brady, P. R., Brown, D. A., & Creighton, J. D. E.

2012, PhRvD, 85, 122006
Antonini, F., Gieles, M., Dosopoulou, F., & Chattopadhyay, D. 2023,

MNRAS, 522, 466
Ashton, G., Hübner, M., Lasky, P. D., et al. 2019, ApJS, 241, 27
Barkat, Z., Rakavy, G., & Sack, N. 1967, PhRvL, 18, 379
Bavera, S. S., Fragos, T., Zapartas, E., et al. 2022, A&A, 657, L8
Belczynski, K., Heger, A., Gladysz, W., et al. 2016, A&A, 594, A97
Belczynski, K., Kalogera, V., Rasio, F. A., et al. 2008, ApJS, 174, 223
Biscoveanu, S., Callister, T. A., Haster, C.-J., et al. 2022a, ApJL, 932, L19
Biscoveanu, S., Landry, P., & Vitale, S. 2022b, MNRAS, 518, 5298
Breivik, K., Coughlin, S., Zevin, M., et al. 2020, ApJ, 898, 71
Callister, T. A., & Farr, W. M. 2023, arXiv:2302.07289
Chen, H.-Y., Holz, D. E., Miller, J., et al. 2021, CQGra, 38, 055010
Chernoff, D. F., & Finn, L. S. 1993, ApJL, 411, L5
Doctor, Z., Farr, B., & Holz, D. E. 2021, ApJL, 914, L18
Doctor, Z., Wysocki, D., O’Shaughnessy, R., Holz, D. E., & Farr, B. 2020,

ApJ, 893, 35
du Buisson, L., Marchant, P., Podsiadlowski, P., et al. 2020, MNRAS,

499, 5941
Eddington, A. S. 1913, MNRAS, 73, 359
Edelman, B., Doctor, Z., & Farr, B. 2021, ApJL, 913, L23
Edelman, B., Doctor, Z., Godfrey, J., & Farr, B. 2022, ApJ, 924, 101
Edelman, B., Farr, B., & Doctor, Z. 2023, ApJ, 946, 14
Essick, R., & Farr, W. 2022, arXiv:2204.00461
Essick, R., & Fishbach, M. 2022, On the Consistency of Parameter Estimation

and Selection Functions in Mock Catalogs LIGO-T2200210-v4, LIGO
Document Control Center

Ezquiaga, J. M., & Holz, D. E. 2021, ApJL, 909, L23
Ezquiaga, J. M., & Holz, D. E. 2022, PhRvL, 129, 061102
Farah, A., Fishbach, M., Essick, R., Holz, D. E., & Galaudage, S. 2022a, ApJ,

931, 108
Farah, A. M., Edelman, B., Zevin, M., et al. 2022b, Data Release for “Things

that might Go Bump in the Night: Assessing Structure in the Binary Black
Hole Mass Spectrum” v1, Zenodo, doi:10.5281/zenodo.7411991

Farah, A. M., Fishbach, M., Edelman, B., Zevin, M., & Ezquiaga, J. M. 2022c,
GWMockCat v1.0, Zenodo, doi:10.5281/zenodo.7570191

Farmer, R., Renzo, M., de Mink, S., Fishbach, M., & Justham, S. 2020, ApJL,
902, L36

Farmer, R., Renzo, M., de Mink, S. E., Marchant, P., & Justham, S. 2019, ApJ,
887, 53

Farr, W. M. 2019, RNAAS, 3, 66
Farr, W. M., Fishbach, M., Ye, J., & Holz, D. E. 2019, ApJ, 883, L42
Farr, W. M., Sravan, N., Cantrell, A., et al. 2011, ApJ, 741, 103
Finn, L. S., & Chernoff, D. F. 1993, PhRvD, 47, 2198
Fishbach, M., Doctor, Z., Callister, T., et al. 2021, ApJ, 912, 98
Fishbach, M., Essick, R., & Holz, D. E. 2020a, ApJL, 899, L8
Fishbach, M., Farr, W. M., & Holz, D. E. 2020b, ApJL, 891, L31
Fishbach, M., & Holz, D. E. 2017, ApJL, 851, L25
Fishbach, M., & Holz, D. E. 2020a, ApJL, 891, L27
Fishbach, M., & Holz, D. E. 2020b, ApJL, 904, L26
Fishbach, M., Holz, D. E., & Farr, B. 2017, ApJL, 840, L24
Fishbach, M., Holz, D. E., & Farr, W. M. 2018, ApJL, 863, L41
Fowler, W. A., & Hoyle, F. 1964, ApJS, 9, 201
Fryer, C. L., Belczynski, K., Wiktorowicz, G., et al. 2012, ApJ, 749, 91

17

The Astrophysical Journal, 955:107 (18pp), 2023 October 1 Farah et al.

https://orcid.org/0000-0002-6121-0285
https://orcid.org/0000-0002-6121-0285
https://orcid.org/0000-0002-6121-0285
https://orcid.org/0000-0002-6121-0285
https://orcid.org/0000-0002-6121-0285
https://orcid.org/0000-0002-6121-0285
https://orcid.org/0000-0002-6121-0285
https://orcid.org/0000-0002-6121-0285
https://orcid.org/0000-0001-7648-1689
https://orcid.org/0000-0001-7648-1689
https://orcid.org/0000-0001-7648-1689
https://orcid.org/0000-0001-7648-1689
https://orcid.org/0000-0001-7648-1689
https://orcid.org/0000-0001-7648-1689
https://orcid.org/0000-0001-7648-1689
https://orcid.org/0000-0001-7648-1689
https://orcid.org/0000-0002-0147-0835
https://orcid.org/0000-0002-0147-0835
https://orcid.org/0000-0002-0147-0835
https://orcid.org/0000-0002-0147-0835
https://orcid.org/0000-0002-0147-0835
https://orcid.org/0000-0002-0147-0835
https://orcid.org/0000-0002-0147-0835
https://orcid.org/0000-0002-0147-0835
https://orcid.org/0000-0002-1980-5293
https://orcid.org/0000-0002-1980-5293
https://orcid.org/0000-0002-1980-5293
https://orcid.org/0000-0002-1980-5293
https://orcid.org/0000-0002-1980-5293
https://orcid.org/0000-0002-1980-5293
https://orcid.org/0000-0002-1980-5293
https://orcid.org/0000-0002-1980-5293
https://orcid.org/0000-0002-7213-3211
https://orcid.org/0000-0002-7213-3211
https://orcid.org/0000-0002-7213-3211
https://orcid.org/0000-0002-7213-3211
https://orcid.org/0000-0002-7213-3211
https://orcid.org/0000-0002-7213-3211
https://orcid.org/0000-0002-7213-3211
https://orcid.org/0000-0002-7213-3211
https://orcid.org/0000-0002-7213-3211
https://orcid.org/0000-0002-2916-9200
https://orcid.org/0000-0002-2916-9200
https://orcid.org/0000-0002-2916-9200
https://orcid.org/0000-0002-2916-9200
https://orcid.org/0000-0002-2916-9200
https://orcid.org/0000-0002-2916-9200
https://orcid.org/0000-0002-2916-9200
https://orcid.org/0000-0002-2916-9200
https://orcid.org/0000-0002-0175-5064
https://orcid.org/0000-0002-0175-5064
https://orcid.org/0000-0002-0175-5064
https://orcid.org/0000-0002-0175-5064
https://orcid.org/0000-0002-0175-5064
https://orcid.org/0000-0002-0175-5064
https://orcid.org/0000-0002-0175-5064
https://orcid.org/0000-0002-0175-5064
https://doi.org/10.1088/0264-9381/32/7/074001
https://ui.adsabs.harvard.edu/abs/2015CQGra..32g4001L/abstract
https://doi.org/10.3847/2041-8213/ab3800
https://ui.adsabs.harvard.edu/abs/2019ApJ...882L..24A/abstract
https://doi.org/10.1007/s41114-020-00026-9
https://ui.adsabs.harvard.edu/abs/2020LRR....23....3A/abstract
https://doi.org/10.1103/PhysRevX.9.031040
https://ui.adsabs.harvard.edu/abs/2019PhRvX...9c1040A/abstract
https://doi.org/10.1103/PhysRevLett.125.101102
https://ui.adsabs.harvard.edu/abs/2020PhRvL.125j1102A/abstract
https://doi.org/10.3847/2041-8213/abe949
https://ui.adsabs.harvard.edu/abs/2021ApJ...913L...7A/abstract
https://doi.org/10.1103/PhysRevX.11.021053
https://ui.adsabs.harvard.edu/abs/2021PhRvX..11b1053A/abstract
http://arxiv.org/abs/2111.03606
https://doi.org/10.1103/PhysRevX.13.011048
https://ui.adsabs.harvard.edu/abs/2023PhRvX..13a1048A/abstract
https://doi.org/10.3847/1538-4357/ac74bb
https://ui.adsabs.harvard.edu/abs/2023ApJ...949...76A/abstract
http://arxiv.org/abs/2112.06861
https://doi.org/10.1088/0264-9381/32/2/024001
https://ui.adsabs.harvard.edu/abs/2015CQGra..32b4001A/abstract
https://doi.org/10.1103/PhysRevD.85.122006
https://ui.adsabs.harvard.edu/abs/2012PhRvD..85l2006A/abstract
https://doi.org/10.1093/mnras/stad972
https://ui.adsabs.harvard.edu/abs/2023MNRAS.522..466A/abstract
https://doi.org/10.3847/1538-4365/ab06fc
https://ui.adsabs.harvard.edu/abs/2019ApJS..241...27A/abstract
https://doi.org/10.1103/PhysRevLett.18.379
https://ui.adsabs.harvard.edu/abs/1967PhRvL..18..379B/abstract
https://doi.org/10.1051/0004-6361/202141979
https://ui.adsabs.harvard.edu/abs/2022A&A...657L...8B/abstract
https://doi.org/10.1051/0004-6361/201628980
https://ui.adsabs.harvard.edu/abs/2016A&A...594A..97B/abstract
https://doi.org/10.1086/521026
https://ui.adsabs.harvard.edu/abs/2008ApJS..174..223B/abstract
https://doi.org/10.3847/2041-8213/ac71a8
https://ui.adsabs.harvard.edu/abs/2022ApJ...932L..19B/abstract
https://doi.org/10.1093/mnras/stac3052
https://ui.adsabs.harvard.edu/abs/2023MNRAS.518.5298B/abstract
https://doi.org/10.3847/1538-4357/ab9d85
https://ui.adsabs.harvard.edu/abs/2020ApJ...898...71B/abstract
http://arxiv.org/abs/2302.07289
https://doi.org/10.1088/1361-6382/abd594
https://ui.adsabs.harvard.edu/abs/2021CQGra..38e5010C/abstract
https://doi.org/10.1086/186898
https://ui.adsabs.harvard.edu/abs/1993ApJ...411L...5C/abstract
https://doi.org/10.3847/2041-8213/ac0334
https://ui.adsabs.harvard.edu/abs/2021ApJ...914L..18D/abstract
https://doi.org/10.3847/1538-4357/ab7fac
https://ui.adsabs.harvard.edu/abs/2020ApJ...893...35D/abstract
https://doi.org/10.1093/mnras/staa3225
https://ui.adsabs.harvard.edu/abs/2020MNRAS.499.5941D/abstract
https://ui.adsabs.harvard.edu/abs/2020MNRAS.499.5941D/abstract
https://doi.org/10.1093/mnras/73.5.359
https://ui.adsabs.harvard.edu/abs/1913MNRAS..73..359E/abstract
https://doi.org/10.3847/2041-8213/abfdb3
https://ui.adsabs.harvard.edu/abs/2021ApJ...913L..23E/abstract
https://doi.org/10.3847/1538-4357/ac3667
https://ui.adsabs.harvard.edu/abs/2022ApJ...924..101E/abstract
https://doi.org/10.3847/1538-4357/acb5ed
https://ui.adsabs.harvard.edu/abs/2023ApJ...946...16E/abstract
http://arXiv.org/abs/2204.00461
https://doi.org/10.3847/2041-8213/abe638
https://ui.adsabs.harvard.edu/abs/2021ApJ...909L..23E/abstract
https://doi.org/10.1103/PhysRevLett.129.061102
https://ui.adsabs.harvard.edu/abs/2022PhRvL.129f1102E/abstract
https://doi.org/10.3847/1538-4357/ac5f03
https://ui.adsabs.harvard.edu/abs/2022ApJ...931..108F/abstract
https://ui.adsabs.harvard.edu/abs/2022ApJ...931..108F/abstract
http://doi.org/10.5281/zenodo.7411991
http://doi.org/10.5281/zenodo.7570191
https://doi.org/10.3847/2041-8213/abbadd
https://ui.adsabs.harvard.edu/abs/2020ApJ...902L..36F/abstract
https://ui.adsabs.harvard.edu/abs/2020ApJ...902L..36F/abstract
https://doi.org/10.3847/1538-4357/ab518b
https://ui.adsabs.harvard.edu/abs/2019ApJ...887...53F/abstract
https://ui.adsabs.harvard.edu/abs/2019ApJ...887...53F/abstract
https://doi.org/10.3847/2515-5172/ab1d5f
https://ui.adsabs.harvard.edu/abs/2019RNAAS...3...66F/abstract
https://doi.org/10.3847/2041-8213/ab4284
https://ui.adsabs.harvard.edu/abs/2019ApJ...883L..42F/abstract
https://doi.org/10.1088/0004-637X/741/2/103
https://ui.adsabs.harvard.edu/abs/2011ApJ...741..103F/abstract
https://doi.org/10.1103/PhysRevD.47.2198
https://ui.adsabs.harvard.edu/abs/1993PhRvD..47.2198F/abstract
https://doi.org/10.3847/1538-4357/abee11
https://ui.adsabs.harvard.edu/abs/2021ApJ...912...98F/abstract
https://doi.org/10.3847/2041-8213/aba7b6
https://ui.adsabs.harvard.edu/abs/2020ApJ...899L...8F/abstract
https://doi.org/10.3847/2041-8213/ab77c9
https://ui.adsabs.harvard.edu/abs/2020ApJ...891L..31F/abstract
https://doi.org/10.3847/2041-8213/aa9bf6
https://ui.adsabs.harvard.edu/abs/2017ApJ...851L..25F/abstract
https://doi.org/10.3847/2041-8213/ab7247
https://ui.adsabs.harvard.edu/abs/2020ApJ...891L..27F/abstract
https://doi.org/10.3847/2041-8213/abc827
https://ui.adsabs.harvard.edu/abs/2020ApJ...904L..26F/abstract
https://doi.org/10.3847/2041-8213/aa7045
https://ui.adsabs.harvard.edu/abs/2017ApJ...840L..24F/abstract
https://doi.org/10.3847/2041-8213/aad800
https://ui.adsabs.harvard.edu/abs/2018ApJ...863L..41F/abstract
https://doi.org/10.1086/190103
https://ui.adsabs.harvard.edu/abs/1964ApJS....9..201F/abstract
https://doi.org/10.1088/0004-637X/749/1/91
https://ui.adsabs.harvard.edu/abs/2012ApJ...749...91F/abstract


Gerosa, D., & Berti, E. 2017, PhRvD, 95, 124046
Gerosa, D., Giacobbo, N., & Vecchio, A. 2021, ApJ, 915, 56
Harris, C. R., Millman, K. J., van der Walt, S. J., et al. 2020, Natur, 585, 357
Hartigan, J. A., & Hartigan, P. M. 1985, AnSta, 13, 70
Heger, A., Fryer, C. L., Woosley, S. E., Langer, N., & Hartmann, D. H. 2003,

ApJ, 591, 288
Heger, A., & Woosley, S. E. 2002, ApJ, 567, 532
Hoyer, S., & Hamman, J. 2017, JOSS, 5, 10
Hunter, J. D. 2007, CSE, 9, 90
Iorio, G., Costa, G., Mapelli, M., et al. 2023, MNRAS, 524, 426
Karathanasis, C., Mukherjee, S., & Mastrogiovanni, S. 2023, MNRAS,

523, 4539
Karathanasis, C., Revenu, B., Mukherjee, S., & Stachurski, F. 2022,

arXiv:2210.05724
Kimball, C., Talbot, C., Berry, C. P. L., et al. 2020, ApJ, 900, 177
Kimball, C., Talbot, C., Berry, C. P. L., et al. 2021, ApJL, 915, L35
Landry, P., & Read, J. S. 2021, ApJL, 921, L25
Li, A., Miao, Z., Han, S., & Zhang, B. 2021, ApJ, 913, 27
LIGO Scientific Collaboration, & Virgo Collaboration 2022, GWTC-2.1: Deep

Extended Catalog of Compact Binary Coalescences Observed by LIGO and
Virgo During the First Half of the Third Observing Run—Parameter
Estimation Data Release, v2, Zenodo, doi:10.5281/zenodo.6513631

LIGO Scientific Collaboration, Virgo Collaboration, & KAGRA Collaboration
2021a, GWTC-3: Compact Binary Coalescences Observed by LIGO and
Virgo During the Second Part of the Third Observing Run—O3 Search
Sensitivity Estimates, v2, Zenodo, doi:10.5281/zenodo.5546676

LIGO Scientific Collaboration, Virgo Collaboration, & KAGRA Collaboration
2021b, GWTC-3: Compact Binary Coalescences Observed by LIGO and
Virgo During the Second Part of the Third Observing Run—Parameter
Estimation Data Release, Zenodo, doi:10.5281/zenodo.5546663 Version 1

Loredo, T. 2009, AAS Meeting, 213, 211.04
Mahapatra, P., Gupta, A., Favata, M., Arun, K. G., & Sathyaprakash, B. S.

2022, arXiv:2209.05766
Malmquist, K. G. 1922, MeLuF, 100, 1
Malmquist, K. G. 1925, MeLuF, 106, 1
Mandel, I., Farr, W. M., Colonna, A., et al. 2017, MNRAS, 465, 3254
Mandel, I., Farr, W. M., & Gair, J. R. 2019, MNRAS, 486, 1086
Mandel, I., & Müller, B. 2020, MNRAS, 499, 3214
Marchant, P., Renzo, M., Farmer, R., et al. 2019, ApJ, 882, 36
McLachlan, G., & Peel, D. 2000, Finite Mixture Models (New York: Wiley)

Messenger, C., & Read, J. 2012, PhRvL, 108, 091101
Özel, F., Psaltis, D., Narayan, R., & McClintock, J. E. 2010, ApJ, 725, 1918
pandas development team, T 2020, pandas-dev/pandas: Pandas, v1.4.3,

Zenodo, doi:10.5281/zenodo.3509134
Patton, R. A., Sukhbold, T., & Eldridge, J. J. 2022, MNRAS, 511, 903
Payne, E., & Thrane, E. 2023, PhRvR, 5, 023013
Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2016, A&A, 594, A13
Renzo, M., Farmer, R., Justham, S., et al. 2020, A&A, 640, A56
Riley, J., Agrawal, P., Barrett, J. W., et al. 2022, ApJS, 258, 34
Rinaldi, S., & Del Pozzo, W. 2022, MNRAS, 509, 5454
Rodriguez, C. L., Zevin, M., Amaro-Seoane, P., et al. 2019, PhRvD, 100,

043027
Romero-Shaw, I. M., Talbot, C., Biscoveanu, S., et al. 2020, MNRAS,

499, 3295
Sadiq, J., Dent, T., & Wysocki, D. 2022, PhRvD, 105, 123014
Siegel, J. C., Kiato, I., Kalogera, V., et al. 2023, ApJ, 954, 212
Speagle, J. S. 2020, MNRAS, 493, 3132
Stevenson, S., Ohme, F., & Fairhurst, S. 2015, ApJ, 810, 58
Talbot, C., Smith, R., Thrane, E., & Poole, G. B. 2019, PhRvD, 100, 043030
Talbot, C., & Thrane, E. 2018, ApJ, 856, 173
Taylor, S. R., Gair, J. R., & Mandel, I. 2012, PhRvD, 85, 023535
Thrane, E., & Talbot, C. 2019, PASA, 36, e010
Tiwari, V. 2022, ApJ, 928, 155
Tiwari, V., & Fairhurst, S. 2021, ApJL, 913, L19
van Son, L. A. C., de Mink, S. E., Callister, T., et al. 2022a, ApJ, 931, 17
van Son, L. A. C., de Mink, S. E., Renzo, M., et al. 2022b, ApJ, 940, 184
Veitch, J., Raymond, V., Farr, B., et al. 2015, PhRvD, 91, 042003
Wong, K. W. K., & Cranmer, M. 2022, arXiv:2207.12409
Woosley, S. E. 2017, ApJ, 836, 244
Woosley, S. E. 2019, ApJ, 878, 49
Woosley, S. E., & Heger, A. 2015, in Very Massive Stars in the Local Universe

(Astrophysics and Space Science Library) Vol 412, ed. J. S. Vink (Cham:
Springer)

Wysocki, D., & O’Shaughnessy, R. 2021, PopModels O3a APS April 2021,
GitLab, https://gitlab.com/dwysocki/pop-models-o3a-aps-april-2021

Ye, C., & Fishbach, M. 2022, ApJ, 937, 73
Zevin, M., Bavera, S. S., Berry, C. P. L., et al. 2021, ApJ, 910, 152
Zevin, M., & Holz, D. E. 2022, ApJL, 935, L20
Zevin, M., Pankow, C., Rodriguez, C. L., et al. 2017, ApJ, 846, 82
Zevin, M., Spera, M., Berry, C. P. L., & Kalogera, V. 2020, ApJL, 899, L1

18

The Astrophysical Journal, 955:107 (18pp), 2023 October 1 Farah et al.

https://doi.org/10.1103/PhysRevD.95.124046
https://ui.adsabs.harvard.edu/abs/2017PhRvD..95l4046G/abstract
https://doi.org/10.3847/1538-4357/ac00bb
https://ui.adsabs.harvard.edu/abs/2021ApJ...915...56G/abstract
https://doi.org/10.1038/s41586-020-2649-2
https://ui.adsabs.harvard.edu/abs/2020Natur.585..357H/abstract
https://doi.org/10.1214/aos/1176346577
https://doi.org/10.1086/375341
https://ui.adsabs.harvard.edu/abs/2003ApJ...591..288H/abstract
https://doi.org/10.1086/338487
https://ui.adsabs.harvard.edu/abs/2002ApJ...567..532H/abstract
https://doi.org/10.5334/jors.148
https://doi.org/10.1109/MCSE.2007.55
https://ui.adsabs.harvard.edu/abs/2007CSE.....9...90H/abstract
https://doi.org/10.1093/mnras/stad1630
https://ui.adsabs.harvard.edu/abs/2023MNRAS.524..426I/abstract
https://doi.org/10.1093/mnras/stad1373
https://ui.adsabs.harvard.edu/abs/2023MNRAS.523.4539K/abstract
https://ui.adsabs.harvard.edu/abs/2023MNRAS.523.4539K/abstract
http://arxiv.org/abs/2210.05724
https://doi.org/10.3847/1538-4357/aba518
https://ui.adsabs.harvard.edu/abs/2020ApJ...900..177K/abstract
https://doi.org/10.3847/2041-8213/ac0aef
https://ui.adsabs.harvard.edu/abs/2021ApJ...915L..35K/abstract
https://doi.org/10.3847/2041-8213/ac2f3e
https://ui.adsabs.harvard.edu/abs/2021ApJ...921L..25L/abstract
https://doi.org/10.3847/1538-4357/abf355
https://ui.adsabs.harvard.edu/abs/2021ApJ...913...27L/abstract
https://doi.org/10.5281/zenodo.6513631
https://doi.org/10.5281/zenodo.5546676
https://doi.org/10.5281/zenodo.5546663
https://ui.adsabs.harvard.edu/abs/2009AAS...21321104L/abstract
http://arxiv.org/abs/2209.05766
https://ui.adsabs.harvard.edu/abs/1922MeLuF.100....1M/abstract
https://ui.adsabs.harvard.edu/abs/1925MeLuF.106....1M/abstract
https://doi.org/10.1093/mnras/stw2883
https://ui.adsabs.harvard.edu/abs/2017MNRAS.465.3254M/abstract
https://doi.org/10.1093/mnras/stz896
https://ui.adsabs.harvard.edu/abs/2019MNRAS.486.1086M/abstract
https://doi.org/10.1093/mnras/staa3043
https://ui.adsabs.harvard.edu/abs/2020MNRAS.499.3214M/abstract
https://doi.org/10.3847/1538-4357/ab3426
https://ui.adsabs.harvard.edu/abs/2019ApJ...882...36M/abstract
https://doi.org/10.1103/PhysRevLett.108.091101
https://ui.adsabs.harvard.edu/abs/2012PhRvL.108i1101M/abstract
https://doi.org/10.1088/0004-637X/725/2/1918
https://ui.adsabs.harvard.edu/abs/2010ApJ...725.1918O/abstract
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.1093/mnras/stab3797
https://ui.adsabs.harvard.edu/abs/2022MNRAS.511..903P/abstract
https://doi.org/10.1103/PhysRevResearch.5.023013
https://ui.adsabs.harvard.edu/abs/2023PhRvR...5b3013P/abstract
https://doi.org/10.1051/0004-6361/201525830
https://ui.adsabs.harvard.edu/abs/2016A&A...594A..13P/abstract
https://doi.org/10.1051/0004-6361/202037710
https://ui.adsabs.harvard.edu/abs/2020A&A...640A..56R/abstract
https://doi.org/10.3847/1538-4365/ac416c
https://ui.adsabs.harvard.edu/abs/2022ApJS..258...34R/abstract
https://doi.org/10.1093/mnras/stab3224
https://ui.adsabs.harvard.edu/abs/2022MNRAS.509.5454R/abstract
https://doi.org/10.1103/PhysRevD.100.043027
https://ui.adsabs.harvard.edu/abs/2019PhRvD.100d3027R/abstract
https://ui.adsabs.harvard.edu/abs/2019PhRvD.100d3027R/abstract
https://doi.org/10.1093/mnras/staa2850
https://ui.adsabs.harvard.edu/abs/2020MNRAS.499.3295R/abstract
https://ui.adsabs.harvard.edu/abs/2020MNRAS.499.3295R/abstract
https://doi.org/10.1103/physrevd.105.123014
https://ui.adsabs.harvard.edu/abs/2022PhRvD.105l3014S/abstract
https://doi.org/10.3847/1538-4357/ace9d9
https://ui.adsabs.harvard.edu/abs/2023ApJ...954..212S/abstract
https://doi.org/10.1093/mnras/staa278
https://ui.adsabs.harvard.edu/abs/2020MNRAS.493.3132S/abstract
https://doi.org/10.1088/0004-637X/810/1/58
https://ui.adsabs.harvard.edu/abs/2015ApJ...810...58S/abstract
https://doi.org/10.1103/PhysRevD.100.043030
https://ui.adsabs.harvard.edu/abs/2019PhRvD.100d3030T/abstract
https://doi.org/10.3847/1538-4357/aab34c
https://ui.adsabs.harvard.edu/abs/2018ApJ...856..173T/abstract
https://doi.org/10.1103/PhysRevD.85.023535
https://ui.adsabs.harvard.edu/abs/2012PhRvD..85b3535T/abstract
https://doi.org/10.1017/pasa.2019.2
https://ui.adsabs.harvard.edu/abs/2019PASA...36...10T/abstract
https://doi.org/10.3847/1538-4357/ac589a
https://ui.adsabs.harvard.edu/abs/2022ApJ...928..155T/abstract
https://doi.org/10.3847/2041-8213/abfbe7
https://ui.adsabs.harvard.edu/abs/2021ApJ...913L..19T/abstract
https://doi.org/10.3847/1538-4357/ac64a3
https://ui.adsabs.harvard.edu/abs/2022ApJ...931...17V/abstract
https://doi.org/10.3847/1538-4357/ac9b0a
https://ui.adsabs.harvard.edu/abs/2022ApJ...940..184V/abstract
https://doi.org/10.1103/PhysRevD.91.042003
https://ui.adsabs.harvard.edu/abs/2015PhRvD..91d2003V/abstract
http://arxiv.org/abs/2207.12409
https://doi.org/10.3847/1538-4357/836/2/244
https://ui.adsabs.harvard.edu/abs/2017ApJ...836..244W/abstract
https://doi.org/10.3847/1538-4357/ab1b41
https://ui.adsabs.harvard.edu/abs/2019ApJ...878...49W/abstract
https://gitlab.com/dwysocki/pop-models-o3a-aps-april-2021
https://doi.org/10.3847/1538-4357/ac7f99
https://ui.adsabs.harvard.edu/abs/2022ApJ...937...73Y/abstract
https://doi.org/10.3847/1538-4357/abe40e
https://ui.adsabs.harvard.edu/abs/2021ApJ...910..152Z/abstract
https://doi.org/10.3847/2041-8213/ac853d
https://ui.adsabs.harvard.edu/abs/2022ApJ...935L..20Z/abstract
https://doi.org/10.3847/1538-4357/aa8408
https://ui.adsabs.harvard.edu/abs/2017ApJ...846...82Z/abstract
https://doi.org/10.3847/2041-8213/aba74e
https://ui.adsabs.harvard.edu/abs/2020ApJ...899L...1Z/abstract

	1. Introduction
	2. Motivation
	3. Hierarchical Analysis and Results
	3.1. Power Law + Spline Mass Model
	3.2. Metrics of Feature Significance
	3.3. Simulation Study
	3.3.1. Maximum Perturbation Amplitude
	3.3.2. Inconsistency with a Power Law


	4. Discussion
	Appendix AGeneration of Mock Observations in GWMockCat
	Appendix BValidation of Mock Catalogs
	Appendix CAccuracy of Mock Catalogs When Used in a Population Analysis
	References



