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What is a minimal working example
for a self-driving laboratory?

Sterling G. Baird1,* and Taylor D. Sparks1,*
PROGRESS AND POTENTIAL

We need materials faster than

ever to address the world’s

challenges such as climate

change, plastics pollution, and

cancer. Self-driving (autonomous)

research laboratories can reduce

the time to market from 20 years

and 100 million USD to 1 year and

1 million USD by integrating

artificial intelligence and robotics

into closed-loop materials

discovery workflows. While these

systems accelerate materials

discovery, the entry to barrier for

researchers can be prohibitive in

terms of both capital and skills.

Many excellent, low-cost

platforms exist, but for wider

adoption, we need one that is

cheaper and simpler while still

retaining core principles of self-

driving laboratories. We propose

SDL-Demo: a low-cost ‘‘Hello,

World!’’ for self-driving

laboratories that combines

‘‘Hello, World!’’ tasks from

electronics, physics-based

simulations, and optimization.

SDL-Demo is modular and

extensible, making it an ideal

candidate for low-cost teaching

and prototyping of self-driving

laboratory concepts.
SUMMARY

Self-driving laboratories (SDLs) are the future; however, the capital
and expertise required can be daunting. We introduce the idea of an
optimization task for less than 100 USD, a square foot of desk space,
and an hour of total setup time from the shopping cart to the first
‘‘autonomous drive.’’ We use optics rather than chemistry for our
demo; after all, light is easier tomove thanmatter. Although notma-
terials based, several core principles of a self-driving materials dis-
covery lab are retained in this cross-domain example: sending com-
mands to hardware to adjust physical parameters, receiving
measured objective properties, decision-making via active learning,
and utilizing cloud-based simulations. The demo is accessible,
extensible, modular, and repeatable, making it an ideal candidate
for both low-cost prototyping of SDL concepts and learning princi-
ples of SDLs in a low-risk setting.

INTRODUCTION

Data informatics applied to chemistry and materials science have led to many

computationally and experimentally validated discoveries.1–3 As the accessibility

to robotics and advanced optimization algorithms has increased, there has been a

shift toward implementing self-driving laboratories (SDLs) for materials discovery

(i.e., materials acceleration platforms [MAPs]).4–16 These systems can be expensive

and often require expertise across a range of disciplines. Several excellent platforms

in chemistry and materials science for low-cost SDLs have been developed17–22 that

can serve as both educational and research tools. For wider adoption of a low-cost

demo, the system needs to be cheaper, smaller, and simpler to set up while still pre-

serving many functional aspects of a MAP.

In programming, a minimal working example (MWE) ‘‘is a code snippet that can be

copied-and-pasted into an empty . file and still have the same features (working)

and that does not include unnecessary details (minimal).’’23 Here, we pose the

following question:

What does an MWE look like for a SDL?

To elaborate the connection, we provide our interpretation of corresponding defini-

tions for a minimal, complete, reproducible programming example24 applied to

SDLs in Table 1.

In this work, we provide an overview of the SDL demonstration (SDL-Demo)

including required and optional bills of materials and hardware/software setup in

SDL-Demo overview. We then discuss limitations and design considerations (limita-

tions, design considerations), extensions (extensions), task complexity (task

complexity), and hardware, software, and task alternatives (alternatives). Finally,
4170 Matter 5, 4170–4178, December 7, 2022 ª 2022 Elsevier Inc.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.matt.2022.11.007&domain=pdf


Table 1. Definitions of ‘‘minimal,’’ ‘‘complete,’’ and ‘‘reproducible’’ in the traditional

programming context of MWEs and SDLs

Programming Self-driving laboratory

Minimal use as little code as possible that
still produces the same problem23

minimize the cost, size, and
setup while still being an SDL

Complete provide all parts needed to reproduce
the problem in the question itself23

provide software with documentation
and a bill of materials with setup
instructions

Reproducible test the code you are about to provide
to make sure it reproduces the problem23

benchmark the SDL using a fixed
configuration and verify the results
are expected
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we describe milestones, deliverables, and outlook for the project in milestones, de-

liverables, and outlook.

SDL-DEMO OVERVIEW

We introduce the idea of an optimization task for less than 100 USD, a square foot of

desk space, and an hour of total setup time. We believe our SDL-Demo adequately

meets the minimal, complete, and reproducible requirements of an MWE SDL (Ta-

ble 1) and meets the non-materials aspects of a MAP:13

[A system that] carries out high-throughput and/or automated experiments, the re-

sults of which are fed back into the artificial intelligence (AI) that guides the selection

of subsequent rounds of experimentation to optimize or make a discovery.

The SDL-Demo involves controlling the brightness of a red, green, and blue (RGB)

light-emitting diode (LED), sensing the light mixture via a discrete-channel spectro-

photometer, decision-making to tune the inputs to best match a desired spectrum,

and, optionally, cloud-based simulations to aid in decision-making. The setup is

summarized in Figure 1, with required and optional bills of materials given in Fig-

ures 2 and 3, respectively.

The basic steps and substeps of assembling the hardware and running the demo—

connecting components, mounting the sensor, setting up the Raspberry Pi (RPi) Pico

W and remote access—are given in Table 2.

LIMITATIONS AND DESIGN CONSIDERATIONS

Something unique to our approach is that there are no robotic movements in the

default configuration. While this can be considered a limitation, we also consider

it to be a strength because it dramatically reduces the cost, lessens the expertise

required, and reduces the chance for initial closed-loop failure. There is still a

need for a low-cost robotic MWE for SDLs, which could serve as a complementary

and more advanced extension to SDL-Demo (this work).

While the capital involved for this demo is low, it’s possible that this could perpet-

uate the practice of only demonstrating, rather than dedicating effort to, materials

acceleration for societal solutions (MASS) tasks.13 In other words, the time that could

potentially be spent modifying and benchmarking this setup can follow Boyle’s law

in expanding to fill the space available and siphon the ‘‘air’’ (resources) that might

otherwise have been applied to aMASS task. In order to mitigate this risk, we recom-

mend that researchers interested in extending the framework do so as a miniature

testing piece and limited-scope stepping stone for a larger, established plan to

create a MAP geared toward a MASS.
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Figure 1. Summary of the self-driving laboratory demonstration (SDL-Demo)

A microcontroller (Raspberry Pi [RPi]) sends commands to a dimmable red, green, and blue (RGB) light-

emitting diode (LED) to control the brightness at different wavelengths. A spectrophotometer measures

the light signal at eight individual wavelengths. The microcontroller reads the intensity values from the

spectrophotometer and uses these newly measured values and prior information (including, e.g., prior

measurements and physics-based simulations performed in the cloud) to choose the next set of LED

parameters in an effort to better match a target spectrum. The setup adequately meets the minimal

requirement of a minimal working example (MWE) SDL by costing less than 100 USD, occupying less than

1 ft2 (0.1 m2) of desk space, and requiring less than 1 h of setup time.
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EXTENSIONS

As an illustrative example of using the SDL-Demo in the context of a larger plan, this

demo could be extended to accommodate a distributed autonomous laboratory

framework where multiple copies of the demo are implemented at separate loca-

tions and operate collaboratively, with model training and decision-making

happening in the cloud. This is another interesting aspect of the development of

MAPs that could be explored in a low-monetary-risk setting; however, we believe

this kind of extension to the demo would better serve as a proof of concept to be

included in a grant proposal for a MASS MAP or as a test bed for an existing distrib-

uted autonomous laboratory network working toward a MASS. See also the limited

task complexity described in task complexity.

When used for education rather than research, we believe that similar considerations

as mentioned above should be taken. In educational settings, equipment funding

must be sourced. Successful implementation of the demo in classroom settings

can provide a source of trust for more expensive, higher-impact demonstrations

such as those involving movement of solids and liquids (robotics), changes in state

variables (temperature, pressure), and multi-step syntheses. The SDL-Demo is an

MWE that can help bolster confidence and motivate buy in for future larger-scale im-

plementations. This is similar to how developers are more likely to devote their time

and resources to a programming question that contains a well-thought-out MWE.

The SDL-Demo can be used to explain what machine-learning algorithms can be

used for chemistry and materials science tasks and how they work. We are
4172 Matter 5, 4170–4178, December 7, 2022



Figure 2. Bill of materials for required hardware to assemble the SDL-Demo using a RPi Pico WH

This Adafruit ‘‘wishlist’’ is available publicly at http://www.adafruit.com/wishlists/553992. A

standalone DigiKey order is available at https://www.digikey.com/short/045j7502. This hardware

configuration was designed to require minimal existing expertise and leverages Stemma-QT and

Grove ports for easy interfacing between the RPi, Maker Pi Pico, and spectrophotometer. As an

alternative to the Pico WH, a Pico W can be used, though it requires soldering headers separately.

Sculpting wire (14 American Wire Gauge) is recommended for adjustable mounting of the

spectrophotometer relative to the Maker Pi Pico base RGB LED.
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particularly interested in using SDL-Demo to convey important topics related to the

efficiencies of various search algorithms: for example, a comparison of grid search

vs. random search vs. Bayesian optimization. Optimization topics that are of interest

to explore using the SDL-Demo are constrained25,26 (e.g., formulation problems),

multi-fidelity27–32 (e.g., simulation and experiments), and/or multi-objective31,33–42

optimization.

The demo can also be used directly to prototype a system for a more advanced task.

For example, the system could be converted from a light-mixing demo to a chemi-

cal-mixing demo by replacing the LED with an appropriate motor controller and

peristaltic pump(s). For a chemistry-based color-matching demo, the spectropho-

tometer could be used directly with longer integration times. Likewise, the light/

sensor setup could be used to measure reflection, absorption, and transmission in

various materials. For other tasks, the spectrophotometer could be replaced with

the appropriate sensor (e.g., pH, temperature, conductivity). The ability to fall

back to the original SDL-Demo also allows for more efficient modular debugging

and potentially less frustration for the user.

TASK COMPLEXITY

There is nothing particularly complex about the task of mixing several distinct

wavelengths and matching a target spectrum; to a large extent, the spectrum

response surface is linear with respect to the underlying inputs (RGB LED currents),

aside from experimental noise. It seems likely that, aside from noise consider-

ations, there exists only a single local optimum in the case of single-objective opti-

mization of mean absolute error mismatch between measured and target spectra

or a more robust metric such as Fréchet distance between the discrete distribu-

tions. This can be contrasted with many chemistry and materials optimization tasks

where non-linear correlations, discontinuities, and multiple local optima come

into play.
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Figure 3. Bill of materials for optional accessories for the SDL-Demo using a RPi Pico WH

This Adafruit ‘‘wishlist’’ is available publicly at http://www.adafruit.com/wishlists/554001. The

optional hardware has three primary intentions: exposing additional general-purpose input/output

pins for extending functionality of the demo, operating as a standalone computer package (i.e., no

existing computer needed by adding a display, keyboard, and mouse), and providing an alternate

method for setting up a ‘‘headless’’ RPi (i.e., when RPi must be accessed through a separate

computer due to lack of standalone display, keyboard, and mouse).
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Depending on the use case, the limited complexity of the SDL-Demo task can be

seen as either a limitation or a strength. Used as a pedagogical tool, students are

less likely to be overwhelmed. Used as a prototyping tool, debugging is likely to

be more efficient and straightforward.

However, due to the relative simplicity, the SDL-Demo is of less interest from an opti-

mization benchmarking scheme. Pulling again from a programming analogy, there is

a phrase ‘‘duck typing,’’ which refers to applying the duck test adage ‘‘if it walks like a

duck and it quacks like a duck, then it must be a duck’’ to the concept of assigning

types to variables (e.g., integers vs. floating point). Adapting this to the case of ma-

terials acceleration, we get the following:

If it looks like materials optimization and it behaves like materials optimization prob-

lem, then it must be a good benchmark for materials optimization.

Three input variables with linear responses neither look like nor behave like many

materials optimization tasks; however, other benchmarking solutions exist. To this

end, we are also developing a customizable computational benchmark as follow-

up work to Baird et al.43 that can be easily adapted to the number of constraints,

input parameters, and outputs while retaining a more realistic response surface

complexity.

While the SDL-Demomay be less suitable as a state-of-the-art benchmarking frame-

work, we believe it can effectively serve as a hands-on teaching tool for optimization

topics (extensions) such as comparing search efficiency of well-known algorithms.

Perhaps in future work, others may design a low-cost, self-driving experimental

setup that retains the input-output response complexity characteristic of many

MASS tasks.
Alternatives

Because the design involves low-cost components that each come with pre-built Py-

thon libraries, the startup cost and time is minimal. While we propose a set of hard-

ware and compatible software libraries, we comment on some alternatives here. For
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Table 2. Hardware and software setup instructions for the SDL-Demo

Step Substep

Connect
components

connect AS7341 to Maker Pi Pico base via Stemma-QT/Grove connector

insert RPi Pico W into Maker Pi Pico base

Mount the sensor thread sculpting wire through mounting holes on Maker Pi Pico base

thread same sculpting wire through mounting holes on AS7341

Position AS7341 perpendicular to and about 3 inches from NeoPixel LED

Set up Pico W hold BOOTSEL button, connect RPi to computer via micro-USB-B/USB-A

drag the latest Pico CircuitPython download onto the computer’s D:/ drive

install Thonny editor, configure for CircuitPython, and install libraries

replace code.py with the (web server) SDL-Demo version, click ‘‘run’’

Remote access install the SDL-Demo library to Google Colab or a local Python installation

remotely connect to the Pico W through the web server

run the basic SDL-Demo optimization script

Full instructions will be made available at https://hackaday.io/project/186289-autonomous-research-

laboratories. In the interim, individual product pages from the bill of materials have links to hardware

and software tutorials that will form the basis for the detailed SDL-Demo instructions.
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example, the Maker Pi Pico that contains an embedded RGB LED could be replaced

by a custom-printed circuit board with a single NeoPixel (or DotStar) RGB LED, a

Blinkt! LED array, or a custom array of LEDs with many distinct wavelengths. In the

cases involving custom-printed circuit boards, an LED driver chip or board is likely

necessary. An alternative to the AS7341 spectrophotometer is a do-it-yourself spec-

trophotometer; however, currently available open-source designs for spectropho-

tometers are likely to violate either the 100 USD cost or the 1 h setup time constraint

outlined previously.

In the simplest setup, a single LED with a single brightness sensor could be used;

however, this is missing qualitative features of SDLs for real-world tasks involving

multiple tunable inputs andmultiple signal measurements, and it also presents addi-

tional hardware challenges and design considerations. For example, we wanted to

keep the signal (i.e., LED) and sensor on separate boards while attached via a cable

rather than integrating everything onto a single printed circuit because it better

mimics the SDL best practice of modularity.8,11 We did not find off-the-shelf compo-

nents that adequately met these needs. While it would be possible to use a two-wire

LED with a breadboard, breadboards can introduce insecure connections, a greater

likelihood of wiring mistakes by novice users, and poor aesthetics. We argue that the

first two issues impede the long-term extensibility of the SDL-Demo to other designs

and applications, while the latter issue of aesthetics may lead to less user appeal and

lower adoption rates.

While this example is based on CircuitPython software, alternative computing lan-

guages such as MicroPython, Python, Arduino, and C/C++ are also viable, with pref-

erence toward languages with support for general-purpose input/output and ease

of use. Rather than control the LEDs through CircuitPython libraries, a lower-level

interface that directly controls electrical current could be employed. The use of other

microcontrollers and single-board computers are possible and would likely require

only minor redesign for hardware peripherals and software.

We also note that while the use of LEDs seemed the most compatible with ‘‘Hello,

World!’’-style electronics projects, alternative signals such as sound, Bluetooth,

WiFi, and vibrational modes (e.g., a drumhead or water surface) could be used in
Matter 5, 4170–4178, December 7, 2022 4175

https://hackaday.io/project/186289-autonomous-research-laboratories
https://hackaday.io/project/186289-autonomous-research-laboratories


ll
Perspective
a similar optimization scheme given the appropriate signal source and sensor

hardware.
Milestones, deliverables, and outlook

Previously, we described limitations and design considerations (limitations, design

considerations), extensions (limitations, design considerations), task complexity

(task complexity), and alternatives (alternatives) in the context of SDL-Demo. Here,

we describe basic milestones and deliverables for the project. Basic milestones

involve ordering the bill of materials; assembling the system; setting up the micro-

controller (i.e., RPi Pico W); unit testing individual components; writing the adaptive

design script; and running the first ‘‘autonomous drive.’’ There are four final deliver-

ables: build instructions hosted on https://hackaday.io (project ID: 186289); soft-

ware documentation and usage instructions hosted on GitHub (https://github.

com/sparks-baird/self-driving-lab-demo); validation results; and a video demon-

stration/tutorial of an autonomous drive. It may also be worthwhile to package the

system as a kit through a service such as Crowd Supply or Group Gets to accelerate

buy in and adoption and circumvent future supply-chain problems.

Our goal is for every cheminformatics and materials informatics researcher or pro-

spective student to have at least one instance of hands-on exposure to implement-

ing an SDL. We believe that as scientists, engineers, and educators implement this

demonstration for prototyping and teaching the principles of SDLs at minimal

cost, the community will get closer to the critical MASS13 necessary for accelerating

impactful materials discovery.
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C.M., andNowé, A. (2018). Ordered preference
elicitation strategies for supporting multi-
objective decision making. Preprint at arXiv.
https://doi.org/10.48550/arXiv.1802.07606.

43. Baird, S.G., Liu, M., and Sparks, T.D. (2022).
High-dimensional Bayesian optimization of 23
hyperparameters over 100 iterations for an
attention-based network to predict materials
property: a case study on CrabNet using Ax
platform and SAASBO. Comput. Mater. Sci.
211, 111505. https://doi.org/10.1016/j.
commatsci.2022.111505.

https://doi.org/10.1039/C8SC02239A
https://doi.org/10.1039/C8SC02239A
https://doi.org/10.1016/j.commatsci.2020.109927
https://doi.org/10.1016/j.commatsci.2020.109927
https://doi.org/10.1039/D1MH01539G
https://doi.org/10.1039/D1MH01539G
https://doi.org/10.1016/j.asoc.2020.106078
https://doi.org/10.1016/j.asoc.2020.106078
https://doi.org/10.1016/j.ceramint.2022.05.031
https://doi.org/10.1016/j.ceramint.2022.05.031
https://doi.org/10.1007/s10994-017-5661-5
https://doi.org/10.1007/s10994-017-5661-5
https://doi.org/10.48550/arXiv.1802.07606
https://doi.org/10.1016/j.commatsci.2022.111505
https://doi.org/10.1016/j.commatsci.2022.111505

	What is a minimal working example for a self-driving laboratory?
	Introduction
	SDL-Demo overview
	Limitations and design considerations
	Extensions
	Task complexity
	Alternatives
	Milestones, deliverables, and outlook

	Acknowledgments
	References


