
Second-order Stencil Descent for Interior-point Hyperelasticity
LEI LAN, The University of Utah, USA
MINCHEN LI, UCLA, USA
CHENFANFU JIANG, UCLA, USA
HUAMIN WANG, Style3D Research, China
YIN YANG, The University of Utah & Style3D Research, USA

Fig. 1. Falling barbarian ships. We propose a new GPU-based algorithm for generic finite element simulation using interior-point methods. Due to the use
of barrier functions, interior-point methods are expensive, and the requirement of per-iteration CCD imposes extra challenges for GPU parallelization. Our
method is locally second-order leveraging complex-step finite difference to efficiently estimate local Hessian-vector products. We design a complementary
coloring and hybrid sweep scheme to fully exploit the throughput of the GPU. Together with a dedicated warm-start process, our method offers speedup
of two orders, even with intense contacts and collisions. As a demonstration, the teaser figure shows snapshots of two barbarian ships falling on a spiral
stair. There are nearly one million (974K) elements on the ships. The thin paddles at both sides collide with the staircase and the handrails yielding rich and
interesting deformations. Under the time step of Δ𝑡 = 1/100 sec, our simulation faithfully captures all the details but it is 129× faster than the vanilla CPU
IPC [Li et al. 2020]. Indeed, our GPU simulation is faster than the state-of-the-art reduced simulation [Lan et al. 2021]. The simulation remains efficient and
robust even after we increase the time step size to Δ𝑡 = 1/30 sec.

In this paper, we present a GPU algorithm for finite element hyperelastic
simulation. We show that the interior-point method, known to be effective
for robust collision resolution, can be coupled with non-Newton procedures
and be massively sped up on the GPU. Newton’s method has been widely
chosen for the interior-point family, which fully solves a linear system at
each step. After that, the active set associated with collision/contact con-
straints is updated. Mimicking this routine using a non-Newton optimization
(like gradient descent or ADMM) unfortunately does not deliver expected
accelerations. This is because the barrier functions employed in an interior-
point method need to be updated at every iteration to strictly confine the
search to the feasible region. The associated cost (e.g., per-iteration CCD)
quickly overweights the benefit brought by the GPU, and a new parallelism
modality is needed. Our algorithm is inspired by the domain decomposition
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method and designed to move interior-point-related computations to local
domains as much as possible. We minimize the size of each domain (i.e., a
stencil) by restricting it to a single element, so as to fully exploit the capacity
of modern GPUs. The stencil-level results are integrated into a global update
using a novel hybrid sweep scheme. Our algorithm is locally second-order
offering better convergence. It enables simulation acceleration of up to two
orders over its CPU counterpart. We demonstrate the scalability, robustness,
efficiency, and quality of our algorithm in a variety of simulation scenarios
with complex and detailed collision geometries.

CCS Concepts: • Computing methodologies→ Physical simulation.

Additional Key Words and Phrases: Physics-based simulation, Interior point
method, Barrier function, GPU
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1 INTRODUCTION
Newton’s method has been a popular choice [Baraff and Witkin
1998] for solving the variational form [Kane et al. 2000; Martin et al.
2011] associated with various deformable models. Recently, many
contributions suggest that more efficient simulation is possible using
non-Newton or quasi-Newton solvers [Hecht et al. 2012; Li et al.
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2019; Liu et al. 2017; Narain et al. 2016; Wang and Yang 2016; Wang
et al. 2020]. The key insight is to leverage the fact that a deformation
process is normally smooth and continuous. A full Newton solve
is less economical than slower-converging but more parallelizable
iterative methods. This observation also endorses the use of smaller
time steps [Macklin et al. 2019].
This paradigm fails with the presence of collisions and contacts.

Under such circumstances, the assumption of continuous deforma-
tion is severely violated by abrupt and acute interactions among
3D models. In theory, a collision is also smooth [Baraff and Witkin
1992]. It occurs when two objects come into contact under a positive
relative velocity (i.e., they are moving toward each other). After col-
liding, the kinetic energy transforms into the elastic potential. The
latter accumulates and releases eventually to generate a repulsive
force pushing models apart. This physical change is well understood
and can be directly observed with a high-speed camera [Labous
et al. 1997]. However, it appears invisible under a common time
step size of tenths or hundredths of a second, and the conversion
between kinematic and elastic energies is hidden behind inequality
constraints. Robust treatment of those constraints under insuffi-
ciently sampled time discretization becomes a major challenge.
The interior-point method seems to be a promising solution. As

demonstrated in recent contributions [Li et al. 2020, 2021b] the
inequality constraints, due to contact and collision, can be well han-
dled using barrier functions, which yield increasingly stronger penal-
ties when constraints are about to become violated. This method is
named incremental potential contact or IPC. The robustness of IPC
comes from its line search mechanism, which must be certified by
a continuous collision detection (CCD) routine. The CCD ensures
a position update is always within the feasible region i.e., where
the inequality constraints are strictly satisfied, and the barrier func-
tions are well-defined. That said, any displacement update must be
accompanied by a CCD as long as barriers are part of the optimiza-
tion. Such binding to CCD raises the hidden cost for each iteration
and imposes significant difficulties in improving the scalability and
efficiency of the interior-point family.

In this paper, we propose a GPU solution for efficient and scalable
barrier-enabled simulations. Due to the dependence on CCD, we
divert our focus from fast per-iteration computation i.e., as in most
existing GPU solvers, to improved convergence. This objective is
achieved by the coordination of 1) a second-order parallel solver; 2)
lightweight local CCD; 3) complementary coloring with a hybrid
update scheme; 4) and a better warm start.
Our method is locally second-order. We find local curvature in-

formation highly effective in relaxing the nonlinearity induced by
barriers. When a collision pair (i.e., a vertex-triangle or an edge-edge
pair) stays nearby, a regular CCD often yields a close-to-zero time
of impact (TOI). Such a small TOI “freezes” the whole simulation as
displacement updates of other vertices are also truncated. We name
this issue TOI locking as more iterations must be followed until this
colliding pair is fully resolved. Therefore, vanilla IPC is inefficient
for collision-intensive scenes (despite its robustness). We contrive
a local CCD scheme, which allows those nearby pairs to be solved
locally while other freedoms can keep deforming.

The scalability and efficiency are enabled by parallel local solves
over a subset of unknown degrees of freedom (DOFs). We refer

to each subset as a stencil, which corresponds to a tetrahedron on
the model or a vertex-triangle or an edge-edge collision pair. The
updates of stencils become independent if they are not connected on
the mesh or coupled by a barrier function. Normally, such a Gauss-
Seidel-like scheme requires coloring irrelevant stencils based on
their connectivity [Fratarcangeli and Pellacini 2015; Fratarcangeli
et al. 2016; Ton-That et al. 2022]. As collision pairs vary dynamically,
the coloring also needs to be recomputed at each iteration. We pro-
pose a complementary coloring method and mixed update strategy,
which avoid recoloring for different collision configurations and
improve the convergence. With a dedicated warm-start step, our
algorithm runs substantially faster than its CPU counterparts.
In addition, our method does not rely on simplification of the

material models (as opposed to projective dynamics [Bouaziz et al.
2014; Lan et al. 2022b] or position-based dynamics [Macklin et al.
2016]) and can deal with any hyperelastic material. It is less sen-
sitive to the stiffness of the model or the time step size, thanks to
local second-order relaxations. Our iteration count is comparable to
Newton’s method, but our approach gives speedups of two orders
in general. In fact, it is able to match the state-of-the-art subspace
simulation performance without using reduced-order models.

2 RELATED WORK
Deformable body simulation has been an active graphics research
topic since the 1980s [Terzopoulos and Fleischer 1988; Terzopoulos
et al. 1987, 1988]. The goal of deformable simulation is to replicate
real-world material behaviors digitally, and it has been an indis-
pensable ingredient in a wide range of applications like surgical
training [Meier et al. 2005], fabrication [Vanek et al. 2014], robot-
ics [Umedachi et al. 2013], AR/VR [Popescu et al. 1999], digital
fashion [Choi and Ko 2005a; Wang 2018] etc.

Due to the numerical stiffness of deformable models, implicit time
integration methods like backward Euler [Baraff and Witkin 1998]
or Newmark [Hughes 2012] are mostly chosen. Doing so improves
the stability of the integration but leaves a global (often sparse)
linear system to solve. This computation is expensive and stands as
the major bottleneck of the simulation pipeline. A natural thought
is to avoid a full linear solve in classic Newton’s method. Following
this idea, Hecht and colleagues [2012] proposed a lagged factor-
ization scheme that reuses existing Cholesky factorization to save
the computation. Multi-resolution [Capell et al. 2002b; Grinspun
et al. 2002] and multigrid solvers project fine-grid residual errors
onto a coarser grid, on which linear or nonlinear iterations are more
effective [Bolz et al. 2003; Tamstorf et al. 2015; Wang et al. 2020; Xian
et al. 2019; Zhu et al. 2010]. Quasi-Newton methods use Hessian
approximations, instead of the exact Hessian, to estimate a good
search direction [Li et al. 2019; Liu et al. 2017; Wang et al. 2020].

Idealizations of the elasticity model also lead to several important
simulation techniques. A classic example would be stiffness warp-
ing [Müller et al. 2002], which reuses rest-shape stiffness matrix for
large rotational deformation. This method can also be combined
with modal analysis to enable real-time simulations [Choi and Ko
2005b]. Chao and colleagues [2010] designed a simplified material
model measuring the distance of linear deformation and rotation.
This concept is similar to the shape matching algorithm [Müller et al.
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2005], where the deformation energy is defined based on the nearest
rigid body transformation. Position-based dynamics (PBD) [Macklin
et al. 2016; Müller et al. 2007] regards the elastic energy as a set of
compliant constraints and uses steepest descent to update the vertex
positions. This method is later generalized to handle fluid [Macklin
and Müller 2013] and rigid bodies [Müller et al. 2020]. Similarly,
projective dynamics (PD) separates the constraint projection and
the distance measure into local and global steps [Bouaziz et al. 2014].
The key benefit of PBD and PD is the (partial) decouple of DOFs
in different constraints. As a result, both methods can be well par-
allelized on the GPU [Fratarcangeli et al. 2016, 2018; Wang 2015].
Those existing fast simulation algorithms rely on the assumption
that the deformation occurs smoothly along the time, and a full
second-order Newton iteration could be replaced with multiple but
less costly first-order ones [Wang 2015].

Model reduction is another popular acceleration technique a.k.a.
the subspace method or reduced-order models, which creates a sub-
space representation of fullspace DOFs. Modal analysis [Choi and
Ko 2005b; Hauser et al. 2003; Pentland and Williams 1989] and its
first-order derivatives [Barbič and James 2005] are often considered
the most effective method for subspace construction. Displacements
from recent fullspace simulations can also be utilized [Kim and
James 2009]. Prior art also coarsens the geometric representation
to prescribe the dynamics of a fine model. For instance, Capell
and colleagues [2002a] deformed an elastic body using an embed-
ded skeleton; Gilles and colleagues [2011] used 6-DOF rigid frames
to drive the deformable simulation; Faure and colleagues [2011]
used scattered handles to model nonlinear dynamics; Lan and col-
leagues [2020; 2021] exploited the medial axis transform to build
the mesh skeleton; Martin and colleagues [2010] used sparsely-
distributed integration points named elastons to model the nonlin-
ear dynamics of rods, shells, and solids uniformly. Since the number
of simulation DOFs does not depend on the resolution of the model,
orders-of-magnitude speedups are not uncommon with reduced
simulation. On the downside, the accuracy compromise and the
loss of simulation details are inevitable – after all, it compresses a
high-dimension simulation into a low-dimension space.

The presence of collisions and contacts imposes an extra layer of
difficulty for deformable simulation. A collision occurs in a short
period of time leading to rapid velocity/position changes. Collisions
have been modeled by impulses in early works [Baraff 1989; Mir-
tich and Canny 1995; Moore and Wilhelms 1988; Weinstein et al.
2006]. Doing so stiffens the simulation, leading to undesired artifacts
and failure of the system to converge when the non-penetration
constraint must be strictly enforced [Cline and Pai 2003]. Switch-
ing to complementarity programming does not resolve this issue.
As it is an NP-hard problem, we often do not have the luxury to
run the complementarity search to the end for an optimal solu-
tion [Anitescu and Potra 1997; Erleben 2007; Kaufman et al. 2005].
Consequently, the simulation remains inconsistent and unstable. An
inexpensive alternative is the penalty method [Cundall and Strack
1979; Terzopoulos et al. 1987; Teschner et al. 2005]. Instead of using
inequality constraints, a penalty method chooses a spring-like re-
pulsion mechanism based on the penetration depth between two
objects [Drumwright 2007; Fisher and Lin 2001; Hasegawa et al. 2004;
Wu et al. 2020]. While straightforward, the penalty method fails

for fast-moving models or simulations under bigger time steps and
often requires tedious tuning of stiffness parameters per scene. Its
stability can be enhanced using implicit formulations coupled with
CCD [Tang et al. 2012; Xu et al. 2014]. Nevertheless, intersections
among models still can and will result.

The interior-point method [Mehrotra 1992] incorporates barrier
functions to approximate inequality constraints induced by col-
lisions and contacts. As the name suggests, a barrier function is
designed as a nonlinear penalty yielding increasingly stronger re-
pulsion when models are moving closer to each other. Its feasibility
and robustness have been validated by Li and colleagues [2020],
where they name this barrier-based collision resolution IPC. IPC
offers two immediate advantages: 1) Unlike using impulses, IPC
smooths the problem formulation with controllable accuracy; 2) IPC
enables the algorithmic guarantee that the inequality constraints are
always satisfied so the resulting simulation is free of interpenetra-
tion. This method has then been successfully employed for reduced
simulation [Lan et al. 2021], co-dimensional simulation [Li et al.
2021b], rigid body simulation [Ferguson et al. 2021; Lan et al. 2022a],
embedded FEM [Choo et al. 2021], FEM-MPM coupling [Li et al.
2021a], and geometric modeling [Fang et al. 2021].

The CCD-based line search plays a key role in the IPC framework
– it ensures that any displacement update is confined within the
domain of the barrier function. This also suggests existing GPU
algorithms, which trade a costly Newton step for multiple inexact
but inexpensive iterations [Narain et al. 2016; Wang and Yang 2016;
Wu et al. 2022], become hardly practical since performing culling
and CCD at each iteration is prohibitive. Lan and colleagues [2022b]
alleviated this difficulty by casting the barrier as a positional con-
straint in the framework of PD. Unfortunately, for more generic
simulations, one has to evaluate the barrier to determine if the cur-
rent search direction is descending. Without per-iteration CCD, the
barrier functions become undefined, and the simulation then fails.

The existence of barriers is a double-edged blade. On the one hand,
it converts inequality-constrained simulation to an unconstrained
one and allows highly robust resolutions of collisions and contacts.
On the other hand, it ties any iterative solvers with CCD, ruling
out most parallel strategies currently available. In this paper, we
present a non-Newton and parallel solver, dedicated to barrier-in-
the-loop deformable simulations. Our algorithm is closely related to
the domain decomposition method [Farhat et al. 2000] by breaking
the original model into many small domains. While this idea is not
new in graphics and has been employed with model reduction for
per-domain subspace customization [Barbič and Zhao 2011; Kim
and James 2012; Wu et al. 2015; Yang et al. 2013], we show that it
also leads to scalable and parallelizable nonlinear programming. Our
method is also relevant to the coordinate descent method [Naitsat
et al. 2020; Wright 2015], which is a simple divide-and-conquer
solution for large-scale optimizations. We perform a local second-
order Newton-like optimization over blocks of coordinates and align
each of such blocks with an element on the model.
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Fig. 2. Algorithm overview. We present a local second-order GPU solver to efficiently simulate barrier-in-the-loop elastic models. An input model will be
colored based on the connectivity of stencils with several complementary schemes (§ 5). At each time step, a warm start is carried out first building a global
collision list with an altered per-stencil barrier formulation (§ 6). The core relaxation runs in parallel using a hybrid sweep strategy based on computed color
schemes (§ 4), where we use local CCD during the iterations as much as possible.

3 ALGORITHM OVERVIEW & PRINCIPAL DESIGN
Before jumping into the details of our method, we first give a brief
review of the interior-point method and explain why a different
algorithm is needed for barrier-in-the-loop elastic simulation.

Assume the implicit Euler is used, the elastic simulation is formu-
lated as the variational optimization of:

𝑥𝑡+1 = argmin
𝑥

1
2 (𝑥 − 𝑥)

⊤M(𝑥 − 𝑥) + ℎ2Ψ(𝑥) s.t. ℎ𝑖 (𝑥) ≥ 0. (1)

Here, 𝑥𝑡+1 represents the unknown positional DOFs of all the ver-
tices on the model i.e., a tetrahedral mesh. 𝑥 = 𝑥𝑡 +ℎ𝑣𝑡 +ℎ2M−1 𝑓𝑒𝑥𝑡
is a known vector depending on the position 𝑥𝑡 and velocity 𝑣𝑡

from the previous time step as well as the external force 𝑓𝑒𝑥𝑡 . ℎ
is the time step size, and M is the mass matrix. The first term
𝐸𝑖𝑛𝑒𝑟𝑡𝑖𝑎 = 1

2 (𝑥−𝑥)
⊤M(𝑥−𝑥) in Eq. (1) is sometimes also referred to

as the inertia potential. Ψ(𝑥) denotes the hyperelastic energy mea-
suring the “magnitude” of the deformation. ℎ𝑖 (𝑥) ≥ 0 form a set of
𝐶 inequality constraints enforcing the simulation to be free of inter-
and intra-model intersections. Eq. (1) is mathematically equivalent
to an unconstrained optimization using indicator functions 𝐼Ω (𝑥),
which evaluates +∞ if 𝑥 ∉ Ω and 0 otherwise:

min
𝑥

1
2 (𝑥 − 𝑥)

⊤M(𝑥 − 𝑥) + ℎ2Ψ(𝑥) +
𝐶∑︁
𝑖=0

𝐼{ℎ𝑖≥0} (𝑥) . (2)

IPC [Li et al. 2020] is a primal implementation of the interior-point
method, which approximates ℎ𝑖 (𝑥) ≥ 0 with logarithmic barrier
functions:

𝐶∑︁
𝑖=1

𝐼{ℎ𝑖≥0} ≈ 𝜅
𝐶∑︁
𝑖=1

𝜙𝑖 (𝑥), (3)

where each barrier 𝜙𝑖 is defined as:

𝜙𝑖 (𝑑𝑖 , 𝑑) =
{
−(𝑑𝑖 − 𝑑)2 log

(
𝑑𝑖

𝑑

)
, 0 < 𝑑𝑖 < 𝑑

0, 𝑑𝑖 ≥ 𝑑
. (4)

𝑑 is a global hyper-parameter prescribing the accuracy of the ap-
proximate in Eq. (3). Intuitively, it allows 𝜙𝑖 to be “active” if the
closest distance between a collision pair (i.e., 𝑑𝑖 ) is smaller than 𝑑 .
Similar to 𝐼{ℎ𝑖≥0} , 𝜙𝑖 approaches to +∞ as 𝑑𝑖 approaches to 0, scaled
by 𝜅. IPC then aims to find the optimal solution to:

min
𝑥

𝐸 (𝑥), 𝐸 =
1
2 (𝑥 − 𝑥)

⊤M(𝑥 − 𝑥) + ℎ2Ψ(𝑥) + 𝜅
𝐶∑︁
𝑖=0

𝜙𝑖 (𝑥) . (5)

As nonlinear programming iteratively seeks a better solution to
Eq. (5), one needs to ensure that each displacement update Δ𝑥 is
descent and lowers the target function 𝐸 (𝑥). Note that 𝜙𝑖 (𝑥) is only
defined for 𝑑𝑖 > 0 per Eq. (4). If Δ𝑥 takes any 𝜙𝑖 (𝑥) out of its domain,
there is no way for us to validate whether Δ𝑥 is a legit improvement.
Thus, an interior-point algorithm like IPC always equips each itera-
tion with a CCD to ensure 𝜙𝑖 (𝑥) are well-defined. Being taxed by
CCD, slow-converging methods like gradient descent [Wang and
Yang 2016] are no longer an option.

Parallel algorithms break the computation into smaller subsys-
tems, and the convergence-efficiency trade-off is embodied via dif-
ferent choices of 1) the size of a subsystem 2); how each subsystem
is solved, and 3) how subsystems are coupled/integrated. In gen-
eral, smaller subsystems, lower-order methods, and less information
sharing improve efficiency, but the simulation will need much more
iterations for stiffer problems. By contrast, we choose to solve a
bigger subsystem using a second-order method and a much stronger
subsystem coupling mechanism.

Fig. 2 sketches an overview of our method. The core computation
of our pipeline is a local second-order relaxation scheme namely
stencil descent (§ 4). The use of local curvature information greatly
improves the convergence for barrier-enabled problems. Unfortu-
nately, this method alone is unable to deliver the desired perfor-
mance. We design a simple and effective coloring method that can
be pre-computed and is robust against different collision patterns
(§ 5). This coloring method, combined with a hybrid update scheme,
allows the simulation to converge at a similar pace as Newton’s
method. The performance of our solver is further enhanced by a
warm-start process using an altered barrier formulation (§ 6).

4 SECOND-ORDER STENCIL DESCENT
Coordinate descent is a well-known optimization algorithm [Wright
2015] that minimizes a multivariable function e.g., 𝐸 (𝑥) in Eq. (5)
by optimizing one DOF (coordinate) at a time successively. The
convergence of coordinate descent can be easily confirmed, as each
local iteration always lowers the target function [Zheng et al. 2000].
We generalize this concept by finding a descent direction of a

group of DOFs at once. Specifically, each group houses 12 DOFs cor-
responding to 1) a tetrahedron element on the model or 2) a colliding
vertex-triangle or edge-edge pair with an activated barrier namely,
an elasticity stencil or a barrier stencil. The reason behind this choice
is multifaceted. First, a tetrahedron forms a minimal 3D simplex,
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which uniquely determines its own rigid body transformation. As a
result, the residual in the null space can be effectively suppressed
locally, which better improves the global convergence than smaller
subsystems e.g., per vertex. Being a simplex, tetrahedrons do not
have isolated DOFs (except for the ones at the boundary corners)
meaning all the DOFs are shared by their neighbors. Therefore,
choosing the tetrahedron as the basic coordinate unit strengthens
the coupling among stencils and enables faster strain propagation.
Finally, a 12-dimension stencil remains compact and can still be
efficiently solved using second-order methods even with limited
hardware resources at each CUDA thread.

4.1 Projection-free Stencil-wise Newton-CG
In our algorithm, the 𝑘-th stencil solves an optimization of Eq. (5)
only w.r.t. its local DOFs, 𝑥 [𝑘 ] ∈ R12:

min
𝑥 [𝑘 ]

𝐸 (𝑥) ≡ min
𝑥 [𝑘 ]

𝐸 [𝑘 ] . (6)

Here the superscript [𝑘 ] denotes the index of the stencil. Note that
𝐸 [𝑘 ] accumulates not only the elasticity or the barrier of the stencil
itself but also energies shared by its neighbors. Any vertex-sharing,
edge-sharing, and face-sharing neighboring elements contribute to
𝐸 [𝑘 ] , and we have

∑
𝐸 [𝑘 ] ≥ 𝐸 (𝑥).

We use standard Newton’s method to solve Eq. (6) at each stencil,
and compute a tentative local update Δ𝑥 [𝑘 ] as:

Δ𝑥 [𝑘 ] = −
(
H[𝑘 ]

)−1
𝑔[𝑘 ] , (7)

where H[𝑘 ] and 𝑔[𝑘 ] are local Hessian and gradient. Again, both
H[𝑘 ] and 𝑔[𝑘 ] are different from the element Hessian/gradient, as
they also accommodate the first- and second-order derivatives of
neighbor stencils.
Solving the 12-by-12 linear system of Eq. (7) causes practical

obstacles. The analytical formulation is too complicated, if exists,
to be hard-coded while a local Gaussian elimination is logically
overwhelming for one CUDA thread. To this end, we choose to
use CG (conjugate gradient method) for our per-stencil relaxation
(Alg. 1). CG returns the exact solution of Eq. (7) after 12 iterations
because the error at each of 12 conjugated directions will be right
eliminated at the corresponding iteration [Shewchuk et al. 1994].
Indeed, CG was invented as a direct solver originally. The stencil-
level CG also frees us from an explicit Hessian assembly because
CG iterations only need Hessian-vector product (i.e., H[k]𝑝 𝑗 at
lines 3 and 5 in Alg. 1), which is the directional derivative of 𝑔[𝑘 ] :
H[k]𝑝 𝑗 = ∇𝑝 𝑗

𝑔[𝑘 ] [Shen et al. 2021; Yang et al. 2015].
Large deformations of nonlinear materials often yield a Hessian

that is not positive semi-definite (PSD), and the resulting Δ𝑥 [𝑘 ]

becomes errant. To restore the numerical stability, PSD-projected
Hessian is often used [Teran et al. 2005] a.k.a. projected Newton.
We note that CG can be used to solve local stencil robustly without
PSD projection in a Hessian-free manner.
To see the reason behind this, let us re-visit Newton’s method,

which Taylor expands 𝐸 [𝑘 ] around 𝑥 [𝑘 ] :

𝐸 [𝑘 ] (𝑥 [𝑘 ] + Δ𝑥 [𝑘 ] ) = 𝐸 [𝑘 ] (𝑥 [𝑘 ] ) +𝑄 (Δ𝑥 [𝑘 ] ) +𝑂 (∥Δ𝑥 [𝑘 ] ∥3). (8)

Here, 𝑄 (Δ𝑥 [𝑘 ] ) = 1
2Δ𝑥

[𝑘 ]⊤H[𝑘 ]Δ𝑥 [𝑘 ] + Δ𝑥 [𝑘 ]⊤𝑔[𝑘 ] is a quadratic
form of Δ𝑥 [𝑘 ] . Newton’s method ignores the third-order error and
seeks the minimizer of 𝑄 (Δ𝑥 [𝑘 ] ), while CG happens to be a ded-
icated algorithm for minimizing 𝑄 (Δ𝑥 [𝑘 ] ). Such coherence also
makes the Newton-CG family one of the most popular numerical
solutions for large-scale optimizations [Zhao et al. 2010].

ALGORITHM 1: Per-stencil CG iteration.
1: 𝑟0 ← −𝑔[𝑘 ] − H[𝑘 ]Δ𝑥 [𝑘 ]0 , 𝑝0 ← 𝑟0, 𝑗 ← 0 ;
2: while 𝑗 < 12 do

3: 𝛼 𝑗 ←


1
𝜎 , 𝑝⊤

𝑗
H[k]𝑝 𝑗 ≤ 0

𝑟⊤𝑗 𝑟 𝑗

𝑝⊤
𝑗
H[k]𝑝 𝑗

, otherwise
;

4: Δ𝑥
[𝑘 ]
𝑗+1 ← Δ𝑥

[𝑘 ]
𝑗
+ 𝛼 𝑗𝑝 𝑗 ;

5: 𝑟 𝑗+1 ← 𝑟 𝑗 − 𝛼 𝑗H[k]𝑝 𝑗 ;

6: 𝛽 𝑗 ←
𝑟⊤𝑗+1𝑟 𝑗+1
𝑟⊤
𝑗
𝑟 𝑗

;

7: 𝑝 𝑗+1 ← 𝑟 𝑗+1 + 𝛽 𝑗𝑝 𝑗 ;
8: 𝑗 ← 𝑗 + 1;
9: end

If H[𝑘 ] is PSD, every CG iteration will lower 𝑄 (Δ𝑥 [𝑘 ] )1. When
this is not the case, H[𝑘 ] then has non-positive eigenvalues, and
searching along the corresponding eigenvectors may increase the
value of 𝑄 (Δ𝑥 [𝑘 ] ). This suggests a bad direction that one should
avoid. Geometrically, a negative eigenvalue corresponds to some
direction along which the curvature of the Hessian is concave. Pro-
jected Newton [Teran et al. 2005] directly “flattens” concave regions
to make it mildly convex. In CG, such concavity of a non-PSD Hes-
sian is reflected by 𝑝⊤H[𝑘 ]𝑝 (line 3). 𝑝⊤H[𝑘 ]𝑝 ≤ 0 implies 𝑝 largely
aligns with negative eigenvectors, and the trajectory along 𝑝 is
concave. Following the same strategy of projected Newton, we man-
ually alter local negative curvature by setting 𝑝⊤H[𝑘 ]𝑝 ← 𝜎 ∥𝑟 𝑗 ∥2
i.e., a small positive quantity relative to the current residual norm
(line 3 of Alg. 1). Doing so allows CG to travel out of this concave
region and keep reducing residual in other conjugate directions. Al-
ternatively, one can simply quit the current CG iteration. In practice,
concave searches are rare, and few early terminations do not impact
the overall convergence of our method.

4.2 Local CCD & Inversion Search
The computation of Δ𝑥 [𝑘 ] is local and agnostic on potential geo-
metric or topological conflicts. Therefore, additional sanity checks
are needed namely, local CCD search and local inversion search.

The so-called local CCD performs a lightweight CCD over Δ𝑥 [𝑘 ] .
It does not exhaustively search nearby vertex-triangle and edge-
edge pairs as in a regular CCD routine. Instead, local CCD just makes
sure that existing collision pairs, identified by the most recent regular
CCD, do not generate intersections. Local CCD is quit fast without any
culling or neighborhood search. We use the fast polynomial solver
1Minimizing 𝑄 (Δ𝑥 [𝑘 ] ) does not necessarily mean Eq. (6) is improved due to the
existence of 𝑂 ( ∥Δ𝑥 [𝑘 ] ∥3 ) . Therefore, a line search is still needed even for a PSD
Hessian.
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Local CCD

Regular CCD

Locking

0.8

0.8

Fig. 3. Regular and local CCD. Local CCD is a simple and effective treat-
ment for local displacement updates. The grey-colored deformable body
hits the tip of the collider. If the TOI at the colliding element (in orange) is
small, regular CCD filtering down scales the global update Δ𝑥 by 0.8𝑡𝑇𝑂𝐼 ,
which prevents the deformation of the whole model in following iterations.
Local CCD only adjusts the displacement of the colliding stencil, and other
stencils can keep updating their own Δ𝑥 [𝑘 ] .

proposed by Yuksel [2022] to compute the local TOI. While the
cost of local CCD is subtle, it is a vital treatment in our framework
offering three important guarantees:

(1) Local CCD ensures that all the existing barrier functions are
well-defined so that per-stencil line search is meaningful.

(2) Local CCD retains the formulation of current target function
(Eq. (5)) by not adding new barriers or removing old ones.

(3) Local CCD uses local TOI to adjust Δ𝑥 [𝑘 ] of each stencil to
avoid TOI locking due to small global TOIs.

The third guarantee is particularly helpful for faster convergence.
As illustrated in Fig. 3, as soon as a collision pair yields a close-
to-zero TOI, the corresponding global displacement update will be
blocked since Δ𝑥 needs to be scaled by 0.8𝑡𝑇𝑂𝐼 to keep the barrier
well-defined2 – even though other parts of the models are free of
collisions. It appears as the entire model is stiffened, waiting for the
relaxation of this specific barrier. The corresponding computations
are then wasted. Local CCD mitigates this issue since this small TOI
only affects local stencils, and other stencils keep deforming based
on their local descent directions.
Local inversion search is for elasticity stencils only, which pre-

vents newly computed Δ𝑥 [𝑘 ] from generating element inversions.
The first pass of the inversion search checks whether the following
equation of 𝑡 has a root between (0, 1]:���������

(
𝑥
[𝑘 ]
2 + 𝑡Δ𝑥 [𝑘 ]2 − 𝑥 [𝑘 ]0 − 𝑡Δ𝑥 [𝑘 ]0

)⊤(
𝑥
[𝑘 ]
1 + 𝑡Δ𝑥 [𝑘 ]1 − 𝑥 [𝑘 ]0 − 𝑡Δ𝑥 [𝑘 ]0

)⊤(
𝑥
[𝑘 ]
3 + 𝑡Δ𝑥 [𝑘 ]3 − 𝑥 [𝑘 ]0 − 𝑡Δ𝑥 [𝑘 ]0

)⊤
��������� = 0. (9)

Here 𝑥 [𝑘 ]
𝑖

, 𝑖 = 0, 1, 2, 3 are positions of four vertices of the stencil.
Δ𝑥
[𝑘 ]
𝑖

are their respective displacements. If Δ𝑥 [𝑘 ] does not invert
stencil [𝑘], the second pass iterates all the incidence elements and
checks if Δ𝑥 [𝑘 ]

𝑖
displaces vertices to the negative side of opposite

faces in those elements. Let 𝑥𝑠 , 𝑥𝑡 , and 𝑥𝑙 be the three vertices on the
opposite face of vertex 𝑥 [𝑘 ]

𝑖
. The inversion search checks whether

𝑡 = −
[(𝑥𝑠 − 𝑥𝑙 ) × (𝑥𝑡 − 𝑥𝑙 )] · (𝑥

[𝑘 ]
𝑖
− 𝑥𝑙 )

[(𝑥𝑠 − 𝑥𝑙 ) × (𝑥𝑡 − 𝑥𝑙 )] · Δ𝑥
[𝑘 ]
𝑖

(10)

2Here, 0.8 is a parameter of user’s choice, which should be slightly smaller than 1 to
keep the displacement update intersection-free.
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Fig. 4. Hybrid sweep. Hybrid sweep follows the Gauss-Seidel style update
but fills idle GPU threads with Jacobi updates. Therefore, all stencils will
be updated at each sweep. This simple strategy improves the convergence
without noticeable GPU latency.

is between (0, 1]. If so, we scale Δ𝑥 [𝑘 ] by 0.8𝑡 . Lastly at this step,
after local CCD and inversion check, a local line search ensues. We
choose a simplified Wolfe condition and make sure Δ𝑥 [𝑘 ] lowers
𝐸 [𝑘 ] and thus improves 𝐸 overall.
Like all the existing GPU algorithms [Fratarcangeli et al. 2016,

2018; Wang 2015; Wang and Yang 2016], our speedup comes from
the parallelization of local computations at elasticity and barrier
stencils. To make the most use of the GPU, we design a novel hybrid
sweep strategy that avoids per-iteration graph coloring.

5 PARALLELIZATION
Stencils share DOFs, and porting local Δ𝑥 [𝑘 ] to the global Δ𝑥 can
only be carried out for disjoint stencils. The parallelization relies
on graph coloring [Jensen and Toft 2011], which abstracts the con-
nectivity among stencils as an undirected graph. Stencils in the
same color are independent, and their local Δ𝑥 [𝑘 ] can be copied to
global displacement without conflicts. It is desired that each color
group houses as many disjoint stencils as possible for maximized
parallelism, while an over-dominant color inevitably shrinks other
colors and leads to unbalanced coloring. Due to the collision, stencil
connectivity varies at each iteration, and finding an optimal coloring
for non-planar graphs is NP-complete. Therefore, existing methods
resort to heuristics to do coloring on the fly [Fratarcangeli et al.
2016, 2018; Ton-That et al. 2023]. We present a pragmatic solution to
this challenge, which allows us to pre-compute all the colors before
the simulation.

5.1 Hybrid Sweep
For models with hundreds of thousands of elements, heuristic col-
oring algorithms typically generate a few dozen colors, where each
color has up to tens of thousands of stencils. Running stencil descent
in parallel, even for the largest color, is way below the GPU capacity.
For instance, we color a dragon model (Fig. 13) of 1M elements using
Vivace [Fratarcangeli et al. 2016]. It takes 308 ms on average to relax
stencils of one color. Meanwhile, completing 12 CG iterations at all
the stencils only needs 339 ms.
To make the most out of the GPU, our hybrid sweep consists of

a Gauss-Seidel sweep and a Jacobi sweep. They jointly compute
Δ𝑥 [𝑘 ] for all stencils i.e., see Figs. 2 and 4. After local Δ𝑥 [𝑘 ] are
ready (which do not depend on the coloring of stencils), stencil dis-
placements of the current color are updated with the highest priority
in a Gauss-Seidel manner followed by Jacobi sweep, which aver-
ages displacements of vertices shared by multiple stencils without
modifying the committed Gauss-Seidel update. Local CCD, inversion,
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and line searches are performed at each sweep separately. In other
words, a hybrid sweep combines one parallel Gauss-Seidel step for
stencils in one color group and one Jacobi iteration for all the other
stencils. This strategy feeds unoccupied GPU threads with the Jacobi
sweep. Assigning Jacobi sweeps at spare threads is nearly “free”, and
they quietly improve the objective function in the background. As a
result, the hybrid sweep can accelerate the overall convergence over
30% without noticeable latency. Our method should not be confused
with simply interleaving Gauss-Seidel and Jacobi iterations as men-
tioned in [Bender et al. 2017]. We would like to remind that either
Gauss-Seidel or Jacobi sweeps refers to how local displacements
are updated. Our underlying solver is locally second-order, which
converges faster than using Gauss-Seidel or Jacobi as linear solvers.

Hybrid sweep also makes our parallelization resilient to the topo-
logical change of the graph as we can keep barrier stencils with
Jacobi sweeps (i.e. grey color). This is reasonable because barriers
are often localized, and Jacobi-style relaxation is quite effective for
isolated barriers. In addition, our pipeline also includes a warm start
that pre-processes predicted barrier stencils (see § 6).

5.2 Complementary Coloring
Hybrid sweep is not sensitive to unbalanced coloring since all the
stencils are to be updated anyway. A small-size color may be less
helpful in vanilla Gauss-Seidel, but the accompanying Jacobi-sweep
greatly enhances its efficacy. This property allows a simple and
straightforward coloring algorithm, wherein we can focus on maxi-
mizing the dominant color group. As described in Alg. 2, our coloring
procedure is based on the classic Welsh-Powell method [Welsh and
Powell 1967]. We name the first-assigned color the primal color,
which tends to have more stencils. We always try to color a stencil
with the least indexed color available. During this process, new
colors are generated to accommodate conflicting stencils. We stop
adding more colors after the total number of colors reaches a thresh-
old 𝑇 and categorize all uncolored stencils into grey color. Those
grey stencils are updated via Jacobi sweep as they conflict with
other colors.

To cancel the bias induced by fixed-order Gauss-Seidel sweeps [Si-
mon 1992], we build multiple color schemes andmake them “comple-
mentary” to each other. Specifically, we ensure that each elasticity
stencil is assigned as the primal color at least once in a scheme so
that it will undertake a major Gauss-Seidel sweep during the itera-
tion. We make sure that an elasticity stencil is not in grey color in all
the schemes. Such complementarity is enabled by sorting stencils
with different metrics. In the first color scheme, stencils are sorted
according to their degrees on the connectivity graph. In the follow-
ing schemes, the metric switches to the sum of color indices a stencil
previously received. Note that we have our primary color indexed as
0 and the grey color index as +∞ (lines 7 and 13 in Alg. 2). For high-
resolution models with many elasticity stencils, comparison-based
sorting could be expensive. We employ counting-based sorting i.e.,
radix sort [Davis 1992] which has the linear complexity for a small
number of colors. Nevertheless, the coloring procedure is before the
simulation. Fig. 5 shows two color schemes of a dragon model.

6 WARM START USING CUSTOMIZED BARRIERS

ALGORITHM 2: Complementary coloring.
1: for 𝑖 = 1 to len(𝐿) do
2: rank(𝐿[𝑖]) = degree of stencil 𝐿(𝑖) // 𝐿 is the stencil list
3: end
4: repeat
5: Sort all stencils in 𝐿 according to rank(𝐿[𝑖]);
6: for 𝑖 = 1 to len(𝐿) do
7: 𝑐 ← 0; // 0 is the primary color
8: repeat
9: Tentatively color stencil 𝐿[𝑖] with color 𝑐 ;
10: 𝑐 ← 𝑐 + 1 ;
11: until No conflict found;
12: if 𝑐 ≥ 𝑇 then
13: color(𝐿[𝑖])← +∞ ; // +∞ is the grey color
14: end
15: rank(𝐿[𝑖])← color(𝐿[𝑖]) + rank(𝐿[𝑖]);
16: end
17: until All color schemes are generated;

Schem
e 1

Schem
e 2

Fig. 5. Complementary coloring. Our hybrid sweep is used with a com-
plementary coloring strategy. The coloring of stencils is pre-computed, and
we generate multiple color schemes to make sure each stencil shows up in
an independent color group at least in one scheme. Here, we show first four
colors of two schemes on a dragon model.

ALGORITHM 3: Inertia-barrier warm start.
1: 𝑥0 ← 𝑥𝑡 + ℎ𝑣𝑡 + 1

4ℎ
2 (𝑎𝑡 +M−1 𝑓𝑒𝑥𝑡 );

2: CCD(𝑥𝑡 , 𝑥0);
3: Generate barrier list B;
4: 𝑥0 ← argmin𝑥 1

2 (𝑥 − 𝑥)
⊤M(𝑥 − 𝑥) +∑𝜙𝑖 ;

Ground truth
IPC barrier
Our barrier
Our barrier (adjusted)

Fig. 6. Per-stencil bar-
rier. By modifying bar-
rier formulation, we can
early start the relaxation
of barrier stencils.

An important ingredient of our pipeline
is a warm-start procedure for a better ini-
tial guess of 𝑥0. Our warm-start strategy
is inspired by time splitting [Wicker and
Skamarock 2002] and relaxes the stiffest
component of Eq. (5) i.e., the barrier en-
ergy in advance. It positions the system to
a collision-free state where the majority
of barriers are already relaxed. This initial-
ization dampens abrupt and impulse-like
barriers induced by fast-moving vertices
and therefore facilitates the convergence
of descent iterations.
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As shown in Alg. 3, we start with a semi-
implicit prediction: 𝑥0 ← 𝑥𝑡 +ℎ𝑣𝑡 + 1

4ℎ
2 (𝑎𝑡 +M−1 𝑓𝑒𝑥𝑡 ). Based on the

resulting 𝑥0, we compute B, a list of vertex-triangle and edge-edge
pairs by performing a regular CCD. We interpret these pairs as a
good estimate of active barriers when the simulation arrives at 𝑡 = 1.
However, if the distance between a pair of primitives is bigger than
𝑑 at 𝑡 = 0 according to Eq. (4), those barriers remain inactive unless
a regular CCD later finds 𝑑𝑖 < 𝑑 in a later time. If these barriers
will show up in the target function eventually, why not take them
into account earlier? To this end, we abandon the setting that 𝑑 is
defined globally and unchanged during the simulation but assign a
different 𝑑𝑖 for each 𝜙𝑖 at each step. This yields a slightly modified
barrier formulation of:

𝜙𝑖 (𝑑𝑖 , 𝑑𝑖 ) =
{
−(𝑑𝑖 − 𝑑𝑖 )2 log

(
𝑑𝑖

𝑑𝑖

)
, 0 < 𝑑𝑖 ≤ 𝑑𝑖

0, 𝑑𝑖 > 𝑑𝑖

, (11)

where we set 𝑑𝑖 for all the collision pairs in B as the vertex-triangle
distance or edge-edge distance at 𝑡 = 0. Eq. (11) then activates all
the barriers: They hold a vanished value at 𝑡 = 0 but will participate
in the optimization and contribute a non-zero Hessian and gradient
to stencils. Compared with the vanilla IPC, doing so is similar to
relaxing barriers a few iterations earlier during the optimization
and therefore, reduces the total iteration count. We understand that
advancing the system with a full elasticity solve provides a better
prediction. This strategy has also been explored previously [Bridson
et al. 2002]. However, solving the elasticity is significantly more
expensive, and the prediction does not substantially differ from a
semi-implicit guess in practice.
It is known that KKT’s complementary slackness of Eq. (1) is:

𝜆𝑖ℎ𝑖 (𝑥) = 0, (12)

where 𝜆𝑖 ≥ 0 is the Lagrange multiplier for each inequality con-
straint. Replacing 𝐼ℎ𝑖≥0 with 𝜙𝑖 (𝑥) essentially relaxes Eq. (12) to:

𝜆𝑖ℎ𝑖 (𝑥) = −𝜅 (𝑑𝑖 − 𝑑)2, (13)

as a perturbed KKT. From this perspective, one could consider 𝜅 (𝑑 −
𝑑𝑖 )2 as an indicator of the approximate error of barrier-based colli-
sion resolution. Assigning each barrier a different 𝑑𝑖 may potentially
increase the error (when 𝑑𝑖 > 𝑑), which can be compensated by
reducing 𝜅 as 𝜅𝑖 ← 𝜅 𝑑

𝑑𝑖
(see Fig. 6).

After B is generated, we further improve 𝑥0 by minimizing the
variational problem partially for the inertia and barrier terms:

𝑥0 ← argmin
𝑥

𝐸𝑖𝑛𝑒𝑟𝑡𝑖𝑎 (𝑥) +
| B |∑︁
𝑖=1

𝜙𝑖 (𝑥). (14)

Similar to barrier stencils, we use parallel Jacobi sweep with local
Newton-CG solves so the coloring is not needed for a warm start.
Collision pairs are often scattered over the boundary of the model,
and 𝐸𝑖𝑛𝑒𝑟𝑡𝑖𝑎 does not strongly couple DOFs. Indeed, 𝐸𝑖𝑛𝑒𝑟𝑡𝑖𝑎 is more
like a mass-weighted regularization for barriers 𝜙𝑖 (𝑥) optimization
since barriers are invariant under rigid body motions. Without
elasticity Ψ, this problem can be solved with fewer than 10 iterations
inmost cases. Local CCD and inversion searches are then followed to
make sure 𝐸 (𝑥0) is well-defined. The computed 𝑥0 is collision-free.
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Fig. 7. Parallel Hessian-vector. Hessian-vector product at each iteration
is computed by taking multiple GPU passes alternating stencils and ver-
tices. This design aims to avoid redundant computations and lows the peak
memory demand.

It keeps all the barriers in a “lukewarm” state: They are activated
since the distances between primitive pairs at 𝑡 = 0 are more or less
shortened by the inertia movement. Meanwhile, as those activated
barriers have been processed by stencil descent for a few rounds,
strong and sharp penalty is smoothed. The system becomes more
regularized and friendly to the follow-up elasticity-aware iterations.
In our experiment, we note that this warm-start step could reduce
the total iterations by up to 80%.

7 IMPLEMENTATION DETAILS
Being a GPU algorithm, dedicated engineering is essential to deliver
the desired performance. In this section, we elaborate on some note-
worthy details of the implementation. The common rule of thumb
is to understand whether a computation is memory-bounded or
computation-bounded. We split lengthy and complicated compu-
tations into multiple passes and properly use the shared memory
whenever possible.

7.1 Parallel Hessian-vector Product via CSFD
The most dominant computation is the Hessian-vector evaluation.
One local iteration yields a 12-dimension displacement update mean-
ing we need to compute, for each vertex, multiple directional force
gradients (i.e., ∇𝑝𝑖𝑔[𝑘 ] ) w.r.t. multiple stencils sharing this vertex.
Parallelizing at each vertex naïvely is not efficient because of dupli-
cated stencil visits: A vertex needs to access all the adjacent stencils
to compute the respective local directional force gradient.
As shown in Fig. 7, we maintain an auxiliary 2D array P, whose

elements are initially set as zero. P has 3𝑁 rows corresponding
to 𝑥 , 𝑦, 𝑧 components of per-vertex direction, 𝑝 [𝑘 ]

𝑖
∈ R3, and 𝑁

is the total number of vertices. The number of columns of P is
set as the maximum degree of a vertex i.e., the greatest number
of elements shared by a vertex. Our parallelism is achieved with
several passes. The first pass is the stencil-wise CG iteration (Alg. 1),
which assigns each stencil a local search direction 𝑝 [𝑘 ] ∈ R12. After
an iteration is completed (i.e., all stencils are relaxed), we insert
P in parallel based on the resultant 𝑝 [𝑘 ] . In this pass, each vertex
iterates its adjacency list, which contains the references of its local
copies at each stencil. The third pass computes the Hessian-vector
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Table 1. Time statistics and breakdown. We give detailed time statistics of experiments reported in the paper. # Ele., # DOF, and # Face are the total
numbers of elements, DOFs, and surface triangles in the simulation. Those are direct metrics indicating the complexities of parallel solve, direct solve, and
collision processing. Grey colored face count in the column of # Face is the number of triangles on colliders in the scene. # Color gives the total number
of colors in each test. Δ𝑡 is the time step size. The columnsWarm start reports the average iteration counts first and then give the computation time for
the warm start. Stencil descent, Local CCD and regular CCD are the total computation time for stencil descent solve, processing local CCD and regular
CCD. Misc. is the timing for other uncategorized computations such as the gradient evaluation and initialization of auxiliary data structure, etc. # Iter. is the
average number of iterations for one time step, and Total is the total per-step computation time. All the timing is in seconds.

Scene # Ele. # DOF # Face # Color Δ𝑡
Warm
start

Stencil
descent

Local
line search

Local
CCD

Regular
CCD Misc. # Iter. Total

Fig. 1 975K 804K 393K + 58K 30 1/100 8 | 0.68 7.6 1.07 1.92 0.86 6.17 102 17.6 (129×)
Fig. 13 1.0M 585K 100K + 1.9K 15 1/100 3 | 0.09 3.9 0.52 0.38 0.3 1.56 16 6.7 (58×)
Fig. 14 487K 402K 197K + 58K 15 1/100 6 | 0.42 6.7 0.66 1.06 0.48 3.49 91 12.5 (91×)
Fig. 15 955K 854K 433K + 25K 15 1/150 26 | 4.0 47.8 27.2 12.3 10.5 19.1 422 116.8 (58×)
Fig. 16 446K 517K 236K + 37K 15 1/100 4 | 0.03 2.1 0.12 0.32 0.66 1.61 27 4.8 (72×)
Fig. 17 3.1M 2.3M 808K + 11K 45 1/100 17 | 6.4 126.8 54.7 36.5 16.1 33.5 321 267.6 (∼ 500×)
Fig. 18 1.7M 1.0M 231K + 271K 45 1/100 13 | 0.89 9.2 2.1 1.82 1.8 4.86 67 19.7 (122×)
Fig. 19 342K 387K 129K + 9K 10 1/100 3 | 0.23 4.6 0.31 0.84 0.23 1.36 44 5.1 (25×)
Fig. 21 147K 140K 69K + 10 15 1/100 7 | 0.2 0.43 0.05 0.06 0.066 0.33 17 0.93 (35×)

Regular barrier update Conservative barrier update

Fig. 8. Oscillating collision. Simulation of complex shapes may produce
oscillating collisions as vertices could bounce around multiple barriers (left).
Conservative barrier update eases this issue. It keeps recent barrier visible
during the optimization so that they can be effectively smoothed (right).

products for each column of P that was just filled. This computation
spans across stencils to avoid redundancy induced by vertex-based
parallelization.

In other words, our strategy re-distributes stencil-based 𝑝 [𝑘 ] into
multiple vertex-based directions, and the computation of directional
force gradient can be unfolded back at stencils. The stencil forms
the basic unit for calculating the stress tensor, which is the most
costly step and should not be excessively performed. The Hessian-
vector product is formulated as: H𝑘𝑝 [𝑘 ] = ∇𝑝 [𝑘 ]

(
𝜕𝐸𝑘

𝜕F𝑘

)
: 𝜕F𝑘

𝜕𝑥 [𝑘 ]

for elasticity stencils and H𝑘𝑝 [𝑘 ] = 𝜕𝜙𝑖

𝜕𝑑𝑖
· ∇𝑝 [𝑘 ]

(
𝜕𝑑𝑖
𝜕𝑥 [𝑘 ]

)
for barrier

stencils. HereH𝑘 denotes the element/barrier stiffness matrix, which
should not be confused with H[𝑘 ] as the latter also includes the
Hessian blocks from adjacent stencils. F𝑘 is the deformation gradient.
The directional derivative ∇𝑝 [𝑘 ] 𝜕𝐸𝑘/𝜕F𝑘 and ∇𝑝 [𝑘 ] 𝜕𝑑𝑖/𝜕𝑥 [𝑘 ] can be
analytically obtained using stress and distance differential [Sifakis
and Barbic 2012]. As a more convenient implementation, we used
accelerated complex-step finite different (CSFD) [Luo et al. 2019] to
compute the directional derivative.

7.2 Conservative Barrier Update
High-resolution and geometry-complex models often have oscil-
lating collisions that could take many iterations to be smoothed
out. One toy example is visualized in Fig. 8, where a box travels
between two colliders. When the box moves close enough to the
right wall, the barrier activates (as an orange spring in the figure),
which pushes the box to the left at the next iteration. The collider on

the left then triggers similar dynamics for the box, keeping it bounc-
ing back and forth between two strong barriers. Such oscillating
collisions are particularly perilous in vanilla IPC as it often leads to
many close-to-zero TOIs, which in turn freeze global displacement
updates (e.g., see Fig. 3).
Conservative barrier update does not rebuild B immediately af-

ter each regular CCD. Instead, we insert novel confirmed barriers
without removing old barriers. Keeping old barriers in B makes
them visible to the local CCD so that they can be timely triggered
in local updates. As shown in Fig. 8, with the conservative barrier
update, the barriers of both colliders are activated, which quickly
dampens the oscillation. Note that conservative update should not
raise accuracy concerns because barriers have vanished value when
𝑑𝑖 > 𝑑𝑖 .

We use hash functions to fast check if a collision pair is already
in B. In general, we build two one-dimension hashing tables: one
for vertex-triangle pairs and one for edge-edge pairs. Assume that a
vertex-triangle collision pair is identified in a regular CCD for the
𝑚-th vertex and 𝑛-th triangle. The hash function returns:

𝐻 (𝑚,𝑛) = (𝑚 mod 3007) · 3007 + (𝑛 mod 3007). (15)

We then check if the hash table cell at 𝐻 (𝑚,𝑛) is occupied. If so,
we double-check the vertex and triangle indices to confirm the pair
is already in B. Otherwise, ⟨𝑚,𝑛⟩ is inserted at 𝐻 (𝑚,𝑛), and we
append the information to the adjacency list (i.e., Fig. 7). Edge-edge
pairs are processed in the same way but on their own hashing table.

8 EXPERIMENTAL RESULTS
Our implementation platform is a desktop PCwith an Intel i9 11900K
CPU (8 cores), 128 GB memory, and an Nvidia 3090 GPU. All numer-
ical methods were implemented using C++ on the CPU. We chose
Eigen[Guennebaud et al. 2010] and Intel MKL[Wang et al. 2014]
as our primary BLAS library and direct linear solvers on the CPU
for comparative experiments. Our GPU implementation is matrix-
free, and all computations are directly launched on CUDA threads.
We use float precision in our GPU solver for large-scale models.
Double precision on the GPU is about 30% slower than float with
improved robustness for CCD-related computations. Fortunately, as
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Fig. 9. Dragging Armadillo. To objectively examine the convergence of our method, we simulate an elastic Armadillo under large deformations in a
collision-free setting using projected Newton (multi-core CPU, MKL), gradient descent (GPU, CUDA), and our method (GPU, CUDA). The model consists of
500K elements and 300K DOFs. Because collisions are ignored, the comparison does not include the warm-start step or local/regular CCD.

our method still carries out a regular line search filtering at the end
of each time step, float does not impose any stability issues in our ex-
periments. The CPU benchmark is based on the vanilla open-source
IPC implementation [Li et al. 2020, 2021b]. Each Newton solve in
CPU IPC is handled with multi-threaded Cholesky factorization
fromMKL. We note that TBB MKL is 20 − 50× faster than the LLT
solver shipped with Eigen. We use the neo-Hookean material in
most experiments, but our method can be applied to any hyperelas-
tic model. Tab 1 gives detailed timing statistics and breakdown of
experiments reported in the paper.

8.1 Convergence Benchmark
In the first experiment, we aim to compare our method with some
knownGPU-based FEMalgorithms, such as GPU gradient descent [Wang
and Yang 2016]. Since many parts of our method are specially de-
signed for processing barrier functions (e.g., the warm-start step),
the comparison naturally favors our method in a collision-rich sce-
nario. To avoid this bias, we compare convergence and computation
time in a contact-free setting. As shown in Fig. 9, the Armadillo
model consists of 500K elements and 300K DOFs. A sharp dragging
force is applied to the back of the Armadillo, with its ears and feet
fixed, to trigger large stretching and bending on the body. We com-
pare projected Newton[Teran et al. 2005], Jacobi-preconditioned
gradient descent [Wang and Yang 2016], and our method without
processing self-collisions. The convergence criterion is set to 10−4
of the residual L2 norm for all solvers.
Our observation is consistent with the previous analysis. When

time step is small (Δ𝑡 = 1/100), and the material is soft (Young’s
modulus is 5 MPa), the first-order method i.e., Jacobi-preconditioned
gradient descent gives the best performance on the GPU, which
only uses 0.88 second for one time step. In this setting, Newton’s
method and our method need 263 seconds and 3.8 seconds respec-
tively. This advantage however, diminishes when the simulation
becomes stiffer under a higher Young’s modulus or a bigger time
step. The total number of the iterations using gradient descent goes
up disproportionately. For instance, if we increase the time step size
from 1/100 to 1/30 second, gradient descent needs 9, 628 iterations
for one step. Further stiffening the Young’s modulus to 30 MPa
makes the iteration count jump to over 20K. On the other hand, the
projected Newton is quite robust against the variation of Young’s
modulus and time step sizes. The total number of Newton’s itera-
tion increases from 19 to 41 when Δ𝑡 goes up from 1/100 to 1/30.
It takes 581.3 seconds to complete a 1/100 step on average using
Newton’s method. Setting the Young’s modulus to 30 MPa, Newton
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Fig. 10. Convergence plots. We plot the convergence curves of Newton’s
method, gradient descent, and our method for the dragging Armadillo
(Fig. 9) under different material stiffness. The curves visualize the variation
of total energy at a chosen representative frame of the simulation.
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Fig. 11. Iteration count vs condition number. We plot the total number
of stencil descent iterations when the Hessian matrix has different condition
numbers under large deformations.

iteration count reaches 67, and one-time-step computation takes
945.1 seconds.
Compared with gradient descent, our method is locally second-

order exhibiting stronger convergence. When Δ𝑡 increases to 1/30
second, our method surpasses the gradient descent with faster per-
step computation (15.3 seconds vs 19.7 seconds). The iteration count
of our method does increase for stiffer instances, but the growth rate
is milder compared with the first-order approach – from 24 to 73
when Δ𝑡 is changed from 1/100 to 1/30. Such iteration counts keep
CCD manageable when barriers need to be taken care of. With the
existence of collisions, our method outperforms gradient descent or
other first-order methods by a much bigger margin (i.e., 3× – 10×).
We also plot the convergence curves of three solvers in Fig. 10,

where we visualize the variation of the total energy (Eq. (1)) of one
frame that needs the most iterations when the Young’s modulus is
set as 5 MPa, 15 MPa, and 30 MPa. Clearly, the first-order method
like gradient descent is sensitive to the stiffness of the simulation.
On the other hand, our method uses local curvature information at
each stencil making it more resilient to stiffer problems. To further
validate this, Fig. 11 shows how iteration counts vary when the
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Fig. 12. The beam model with different tessellations. The rectangular
beam model with different tessellations is bent under gravity. Our solver
delivers consistent results with different mesh qualities.

system matrix has different condition numbers. We evenly sample
100 frames during the simulation of Fig. 9, and corelate the variation
of the iteration counts and the corresponding matrix condition
number.
Our method produces consistent results under different tessella-

tions. As shown in Fig. 12, we simulate a rectangular beam model
discretized with different meshes. From right to left, the ratios be-
tween the longest and the shortest edges are 0.7, 0.45, 0.2, and 0.1
respectively. The final equilibrium shapes of the beam however are
very similar to each other.

8.2 Ablation Study
Next, we show an ablation study to explain how each module along
our pipeline contributes to the overall performance improvement.
The study is based on a representative scenario with a dragon hitting
a U-shape collider (Fig. 13). The dragon has one million elements
and 100K faces on the surface. If we use a Jacobi-style sweep, which
solves all stencils in parallel and averages the shared DOFs after-
wards, 249 iterations are needed for one step. We also implement
Vivace [Fratarcangeli et al. 2016], the state-of-the-art GPU-based
Gauss-Seidel coloring, to update the global Δ𝑥 . Vivace converges
faster than the Jacobi sweep using 168 iterations. Nevertheless, our
hybrid sweep strategy only needs 97 iterations. In this test, we
pre-compute three complementary color schemes, and there are 15
colors in each scheme. We call Jacobi or Gauss-Seidel sweep here to
only suggest different strategies to integrate stencil-wise displace-
ments to the global displacement. They should not be confused with
linear Jacob or Gauss-Seidel solvers [Fratarcangeli et al. 2016; Wang
2015], which would otherwise need several thousands of iterations
for one time step.

The total calculation of our hybrid sweep is heavier than a Gauss-
Seidel iteration because we relax stencils in other colors too. Fortu-
nately, those extra computations mostly run at unoccupied CUDA
threads. Therefore, we only observe a 3% − 5% slowdown compared
with a Gauss-Seidel sweep.

The adoption of local CCD saves the overall CCD time by 25%.
More importantly, local CCD eases the TOI locking induced by small
global TOI (i.e., see Fig. 3), which gives 20% overall speedup. Finally,
the warm-start step further pushes the computational time to a
single digit (6.7 sec). In this example, the warm start only needs
three iterations, which takes 88 ms on the GPU. This lightweight
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Fig. 13. Dragon in U. We conduct an ablation study. The dragon model
has one million elements and falls onto a U-shape collider. CPU-based IPC
uses 390 sec to simulate one time step (Δ𝑡 = 1/100 sec). A Jacobi-like sweep
using stencil descent will need 88.3 sec. Switching to Vivace [Fratarcangeli
et al. 2016] lows the time to 64.6 sec. Our hybrid sweep strategy further
reduces the computation time to 45.7 sec. With the help from local CCD
and warm start, we manage to improve the performance to 6.7 sec, which
is 13× faster than the naïve implementation.

Fig. 14. A barbarian ship. A soft barbarian ship with 487K elements falls on
the spiral stair. The ship has complex and concave geometry. Its interaction
with the stair produces interesting animations. Being an interior-point-
based method, our simulation guarantees all triangles on the surface are
free of intersection and is 91× faster than the vanilla IPC.

process offers a 70% performance jump. As a baseline, the original
CPU IPC takes 390 sec to complete one time step for this test, and
our method is 58× faster.

8.3 Efficient Simulation for Complex Collisions
Our method is based on the interior-point method and inherits
all the merits of IPC including the algorithmic guarantee of be-
ing interpenetration-free. Two such examples are reported here. In
Fig. 14, a soft barbarian ship slides down along a spiral stair. The
complex geometry of the ship constantly collides and interacts with
the handrails of the stair (with 58K triangles on the surface). It even-
tually gets stuck on the stair by frictional contacts. The barbarian
ship has 487K elements, and our method takes 12.5 sec to simulate
one step while Newton-based IPC needs about 20 mins on average.
This is an over 90× speedup.

Another challenging example is shown in Fig. 15, where a puffer
ball falls into an elastic chain net. The net is made of 616 rubber
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Fig. 15. A puffer ball meets an elastic chain net. Contacts and collisions between a soft puffer ball and a dense elastic chain net are difficult to be processed
robustly. Many close-to-zero TOIs are generated during the simulation, which cause TOI locking and make CPU IPC cumbersome. Our method delivers both
quality and efficiency for this hard simulation problem. In this experiment, the puffer ball has 610K elements, and the net has 344K elements on 616 elastic
rings. Our method uses 117 sec on average to simulate one step, while the original IPC needs over 2 hours.

Fig. 16. Codimensional stencil descent. Our algorithm is versatile, and can robustly handle codimensional simulations. To validate the capability, we
simulate high-resolution interactions between a piece of tablecloth (155K triangles) and two bone dragons (145K elements per dragon) on the spiky surface.
The cloth is modeled as a neo-Hookean shell. Under a strong wind field, it gets in contact with the skeleton of the dragon tightly, yielding detailed wrinkles. In
this experiment, our method runs 72× faster than codimensional IPC [Li et al. 2021b].

rings, which are mutually coupled via contacts. Each ring has 559
elements and 220 triangles on the surface. Such a network of elastic
bodies further interacts with the puffer ball, which has 610K ele-
ments and 162K surface triangles. During the simulation, the soft
strings on the puffer ball densely entangle the rings on the net. Such
interweaving contacts frequently lead to TOI locking and make
global displacement update less effective. On the other hand, our
method is both robust and efficient. In this example, our method is
58× faster than IPC.

8.4 Versatility for Heterogeneous Models
The good convergence of our method makes it an ideal choice for
hybrid models with heterogeneous materials. In Fig. 1, we increase
the stiffness of the ship body and add another barbarian ship into
the test. If one chooses to use gradient descent [Wang and Yang
2016], the average iteration number will go up by at least one order
(well above ten thousand iterations). On the other hand, our method
only needs about 100 iterations on average. As we can see from
the figure, the animation is of high-quality with an acceleration
of two orders (129×) compared with CPU IPC. For this test, our
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Fig. 17. Scalability test. As a stress test, we simulate a large-scale scenario with five falling puffer balls. The total number of elements exceeds three million,
and there are over two million simulation DOFs. The simulation of this scale becomes practically impossible using direct solvers even with 128G CPU memory.
Therefore, we have to use AMGCL for each Newton solve. On the other hand, our method can deal with this stress test without any problems. On average, our
method uses less than five minutes to complete one time step while AMGCL could needs days.

Fig. 18. Hybrid simulation. Our method can well handle simulations with
both rigid and deformable objects. In this experiment, the chain net is
nearly rigid, and each ring is modeled as a stiff affine body. The material on
the helicopter is also heterogenous with (20×) stiffer rotor blades and soft
cabins. Our method brings a speedup of over 122× faster than CPU based
solvers [Lan et al. 2022a].

method is even faster than medial IPC [Lan et al. 2021] by about
30%, which is a reduced simulation algorithm. We find that the
conversion between subspace and fullspace coordinates is a major
bottleneck for reduced models. However, model reduction simplifies
the collision processing and much fewer iterations are needed.
In the experiment of Fig. 18, we make the chain net nearly rigid

using affine body dynamics (ABD). The helicopter model also mixes
stiff (rotor blades) and soft (the body of the helicopter) components.
The blades are 50× stiffer. Each helicopter consists of 280K elements,
and there are six helicopters in the test. Our method simulates such
hybrid scenario of both rigid and deformable objects efficiently
without any interpenetration. In this example, our method is 122×
faster than ABD [Lan et al. 2022a] and 15× faster than GPU gradient
descent.
Our method can also robustly handle codimensional geometry

like thin shell and cloth. As demonstrated in Fig. 16, two bone drag-
ons drop on the spiky terrain. Each bone dragon has 145K elements.
After that, we cover the scene with a wind piece of tablecloth with
156K triangles. A strong wild field is then applied pushing cloth
tightly in contact with the bone dragon. In this example, we use
the full neo-Hookean membrane model for the cloth. Because the
simulation involves both tetrahedral and triangular elements, we
expand each triangle on the cloth with a virtual vertex so that the

local system is still 12-dimension. Doing so balances the compu-
tation at threads. In this example, our method is 72× faster than
codimensional IPC [Li et al. 2021b].

8.5 Scalability Test
Our method can be conveniently implemented on GPU (or any
parallel platforms) in a matrix-free manner. This feature makes it
quite scalable. Hereby, we report a stress test of five falling puffer
balls (Fig. 17). The total number of elements in this example is over
3.1M. The direct Cholesky factorization becomes extremely slow
for this test, which needs dozens of hours to simulate one time
step. Therefore, we have to resort to the multigrid method (e.g.,
AMGCL [Demidov 2019]) for the global Newton solve, which still
consumes over 30G CPU memory during the simulation. On the
other hand, our solver can right fit into 24G GPU memory of 3090.
Under the default AMGCL setting, our method is over 500× faster.
This is just an estimation as we are never able to finish this exper-
iment on the CPU using AMGCL. When puffer balls collide with
each other, AMGCLwill need several days to finish the computation
of one time step, while our method only needs minutes.

8.6 CPU-GPU Comparison
The speedup of our method does not come from material simplifi-
cation or early termination of the optimization. In order to justify
the accuracy of our method, we carefully compare the result of
our method with CPU IPC frame-by-frame and side-by-side. In the
example shown in Fig. 19, a long strand of noodle drops into a glass
bowl. The noodle has over 342K elements, and it entangles with
itself during the falling. As we use a local 𝑑 at each colliding pair
(i.e., Eq. (11)), the contact behavior our method is slightly different
from the original IPC. The results using both methods are of high
quality and free of any interpenetration. Another similar experiment
is reported in Fig. 20. Despite small differences of the final contact
between the puffer ball and the bottom of the bowl, the resulting
animations using our method and CPU IPC are nearly identical.

Lastly, we show a quantitative comparison between our method
and CPU IPC to compress a Voronoi cube. The cube embeds an
irregular grid. When being compressed, a lot of self-collisions occur.
We slowly push the top of the cube downward and compare our
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Fig. 19. A long noodle. A long strand of noodle drops into a transparent bowl. The noodle has 342K elements. Due to the modification of 𝑑 , our simulation
(bottom) is slightly different from the original IPC simulation (top). Both animations are plausible and free of any interpenetration. Our method is 25× faster.
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Fig. 20. A puffer ball in the bowl. Another side-by-side comparison be-
tween CPU IPC and our method. The resulting animations of two falling
puffer balls (610K elements) are nearly the same using both methods. From
the bottom view, we can see the final contact patterns, when the puffer ball
comes to a stop, are slightly different.

Fig. 21. Compression comparison.We quantitatively compare the simula-
tion accuracy using our method with Newton’s method when compressing
a Voronoi cube. Many self-collisions are generated during the compression,
and they are accurately captured by barrier functions. The compression
ratio is 60%, and the relative error is visualized using the colormap.

simulation with the results obtained using the Newton’s method
frame by frame. Per-vertex displacement difference is visualized
when the maximum compression (60%) is reached (see Fig. 21, right).
Our result is nearly identical to Newton’s solution: The maximum
relative error is smaller than 10−3 but our method is 35× faster.

9 LIMITATION AND CONCLUSION
In this paper, we show that the interior-point method can be well
handled and accelerated on the GPU. In elastic body simulation,
CCD must be followed after each displacement update to ensure
barrier functions are well-defined. Therefore, the GPU interior point
calls for a different strategy for convergence-efficiency trade-off. We
observe that local second-order methods are effective in relaxing
barrier-in-the-loop simulations. While this computation is more
costly than the first-order approaches, its improved convergence
outweighs this drawback in collision-rich tasks. Based on this par-
allelization modality, we systematically customize the simulation
pipeline including the hybrid sweep scheme that can better harvest
the capacity of the modern GPU, the local CCD mechanism that
avoids TOI locking, and the warm start that softens barriers before
the optimization kicks in.
Our method also has some limitations that lead to several inter-

esting future research directions. First, we note that the first-order
method is still competitive when collisions are not massively active.
Combining first-order relaxation with second-order ones at different
stages of the simulation seems to be a promising idea. Similar to
IPC [Li et al. 2020], our method is a primal interior-point implemen-
tation. It is known that primal-dual interior point could be more
effective for heterogenous systems [Macklin et al. 2020]. We will in-
vestigate GPU-based primal-dual interior-point solutions to further
enhance the solver’s performance. For highly stiff instances, our
methodmay still need a large number of iterations. Subspace precon-
ditioning should be a good remedy to this issue. Our method is more
effective and beneficial for large-scale simulations with hundreds
of thousands or millions of DOFs. The advantage of our method be-
comes less obvious for smaller problems. For instance, our method
is only about twice faster than CPU IPC for simulations of 10K
DOFs. We also note that local relaxation is mathematically equiva-
lent to (nonlinear) convolution, which suggests its close connection
to learning-based methods. The potential of using the emerging
neural processing unit (NPU) [Yin et al. 2017] for simulation is a
worthy future topic.
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