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Fig. 1. Kick water. Our method accurately captures the complex interactions between the water, the multi-layer skirt, and the mannequin body without any

interpenetration as the mannequin wearing the skirt kicks in a swimming pool and sends water flying.

We present a robust and efficient method for simulating Lagrangian solid-

fluid coupling based on a new operator splitting strategy. We use variational

formulations to approximate fluid properties and solid-fluid interactions,

and introduce a unified two-way coupling formulation for SPH fluids and

FEM solids using interior point barrier-based frictional contact. We split

the resulting optimization problem into a fluid phase and a solid-coupling

phase using a novel time-splitting approach with augmented contact proxies,

and propose efficient custom linear solvers. Our technique accounts for

fluids interaction with nonlinear hyperelastic objects of different geome-

tries and codimensions, while maintaining an algorithmically guaranteed

non-penetrating criterion. Comprehensive benchmarks and experiments

demonstrate the efficacy of our method.
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1 INTRODUCTION

The coupling of solids and fluids is common in nature but chal-

lenging to simulate. While solids are typically simulated using La-

grangian meshes, fluids are often discretized using Eulerian grids

to accommodate topology changes. To accurately couple these dis-

tinct discretizations, sophisticated algorithms, such as the cut-cell

method [Zarifi and Batty 2017], are often necessary. Unfortunately,

they can be expensive and do not handle thin shells. Purely Eulerian

[Teng et al. 2016; Valkov et al. 2015] or SPH [Akinci et al. 2012;

Gissler et al. 2019] schemes have demonstrated successful two-way

coupling by same-view discretization. They do not easily extend to

nonlinear elastodynamics. Hybrid methods like MPM [Jiang et al.

2016] can simulate mixed materials, but can experience artificial

stickiness unless resolved with more expensive schemes [Fang et al.

2020]. Furthermore, these methods do not ensure non-intersecting

trajectories and often require additional correction procedures to

handle accidentally penetrated fluids during advection.

We take the Lagrangian path and present a new method for cou-

pling FEM solids and SPH fluids. By approximating solid, fluid, and

interaction terms with potentials, we formulate two-way coupling

as a monolithic optimization problem. Specifically, we draw inspi-

ration from position-based fluids [Macklin and Müller 2013] and

model weak incompressibility using a quadratic energy and a new

updated Lagrangian update rule to track volume changes. We fur-

ther symmetrize the discrete Laplacian-based viscosity and propose

a discrete quadratic potential for better accuracy and robustness.

We follow the Incremental Potential Contact [Li et al. 2020] model

to enforce guaranteed separable boundary conditions and resolve

frictional contacts at the interface.

The proposed formulation achieves strong coupling, but can be

exceedingly inefficient when solved with Newton’s method due to
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the huge and dense Hessian of the fluid part, which is a result of the

need for many particle neighbors for an accurate SPH discretization.

This causes a significant computing bottleneck.

To tackle this issue, we propose a robust proxy contact energy

formulation, splitting the time integration into a fluid phase and a

solid-coupling phase. The fluid phase requires only one Newton iter-

ation per time step, resulting in increased efficiency with nonlinear

optimization occurring only during the solid-coupling phase. One of

the key advantages of our quadratic proxy is its ability to effectively

resolve instability caused by time splitting. This is achieved through

its asymptotic approximation to the solid-fluid contact force. Ad-

ditionally, time integration is maintained consistent through the

cancellation of the proxy’s contribution in the solid-coupling phase,

resulting in only a small splitting error. Finally, we design a matrix-

free conjugate gradient solver and a domain-decomposed solver to

further enhance the computational efficiency.

In summary, our contributions include

• a unified penetration-free two-way coupling framework for

weakly compressible SPH fluids and nonlinear elastic FEM

solids in arbitrary codimensions;

• consistently modeled incompressibility and viscosity poten-

tials for SPH fluids, incorporating advantages of Updated

Lagrangian (UL) kinematics;

• a robust time splitting scheme with contact proxies that en-

ables separate time integrations of solids and fluids;

• a matrix-free conjugate gradient (CG) solver and a Schur

complement based domain-decomposed solver for efficiently

solving the linear systems.

2 RELATED WORK

Many popular fluid solvers use Eulerian grids and a series of existing

works focus on coupling Eulerian fluids with Lagrangian solids by

resolving interactions between the grids and irregular mesh bound-

aries. The ghost fluid method [Fedkiw 2002; Fedkiw et al. 1999]

was proposed to additionally discretize the Eulerian/Lagrangian

interface. Early works considered weak coupling [Guendelman et al.

2005], which advances the solids and fluids alternatively. Strong

coupling [Klingner et al. 2006] on the other hand solves a monolithic

system and is often more robust. Chentanez et al. [2006] proposed a

two-way coupling method between fluids and deformable solids by

solving a combined system of fluid-cell pressure and solid-node ve-

locity. The cut-cell method [Roble et al. 2005] is another widely used

solution, often through the usage of virtual nodes. Batty et al. [2007]

proposed a variational framework to strongly couple fluids and rigid

bodies by casting the pressure solve into minimization. Subsequent

extensions support deformable objects and thin shells [Robinson-

Mosher et al. 2011, 2008], where elastic forces are explicitly applied

and the coupling step is implicit. Assuming corotated linear elastic-

ity, Zarifi and Batty [2017] incorporated the implicit solid dynamics

into pressure projection, obtaining a symmetric positive-definite

system. Later works also explored rigid-rigid [Takahashi and Batty

2020], rigid-fluid [Takahashi and Batty 2021], and solid-fluid [Taka-

hashi and Batty 2022] coupling considering frictional contacts. Euler-

ian solids [Levin et al. 2011] were also explored, where coupling can

be conveniently achieved in a purely Eulerian fashion [Teng et al.

2016; Valkov et al. 2015]. However they face challenges in numerical

dissipation, volume conservation, and handling structures thinner

than a grid cell. More recently, Brandt et al. [2019] built upon the

immersed boundary method [Peskin 2002] and proposed a reduced

solver to simulate real-time coupling, focusing on incompressible

elastic materials and no-slip boundary conditions.

Fluids can also be directly modeled with Lagrangian meshes

[Batty et al. 2012; Clausen et al. 2013; Klingner et al. 2006; Wang et al.

2020], enabling explicit coupling with solids. However, remeshing

tends to become a bottleneck. Using particles is another popular

strategy. SPH [Koschier et al. 2022] uses spatial sampling to approx-

imate continuous functions and captures compelling fluid dynamics.

Pioneering works [Becker and Teschner 2007; Monaghan 1994] used

the Equation of State (EOS) for weakly compressible fluids, where

the pressure is proportional to the density deviation. An explicit

formulation may strictly restrict time step sizes. Incompressibility

has also been enforced by solving a Pressure Poisson Equation (PPE)

[Bender and Koschier 2015; Ihmsen et al. 2013; Solenthaler and Pa-

jarola 2009]. This approach seeks to cancel out density or velocity

divergence deviations caused by non-pressure forces through the

use of pressure accelerations. SPH boundary handling techniques

have been developed to prevent penetrations of fluid particles near

solid boundaries [Becker and Teschner 2007; Becker et al. 2009b;

Ihmsen et al. 2010]. One such method, proposed by Akinci et al.

[2012], uses a single layer of boundary samples and has been ap-

plied to the coupling of fluids with both rigid bodies and elastic

solids [Akinci et al. 2013]. Gissler et al. [2019] proposed a global

formulation that unifies rigid body and fluid dynamics, in which the

fluid pressure solver is linked to a second artificial pressure solver

for rigid body particles. Koschier and Bender [2017] introduced an

alternative method using density maps to represent dynamic rigid

boundaries, eliminating the need for boundary particles. Bender

et al. [2019] proposed using the volume contribution of boundary

geometry to compute boundary forces, which reduces the cost of

precomputation but cannot be applied to deformable bodies.

Solenthaler et al. [2007] used SPH to approximate the deforma-

tion gradient of linear elastic materials, but the resulting gradient

is not rotation invariant. Becker et al. [2009a] addressed this issue

by using shape matching to determine orientation and calculating

forces in a rotated configuration. Peer et al. [2018] proposed an

implicit scheme and applied kernel gradient correction [Bonet and

Lok 1999] to obtain a first-order consistent SPH formulation for the

deformation gradient. Incorporating solid particles into the preexist-

ing fluid pressure solver can resolve contact handling, but SPH still

faces numerical issues such as the zero-mode [Ganzenmüller 2015;

Kugelstadt et al. 2021] when simulating elastic objects. Additionally,

the pressure solver will treat solid objects as incompressible under

compression, which may not be applicable in all cases.

The Material-Point Method (MPM) [Jiang et al. 2016; Sulsky et al.

1995] combines Lagrangian and Eulerian representations to capture

solid-fluid coupling [Fei et al. 2018; Stomakhin et al. 2014; Yan et al.

2018] and mixture [Gao et al. 2018; Tampubolon et al. 2017]. Fang

et al. [2020] proposed a free-slip treatment, but did not consider

separation. Recently, a FEM-MPM coupling method based on a

variational barrier formulation [Li et al. 2020] has been proposed

for coupling frictional and separable elastic materials [Li et al. 2022].
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Fig. 2. Shoot armadillo with a high-speed water jet.

Our approach for solid-fluid coupling is inspired by this method

and uses a similar purely Lagrangian framework.

3 FORMULATION

Here we derive a time integrator for a coupled system of solids and

fluids by starting with the governing equations and then performing

discretization. Subscripts 𝑠 and 𝑓 represent solid and fluid quantities.

3.1 Governing Equations

The governing equations for the coupled system are

𝜌𝑠
𝐷v𝑠

𝐷𝑡
= ∇ · 𝜎 + 𝜌𝑠g + f𝑠�𝑠 + f𝑓 �𝑠 , (1)

𝜌 𝑓
𝐷v𝑓

𝐷𝑡
= −∇𝑝 + 𝜇∇2v𝑓 + 𝜌 𝑓 g − f𝑓 �𝑠 , (2)

∇ · v𝑓 = 0, (3)

where 𝜌 is density, g is gravity, f𝑠�𝑠 is the self-contact force of solids,

f𝑓 �𝑠 is the contact force exerted by fluids, 𝜎 is the Cauchy stress of

solids, 𝑝 is the fluid pressure, and 𝜇 is the dynamic viscosity [Bridson

2015].

At the interface between solids and fluids, we enforce the separa-

ble boundary condition

0 ≤ (v𝑠 − v𝑓 ) · n𝑓 ⊥ (f𝑓 �𝑠 · n𝑓 ) ≥ 0 (4)

to prevent penetration while allowing separation [Batty et al. 2007],

where n𝑓 is the outward pointing normal of the fluid surface. This

condition helps determine the normal component of f𝑓 �𝑠 . For the

tangential component (friction), let u = (I − n𝑓 ⊗ n𝑓 ) (v𝑠 − v𝑓 ) be

the tangential relative velocity, we have

(I − n𝑓 ⊗ n𝑓 )f𝑓 �𝑠 = argmin
𝜷

𝜷 · u

s.t. ∥𝜷 ∥ ≤ 𝜇𝑡 f𝑓 �𝑠 · n𝑓 and 𝜷 · n𝑓 = 0
(5)

following the MaximumDissipation Principle [Moreau 2011], where

𝜇𝑡 is the friction coefficient. We enforce exact mass conservation by

adopting Lagrangian methods to discretize both domains.

3.2 Solid Domain

We focus on nonlinear hyperelastic solids, where the elastic force is

the negative gradient of an elastic potential. After discretizing the

solid domain Ω𝑠 as Lagrangian linear finite elements (triangles in

2D and tetrahedra in 3D), the total elastic potential is a piecewise

constant summation of an elastic energy density function 𝜓𝑠 (F)

(e.g. neo-Hookean) over the mesh domain: Ψ𝑠 (x) =
∑
𝑒 𝑉𝑒𝜓𝑠 (F𝑒 ),

where 𝑉𝑒 is the rest volume of tetrahedron 𝑒 , and F =
𝜕x(X,𝑡 )

𝜕X is the

deformation gradient with X and x the material and world space

coordinates respectively [Sifakis and Barbic 2012]. For f𝑠�𝑠 , we

follow Li et al. [2020]’s smooth barrier approach that guarantees

non-penetration. We leave the discussion of f𝑓 �𝑠 to ğ 3.4.

3.3 Fluid Domain

Following SPH literature [Becker and Teschner 2007; Bender and

Koschier 2015; Ihmsen et al. 2013; Macklin and Müller 2013], we dis-

cretize the fluid domain Ω𝑓 with Lagrangian particles. To integrate

fluids with optimization-based time integration, we approximate

both the pressure and viscosity forces as conservative forces. We

verify in the supplementary [Anonymous 2023] that these proposed

potential energies are both convex and quadratic.

3.3.1 Incompressibility Potential. Pressure forces help preserve the

volume of incompressible fluids. We thus model the incompressibil-

ity via a quadratic energy density function𝜓𝑓 ,𝐼 (𝐽 ) =
𝑘𝐼
2 (𝐽 −1)

2 that

penalizes the deviation of volume ratio 𝐽 = 𝜌0/𝜌 from 1, where 𝜌0
is the initial density. The use of a large stiffness value (𝑘𝐼 ) in a con-

vergent solve results in negligible visual compression, eliminating

the need for higher degree polynomials in nearly incompressible

fluids [Hyde et al. 2020]. The incompressibility potential is obtained

by integrating𝜓𝑓 ,𝐼 (𝐽 ) over the fluid domain Ω
0
𝑓
in material space:

𝑃𝐼 (x) =
∑︁

𝑖

𝑘𝐼

2
𝑉0 (𝐽𝑖 (x) − 1)

2, (6)

where we assumed all fluid particles have equal rest volume𝑉0, and

𝐽𝑖 denotes the volume ratio of the 𝑖-th particle as a function of x.

Updated Lagrangian. SPH literature often relates 𝜌 to x through

density summation in the world space. To obtain a linear relation

between 𝐽 and x so that the incompressibility potential stays qua-

dratic in terms of x, we track 𝐽 in an updated Lagrangian fashion.

Treating Ω
𝑛 as an intermediate reference space and differentiating

the deformation map between Ω
𝑛 and Ω

𝑛+1 results in an update

rule

𝐽𝑛+1𝑖 = 𝐽𝑛𝑖 (1 + ℎ∇ · v
𝑛+1
𝑖 ), (7)

where 𝐽𝑛𝑖 and ∇ · v𝑛+1𝑖 can be approximated as

𝐽𝑛𝑖 =
𝜌0∑

𝑗
𝑚 𝑗𝑊𝑖 𝑗

, ∇ · v𝑛+1𝑖 =

∑︁

𝑗

𝑚 𝑗

𝜌𝑛𝑗
(v𝑛+1𝑗 − v𝑛+1𝑖 ) · ∇𝑖𝑊𝑖 𝑗 (8)

via SPH, and𝑊𝑖 𝑗 = 𝑊 (x𝑖 − x𝑗 ) is a kernel function (e.g. Cubic

Spline kernel [Monaghan 1992, 2005] or Spiky kernel [Müller et al.

2003]). Here 𝐽𝑛𝑖 denote the reinitialized volume ratio of the 𝑖-th fluid

particle at the beginning of time step 𝑛. Such reinitialization avoids

accumulated density and particle distribution errors commonly seen

in other updated Lagrangian solvers like MPM.

3.3.2 Viscosity Potential. Modeling viscosity via strain rate tensors

[Bender and Koschier 2016; Peer et al. 2015; Peer and Teschner 2016;

Takahashi et al. 2015] is possible, but may suffer from artifacts at

the surface due to particle deficiencies. We follow Monaghan [2005]

to use the more robust velocity Laplacian [Weiler et al. 2018] and

derive its energy form.
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Fig. 3. Cream is stirred, causing spoon deformation.

Combining SPH 1st-order derivatives and finite differences, the

viscosity force can be computed as

f𝑖 (x) = 𝜈𝑚𝑖∇
2v𝑛+1𝑖 = 2𝜈 (𝑑 + 2)

∑︁

𝑗

𝑚𝑖𝑚 𝑗

𝜌 𝑗

∇𝑖𝑊𝑖 𝑗 (x
𝑛
𝑖 𝑗 )

𝑇

∥x𝑛𝑖 𝑗 ∥
2 + 0.01ℏ2

v𝑛+1𝑖 𝑗 ,

where x𝑛𝑖 𝑗 = x𝑛𝑖 − x
𝑛
𝑗 , v

𝑛+1
𝑖 𝑗 = v𝑛+1𝑖 − v𝑛+1𝑗 , ℏ is the support radius

of the kernel, 𝜈 and 𝑑 ∈ {2, 3} denote the kinematic viscosity and

spatial dimension respectively. Directly applying this force violates

momentum conservation as the mutual interaction forces are not

equal. Thus, we perform a further approximation

f𝑖 (x) ≈ 4𝜈 (𝑑 + 2)
∑︁

𝑗

𝑚𝑖𝑚 𝑗

𝜌𝑖 + 𝜌 𝑗

∇𝑖𝑊𝑖 𝑗 (x
𝑛
𝑖 𝑗 )

𝑇

∥x𝑛𝑖 𝑗 ∥
2 + 0.01ℏ2

v𝑛+1𝑖 𝑗 (9)

to solve this issue and also make the force integrable. Let V𝑖 𝑗 =

4(𝑑 + 2)
𝑚𝑖𝑚 𝑗

𝜌𝑖+𝜌 𝑗

(−∇𝑖𝑊𝑖 𝑗 ) (x
𝑛
𝑖 𝑗 )

𝑇

∥x𝑛𝑖 𝑗 ∥
2+0.01ℏ2

, we can now gather and integrate all

viscosity forces and obtain a quadratic viscosity potential

𝑃𝑉 (x) =
1

4
𝜈ℎ̂

∑︁

𝑖

∑︁

𝑗

∥v𝑛+1𝑖 𝑗 ∥
2
V𝑖 𝑗

, (10)

where ℎ̂ is a constant scalar related to the time integration scheme.

For example, ℎ̂ = ℎ for implicit Euler as v𝑛+1 = (x𝑛+1 − x𝑛)/ℎ.

3.4 Coupling

3.4.1 Barrier Potential for Non-penetration. To couple the solid

domain Ω𝑠 with the fluid domain Ω𝑓 , we use the separable boundary

condition (Eq. 4), which enforces non-interpenetration constraints

between these two domains. To model these constraints, we first

define a distance function

𝑑 (𝜕Ω𝑡
𝑠 , x𝑓 ) = min

x𝑠
∥x𝑠 − x𝑓 ∥, x𝑠 ∈ 𝜕Ω

𝑡
𝑠 , x𝑓 ∈ Ω

𝑡
𝑓
, (11)

which measures the distance between x𝑓 , a point in the fluid domain,

and the surface of the solid domain. Then the primal component of

the constraints can be expressed as

𝑑 (𝜕Ω𝑡
𝑠 , x𝑓 ) ≥ 0, ∀𝑡 ≥ 0, ∀x𝑓 ∈ Ω

𝑡
𝑓
. (12)

We then adopt the barrier formulation from Li et al. [2020] to model

all the constraints in Eq. 4 between solids and fluids, and obtain a

barrier potential
∫

𝜕Ω𝑡
𝑓

𝑏 (𝑑 (𝜕Ω𝑡
𝑠 , x𝑓 ), 𝑑)𝑑x𝑓 , (13)

where the barrier energy density 𝑏 (𝑑, 𝑑) is piecewise smooth and

only activated when 𝑑 < 𝑑 , improving efficiency and approximately

satisfying the complementary slackness condition. As 𝑑 approaches

0, the value of 𝑏 (𝑑, 𝑑) monotonically increases to infinity, providing

arbitrarily large repulsion to avoid interpenetration.

Since our solids and fluids domains are respectively discretized

as meshes and particles, the barrier potential (Eq. 13) in 3D can be

numerically integrated as

𝐵sf (x𝑠 , x𝑓 ) =
∑︁

𝑞∈Q𝑓

𝑠𝑞𝑏 (min
𝑒∈B𝑠

𝑑𝑃𝑇 (x𝑞, 𝑒), 𝑑)

=

∑︁

𝑞∈Q𝑓

𝑠𝑞 max
𝑒∈B𝑠

𝑏 (𝑑𝑃𝑇 (x𝑞, 𝑒), 𝑑),
(14)

where Q𝑓 is the set of all SPH fluid particles, B𝑠 is the set of all

boundary triangles of the solids, 𝑑𝑃𝑇 (x𝑞, 𝑒) measures the distance

between particle x𝑞 and triangle 𝑒 , and 𝑠𝑞 is set to 2
(
𝐽 𝑛𝑞 𝑉0

𝜋

) 1
2
in 2D

and 𝜋
(
3𝐽 𝑛𝑞 𝑉0

4𝜋

) 2
3
in 3D, which is the integration weight (boundary

area) of each fluid particle,. Here the min-max transformation is

based on the non-ascending property of the barrier function. How-

ever, the max operator here makes the barrier potential difficult to

optimize efficiently with gradient-based methods. Fortunately, due

to the local support of the barrier function 𝑏 (𝑑,𝑑) as 𝑑 is small, we

can simply approximate the barrier potential as

𝐵sf (x𝑠 , x𝑓 ) =
∑︁

𝑞∈Q𝑓

∑︁

𝑒∈B𝑠

𝑠𝑞𝑏 (𝑑
𝑃𝑇 (x𝑞, 𝑒), 𝑑), (15)

which may result in overestimated contact forces near the edges

and nodes on the mesh boundary, but we have not observed any

artifacts in our experiments.

3.4.2 Friction Potential. Following Li et al. [2020], we model the

local friction forces f𝑘 for every active solid-fluid contact pair k.

Formally, the friction force is defined as

f𝑘 (x𝑠 , x𝑓 ) = −𝜇𝑡𝜆𝑘𝑇𝑘 (x𝑠 , x𝑓 ) 𝑓1 (∥u𝑘 ∥)
u𝑘
∥u𝑘 ∥

, (16)

where 𝜆𝑘 is the contact force magnitude, 𝑇𝑘 (x𝑠 , x𝑓 ) ∈ R
3𝑛×2 is the

consistently oriented sliding basis, and u𝑘 is the relative sliding dis-

placement, which can be computed as u𝑘 = 𝑇𝑘 (x𝑠 , x𝑓 )
𝑇 ( [x𝑇𝑠 , x

𝑇
𝑓
]𝑇 −

[(x𝑛𝑠 )
𝑇 , (x𝑛

𝑓
)𝑇 ]𝑇 ). Here 𝑓1 is a smoothly approximated function de-

signed for the smooth transition between sticking and sliding modes.

To make this friction formulation fit into optimization time integra-

tion, Li et al. [2020] further approximated the sliding basis𝑇 (x𝑠 , x𝑓 )

and contact force 𝜆𝑘 (x𝑠 , x𝑓 ) explicitly as 𝑇 (x𝑛𝑠 , x
𝑛
𝑓
) and 𝜆𝑘 (x

𝑛
𝑠 , x

𝑛
𝑓
).

Then the semi-implicit friction force is integrable with the friction
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Fig. 4. Buoyancy. Three elastic elephants with different densities (from left to right: 200, 700, and 1200 𝑘𝑔/𝑚3) fall into the water, demonstrating buoyancy.

potential computed as

𝐷sf (x𝑠 , x𝑓 ) =
∑︁

𝑘∈A𝑛

𝜇𝑡𝜆
𝑛
𝑘
𝑓0 (∥u𝑘 ∥), (17)

where 𝑓0 is defined by the relation 𝑓 ′0 = 𝑓1 and A
𝑛 is the set con-

taining all activate particle-triangle contact pairs at the previous

time step 𝑛.

3.5 Optimization Time Integrator

With the above potential energies modeling all the solid and fluid

forces, now we can build a unified two-way solid-fluid coupling

framework. By stacking all nodal positions and velocities of SPH

particles and FEM nodes as x = [x𝑇
𝑓
, x𝑇𝑠 ]

𝑇 and v = [v𝑇
𝑓
, v𝑇𝑠 ]

𝑇 ,

we define Ψ(x) = Ψ𝑠 (x𝑠 ), 𝑃 (x) = 𝑃𝐼 (x𝑓 ) + 𝑃𝑉 (x𝑓 ) and 𝐶sf (x) =

𝐵sf (x𝑠 , x𝑓 ) + 𝐷sf (x𝑠 , x𝑓 ). Combined with the solid-solid contact po-

tential 𝐶ss (x) from IPC, our solid-fluid coupling problem can be

solved in a monolithic manner applying implicit Euler time integra-

tion{
v𝑛+1 = v𝑛 + ℎM−1 (fext − ∇𝑃 (x

𝑛+1) − ∇Ψ(x𝑛+1) − ∇𝐶 (x𝑛+1))

x𝑛+1 = x𝑛 + ℎv𝑛+1
,

(18)

which is equivalent to

x𝑛+1 = argmin
x

1

2
∥x − x̂𝑛 ∥2M + ℎ

2 (𝑃 (x) + Ψ(x) +𝐶 (x)) (19)

with the mass matrix M, time step size ℎ, the predictive position

x̂𝑛 = x𝑛 + ℎv𝑛 + ℎ2M−1fext and the total contact potential 𝐶 (x) =

𝐶sf (x) +𝐶ss (x).

4 EFFICIENT SOLVER

A straightforward way to robustly solve the time-stepping optimiza-

tion problem (Eq. 19) is to apply the projected Newton’s methodwith

line search [Li et al. 2020]. At every iteration, the search direction p

can be computed by solving the linear system
[
H𝑓 G

G𝑇 H𝑠

]
p =

[
g𝑓
g𝑠

]
. (20)

Here H𝑓 and H𝑠 are the (projected) Hessian matrices w.r.t. the posi-

tion of fluids and solids respectively, and G =
𝜕2𝐸

𝜕x𝑓 𝜕x𝑠
denotes the

coupling submatrix. Nevertheless, solving this linear system can be

a severe bottleneck in practice. One reason is that SPH techniques

need sufficient neighbors to accurately approximate physical quanti-

ties, which results in a much larger and denser fluid Hessian matrix

H𝑓 compared to the solid one. In addition, the optimization may

require many iterations to converge due to the sharpness of barrier

energy, especially in contact-rich cases.

Since our fluid energies are all quadratic, we separate them from

the highly nonlinear solids and contact energies via a robust time

splitting scheme (ğ 4.1) so that the fluid part can be solved within

a single Newton iteration per time step. We then propose efficient

methods to solve the domain-decomposed linear systems (ğ 4.2).

4.1 Time Splitting

4.1.1 Baseline Time Splitting. Intuitively, we can split the original

time integration into a fluid phase
{
ṽ𝑓 = v𝑛

𝑓
+ ℎM−1

𝑓
(−∇𝑓 𝑃 ( [(x̃𝑓 )

𝑇 , (x𝑛𝑠 )
𝑇 ]𝑇 ) + f𝑓 )

x̃𝑓 = x𝑛
𝑓
+ ℎṽ𝑓

(21)

and a solid-coupling phase




v𝑛+1 =

[
ṽ𝑓

v𝑛𝑠

]
+ ℎM−1 (−∇Ψ(x𝑛+1) − ∇𝐶 (x𝑛+1) +

[
0

f𝑠

]
)

x𝑛+1 = x𝑛 + ℎv𝑛+1

, (22)

where f𝑓 and f𝑠 are the external forces on the fluids and the solids

respectively. In the fluid phase, we solve for an intermediate state for

the fluid particles in a single Newton’s iteration, ignoring contact.

Then the highly nonlinear barrier force is resolved in the solid-

coupling phase along with elasticity, where the fluid Hessian H𝑓

reduces to a block-diagonal matrix
𝜕2𝐶 (x)

𝜕x2
𝑓

. In this setting, nonlinear

optimization only happens for fluid boundaries and solid DOFs in

the solid-coupling phase. The details of this Baseline Time Splitting

Scheme can be found in the supplementary material [Anonymous

2023] .

Although this baseline splitting strategy indeed brings a signifi-

cant performance gain, severe instabilities can happen at the solid-

fluid interface if the time step size is not sufficiently small, especially

when simulating viscous fluids (Fig. 7). For example, fluid particles

may stick to the solid boundaries. This is an artifact also seen in

existing SPH fluid solvers, and it is typically addressed by sampling

particles at solid boundaries to exert boundary pressures [Akinci

et al. 2012; Becker et al. 2009b; Ihmsen et al. 2010]. In light of this, we

consistently augment the fluid phasewith proxy forces for solid-fluid

contact to improve stability while avoiding any particle sampling

overhead.

4.1.2 Time Splitting with Contact Proxy. We introduce a solid-fluid

contact proxy energy 𝐶sf (x) into the fluid phase to efficiently exert
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(A) (B) (C)

Fig. 5. Bob simulated with (A) Joint Optimization, (B) Time Splitting with Contact Proxy, and (C) Baseline Time Splitting. For this example, baseline time

splitting can also produce visually plausible results, and our proxy-assisted scheme is 3× faster than joint optimization.

approximated interaction forces between the boundaries of solids

and fluids. In the following discussions, we will also write contact

energy𝐶 (x) as the sum of the solid-fluid part (𝐶sf (x)) and the solid-

solid part (𝐶ss (x)) for clarity. To ensure consistency with the original

PDE, we cancel the contribution of this contact proxy in the solid-

coupling phase. The resulting time integration becomes
{
ṽ = v𝑛 + ℎM−1 (−∇𝑃 (x̃) + fext − ∇𝐶sf (x̃))

x̃ = x𝑛 + ℎṽ
{
v𝑛+1 = ṽ + ℎM−1 (−∇Ψ(x𝑛+1) − ∇𝐶 (x𝑛+1) + ∇𝐶sf (x

𝑛+1))

x𝑛+1 = x𝑛 + ℎv𝑛+1

(23)

where the fluid phase now also implicitly updates the solid boundary

nodes near the fluids to an intermediate state. For𝐶sf (x), a straight-

forward choice is𝐶sf (x) = 𝛾𝐶sf (x), where𝛾 ∈ (0, 1) is a user-defined

constant coefficient. For simplicity, we choose 𝐶sf (x) =
1
2𝐶sf (x) in

all our simulations. But to ensure our fluid phase still only contains

linear forces, we apply the 2nd-order Taylor expansion of 1
2𝐶sf (x)

at x𝑛 for the approximation in the fluid phase, i.e.

𝐶sf (x) =
1

2

(
𝐶sf (x

𝑛) + ∇𝐶sf (x
𝑛) (x − x𝑛) +

1

2
∥x − x𝑛 ∥2

∇2𝐶sf (x𝑛)

)
,

(24)

while in the solid-coupling phase, we simply use 𝐶sf (x) =
1
2𝐶sf (x).

In the supplementary [Anonymous 2023] , we prove that our time

splitting scheme with contact proxy only has an O(ℎ4) mismatch

compared to implicit Euler solution. Reformulating both phases

(Eq. 23) as optimization problems, we obtain

x̃ = argmin
x

1

2
∥x − x̂𝑛 ∥2M + ℎ

2 (𝑃 (x) +𝐶sf (x)),

x𝑛+1 = argmin
x

1

2
∥x − x̃∥2M + ℎ

2 (Ψ(x) +
1

2
𝐶sf (x) +𝐶ss (x)),

(25)

where x̂𝑛 = x𝑛 + ℎv𝑛 + ℎ2M−1fext with fext = [f
𝑇
𝑓
, f𝑇𝑠 ]

𝑇 .

In addition to avoiding fluid particle sticking issues without ex-

tra expensive costs, another benefit of our method is that it helps

reduce the number of Newton’s iterations for solving the problem.

Typically, the barrier method takes many Newton iterations when

resolving high-speed impacts. With our scheme, when high-speed

fluid particles are colliding with a deformable object, their speed

will be significantly reduced after the fluid phase due to the contact

proxy. The reduced speed will then be taken into the solid-coupling

phase, which makes the nonlinear optimization easier to solve (by

having less contact constraint set changes). The details of our proxy-

based time splitting scheme can be found in Alg. 1.

Algorithm 1 Time Splitting with Contact Proxy

1: x← x𝑛 , x̂𝑛 ← x𝑛 + ℎv𝑛 + ℎ2M−1fext
2: SPH Neighbor Search & Density Update

3: 𝐶sf (x) ← 2nd Taylor Expansion of 1
2𝐶sf (x) at x = x𝑛

4: // Fluid Phase

5: H← ℎ2
(
∇2𝑃 (x) + ∇2𝐶sf (x)

)
+M

6: p← −H−1
(
ℎ2 (∇𝑃 (x) + ∇𝐶sf (x)) +M(x − x̂

𝑛)
)

7: x̃← x + p

8: // Solid-Coupling Phase

9: do

10: H← ℎ2
(
∇2Ψ(x) + 1

2∇
2𝐶sf (x) + ∇

2𝐶ss (x)
)
+M

11: g← ℎ2
(
∇Ψ(x) + 1

2∇𝐶sf (x) + ∇𝐶ss (x)
)
+M(x − x̃)

12: p← −H−1g

13: 𝛼 ← Backtracking Line Search with CCD

14: x← x + 𝛼p

15: while 1
ℎ
∥p∥ > 𝜖

16: x𝑛+1 ← x, v𝑛+1 ← (x − x𝑛)/ℎ

17: return x𝑛+1, v𝑛+1

Similarly, one can also separate elasticity from contact energy

using the contact proxy. In this fashion, wewould have a three-phase

(fluid, solid, and contact) time splitting scheme

x̃ = argmin
x

1

2
∥x − x̂𝑛 ∥2M + ℎ

2 (𝑃 (x) +𝐶sf (x)),

x̃′ = argmin
x

1

2
∥x − x̃∥2M + ℎ

2 (Ψ(x) +𝐶sf (x) +𝐶ss (x)),

x𝑛+1 = argmin
x

1

2
∥x − x̃′∥2M + ℎ

2

(
1

3
𝐶sf (x) +

1

2
𝐶ss (x)

)
,

(26)

where 𝐶sf (x) and 𝐶ss (x) are the 2nd-order Taylor expansion of
1
3𝐶sf (x) and

1
2𝐶ss (x) respectively. However, this aggressive split-

ting scheme only applies to inversion-robust constitutive models,

e.g. the fixed corotated model [Stomakhin et al. 2012]. While inver-

sion can be prevented with guarantee at the solid phase where the

elasticity energy is considered, it may not hold at the contact phase.

Despite this limitation, the three-phase splitting scheme can still
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Fig. 6. Twist cylinder. A cylindrical cloth with four holes is twisted, squeezing out water from the inside.

work properly for inversion-robust constitutive models in practice

to further accelerate the simulation.

4.2 Solving Linear Systems

In our time splitting scheme, solving large sparse linear systems

dominates both the computational and memory costs of each phase.

We thus devise matrix-free and Schur-complement based strategies

to solve them efficiently.

4.2.1 Fluid Phase. Since 2-ring neighbors of SPH particles need to

be considered in our formulation, both constructing and directly

factorizing the Hessian matrix can cost a significant amount of time

and memory. Therefore, we devise a matrix-free conjugate gradient

(CG) solver to efficiently solve for the intermediate state of fluids.

As all energy potentials are quadratic in this phase, the energy

gradient g(x) is merely a linear function of x with constant coeffi-

cient matrix H(x). Thus, the product between H(x) and an arbitrary

vector p can be expressed as

H(x)p = g(p) − g(0). (27)

This allows us to compute gradients to evaluate the matrix-vector

product, and we only need to acquire the 3 × 3 diagonal blocks of

the Hessian for block-Jacobi preconditioning in our CG solver.

4.2.2 Solid-Coupling Phase. As the fluid energy potential is not

included in this phase, the components of theHessianmatrix become

H𝑓 =
𝜕2𝐶 (x)

𝜕x2
𝑓

, G =
𝜕2𝐶 (x)

𝜕x𝑠 𝜕x𝑓
, H𝑠 =

𝜕2𝐶 (x)

𝜕x2𝑠
+
𝜕2Ψ(x)

𝜕x2𝑠
. (28)

Although this linear system is no longer that intractable, it is not

optimal to directly factorize the whole system given the considerable

number of nonzeros in H𝑓 and G when fluid resolution is high.

We thus design a domain decomposed linear solver that treats

H𝑓 and H𝑠 separately. Based on Schur complement [Zhang 2006],

the inverse of our Hessian matrix can be expressed as

H−1 =

[
H−1
𝑓
+ H−1

𝑓
G(H/H𝑓 )

−1G𝑇H𝑓 −H−1
𝑓
G(H/H𝑓 )

−1

−(H/H𝑓 )
−1G𝑇H𝑓 (H/H𝑓 )

−1

]
, (29)

where H/H𝑓 = H𝑠 − G
𝑇H−1

𝑓
G is the Schur complement of block

H𝑓 . Since the nonzeros of H𝑓 only exist in the diagonal blocks, it

is trivial to obtain its inverse matrix H−1
𝑓
. We can then apply the

CHOLMOD [Chen et al. 2008] LLT solver to factorize H/H𝑓 , which

is only in the size of solid DOFs, and then the search direction can

be computed via matrix-vector products and back-solves. When

there is no solid-fluid interaction, H/H𝑓 ’s sparsity pattern remains

identical with H𝑠 . Only when two solid nodes 𝑖 and 𝑗 are interacting

with the same fluid particle, the 3 × 3 block (H/H𝑓 )𝑖, 𝑗 (in 3D) will

become non-zero. Typically, this only happens for neighboring mesh

primitives and thus the sparsity pattern of H/H𝑓 is mostly nice.

Note that when the three-phase time splitting scheme (Eq. 26) is

used, our domain decomposed solver can also be applied to the solid

and contact phases since their systems share a similar structure

with the solid-coupling phase here.

5 EXPERIMENTS AND EVALUATION

Our code is implemented in C++ with Eigen for basic linear algebra

operations and Intel TBB for multi-threading. The time step size of

all our simulations is adaptively chosen by the SPH CFL condition

and a user-defined upper bound. We set the support radius of our

SPH kernel function to 2𝑑𝑓 , where 𝑑𝑓 is the particle diameter. In our

implementation, we use the cubic Spline kernel for density estima-

tion and the Spiky kernel for gradient calculation. For Fig. 6, 4, 2 and

5, we employ our three-phase time splitting scheme, showing its

efficacy when the constitutive models are compatible with mesh in-

version. For the rest of the simulations, we stick with our two-phase

time splitting scheme. Most experiments are performed on a 24-core

3.50GHz Intel i9-10920X machine, except that the comparative study

with ElastoMonolith [Takahashi and Batty 2022] is performed on the

łe2-standard-8ž (8 cores with 32GB RAM) Google Compute Engine

for fairness. We demonstrate that our method achieves efficient and

robust solid-fluid coupling. The parameters and timing breakdown

of our simulations are provided in Table 1 and Fig. 13 respectively.

5.1 Ablation Study

5.1.1 Time Splitting Evaluation. Three simulations (Fig. 5 and Fig.

7) are performed to demonstrate the efficiency of time splitting and

the efficacy of our proposed contact proxy on maintaining stability.

To begin with, we need to take care of choosing a proper time step

ℎ. First of all, it has to be restricted by the CFL condition. Otherwise,

severe volume loss may be observed due to SPH approximation

error. Additionally, in contrast to the joint optimization (Eq. 19), the

time splitting scheme usually requires smaller time steps to stay

stable, which imposes a second time step constraint. However, we

observed that in practice, even using the largest CFL time step, our

proxy-assisted time splitting can still work properly and produce
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Table 1. Simulation statistics including duration of each frame (Δ𝑡frame, [𝑠 ]), time step size upperbound (Δ𝑡, [𝑠 ]), number of fluid particles (𝑁fluid), number

of solid vertices (𝑁solid), incompressibility coefficient (𝑘𝐼 , [𝑃𝑎]), dynamic viscosity (𝜈𝑓 , [𝑃𝑎 · 𝑠 ]), fluid particle diameter (𝑑, [𝑚𝑚]), fluid density (𝜌𝑓 , [𝑘𝑔/𝑚
3 ]),

Young’s modulus (𝐸, [𝑃𝑎]), Possion’s ratio (𝜈𝑠 ), solid density (𝜌𝑠 , [𝑘𝑔/𝑚
3 ]) and the average simulation time for each frame (𝑇, [𝑚𝑖𝑛]). Timing statistics are

measured on a 24-core 3.50GHz Intel i9-10920X machine except for Fig. 11, which is tested on the łe2-standard-8ž (8 cores with 32GB RAM) Google Compute

Engine. Note that examples marked with * contain codimensional materials, whose parameter settings are not covered here.

Scene Δ𝑡frame Δ𝑡 𝑁fluid 𝑁solid 𝑘𝐼 𝜈 𝑓 𝑑𝑓 𝜌 𝑓 E 𝜈𝑠 𝜌𝑠 𝑇

Fig. 1 Kick Water* 1/24 6 × 10−3 1M 43K 2.5 × 105 0.1 25 1000 - - 500 37.9

Fig. 2 Shoot Armadillo 1/24 4 × 10−3 103K 16K 1 × 105 0 10 1000 1 × 105 0.3 200 1.3

Fig. 3 Cream 1/24 4 × 10−3 159K 9K 3 × 104 25 3 1000 5 × 108 0.49 1000 1.8

Fig. 4 Buoyancy 1/24 5 × 10−3 787K 66K 2 × 105 1 10 1000 1 × 105 0.4 200/700/1200 5.9

Fig. 5 Bob 1/24 4 × 10−3 97K 2.3K 2 × 105 0 15 1000 1 × 105 0.3 500 0.3

Fig. 6 Twist Cylinder* 1/24 5 × 10−3 486K 12K 4 × 104 0 5 1000 - - 500 7.9

Fig. 7a Viscous Armadillo 1/48 4 × 10−3 238K 0 1 × 105 100 10 1200 - - - 0.4

Fig. 9 Dam Break 1/24 5 × 10−3 280K 0 2 × 105 0.005 25 1000 - - - 0.4

Fig. 11a Liquid Bunnys 1/50 4 × 10−3 52K 3.7K 1 × 105 0 10 1000 4 × 103 0.49 200 0.4

Fig. 11b Liquid Bunnys 1/50 4 × 10−3 101K 4.5K 6 × 104 0 6.4 1000 1 × 103 0.49 200 1.0

Fig. 14 Angry Cow* 1/24 5 × 10−3 789K 13K 1 × 105 0.2 10 1000 1 × 105 0.45 100/700 4.9

Initial (A) (B) (C)

(a) A viscous armadillo dropped onto the ground.

(A) (B) (C)

(b) Cube on cloth. An elastic cube is dropped onto a square cloth with

four corners fixed.

Fig. 7. Simulation results of (A) Joint Optimization, (B) Time Splitting with

Contact Proxy, and (C) Baseline Time Splitting. While directly applying time

splitting results in instability at the boundaries, our results with contact

proxy are consistent with joint optimization.

stable simulation results. Hence, for comparison, we use the largest

CFL time step for both schemes to maximize their performance

as smaller ℎ typically takes more Newton’s iterations in total to

simulate a frame. For joint optimization, since direct factorization is

intractable, we solve Eq. 20 using the block-Jacobi preconditioned

conjugate gradient solver with the fluid part matrix free.

As shown in Table 2, our time splitting scheme is significantly

(up to 6×) faster than joint optimization, especially for cases (e.g.

Fig. 2) involving contacts between fluids and deformable solids.

This improvement stems from no longer having to solve for incom-

pressibility of fluids repeatedly within a time step. Moreover, one

Table 2. Statistics of different time stepping schemes: Joint Optimiza-

tion (Joint), Baseline Time Splitting (TS) and Time Splitting with Contact

Proxy (TSCP). Our proposed TSCP is much faster than both the Joint and

TS.

Scene
Sec/Frame # Newton Iter./Frame

Joint TS TSCP Joint TS TSCP

Fig. 5 66.1 38.0 22.5 63.5 117.3 37.1

Fig. 7a 41.3 32.3 25.5 16.5 29.0 10.5

Fig. 2 486.4 158.5 79.8 176.7 187.2 85.8

Fig. 6 2408.2 722.7 472.2 389.1 419.3 219.5

can also find out that Newton’s iterations are much less with our

proxy-assisted time splitting scheme. As discussed in ğ 4.1.2, this is

because the challenging high-speed impacts are already partially

resolved in the fluid phase. Another benefit of time splitting is the

support of different error tolerances for the two phases. Errors in

the fluid phase are sourced from the solution deviation of the CG

solver, while in the solid phase they are directly controlled by the

tolerance of Newton’s method. Typically, setting a slightly higher

tolerance for fluids yields better performance while still producing

visually plausible results.

Aside from efficiency, our proposed contact proxy also improves

the stability of time splitting scheme. Though simulation results of

the baseline time splitting scheme look fine in the case of inviscid

fluids, situations get worse when it is applied to viscous fluids. In Fig.

7a, a viscous armadillo is dropped to the ground. In this example,

the baseline time splitting scheme produces severe sticky artifacts at

the boundary, and the fluid surface could not finally calm down. By

consistently applying our contact proxy to exert boundary pressure

in the fluid phase, the artifacts can be well resolved as demonstrated

in Fig. 7a. Similarly, our idea of contact proxy is also applicable

to further separate elasticity from IPC contact while maintaining

stability, leading to our three-phase scheme (Fig. 7b).
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𝑘 = 1e4

𝑘 = 1e5

𝑘 = 1e6

Fig. 8. Statistics of simulations with different stiffness parameter 𝑘𝐼
and contact proxy coefficient 𝛾 . Upper left: the relation between CG

iterations and 𝑘𝐼 . Upper right: density tracking with different 𝑘𝐼 . Bottom

left: simulations with different 𝑘𝐼 . A larger 𝑘𝐼 preserves volume better but

results in more CG iterations. Bottom right: number of Newton iterations

per frame with different 𝛾 when 𝑘𝐼 = 105𝑃𝑎.

Table 3. Time and memory cost of different solvers in example 2. The

costs are measured per time step in units [s] and [MB] respectively, and

‘hess’ refers to the cost of constructing the hessian matrix. The baseline uses

the Conjugate Gradient (CG) method for the fluid phase and CHOLMOD

LLT for the solid and contact phases. Our method instead employs a matrix-

free CG solver for the fluid phase and a domain-decomposed solver for the

solid and contact phases, thereby improving efficiency and saving memory.

Solver
Fluid Phase Solid Phase Contact Phase

Mem.
hess solve solve solve

CG + LLT 14.9 0.49 1.45 0.43 12375

Ours 0.15 0.59 1.11 0.25 1469

It is also important to choose an appropriate coefficient 𝛾 for the

contact proxy. Striking a balance between 0 and 1 is essential for

better performance. A coefficient too close to 0 would degenerate

the scheme to baseline time splitting, again causing stability issues

and artifacts. Conversely, a coefficient approaching 1 may hinder

optimization convergence due to the excessively small scaling of the

barrier contact energy in the solid-coupling phase. The ideal value of

𝛾 can be scene-dependent. In Fig. 8, we simulate a scene with varying

contact proxy coefficients and document the average number of

Newton iterations per frame. While a coefficient of 1
2 , which is used

in all our simulations, may not be optimal, our experiments indicate

that a broad range of 𝛾 all perform adequately well.

5.1.2 Linear Solver Evaluation. For the fluid phase, we designed

a matrix-free conjugate gradient (CG) solver that calculates the

matrix-vector product via gradient computation to avoid the expen-

sive computational and memory costs of direct factorization (ğ 4.2.1).

Initial Ours

IISPH DFSPH

Fig. 9. Dam break with 280K SPH particles. Compared to incompressible

SPH solvers IISPH [Ihmsen et al. 2013] and DFSPH [Bender and Koschier

2015], our weakly compressible formulation produces stable fluid dynamics

without visually evident volume loss.

However, the performance improvement from this approach will be

less significant if the number of CG iterations required for conver-

gence is too large, making the cost of computing gradients higher

than constructing the Hessian once. In our fluid phase, the number

of CG iterations is proportional to the stiffness 𝑘𝐼 of the incompress-

ibility energy. A larger 𝑘𝐼 can better preserve the volume of the

fluids but also results in a worse-conditioned system, demanding

more iterations to converge (Fig. 8). In practice, by setting 𝑘𝐼 to a

proper value, we can efficiently solve the systems within 50 CG

iterations without obvious fluid volume loss.

We test the performance of our matrix-free CG solver together

with the domain-decomposed solver we designed for the solid-

coupling phase on the Shoot Armadillo example (Fig. 2), and present

the results in Table 3. Our matrix-free CG solver significantly boosts

efficiency (20× faster) and reduces memory costs by avoiding the

construction of the Hessian matrix. On the other hand, our domain

decomposed solver is 40% faster than directly factorizing the solid

and contact systems.

5.2 Comparisons

In this section, we compare our method with several popular SPH

fluid solvers and a state-of-the-art solid-fluid coupling method Elas-

toMonolith [Takahashi and Batty 2022]. We leveraged the open-

source library SPlisHSPlasH1 to implement the SPH fluid simula-

tors. To compare our method with ElastoMonolith, we set up two

scenes from their paper with identical parameters and run all the

simulations using łe2-standard-8ž (8 cores with 32GB RAM) Google

Compute Engine for fairness.

5.2.1 Fluid Dynamics. While most existing SPH fluid solvers focus

on incompressible fluids, our formulation treats fluids as weakly

compressible, allowing us to couple fluids with deformable solids in

a unified framework. We run a dam break simulation to compare

our method with two SPH fluid solvers IISPH [Ihmsen et al. 2013]

and DFSPH [Bender and Koschier 2015]. These methods typically

1https://github.com/InteractiveComputerGraphics/SPlisHSPlasH
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DFSPH IISPHOurs

Δ𝑡 = 0.001

Δ𝑡 = 0.003

Δ𝑡 = 0.005

Fig. 10. Penetration test where high-speed fluid particles fall onto a fixed

thin metal plate. Unlike IISPH/DFSPH with volume map [Bender et al. 2019],

our method does not suffer from any particle penetration artifacts regardless

of the time step sizes.

(a) A liquid bunny dropped into a bowl.

(b) A liquid bunny and an elastic bowl dropped onto a static torus.

Fig. 11. Liquid Bunnys. Compared to ElastoMonolith [Takahashi and

Batty 2022], our method achives an over 5× speedup for both of these two

examples with exactly the same scene setups.

use particle resampling [Akinci et al. 2013, 2012] or implicit repre-

sentation [Bender et al. 2019; Koschier and Bender 2017] to exert

boundary counter-forces. Our method instead employs IPC [Li et al.

2020] for more robust solid-fluid coupling, with penetration-free

guarantee. We uniformly enforce the same CFL condition for all

methods along with an upperbound at 5𝑚𝑠 , and use the volume map

[Bender et al. 2019] for their boundary handling. As shown in Fig.

9, though our formulation does not strictly enforce incompressibil-

ity, it produces natural fluid dynamics without visually observable

volume loss. On the other hand, our method (0.45 min/frame) is

slower than IISPH (0.31 min/frame) and DFSPH (0.15 min/frame)

due to the more sophisticated boundary handling strategy. How-

ever, our proposed approach can couple SPH fluids and elastic solids

with arbitrary constitutive models, while most existing SPH meth-

ods [Kugelstadt et al. 2021; Peer et al. 2018] treat elastic solids as

incompressible, which is not generally applicable.

To resolve coupling and boundary conditions, existing SPH meth-

ods usually extend the density field into the solid region through

either implicit [Bender et al. 2019; Koschier and Bender 2017] or

explicit approaches [Akinci et al. 2012], and rely on pressure solvers

to exert boundary forces. Consequently, a small time step size is

occasionally necessary to prevent particles from infiltrating the

solid region, particularly for fast-moving particles. In contrast, our

method consistently ensures penetration-free particle trajectories,

as demonstrated in Fig. 10. Furthermore, the implicit boundary rep-

resentation is not applicable to deformable objects due to efficiency

considerations, and the explicit one (boundary resampling) can re-

sult in bumpy surfaces and inaccurate pressure forces.

5.2.2 Solid-Fluid Coupling. We then compare our method with

ElastoMonolith [Takahashi and Batty 2022], which couples Eulerian

fluids with Lagrangian solids in a monolithic manner. Following

their experiment setting, we run two solid-fluid coupling simula-

tions with identical parameters using our method (Fig. 11). The

timing of our method for these two scenes are 24.1 sec/frame and

62.8 sec/frame respectively, both of which are over 5× faster than

ElastoMonolith according to their reported timings (253.2 sec/frame

and 352.0 sec/frame). Coupling Eulerian fluids with Lagrangian

solids requires dealing with geometric differences and it is often

needed to perform SPD reformulation to make the linear system

tractable. As stated in ElastoMonolith, this SPD reformulation can

introduce many additional non-zeros to the system, especially when

contacts are rich and solids are intricately shaped. Conversely, our

method treats solids and fluids from a unified Lagrangian viewpoint,

where solid-solid and solid-fluid contacts are resolved in a unified

manner.

5.3 Complex Scenarios

We then evaluate the efficiency and robustness of our method in

more complicated scenarios.

Buoyancy. We drop three elastic elephants with varying densities

into the water (1000 𝑘𝑔/𝑚3) in Fig. 4. The light grey elephant (200

𝑘𝑔/𝑚3) floats on the surface; the blue elephant (700𝑘𝑔/𝑚3) is around

half immersed in the water; and the red elephant (1200 𝑘𝑔/𝑚3) sinks

to the bottom. This demonstrates that our method correctly captures

the buoyancy behavior.

Varying Friction. We drop three viscous bunnies onto the slope

with different coefficients of friction (orange bunny: 0.5, green

bunny: 0.03, blue bunny: 0) in Fig. 12. All three bunnies share the

same dynamic viscosity coefficients 100 𝑘𝑔/𝑚3 and the angle of

slope is 30◦.
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Fig. 12. Varying friction. Three viscous bunnies are dropped onto the slope with different coefficients of friction 𝜇 (from left to right: 0.5, 0.03, 0). Our method

supports adjustable solid-fluid boundary friction.

Fig. 13. Timing breakdown. We show the timing profile of different simulation phases and plot the proportions of the major routines. Examples marked with

* are simulated using our three-phase time splitting scheme. Other examples are generated with the two-phase scheme. In particular, SPH update (including

neighborhood search and density update) only occurs in the fluid phase, line search happens in the solid and contact phases for non-linear optimization, and

continuous collision detection (CCD) is counted when IPC contact energy is considered.

Twist Cylinder. Coupling fluids with thin shells is challenging

since penetration can easily happen without careful treatments. As

stated in [Zarifi and Batty 2017], Eulerian fluids may flow through

solids if their thickness is less than a grid cell size. Conversely, our

approach adopts a unified Lagrangian view and a penetration-free

state is guaranteed by IPC. In Fig. 6, we simulate twisting a cylinder

full of water. The cylinder is modeled as a thin shell with a 2𝑚𝑚

thickness, and there are two holes in the front and back sides of this

cylinder respectively. The left side and right side are rotated at 72◦/𝑠

and are slowly moved towards each other at 2𝑐𝑚/𝑠 . As we twist

the cylinder, the water gets squeezed out through the holes. This

simulation demonstrates our method produces stable simulation

results with a penetration-free guarantee.

Cream. This example exhibits the coupling behaviors of viscous

fluids and elastic solids (Fig. 3). We use an elastic spoon to stir the

cream in a porcelain bowl. The spoon handle rotates around the

y-axis at 360◦/𝑠 (0.2𝑚/𝑠) while the bowl is fixed to the table. As

shown in our simulation results, the spoon gets deformed due to the

resistance forces it receives from the viscous cream while stirring.

Angry Cow. We then show our framework can simulate natural

physical behaviors of geometries in arbitrary codimensions (0, 1,

2, and 3) as well as their interactions. In this scene (Fig. 14), the

codimension-0,1,2 objects respectively refer to fluid particles, rubber

bands and the leather pad. A deformable cow is launched by the

slingshot, hitting the wall consisting of rigid cubes, and then falling

into the water pool, producing interesting physical behaviors. The

density of the rigid cubes and the cow are 100𝑘𝑔/𝑚3 and 700𝑘𝑔/𝑚3

respectively.

Kick Water. In this example (Fig. 1), we show a scene where a

mannequin dressed in a multilayer skirt kicks in a large water pool,

extending the original example in Li et al. [2021] to involve complex

interactions between fluid particles and garments. As themannequin

moves in the water, our method produces natural deformation of

the skirt caused by the contact with water; as it kicks out of the

water at a high speed, the resulting water splash is also correctly

captured. Our method well resolves the contacts among fluids parti-

cles, thin garments and rapidly moving complex boundaries with a

penetration-free guarantee.
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Fig. 14. Angry cow. We show our method can simulate the coupling of materials in arbitrary codimensions, including fluid particles, rods (the rubber bands),

thin shells (the leather pad), deformable solids (the cow), and rigid bodies (the cubes). We launch an angry cow with a slingshot, and the cow hits through the

wall and then falls into the water. Interactions between various materials are all accurately captured.

6 CONCLUSION

We presented a unified two-way strong coupling framework for

weakly-compressible SPH fluids and nonlinear elastic FEM solids.

To achieve this, we modeled solid-fluid interactions as contact forces

between SPH particles and FEM boundary elements, applying IPC

for guaranteed non-penetration and stability. As we track the vol-

ume change of SPH particles in an updated Lagrangian fashion,

the incompressibility energy stays quadratic and nice particle dis-

tributions are maintained. Utilizing a symmetric approximation of

discrete viscosity forces, we proposed a viscosity potential that fits

into optimization time integration.We then proposed a time splitting

scheme with a contact proxy to efficiently solve the time integra-

tion optimization while maintaining robustness. The performance

is further boosted by our matrix-free conjugate gradient method

and a domain-decomposed solver based on Schur complement.

Compared to existing works [Takahashi and Batty 2022; Zarifi and

Batty 2017] coupling Eulerian fluids with Lagrangian elastic solids,

our method treats both fluids and solids in a Langrangian manner,

avoiding the need to handle different spatial discretizations. Under

such a unified view, our method achieves more convenient and

robust two-way coupling, even between fluids and codimensional

solids. Likewise, different from existing SPH methods [Kugelstadt

et al. 2021; Peer et al. 2018] that treat all materials as SPH particles,

our formulation enjoys both the efficiency of SPH fluids and the

accuracy of FEM solids.

There aremanymeaningful future research directions. First, when

fluid DOFs dominate, building and querying the spatial hash for each

fluid particle can become a considerable cost. In fact, since there

is no solid-fluid contact for interior particles, we can construct the

spatial data structure only in the intersection between the extended

bounding boxes of the fluids and each solid for better efficiency,

just like the i-BVH scheme in Lan et al. [2022]. In addition, the

adhesion between solids and fluids is also an interesting behavior to

model. Similar to the barrier energy, adhesion forces can be exerted

on close solid-fluid primitive pairs but in the opposite direction.

Modeling adhesion via resolving the surface tension of fluids is also

an interesting future work.
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