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Fig. 1. Kick water. Our method accurately captures the complex interactions between the water, the multi-layer skirt, and the mannequin body without any
interpenetration as the mannequin wearing the skirt kicks in a swimming pool and sends water flying.

We present a robust and efficient method for simulating Lagrangian solid-
fluid coupling based on a new operator splitting strategy. We use variational
formulations to approximate fluid properties and solid-fluid interactions,
and introduce a unified two-way coupling formulation for SPH fluids and
FEM solids using interior point barrier-based frictional contact. We split
the resulting optimization problem into a fluid phase and a solid-coupling
phase using a novel time-splitting approach with augmented contact proxies,
and propose efficient custom linear solvers. Our technique accounts for
fluids interaction with nonlinear hyperelastic objects of different geome-
tries and codimensions, while maintaining an algorithmically guaranteed
non-penetrating criterion. Comprehensive benchmarks and experiments
demonstrate the efficacy of our method.

CCS Concepts: « Computing methodologies — Physical simulation.

Additional Key Words and Phrases: Two-Way Coupling, Weakly Compress-
ible Fluids, Elastic Solids, Time Splitting, Contact Proxy

ACM Reference Format:

Tianyi Xie, Minchen Li, Yin Yang, and Chenfanfu Jiang. 2023. A Contact
Proxy Splitting Method for Lagrangian Solid-Fluid Coupling. ACM Trans.
Graph. 42, 4, Article 000 (August 2023), 14 pages. https://doi.org/10.1145/
3592115

Authors’ addresses: Tianyi Xie, University of California, Los Angeles, USA, tianyixie77@
g.ucla.edu; Minchen Li, University of California, Los Angeles, USA, minchernl@gmail.
com; Yin Yang, University of Utah, USA, yin.yang@utah.edu; Chenfanfu Jiang, Univer-
sity of California, Los Angeles, USA, chenfanfu.jiang@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2023/8-ART000 $15.00

https://doi.org/10.1145/3592115

1 INTRODUCTION

The coupling of solids and fluids is common in nature but chal-
lenging to simulate. While solids are typically simulated using La-
grangian meshes, fluids are often discretized using Eulerian grids
to accommodate topology changes. To accurately couple these dis-
tinct discretizations, sophisticated algorithms, such as the cut-cell
method [Zarifi and Batty 2017], are often necessary. Unfortunately,
they can be expensive and do not handle thin shells. Purely Eulerian
[Teng et al. 2016; Valkov et al. 2015] or SPH [Akinci et al. 2012;
Gissler et al. 2019] schemes have demonstrated successful two-way
coupling by same-view discretization. They do not easily extend to
nonlinear elastodynamics. Hybrid methods like MPM [Jiang et al.
2016] can simulate mixed materials, but can experience artificial
stickiness unless resolved with more expensive schemes [Fang et al.
2020]. Furthermore, these methods do not ensure non-intersecting
trajectories and often require additional correction procedures to
handle accidentally penetrated fluids during advection.

We take the Lagrangian path and present a new method for cou-
pling FEM solids and SPH fluids. By approximating solid, fluid, and
interaction terms with potentials, we formulate two-way coupling
as a monolithic optimization problem. Specifically, we draw inspi-
ration from position-based fluids [Macklin and Miiller 2013] and
model weak incompressibility using a quadratic energy and a new
updated Lagrangian update rule to track volume changes. We fur-
ther symmetrize the discrete Laplacian-based viscosity and propose
a discrete quadratic potential for better accuracy and robustness.
We follow the Incremental Potential Contact [Li et al. 2020] model
to enforce guaranteed separable boundary conditions and resolve
frictional contacts at the interface.

The proposed formulation achieves strong coupling, but can be
exceedingly inefficient when solved with Newton’s method due to
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the huge and dense Hessian of the fluid part, which is a result of the
need for many particle neighbors for an accurate SPH discretization.
This causes a significant computing bottleneck.

To tackle this issue, we propose a robust proxy contact energy
formulation, splitting the time integration into a fluid phase and a
solid-coupling phase. The fluid phase requires only one Newton iter-
ation per time step, resulting in increased efficiency with nonlinear
optimization occurring only during the solid-coupling phase. One of
the key advantages of our quadratic proxy is its ability to effectively
resolve instability caused by time splitting. This is achieved through
its asymptotic approximation to the solid-fluid contact force. Ad-
ditionally, time integration is maintained consistent through the
cancellation of the proxy’s contribution in the solid-coupling phase,
resulting in only a small splitting error. Finally, we design a matrix-
free conjugate gradient solver and a domain-decomposed solver to
further enhance the computational efficiency.

In summary, our contributions include

¢ a unified penetration-free two-way coupling framework for

weakly compressible SPH fluids and nonlinear elastic FEM

solids in arbitrary codimensions;

consistently modeled incompressibility and viscosity poten-

tials for SPH fluids, incorporating advantages of Updated

Lagrangian (UL) kinematics;

a robust time splitting scheme with contact proxies that en-

ables separate time integrations of solids and fluids;

e a matrix-free conjugate gradient (CG) solver and a Schur
complement based domain-decomposed solver for efficiently
solving the linear systems.

2 RELATED WORK

Many popular fluid solvers use Eulerian grids and a series of existing
works focus on coupling Eulerian fluids with Lagrangian solids by
resolving interactions between the grids and irregular mesh bound-
aries. The ghost fluid method [Fedkiw 2002; Fedkiw et al. 1999]
was proposed to additionally discretize the Eulerian/Lagrangian
interface. Early works considered weak coupling [Guendelman et al.
2005], which advances the solids and fluids alternatively. Strong
coupling [Klingner et al. 2006] on the other hand solves a monolithic
system and is often more robust. Chentanez et al. [2006] proposed a
two-way coupling method between fluids and deformable solids by
solving a combined system of fluid-cell pressure and solid-node ve-
locity. The cut-cell method [Roble et al. 2005] is another widely used
solution, often through the usage of virtual nodes. Batty et al. [2007]
proposed a variational framework to strongly couple fluids and rigid
bodies by casting the pressure solve into minimization. Subsequent
extensions support deformable objects and thin shells [Robinson-
Mosher et al. 2011, 2008], where elastic forces are explicitly applied
and the coupling step is implicit. Assuming corotated linear elastic-
ity, Zarifi and Batty [2017] incorporated the implicit solid dynamics
into pressure projection, obtaining a symmetric positive-definite
system. Later works also explored rigid-rigid [Takahashi and Batty
2020], rigid-fluid [Takahashi and Batty 2021], and solid-fluid [Taka-
hashi and Batty 2022] coupling considering frictional contacts. Euler-
ian solids [Levin et al. 2011] were also explored, where coupling can
be conveniently achieved in a purely Eulerian fashion [Teng et al.
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2016; Valkov et al. 2015]. However they face challenges in numerical
dissipation, volume conservation, and handling structures thinner
than a grid cell. More recently, Brandt et al. [2019] built upon the
immersed boundary method [Peskin 2002] and proposed a reduced
solver to simulate real-time coupling, focusing on incompressible
elastic materials and no-slip boundary conditions.

Fluids can also be directly modeled with Lagrangian meshes
[Batty et al. 2012; Clausen et al. 2013; Klingner et al. 2006; Wang et al.
2020], enabling explicit coupling with solids. However, remeshing
tends to become a bottleneck. Using particles is another popular
strategy. SPH [Koschier et al. 2022] uses spatial sampling to approx-
imate continuous functions and captures compelling fluid dynamics.
Pioneering works [Becker and Teschner 2007; Monaghan 1994] used
the Equation of State (EOS) for weakly compressible fluids, where
the pressure is proportional to the density deviation. An explicit
formulation may strictly restrict time step sizes. Incompressibility
has also been enforced by solving a Pressure Poisson Equation (PPE)
[Bender and Koschier 2015; Thmsen et al. 2013; Solenthaler and Pa-
jarola 2009]. This approach seeks to cancel out density or velocity
divergence deviations caused by non-pressure forces through the
use of pressure accelerations. SPH boundary handling techniques
have been developed to prevent penetrations of fluid particles near
solid boundaries [Becker and Teschner 2007; Becker et al. 2009b;
Ihmsen et al. 2010]. One such method, proposed by Akinci et al.
[2012], uses a single layer of boundary samples and has been ap-
plied to the coupling of fluids with both rigid bodies and elastic
solids [Akinci et al. 2013]. Gissler et al. [2019] proposed a global
formulation that unifies rigid body and fluid dynamics, in which the
fluid pressure solver is linked to a second artificial pressure solver
for rigid body particles. Koschier and Bender [2017] introduced an
alternative method using density maps to represent dynamic rigid
boundaries, eliminating the need for boundary particles. Bender
et al. [2019] proposed using the volume contribution of boundary
geometry to compute boundary forces, which reduces the cost of
precomputation but cannot be applied to deformable bodies.

Solenthaler et al. [2007] used SPH to approximate the deforma-
tion gradient of linear elastic materials, but the resulting gradient
is not rotation invariant. Becker et al. [2009a] addressed this issue
by using shape matching to determine orientation and calculating
forces in a rotated configuration. Peer et al. [2018] proposed an
implicit scheme and applied kernel gradient correction [Bonet and
Lok 1999] to obtain a first-order consistent SPH formulation for the
deformation gradient. Incorporating solid particles into the preexist-
ing fluid pressure solver can resolve contact handling, but SPH still
faces numerical issues such as the zero-mode [Ganzenmiiller 2015;
Kugelstadt et al. 2021] when simulating elastic objects. Additionally,
the pressure solver will treat solid objects as incompressible under
compression, which may not be applicable in all cases.

The Material-Point Method (MPM) [Jiang et al. 2016; Sulsky et al.
1995] combines Lagrangian and Eulerian representations to capture
solid-fluid coupling [Fei et al. 2018; Stomakhin et al. 2014; Yan et al.
2018] and mixture [Gao et al. 2018; Tampubolon et al. 2017]. Fang
et al. [2020] proposed a free-slip treatment, but did not consider
separation. Recently, a FEM-MPM coupling method based on a
variational barrier formulation [Li et al. 2020] has been proposed
for coupling frictional and separable elastic materials [Li et al. 2022].



Fig. 2. Shoot armadillo with a high-speed water jet.

Our approach for solid-fluid coupling is inspired by this method
and uses a similar purely Lagrangian framework.

3 FORMULATION

Here we derive a time integrator for a coupled system of solids and
fluids by starting with the governing equations and then performing
discretization. Subscripts s and f represent solid and fluid quantities.

3.1 Governing Equations

The governing equations for the coupled system are

Dv.
pSD_::V'O-+psg+fS—>S+ff~>ss (1

Dv
Ppp =P uVPvp+ ppg = £, @)
\Y% VE = 0, (3

where p is density, g is gravity, fs_. is the self-contact force of solids,
fr_ s is the contact force exerted by fluids, o is the Cauchy stress of
solids, p is the fluid pressure, and  is the dynamic viscosity [Bridson
2015].

At the interface between solids and fluids, we enforce the separa-
ble boundary condition

0 < (vs —Vf) ‘ng L (ffﬁS : Ilf) >0 (4)

to prevent penetration while allowing separation [Batty et al. 2007],
where ny is the outward pointing normal of the fluid surface. This
condition helps determine the normal component of f . For the
tangential component (friction), letu = (I-ng ® ns)(vs — vy) be
the tangential relative velocity, we have

(I-np®ng)fy s =argminf-u
b )
st. |IBll < pefros-np and f-np=0

following the Maximum Dissipation Principle [Moreau 2011], where
1y 1s the friction coefficient. We enforce exact mass conservation by
adopting Lagrangian methods to discretize both domains.

3.2 Solid Domain

We focus on nonlinear hyperelastic solids, where the elastic force is
the negative gradient of an elastic potential. After discretizing the
solid domain Qg as Lagrangian linear finite elements (triangles in
2D and tetrahedra in 3D), the total elastic potential is a piecewise
constant summation of an elastic energy density function 5 (F)
(e.g. neo-Hookean) over the mesh domain: ¥ (x) = Y, Vets(Fe),
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where V, is the rest volume of tetrahedron e, and F = %))é’t) is the

deformation gradient with X and x the material and world space
coordinates respectively [Sifakis and Barbic 2012]. For f;_., we
follow Li et al. [2020]’s smooth barrier approach that guarantees
non-penetration. We leave the discussion of f¢ 5 to § 3.4.

3.3 Fluid Domain

Following SPH literature [Becker and Teschner 2007; Bender and
Koschier 2015; Thmsen et al. 2013; Macklin and Miiller 2013], we dis-
cretize the fluid domain Q¢ with Lagrangian particles. To integrate
fluids with optimization-based time integration, we approximate
both the pressure and viscosity forces as conservative forces. We
verify in the supplementary [Anonymous 2023] that these proposed
potential energies are both convex and quadratic.

3.3.1 Incompressibility Potential. Pressure forces help preserve the
volume of incompressible fluids. We thus model the incompressibil-
ity via a quadratic energy density function ¢ ;(J) = % (J-1)? that
penalizes the deviation of volume ratio J = po/p from 1, where p
is the initial density. The use of a large stiffness value (k) in a con-
vergent solve results in negligible visual compression, eliminating
the need for higher degree polynomials in nearly incompressible
fluids [Hyde et al. 2020]. The incompressibility potential is obtained

by integrating y/¢,;(J) over the fluid domain Q;), in material space:

k
mmzzg%ww—w, (6)
where we assumed all fluid particles have equal rest volume Vp, and
Ji denotes the volume ratio of the i-th particle as a function of x.

Updated Lagrangian. SPH literature often relates p to x through
density summation in the world space. To obtain a linear relation
between J and x so that the incompressibility potential stays qua-
dratic in terms of x, we track J in an updated Lagrangian fashion.
Treating Q" as an intermediate reference space and differentiating
the deformation map between Q" and Q™*! results in an update
rule

]in+1 :.]in(l‘}'hv'v?-ﬂ)) (7)

where J' and V - v?“ can be approximated as

ms
]in — Zmp—]owu, V.- V;H-l — Z p_r-Jl(v;l+l _ V;‘l+1) . Vsz] (8)
j 7

via SPH, and Wj; = W(x; — X;) is a kernel function (e.g. Cubic
Spline kernel [Monaghan 1992, 2005] or Spiky kernel [Miiller et al.
2003]). Here J[ denote the reinitialized volume ratio of the i-th fluid
particle at the beginning of time step n. Such reinitialization avoids
accumulated density and particle distribution errors commonly seen
in other updated Lagrangian solvers like MPM.

3.3.2  Viscosity Potential. Modeling viscosity via strain rate tensors
[Bender and Koschier 2016; Peer et al. 2015; Peer and Teschner 2016;
Takahashi et al. 2015] is possible, but may suffer from artifacts at
the surface due to particle deficiencies. We follow Monaghan [2005]
to use the more robust velocity Laplacian [Weiler et al. 2018] and
derive its energy form.
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Fig. 3. Cream is stirred, causing spoon deformation.

Combining SPH 1st-order derivatives and finite differences, the
viscosity force can be computed as

ms VW (xm)T

m;m; iWij X, 1
f;(x) = vm; V2V = 2v(d + 2 viE,
i(x) = vm; V2V ( )2 PRI

where x7, = x! — x!, vl = v*1 — v*1 7 is the support radius
of the kernel, v and d € {2,3} denote the kinematic viscosity and
spatial dimension respectively. Directly applying this force violates
momentum conservation as the mutual interaction forces are not

equal. Thus, we perform a further approximation
mim; Vimlij(X?j)T vn+1 (9)
pi+ oy Iy 7+ 0.012

£;(x) ~ 4v(d +2) Z
J
to solve this issue and also make the force integrable. Let V;; =
n\T
mym; (=ViWi;) (x;)
4(d+2) pitpj Xy, [[240.01A% °
viscosity forces and obtain a quadratic viscosity potential

1 -
Pr(x) = gvh ) D IVEIR (10
i

where A is a constant scalar related to the time integration scheme.
For example, h = h for implicit Euler as v**1 = (x™*1 — x™)/h.

we can now gather and integrate all

3.4 Coupling

3.4.1 Barrier Potential for Non-penetration. To couple the solid
domain Qg with the fluid domain Q ¢, we use the separable boundary
condition (Eq. 4), which enforces non-interpenetration constraints
between these two domains. To model these constraints, we first
define a distance function

t : t t
d(9Qg, x5) :l’I}IéIl”XS -xrll, x5 €9Qq x5 € Qf, (11)
which measures the distance between x o2 point in the fluid domain,

and the surface of the solid domain. Then the primal component of
the constraints can be expressed as

d(9Qf,xp) 20, Vi 20, Vxp € QL. (12)

!
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We then adopt the barrier formulation from Li et al. [2020] to model
all the constraints in Eq. 4 between solids and fluids, and obtain a
barrier potential

b(d(aQL, xp), d)dxy, 13
/ag}u xp), d)dx (13)

where the barrier energy density b(d, cf) is piecewise smooth and
only activated when d < d, improving efficiency and approximately
satisfying the complementary slackness condition. As d approaches
0, the value of b(d, d) monotonically increases to infinity, providing
arbitrarily large repulsion to avoid interpenetration.

Since our solids and fluids domains are respectively discretized
as meshes and particles, the barrier potential (Eq. 13) in 3D can be
numerically integrated as

By(xs,xp) = ) sqb(min T (xq,€),d)

eQ
q€Qy A (14)
- Z sq max b(d"T (xg, ), d),
ec€ B
qeQy

where Qf is the set of all SPH fluid particles, B; is the set of all
boundary triangles of the solids, ar T(xq, e) measures the distance

"o\ 2
between particle x4 and triangle e, and sy is set to 2 (]an) in 2D

2
3]q"VO 3
4

and 7 in 3D, which is the integration weight (boundary

area) of each fluid particle,. Here the min-max transformation is
based on the non-ascending property of the barrier function. How-
ever, the max operator here makes the barrier potential difficult to
optimize efficiently with gradient-based methods. Fortunately, due
to the local support of the barrier function b(d, d) as d is small, we
can simply approximate the barrier potential as

By(xs.xp) = Y > sqb(@ (xg.€),), (15)

qEQf e€ B

which may result in overestimated contact forces near the edges
and nodes on the mesh boundary, but we have not observed any
artifacts in our experiments.

3.4.2  Friction Potential. Following Li et al. [2020], we model the
local friction forces fi. for every active solid-fluid contact pair k.
Formally, the friction force is defined as

u

fi(xs.xp) = e deTi (s x) Al e (19)
where . is the contact force magnitude, Ty (x5, xf) € R3%2 s the
consistently oriented sliding basis, and uy, is the relative sliding dis-

placement, which can be computed as uy = Ti(Xs, Xf)T ( [XST, xJTc] T_

[(x?)T, x)T1T). Here fi is a smoothly approximated function de-
signed for the smooth transition between sticking and sliding modes.
To make this friction formulation fit into optimization time integra-
tion, Li et al. [2020] further approximated the sliding basis T (xs, xf)
and contact force Ay (xs, Xr) explicitly as T(xg, x?) and Ag (x7, x?).
Then the semi-implicit friction force is integrable with the friction
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Fig. 4. Buoyancy. Three elastic elephants with different densities (from left to right: 200, 700, and 1200 kg/m?) fall into the water, demonstrating buoyancy.

potential computed as
Dys(xs,xp) = 3 e follugl),
keAn

where fj is defined by the relation fJ = fi and A" is the set con-
taining all activate particle-triangle contact pairs at the previous
time step n.

(17)

3.5 Optimization Time Integrator

With the above potential energies modeling all the solid and fluid
forces, now we can build a unified two-way solid-fluid coupling
framework. By stacking all nodal positions and velocities of SPH
particles and FEM nodes as x = [xT,xsT]T and v = [VT,VST]T,
we define ¥(x) = ¥s(xs), P(x) = Pr(xs) + Py (xy) and Csp(x) =
Bgg(xs, Xf) + Dgf(Xs, X p). Combined with the solid-solid contact po-
tential Css(x) from IPC, our solid-fluid coupling problem can be
solved in a monolithic manner applying implicit Euler time integra-
tion

{ VI = P L BMT (fexe — VP(™) = VI (™) - VO(x™))

n+l n+l1
which is equivalent to

X" =x" + hv

(18)

x"1 = argmin %Hx %4 + hA(P(x) + ¥(x) +C(x))  (19)
X

with the mass matrix M, time step size h, the predictive position

%" = x" + hv" + h2M ™ fey; and the total contact potential C(x) =
Cof(x) + Cos(x).

4 EFFICIENT SOLVER

A straightforward way to robustly solve the time-stepping optimiza-
tion problem (Eq. 19) is to apply the projected Newton’s method with
line search [Li et al. 2020]. At every iteration, the search direction p
can be computed by solving the linear system

oF wfe=[4]

Here Hy and H; are the (projected) Hessian matrices w.r.t. the posi-

(20)

tion of fluids and solids respectively, and G = % denotes the
coupling submatrix. Nevertheless, solving this linear system can be
a severe bottleneck in practice. One reason is that SPH techniques
need sufficient neighbors to accurately approximate physical quanti-
ties, which results in a much larger and denser fluid Hessian matrix
Hjy compared to the solid one. In addition, the optimization may

>

require many iterations to converge due to the sharpness of barrier
energy, especially in contact-rich cases.

Since our fluid energies are all quadratic, we separate them from
the highly nonlinear solids and contact energies via a robust time
splitting scheme (§ 4.1) so that the fluid part can be solved within
a single Newton iteration per time step. We then propose efficient
methods to solve the domain-decomposed linear systems (§ 4.2).

4.1

4.1.1 Baseline Time Splitting. Intuitively, we can split the original
time integration into a fluid phase

Time Splitting

Tl -1/_ + \T n\T1T
Ve =V + M (SVeP([(Xp) 7 (x6)7]7) + £p) 1)
if = X;lc + th
and a solid-coupling phase
v = | Mo cvwet) - veeey + | )
s £ . (22)
Xn+1 =x" + hvn+1
where f¢ and f; are the external forces on the fluids and the solids

respectively. In the fluid phase, we solve for an intermediate state for
the fluid particles in a single Newton’s iteration, ignoring contact.
Then the highly nonlinear barrier force is resolved in the solid-
coupling phase along with elasticity, where the fluid Hessian Hy
2*C(x)
oxf
optimization only happens for fluid boundaries and solid DOFs in
the solid-coupling phase. The details of this Baseline Time Splitting
Scheme can be found in the supplementary material [Anonymous
2023] .

Although this baseline splitting strategy indeed brings a signifi-
cant performance gain, severe instabilities can happen at the solid-
fluid interface if the time step size is not sufficiently small, especially
when simulating viscous fluids (Fig. 7). For example, fluid particles
may stick to the solid boundaries. This is an artifact also seen in
existing SPH fluid solvers, and it is typically addressed by sampling
particles at solid boundaries to exert boundary pressures [Akinci
et al. 2012; Becker et al. 2009b; Thmsen et al. 2010]. In light of this, we
consistently augment the fluid phase with proxy forces for solid-fluid
contact to improve stability while avoiding any particle sampling
overhead.

reduces to a block-diagonal matrix . In this setting, nonlinear

4.1.2  Time Splitting with Contact Proxy. We introduce a solid-fluid
contact proxy energy Cg(x) into the fluid phase to efficiently exert
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(B) (C)

Fig. 5. Bob simulated with (A) Joint Optimization, (B) Time Splitting with Contact Proxy, and (C) Baseline Time Splitting. For this example, baseline time
splitting can also produce visually plausible results, and our proxy-assisted scheme is 3 faster than joint optimization.

approximated interaction forces between the boundaries of solids
and fluids. In the following discussions, we will also write contact
energy C(x) as the sum of the solid-fluid part (C¢(x)) and the solid-
solid part (Css (x)) for clarity. To ensure consistency with the original
PDE, we cancel the contribution of this contact proxy in the solid-
coupling phase. The resulting time integration becomes

{ v=v'+ hM_l(—VP(—)D + fext — Vésf(i))
x

"+ hv

n+l1 n+1

v =¥ 4 AMTH (V¥ (x™) - VO(x™) + VCi(x™H))
X" =x" + hv

(23)
where the fluid phase now also implicitly updates the solid boundary
nodes near the fluids to an intermediate state. For Cy¢(x), a straight-
forward choice is Cs(x) = yCsf(x), where y € (0, 1) is a user-defined
constant coefficient. For simplicity, we choose Cef(x) = %Csf(x) in
all our simulations. But to ensure our fluid phase still only contains
linear forces, we apply the 2nd-order Taylor expansion of %Csf(x)
at x" for the approximation in the fluid phase, i.e.

A 1 1
Car3) = 5 [ Carx™) + VO (x = xX) + 5 % = X" o |

(24)
while in the solid-coupling phase, we simply use Cy(x) = %Csf(x).
In the supplementary [Anonymous 2023] , we prove that our time
splitting scheme with contact proxy only has an O(h?) mismatch
compared to implicit Euler solution. Reformulating both phases
(Eq. 23) as optimization problems, we obtain

- 1 R
X = arg min 5 llx — %"[|5; + h*(P(x) + Cyt(x)),
X

1 - 1
x™! = arg min 3 llx — I3 + h*(¥(x) + 5csf(x) + Cs(x)),
X

(25)
where % = x" + hv" + B2M™ ey with feyy = [£1,£7]7.

In addition to avoiding fluid particle sticking issues without ex-
tra expensive costs, another benefit of our method is that it helps
reduce the number of Newton’s iterations for solving the problem.
Typically, the barrier method takes many Newton iterations when
resolving high-speed impacts. With our scheme, when high-speed
fluid particles are colliding with a deformable object, their speed
will be significantly reduced after the fluid phase due to the contact
proxy. The reduced speed will then be taken into the solid-coupling

ACM Trans. Graph., Vol. 42, No. 4, Article 000. Publication date: August 2023.

phase, which makes the nonlinear optimization easier to solve (by
having less contact constraint set changes). The details of our proxy-
based time splitting scheme can be found in Alg. 1.

Algorithm 1 Time Splitting with Contact Proxy

X — X" %" — X"+ hv + BPM T oy

2: SPH Neighbor Search & Density Update

3. Cy¢(x) « 2nd Taylor Expansion of %Csf(x) atx = x"
4: // Fluid Phase

5: H «— h? (VZP(X) + Vzésf(X)) +M

o p e —H (R3(VP() + VCyg(x)) + M(x - 7))

7. X — X+p

8: // Solid-Coupling Phase

9: do

00 Heh? (Vz‘l’(x) + 1v2C(x) + VZCSS(X)) +M
11: g — h? (V‘I’(x) + %VCSf(x) + VCSS(X)) +M(x —X)
122 p« -Hlg

13: a < Backtracking Line Search with CCD

14: X << X+oap

15: while 1 |p|| > €

16: X" —x, v — (x—x")/h

17: return x**!, vyt

Similarly, one can also separate elasticity from contact energy
using the contact proxy. In this fashion, we would have a three-phase
(fluid, solid, and contact) time splitting scheme

~ 1 .
X = arg min - llx — %"[|3; + h?(P(x) + Cp(x)),
X
- o1 - N .
X' = argmin - [lx =Xy + A (¥ (x) + Cop(x) + Css(x)), | (26)
X

1 — 1 1
x™! = arg min EHX - x'||12v[ + h? ngf(X) + ECSS(X) ,
X

where Cy(x) and Cy(x) are the 2nd-order Taylor expansion of
%Csf(x) and %Css(x) respectively. However, this aggressive split-
ting scheme only applies to inversion-robust constitutive models,
e.g. the fixed corotated model [Stomakhin et al. 2012]. While inver-
sion can be prevented with guarantee at the solid phase where the
elasticity energy is considered, it may not hold at the contact phase.
Despite this limitation, the three-phase splitting scheme can still
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Fig. 6. Twist cylinder. A cylindrical cloth with four holes is twisted, squeezing out water from the inside.

work properly for inversion-robust constitutive models in practice
to further accelerate the simulation.

4.2 Solving Linear Systems

In our time splitting scheme, solving large sparse linear systems
dominates both the computational and memory costs of each phase.
We thus devise matrix-free and Schur-complement based strategies
to solve them efficiently.

4.2.1  Fluid Phase. Since 2-ring neighbors of SPH particles need to
be considered in our formulation, both constructing and directly
factorizing the Hessian matrix can cost a significant amount of time
and memory. Therefore, we devise a matrix-free conjugate gradient
(CG) solver to efficiently solve for the intermediate state of fluids.

As all energy potentials are quadratic in this phase, the energy
gradient g(x) is merely a linear function of x with constant coeffi-
cient matrix H(x). Thus, the product between H(x) and an arbitrary
vector p can be expressed as

H()p = g(p) - £(0). 27)
This allows us to compute gradients to evaluate the matrix-vector

product, and we only need to acquire the 3 X 3 diagonal blocks of
the Hessian for block-Jacobi preconditioning in our CG solver.

4.2.2  Solid-Coupling Phase. As the fluid energy potential is not
included in this phase, the components of the Hessian matrix become

He - PC(x) _ *C(x) B 9C(x) N PY¥(x)
r= 2 Cooxgaxp 0 ox2 a2

Although this linear system is no longer that intractable, it is not
optimal to directly factorize the whole system given the considerable
number of nonzeros in Hy and G when fluid resolution is high.
We thus design a domain decomposed linear solver that treats
Hy and Hy separately. Based on Schur complement [Zhang 2006],
the inverse of our Hessian matrix can be expressed as
— HJ:l + H}lG(H/Hf)‘lGTHf —H}lG(H/Hf)—1 @)
—(H/Hp)'GTH/ (H/HpHT |

where H/Hy = H, — GTHI}IG is the Schur complement of block
Hf. Since the nonzeros of H ¥ only exist in the diagonal blocks, it

is trivial to obtain its inverse matrix H;!. We can then apply the

CHOLMOD [Chen et al. 2008] LLT solver to factorize H/H £, which
is only in the size of solid DOFs, and then the search direction can

be computed via matrix-vector products and back-solves. When
there is no solid-fluid interaction, H/H’s sparsity pattern remains
identical with Hg. Only when two solid nodes i and j are interacting
with the same fluid particle, the 3 X 3 block (H/Hp);,; (in 3D) will
become non-zero. Typically, this only happens for neighboring mesh
primitives and thus the sparsity pattern of H/Hy is mostly nice.

Note that when the three-phase time splitting scheme (Eq. 26) is
used, our domain decomposed solver can also be applied to the solid
and contact phases since their systems share a similar structure
with the solid-coupling phase here.

5 EXPERIMENTS AND EVALUATION

Our code is implemented in C++ with Eigen for basic linear algebra
operations and Intel TBB for multi-threading. The time step size of
all our simulations is adaptively chosen by the SPH CFL condition
and a user-defined upper bound. We set the support radius of our
SPH kernel function to 2d, where dy is the particle diameter. In our
implementation, we use the cubic Spline kernel for density estima-
tion and the Spiky kernel for gradient calculation. For Fig. 6, 4, 2 and
5, we employ our three-phase time splitting scheme, showing its
efficacy when the constitutive models are compatible with mesh in-
version. For the rest of the simulations, we stick with our two-phase
time splitting scheme. Most experiments are performed on a 24-core
3.50GHz Intel i9-10920X machine, except that the comparative study
with ElastoMonolith [Takahashi and Batty 2022] is performed on the
“e2-standard-8” (8 cores with 32GB RAM) Google Compute Engine
for fairness. We demonstrate that our method achieves efficient and
robust solid-fluid coupling. The parameters and timing breakdown
of our simulations are provided in Table 1 and Fig. 13 respectively.

5.1 Ablation Study

5.1.1 Time Splitting Evaluation. Three simulations (Fig. 5 and Fig.
7) are performed to demonstrate the efficiency of time splitting and
the efficacy of our proposed contact proxy on maintaining stability.

To begin with, we need to take care of choosing a proper time step
h. First of all, it has to be restricted by the CFL condition. Otherwise,
severe volume loss may be observed due to SPH approximation
error. Additionally, in contrast to the joint optimization (Eq. 19), the
time splitting scheme usually requires smaller time steps to stay
stable, which imposes a second time step constraint. However, we
observed that in practice, even using the largest CFL time step, our
proxy-assisted time splitting can still work properly and produce

ACM Trans. Graph., Vol. 42, No. 4, Article 000. Publication date: August 2023.
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Table 1. Simulation statistics including duration of each frame (Afframe, [$]), time step size upperbound (At¢, [s]), number of fluid particles (Nfig), number
of solid vertices (Nsolid), incompressibility coefficient (kr, [Pa]), dynamic viscosity (v¢, [Pa - s]), fluid particle diameter (d, [mm]), fluid density (p, [kg/m3]),
Young’s modulus (E, [Pa]), Possion’s ratio (1s), solid density (ps, [kg/m3]) and the average simulation time for each frame (T, [min]). Timing statistics are
measured on a 24-core 3.50GHz Intel i9-10920X machine except for Fig. 11, which is tested on the “e2-standard-8” (8 cores with 32GB RAM) Google Compute

Engine. Note that examples marked with * contain codimensional materials, whose parameter settings are not covered here.

Scene Atframe At Nfuid ~ Nsolid ky v dp pr E Vs Ps T

Fig. 1 Kick Water* 1/24  6x1073 1M 43K 25x10° 0.1 25 1000 - - 500 37.9
Fig. 2 Shoot Armadillo 1/24 4x1073 103K 16K  1x10° 0 10 1000 1x10° 0.3 200 13
Fig. 3 Cream 1/24  4x1073 159K 9K 3x10% 25 3 1000 5x10% 0.49 1000 1.8
Fig. 4 Buoyancy 1/24  5x1073 787K 66K  2x10° 1 10 1000 1x10° 04 200/700/1200 5.9
Fig. 5 Bob 1/24  4x1073 97K 23K 2x10° 0 15 1000 1x10° 03 500 0.3
Fig. 6 Twist Cylinder* 1/24  5x1073 48K 12K  4x10% 0 5 1000 - - 500 7.9
Fig. 7a Viscous Armadillo ~ 1/48  4x 1073 238K 0 1x10° 100 10 1200 - - - 0.4
Fig. 9 Dam Break 1/24  5x1073 280K 0 2x10°  0.005 25 1000 - - - 0.4
Fig. 11a Liquid Bunnys 1/50  4x1073 52K 37K  1x10° 0 10 1000 4x10° 0.49 200 0.4
Fig. 11b Liquid Bunnys 1/50 4x1073 101K 45K  6x10% 0 64 1000 1x10° 0.49 200 1.0
Fig. 14 Angry Cow* 1/24  5%x1073 789K 13K  1x10° 02 10 1000 1x10° 045 100/700 4.9

Initial (A) (B) (©)

(a) A viscous armadillo dropped onto the ground.

() B) ©

(b) Cube on cloth. An elastic cube is dropped onto a square cloth with
four corners fixed.

Fig. 7. Simulation results of (A) Joint Optimization, (B) Time Splitting with
Contact Proxy, and (C) Baseline Time Splitting. While directly applying time
splitting results in instability at the boundaries, our results with contact
proxy are consistent with joint optimization.

stable simulation results. Hence, for comparison, we use the largest
CFL time step for both schemes to maximize their performance
as smaller h typically takes more Newton’s iterations in total to
simulate a frame. For joint optimization, since direct factorization is
intractable, we solve Eq. 20 using the block-Jacobi preconditioned
conjugate gradient solver with the fluid part matrix free.

As shown in Table 2, our time splitting scheme is significantly
(up to 6x) faster than joint optimization, especially for cases (e.g.
Fig. 2) involving contacts between fluids and deformable solids.
This improvement stems from no longer having to solve for incom-
pressibility of fluids repeatedly within a time step. Moreover, one
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Table 2. Statistics of different time stepping schemes: Joint Optimiza-
tion (Joint), Baseline Time Splitting (TS) and Time Splitting with Contact
Proxy (TSCP). Our proposed TSCP is much faster than both the Joint and
TS.

Scene Sec/Frame # Newton Iter./Frame
Joint TS TSCP  Joint TS TSCP
Fig. 5 66.1 38.0 22.5 63.5 117.3 37.1
Fig. 7a 41.3 32.3 25.5 16.5 29.0 10.5
Fig. 2 486.4 158.5 79.8 176.7 187.2 85.8
Fig. 6 2408.2 722.7 472.2 389.1 419.3 219.5

can also find out that Newton’s iterations are much less with our
proxy-assisted time splitting scheme. As discussed in § 4.1.2, this is
because the challenging high-speed impacts are already partially
resolved in the fluid phase. Another benefit of time splitting is the
support of different error tolerances for the two phases. Errors in
the fluid phase are sourced from the solution deviation of the CG
solver, while in the solid phase they are directly controlled by the
tolerance of Newton’s method. Typically, setting a slightly higher
tolerance for fluids yields better performance while still producing
visually plausible results.

Aside from efficiency, our proposed contact proxy also improves
the stability of time splitting scheme. Though simulation results of
the baseline time splitting scheme look fine in the case of inviscid
fluids, situations get worse when it is applied to viscous fluids. In Fig.
7a, a viscous armadillo is dropped to the ground. In this example,
the baseline time splitting scheme produces severe sticky artifacts at
the boundary, and the fluid surface could not finally calm down. By
consistently applying our contact proxy to exert boundary pressure
in the fluid phase, the artifacts can be well resolved as demonstrated
in Fig. 7a. Similarly, our idea of contact proxy is also applicable
to further separate elasticity from IPC contact while maintaining
stability, leading to our three-phase scheme (Fig. 7b).
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Fig. 8. Statistics of simulations with different stiffness parameter ky
and contact proxy coefficient y. Upper left: the relation between CG
iterations and k. Upper right: density tracking with different k;. Bottom
left: simulations with different ky. A larger ky preserves volume better but
results in more CG iterations. Bottom right: number of Newton iterations
per frame with different y when k; = 10°Pa.

Table 3. Time and memory cost of different solvers in example 2. The
costs are measured per time step in units [s] and [MB] respectively, and
‘hess’ refers to the cost of constructing the hessian matrix. The baseline uses
the Conjugate Gradient (CG) method for the fluid phase and CHOLMOD
LLT for the solid and contact phases. Our method instead employs a matrix-
free CG solver for the fluid phase and a domain-decomposed solver for the
solid and contact phases, thereby improving efficiency and saving memory.

Fluid Phase Solid Phase Contact Phase

Solver hess solve solve solve Mem
CG+LLT 149 049 1.45 0.43 12375
Ours 0.15 0.59 1.11 0.25 1469

It is also important to choose an appropriate coefficient y for the
contact proxy. Striking a balance between 0 and 1 is essential for
better performance. A coefficient too close to 0 would degenerate
the scheme to baseline time splitting, again causing stability issues
and artifacts. Conversely, a coefficient approaching 1 may hinder
optimization convergence due to the excessively small scaling of the
barrier contact energy in the solid-coupling phase. The ideal value of
y can be scene-dependent. In Fig. 8, we simulate a scene with varying
contact proxy coefficients and document the average number of
Newton iterations per frame. While a coefficient of % which is used
in all our simulations, may not be optimal, our experiments indicate
that a broad range of y all perform adequately well.

5.1.2  Linear Solver Evaluation. For the fluid phase, we designed
a matrix-free conjugate gradient (CG) solver that calculates the
matrix-vector product via gradient computation to avoid the expen-
sive computational and memory costs of direct factorization (§ 4.2.1).
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Initial

IISPH DFSPH

Fig. 9. Dam break with 280K SPH particles. Compared to incompressible
SPH solvers IISPH [Ihmsen et al. 2013] and DFSPH [Bender and Koschier
2015], our weakly compressible formulation produces stable fluid dynamics
without visually evident volume loss.

However, the performance improvement from this approach will be
less significant if the number of CG iterations required for conver-
gence is too large, making the cost of computing gradients higher
than constructing the Hessian once. In our fluid phase, the number
of CG iterations is proportional to the stiffness kj of the incompress-
ibility energy. A larger kr can better preserve the volume of the
fluids but also results in a worse-conditioned system, demanding
more iterations to converge (Fig. 8). In practice, by setting kj to a
proper value, we can efficiently solve the systems within 50 CG
iterations without obvious fluid volume loss.

We test the performance of our matrix-free CG solver together
with the domain-decomposed solver we designed for the solid-
coupling phase on the Shoot Armadillo example (Fig. 2), and present
the results in Table 3. Our matrix-free CG solver significantly boosts
efficiency (20x faster) and reduces memory costs by avoiding the
construction of the Hessian matrix. On the other hand, our domain
decomposed solver is 40% faster than directly factorizing the solid
and contact systems.

5.2 Comparisons

In this section, we compare our method with several popular SPH
fluid solvers and a state-of-the-art solid-fluid coupling method Elas-
toMonolith [Takahashi and Batty 2022]. We leveraged the open-
source library SPlisHSPlasH! to implement the SPH fluid simula-
tors. To compare our method with ElastoMonolith, we set up two
scenes from their paper with identical parameters and run all the
simulations using “e2-standard-8” (8 cores with 32GB RAM) Google
Compute Engine for fairness.

5.2.1 Fluid Dynamics. While most existing SPH fluid solvers focus
on incompressible fluids, our formulation treats fluids as weakly
compressible, allowing us to couple fluids with deformable solids in
a unified framework. We run a dam break simulation to compare
our method with two SPH fluid solvers IISPH [Thmsen et al. 2013]
and DFSPH [Bender and Koschier 2015]. These methods typically

!https://github.com/InteractiveComputerGraphics/SPlisHSPlasH
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Fig. 10. Penetration test where high-speed fluid particles fall onto a fixed
thin metal plate. Unlike lISPH/DFSPH with volume map [Bender et al. 2019],
our method does not suffer from any particle penetration artifacts regardless
of the time step sizes.

7,

(a) A liquid bunny dropped into a bowl.

(b) A liquid bunny and an elastic bowl dropped onto a static torus.

Fig. 11. Liquid Bunnys. Compared to ElastoMonolith [Takahashi and
Batty 2022], our method achives an over 5x speedup for both of these two
examples with exactly the same scene setups.

use particle resampling [Akinci et al. 2013, 2012] or implicit repre-
sentation [Bender et al. 2019; Koschier and Bender 2017] to exert
boundary counter-forces. Our method instead employs IPC [Li et al.
2020] for more robust solid-fluid coupling, with penetration-free
guarantee. We uniformly enforce the same CFL condition for all
methods along with an upperbound at 5ms, and use the volume map
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[Bender et al. 2019] for their boundary handling. As shown in Fig.
9, though our formulation does not strictly enforce incompressibil-
ity, it produces natural fluid dynamics without visually observable
volume loss. On the other hand, our method (0.45 min/frame) is
slower than IISPH (0.31 min/frame) and DFSPH (0.15 min/frame)
due to the more sophisticated boundary handling strategy. How-
ever, our proposed approach can couple SPH fluids and elastic solids
with arbitrary constitutive models, while most existing SPH meth-
ods [Kugelstadt et al. 2021; Peer et al. 2018] treat elastic solids as
incompressible, which is not generally applicable.

To resolve coupling and boundary conditions, existing SPH meth-
ods usually extend the density field into the solid region through
either implicit [Bender et al. 2019; Koschier and Bender 2017] or
explicit approaches [Akinci et al. 2012], and rely on pressure solvers
to exert boundary forces. Consequently, a small time step size is
occasionally necessary to prevent particles from infiltrating the
solid region, particularly for fast-moving particles. In contrast, our
method consistently ensures penetration-free particle trajectories,
as demonstrated in Fig. 10. Furthermore, the implicit boundary rep-
resentation is not applicable to deformable objects due to efficiency
considerations, and the explicit one (boundary resampling) can re-
sult in bumpy surfaces and inaccurate pressure forces.

5.2.2  Solid-Fluid Coupling. We then compare our method with
ElastoMonolith [Takahashi and Batty 2022], which couples Eulerian
fluids with Lagrangian solids in a monolithic manner. Following
their experiment setting, we run two solid-fluid coupling simula-
tions with identical parameters using our method (Fig. 11). The
timing of our method for these two scenes are 24.1 sec/frame and
62.8 sec/frame respectively, both of which are over 5x faster than
ElastoMonolith according to their reported timings (253.2 sec/frame
and 352.0 sec/frame). Coupling Eulerian fluids with Lagrangian
solids requires dealing with geometric differences and it is often
needed to perform SPD reformulation to make the linear system
tractable. As stated in ElastoMonolith, this SPD reformulation can
introduce many additional non-zeros to the system, especially when
contacts are rich and solids are intricately shaped. Conversely, our
method treats solids and fluids from a unified Lagrangian viewpoint,
where solid-solid and solid-fluid contacts are resolved in a unified
manner.

5.3 Complex Scenarios

We then evaluate the efficiency and robustness of our method in
more complicated scenarios.

Buoyancy. We drop three elastic elephants with varying densities
into the water (1000 kg/m3) in Fig. 4. The light grey elephant (200
kg/m?®) floats on the surface; the blue elephant (700 kg/m?) is around
half immersed in the water; and the red elephant (1200 kg/m?) sinks
to the bottom. This demonstrates that our method correctly captures
the buoyancy behavior.

Varying Friction. We drop three viscous bunnies onto the slope
with different coefficients of friction (orange bunny: 0.5, green
bunny: 0.03, blue bunny: 0) in Fig. 12. All three bunnies share the
same dynamic viscosity coefficients 100 kg/m> and the angle of
slope is 30°.
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Fig. 12. Varying friction. Three viscous bunnies are dropped onto the slope with different coefficients of friction u (from left to right: 0.5, 0.03, 0). Our method

supports adjustable solid-fluid boundary friction.

mmm SPH Update = Gradient mmm Hessian Linear System
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Fig. 13. Timing breakdown. We show the timing profile of different simulation phases and plot the proportions of the major routines. Examples marked with
* are simulated using our three-phase time splitting scheme. Other examples are generated with the two-phase scheme. In particular, SPH update (including

neighborhood search and density update) only occurs in the fluid phase, line search happens in the solid and contact phases for non-linear optimization, and
continuous collision detection (CCD) is counted when IPC contact energy is considered.

Twist Cylinder. Coupling fluids with thin shells is challenging
since penetration can easily happen without careful treatments. As
stated in [Zarifi and Batty 2017], Eulerian fluids may flow through
solids if their thickness is less than a grid cell size. Conversely, our
approach adopts a unified Lagrangian view and a penetration-free
state is guaranteed by IPC. In Fig. 6, we simulate twisting a cylinder
full of water. The cylinder is modeled as a thin shell with a 2mm
thickness, and there are two holes in the front and back sides of this
cylinder respectively. The left side and right side are rotated at 72° /s
and are slowly moved towards each other at 2cm/s. As we twist
the cylinder, the water gets squeezed out through the holes. This
simulation demonstrates our method produces stable simulation
results with a penetration-free guarantee.

Cream. This example exhibits the coupling behaviors of viscous
fluids and elastic solids (Fig. 3). We use an elastic spoon to stir the
cream in a porcelain bowl. The spoon handle rotates around the
y-axis at 360° /s (0.2m/s) while the bowl is fixed to the table. As
shown in our simulation results, the spoon gets deformed due to the
resistance forces it receives from the viscous cream while stirring.

Angry Cow. We then show our framework can simulate natural
physical behaviors of geometries in arbitrary codimensions (0, 1,
2, and 3) as well as their interactions. In this scene (Fig. 14), the
codimension-0,1,2 objects respectively refer to fluid particles, rubber
bands and the leather pad. A deformable cow is launched by the
slingshot, hitting the wall consisting of rigid cubes, and then falling
into the water pool, producing interesting physical behaviors. The
density of the rigid cubes and the cow are 100kg/m> and 700kg/m3
respectively.

Kick Water. In this example (Fig. 1), we show a scene where a
mannequin dressed in a multilayer skirt kicks in a large water pool,
extending the original example in Li et al. [2021] to involve complex
interactions between fluid particles and garments. As the mannequin
moves in the water, our method produces natural deformation of
the skirt caused by the contact with water; as it kicks out of the
water at a high speed, the resulting water splash is also correctly
captured. Our method well resolves the contacts among fluids parti-
cles, thin garments and rapidly moving complex boundaries with a
penetration-free guarantee.

ACM Trans. Graph., Vol. 42, No. 4, Article 000. Publication date: August 2023.
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Fig. 14. Angry cow. We show our method can simulate the coupling of materials in arbitrary codimensions, including fluid particles, rods (the rubber bands),
thin shells (the leather pad), deformable solids (the cow), and rigid bodies (the cubes). We launch an angry cow with a slingshot, and the cow hits through the
wall and then falls into the water. Interactions between various materials are all accurately captured.

6 CONCLUSION

We presented a unified two-way strong coupling framework for
weakly-compressible SPH fluids and nonlinear elastic FEM solids.
To achieve this, we modeled solid-fluid interactions as contact forces
between SPH particles and FEM boundary elements, applying IPC
for guaranteed non-penetration and stability. As we track the vol-
ume change of SPH particles in an updated Lagrangian fashion,
the incompressibility energy stays quadratic and nice particle dis-
tributions are maintained. Utilizing a symmetric approximation of
discrete viscosity forces, we proposed a viscosity potential that fits
into optimization time integration. We then proposed a time splitting
scheme with a contact proxy to efficiently solve the time integra-
tion optimization while maintaining robustness. The performance
is further boosted by our matrix-free conjugate gradient method
and a domain-decomposed solver based on Schur complement.

Compared to existing works [Takahashi and Batty 2022; Zarifi and
Batty 2017] coupling Eulerian fluids with Lagrangian elastic solids,
our method treats both fluids and solids in a Langrangian manner,
avoiding the need to handle different spatial discretizations. Under
such a unified view, our method achieves more convenient and
robust two-way coupling, even between fluids and codimensional
solids. Likewise, different from existing SPH methods [Kugelstadt
et al. 2021; Peer et al. 2018] that treat all materials as SPH particles,
our formulation enjoys both the efficiency of SPH fluids and the
accuracy of FEM solids.

There are many meaningful future research directions. First, when
fluid DOFs dominate, building and querying the spatial hash for each
fluid particle can become a considerable cost. In fact, since there
is no solid-fluid contact for interior particles, we can construct the
spatial data structure only in the intersection between the extended
bounding boxes of the fluids and each solid for better efficiency,
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just like the i-BVH scheme in Lan et al. [2022]. In addition, the
adhesion between solids and fluids is also an interesting behavior to
model. Similar to the barrier energy, adhesion forces can be exerted
on close solid-fluid primitive pairs but in the opposite direction.
Modeling adhesion via resolving the surface tension of fluids is also
an interesting future work.
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