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Figure 1: Thick Fashion. Our method can realistically capture both the thickness dynamics and the fine wrinkling details

of leather garments, down jackets, and jeans. A single layer of our dual-quadrature prism elements is used to discretize the

interior volume of these thick garments without shear locking, and a high-resolution membrane is coupled on the surface to

generate complementary high-frequency wrinkles.

ABSTRACT

We present a novel mesh-based method for simulating the intricate

dynamics of (potentially multi-layered) continuum thick shells. In

order to accurately represent the constitutive behavior of structural

responses in the thickness direction, we develop a dual-quadrature

prism finite element formulation that is free from shear locking

and naturally incorporates three-dimensional elastoplastic and vis-

coelastic constitutive models. Additionally, we introduce a sim-

ple and effective technique for coupling a high-resolution mem-

brane layer on top of the thick shell to enable complementary

high-frequency deformation modes that generate realistic wrin-

kles. With our novelly designed sparse basis vectors for the high-

frequency deformations, the constrained Lagrangian mechanics

problem is expressed as an unconstrained optimization and then

efficiently solved by a custom alternating minimization technique.

Our method opens up a new possibility for fast, high-quality, and

thickness-aware simulations of leather garments, pillows, mats,

metal boards, and potentially a variety of other thick structures.
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1 INTRODUCTION

Thin shell simulation has been extensively studied in computer

graphics over the past decades. The combined use of codimensional

geometry and physical modeling has allowed for realistic dynamic

simulations of daily wearing fabrics, papers, cards, and metal sheets

with detailed wrinkles and complex motion. In contrast, the sim-

ulation of thick shells, such as leather jackets and yoga mats, has

received relatively limited attention within the field of computer

graphics. The primary obstacle here is the need to accurately de-

pict the dynamic evolution in thickness and wrinkles while also

ensuring efficient computational performance.
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A commonly adopted practice in augmenting thin shell simu-

lations with thickness is to impose a contact offset between mid-

surfaces [Li et al. 2018; Narain et al. 2012]. While superficially

appearing to be powerful, this approach faces difficulties in con-

sistently maintaining the distance offset. Additionally, it lacks a

physically intuitive and controllable mechanism for modeling the

evolution of thickness over time. Recently, the Incremental Poten-

tial Contact (IPC) [Li et al. 2020] model was proposed as a robust

and accurate contact handling solution for nonlinear elastic solids

with arbitrary codimensions [Li et al. 2021]. In addition to guaran-

teeing an inelastic thickness (contact offset), IPC also demonstrates

a certain degree of thickness dynamics on codimensional mate-

rials (see e.g. Fig. 18 in Li et al. [2021]) due to its penalty force

nature. However, it lacks meaningful constitutive models in the

normal-direction response, fails to consider modes of shearing de-

formation, and does not offer a practical way for visualizing the

explicit geometry of thick structures.

Computer graphics practitioners in the industry also explored

animating thick shells as visual geometries fully embedded in a

volumetric body. Despite its convenience, this approach tends to

encounter obstacles in capturing accurate frictional contact. Addi-

tionally, complex and parameter intensive anisotropic elastic mod-

els are mandated for properly resolving bending behaviors while

avoiding artificially stiffened bending penalties and stretchy arti-

facts. This issue naturally arises when using volumetric linear finite

elements, where bending deformation could only be resolved via

shearing, imposing additional elastic forces. This behavior is called

shear locking, which has been extensively studied in mechanical

engineering, where reduced spatial integration methods [Cardoso

et al. 2008; Trinh et al. 2011] have been developed to ignore certain

shearing modes and avoid locking without resorting to expensive

higher-order elements or impractically fine tessellations.

We follow the idea of reduced integration and propose a dual-

quadrature prism element for practical thick shells, balancing accu-

racy and efficiency. The two quadratures are chosen as the Guassian

quadratures in the thickness direction, both on the center line of

the prism, perfectly ignoring trapezoidal shearing modes to avoid

locking. Our model can capture accurate bending behaviors even

with a coarse tessellation. Based on the finite strain theory, our

model naturally supports common three-dimensional elastoplastic

and viscoelastic constitutive models [Li et al. 2022] for simulating

inelastic behaviors. In addition to single-layer shells, our prism

elements can also serve as an effective spatial discretization for

volumetric bodies that have a simple-topology medial surface.

To take advantage of the fact that our prism elements can ac-

curately resolve bending even at a low resolution, we augment a

membrane layer with higher resolution on the surface of the thick

shell to efficiently capture fine wrinkling details. The membrane

and thick shells are spectrally coupled, where the low-frequency

displacement modes of the membrane perfectly matches that of

the thick shell, ensuring close attachment while allowing high-

frequency wrinkles to form. With novelly defined sparse basis

vectors for both the low- and high- frequency modes, the coupling

is implicitly achieved via a change of variable derived based on La-

grangian mechanics. As the low- and high- frequency deformations

are sufficiently independent, we further propose an alternating min-

imization framework equipped with custom solvers to efficiently

step in time.

In summary, our contributions include

• a dual-quadrature prism finite element formulation for effi-

cient and robust simulation of elastoplastic and viscoelastic

multi-layer thick shells without shear locking (ğ 3);

• a change-of-variable method to couple coarse thick shell

interior and fine membrane surface for efficiently capturing

complementary fine wrinkling details (ğ 4);

• an alternating minimization method with custom nonlinear

and linear solvers to efficiently solve our coupled system

(ğ 5).

2 RELATED WORK

Continuum Solid-Shell Elements. Solid-shell elements are initially

investigated by Hauptmann and Schweizerhof [1998]; Miehe [1998];

Parisch [1995]; Schoop [1986] in mechanical engineering. Com-

pared to classical shell models such as the Kirchoff-Love [Chen et al.

2018; Panc 1975] and the Mindlin-Reissner [Bathe and Dvorkin

1985; Guo et al. 2018], solid-shell elements also capture strains

and stresses in thickness direction and allows general 3D material

laws to be applied [Harnau and Schweizerhof 2002]. Furthermore,

without rotational degrees of freedom, solid-shell elements avoid

complicated updates of the rotation vector in geometrically non-

linear analyses, and they enable convenient treatment of bound-

ary conditions and coupling with solid elements [Hauptmann and

Schweizerhof 1998].

To efficiently avoid various locking issues, the elasticity on the

solid-shell elements are often integrated with reduced integration

methods such as the assumed natural strain (ANS) method [Kim

et al. 2005; Sze and Yao 2000; Trinh et al. 2011] and the enhanced

assumed strain (EAS) method [Cardoso et al. 2008; Schwarze and

Reese 2009]. The key insight for both types of methods is that parts

of the strains in the element are assumed to be in their natural

state or represented by a higher-order polynomial, rather than

being calculated from the nodal displacements. These methods

are particularly useful for problems involving large deformations,

as certain deformation modes can be ignored to avoid locking.

Inspired by this line of research, we apply a prismatic element

to efficiently discretize multi-layer thick shells, and integrate the

elasticity using only 2 quadratures on the central vertical line per

element to conveniently avoid shear locking.

Wrinkle Simulation. Efficiently augmenting coarse base anima-

tion with fine wrinkling details has drawn lots of attention in com-

puter graphics. Grinspun et al. [2002] proposed an adaptive re-

finement method to simulate wrinkles and folds using finer basis

functions obtained from subdivisions. Bergou et al. [2007] employed

constrained Lagrangian mechanics to simulate a high-resolution

surface following the dynamics of an art-directed low-resolution

target. Rohmer et al. [2010] added dynamic wrinkles with user-

guided wrinkle size to a coarse-scale simulation by analyzing the

strain tensor in real-time. Müller and Chentanez [2010] applied

position-based dynamics to compute fine wrinkles by simulating

high-resolution patches constrained to an input low-resolution sim-

ulation. Chen et al. [2013] simulated fine wrinkles in the cloth-body
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interactions by capturing the friction and air pressure between the

cloth and body. Zuenko and Harders [2019] solved for an amplitude

and phase field to simulate the wrinkling of human skin and other

materials where a stiff membrane is attached to a soft body.

Our complementary wrinkle coupling idea resembles a lot Rémil-

lard and Kry [2013] and Casafranca and Otaduy [2022], where they

both couple a fine membrane surface to a coarse mesh by match-

ing the low-frequency displacements. However, Rémillard and Kry

[2013] define the constraints using the averaged positions of both

meshes, and they directly solve a KKT system to augment static

high-frequency wrinkles. Later, Li and Kry [2014] extended this

idea to simulate wrinkles of multi-layer skin, with different lay-

ers coupled via similar constraints. Casafranca and Otaduy [2022]

define the constraints using low-frequency basis as we do. They

focus on a special discretization where the coarse mesh is the cen-

troidal Voronoi tessellation of the fine mesh, so that 0-th order

basis can be used to make their modified preconditioned conjugate

gradient solver tractable with better sparsity of the preconditioning

matrices. Instead, our method supports a hierarchy of tessellations

and couples different levels of dynamics in a monolithic fashion.

By defining the null-space basis for subdivision meshes, our un-

constrained system has no redundant degrees of freedom, and its

sparsity remains nice even with multiple subdivisions.

Others such as the data-driven methods and those based on the

tension field theory (TFT) have also shown effective in enhanc-

ing coarse simulation with fine wrinkles. For instance, Chen et al.

[2021] applied the TFT to simulate efficiently parameterized wrin-

kles based on compression-free coarse cloth simulations. TFT was

also successfully applied to simulate wrinkles on inflatable struc-

tures [Skouras et al. 2014]. For Data-driven methods, Wang et al.

[2010] added fine details to relatively skin-tight garments by learn-

ing the cloth deformation on the pose of an underlying mannequin.

Kavan et al. [2011] learned a dense upsampling operator to obtain

more geometric details on a coarse simulated mesh. Zurdo et al.

[2012] proposed an algorithm for synthesizing cloth wrinkles as a

function of the deformation of a low-resolution cloth and a set of

example poses.

3 REDUCED PRISM ELEMENTS

Inspired by Trinh et al. [2011], we design a reduced prism finite

element to explicitly track the thickness evolution of multi-layer

shells. With dual-quadrature reduced integration, shear locking

can be avoided even at coarse discretization with low-order basis

functions.

3.1 Kinematics

In the material space, for a prism with midsurface nodes 𝑿1, 𝑿2,

𝑿3 ∈ R3 and corresponding directors 𝑵1, 𝑵2, 𝑵3 ∈ R3, any point

𝑿 ∈ R3 inside the prism can be parameterized by 𝒒 = (𝜆1, 𝜆2, 𝛾) ∈
[0, 1] × [0, 1 − 𝜆1] × [−1, 1] (Fig. 2 left), which gives its material

space position

𝑿 (𝒒) = 𝑿1 + 𝜆1 (𝑿2 − 𝑿1) + 𝜆2 (𝑿3 − 𝑿1)+
𝛾 (𝑵1 + 𝜆1 (𝑵2 − 𝑵1) + 𝜆2 (𝑵3 − 𝑵1)) .

(1)

Here the 3 directors can take any vector in R3 to construct a wide

variety of thick shells with curvy rest configurations of varying

Midsurface

X1

X2

X3

N3

N1

N2

X(q)

λ1(X2 − X1)

λ2(X3 − X1)

γ(N1 + λ1(N2 − N1) + λ2(N3 − N1))

Deformation map

Midsurface

x1

x2

x3

n3

n1

n2

x(q)

λ1(x2 − x1)

λ2(x3 − x1)

γ(n1 + λ1(n2 − n1) + λ2(n3 − n1))

Material space Ω0 World space Ω
t

Figure 2: Parameterization and interpolation of our prism

element. Spatial coordinates are parameterized with 𝜆1, 𝜆2
and 𝛾 .

thicknesses, as long as the prism is not inverted or degenerated.

With barycentric weights and bilinear interpolation, we construct

the prism element in an isoparametric fashion and obtain the world

space mapping of 𝑿 as

𝒙 (𝒒) = 𝒙1 + 𝜆1 (𝒙2 − 𝒙1) + 𝜆2 (𝒙3 − 𝒙1)+
𝛾 (𝒏1 + 𝜆1 (𝒏2 − 𝒏1) + 𝜆2 (𝒏3 − 𝒏1)),

(2)

where 𝒙1, 𝒙2, 𝒙3 ∈ R3 and 𝒏1, 𝒏2, 𝒏3 ∈ R3 are the world space

counterparts of the midsurface nodes and directors respectively

(Fig. 2 right). Now we can evaluate the deformation gradient at 𝑿

as

𝑭 (𝒒) = 𝜕𝒙

𝜕𝑿
(𝒒) = 𝜕𝒙

𝜕𝒒

(
𝜕𝑿

𝜕𝒒

)−1
, (3)

where 𝜕𝒙
𝜕𝒒 and 𝜕𝑿

𝜕𝒒 are both linear functions of 𝜆1, 𝜆2, 𝛾 ; see the

supplementary for details.

3.2 Spatial Discretization

We follow Li et al. [2022] to adopt a unified energy-based formu-

lation of hyperelasticity, elastoplasticity and viscoplasticity. The

potential energy on the entire thick shell domain Ω
0 (material

space) discretized by our prism elements is integrated as
∫

Ω0

Ψ (𝑭 )d𝑿 ≈
∑︁

𝑖

∫

Ω
0

𝑖

Ψ (𝑭 )d𝑿

=

∑︁

𝑖

∫
1

0

∫
1−𝜆1

0

∫
1

−1
Ψ (𝑭𝑖 (𝒒))

���
(
𝜕𝑿

𝜕𝒒

)

𝑖

���d𝛾d𝜆2d𝜆1,
(4)

where subscript 𝑖 refers to quantities of the 𝑖-th prism element.

Applying Gaussian quadrature in each dimension, the triple integral

here can be properly approximated.

Nevertheless, approximating this triple integral with high accu-

racy can lead to shear locking [Belytschko et al. 2014; Bletzinger

et al. 2000]. To illustrate this in 2D, in the ideal setting, a cantilever

beam has nearly no shearing anywhere, with the majority of bend-

ing force originating from the tangential stretch or compression

at different levels along the thickness direction (Fig. 3a). To cap-

ture the same deformation, however, coarse linear elements must

undergo significant shearing away from the central vertical line,

which can exert additional elastic forces to resist bending (Fig. 3b).

Therefore, we propose a reduced integration scheme to com-

pletely ignore the trapezoidal shearing mode while evaluating the
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C

Tangential stretch

Tangential  
compression

A

B

C

Tangential stretch 
and shearing

Tangential  
compression

shearing

(a) Ideal Setting (b) Coarse Tessellation with Linear Basis

Figure 3: 2D Illustration of shear locking. Linear elements

artificially incur shearing strain, limiting bending displace-

ments.

deformation gradient. This can be conveniently achieved by only

placing the Gaussian quadrature along the central vertical line,

which gives our reduced potential energy

𝑃𝑒 =

∑︁

𝑖

1

2

(
Ψ (𝑭𝑖 (𝒒1))

���
𝜕𝑿

𝜕𝒒
(𝒒1)

��� + Ψ (𝑭𝑖 (𝒒2))
���
𝜕𝑿

𝜕𝒒
(𝒒2)

���
)
, (5)

where 𝒒1 = (1/3, 1/3,−
√
3/3), 𝒒2 = (1/3, 1/3,

√
3/3) are the two

quadratures. Note that only using a single quadrature will com-

pletely ignore the thickness modes and lead to unstable dynamics.

Additionally, we do not apply the assumed strain method as in Trinh

et al. [2011] to scale down the transverse shear component, since

we find that ignoring trapezoidal modes alone is already sufficient

to avoid shear locking under bending deformations.

Our method can also be used to discretize thicker volumes utiliz-

ing multiple layers of prism elements. However, due to our reduced

integration, the discretized volume will not exhibit isotropic elastic

behaviors. Thus, our elements are particularly effective for the effi-

cient discretization of special-structured volumes, such as a pillow

(Fig. 11) or a down jacket (Fig. 1).

4 COMPLEMENTARY WRINKLE COUPLING

To efficiently capture fine wrinkling details on the surface of the

coarse thick shell, we attach a fine membrane to it, matching their

low-frequency displacements in the coupled region and allowing

high-frequency wrinkles to form.

4.1 Problem Formulation

We first transform the degrees of freedom of the thick shells from

the midsurface to the outer surface nodal positions 𝒚2𝑗−1 = 𝒙𝑚𝑖𝑑
𝑗 −

𝒏 𝑗 and𝒚2𝑗 = 𝒙𝑚𝑖𝑑
𝑗 +𝒏 𝑗 , and stack them together to form𝒚. Then, we

introduce a high-resolution codimension-1membranemeshwith all

its nodal degrees of freedom stacked as 𝒙 . At the rest configuration,

the membrane collocates with the thick shell surface (Fig. 4 left),

and the coordinates of each membrane node can be expressed as a

linear transformation of 𝒀 , namely

𝑿 = 𝑷𝒀 , (6)

where 𝑿 and 𝒀 are the material space counterparts of 𝒙 and 𝒚, and

each row of the matrix 𝑷 contains the interpolation weights. The

column vectors of the tall matrix 𝑷 contain low-frequency modes

of the membrane’s displacement.

Material space Ω
0

World space Ω
t

Y

X = PY

y

x
Membrane

Thick shell Thick shell

Py Membrane

Deformation map

Δx

Figure 4: 2D Illustration of complementary wrinkle coupling.

Note that the membrane can also be coupled with the entire

thick shell surface.

In the world space, we only constrain the low-frequency dis-

placement between 𝒙 and 𝒚 to match, which gives the constraint

𝒙 = 𝑷𝒚 + Δ𝒙, (7)

where Δ𝒙 is the high-frequency displacements (Fig. 4 right) with

𝑷TΔ𝒙 = 0. If we rewrite this constraint as 𝑷T (𝒙 − 𝑷𝒚) = 0 and

apply Lagrangian mechanics, we obtain the spatially discretized

dynamical system




d𝒗𝑥

d𝑡
= 𝑴−1𝑥 (−∇𝐸𝑥 (𝒙) + 𝑷𝝀),

d𝒙

d𝑡
= 𝒗𝑥

d𝒗𝑦

d𝑡
= 𝑴−1𝑦 (−∇𝐸𝑦 (𝒚) − 𝑷T𝑷𝝀),

d𝒚

d𝑡
= 𝒗𝑦, 𝑷T (𝒙 − 𝑷𝒚) = 0

(8)

where 𝐸𝑥 and 𝐸𝑦 are the potential energies of the membrane and

thick shell including strain energy, gravity, frictional contact, etc.,

and 𝝀 is the Lagrange multiplier vector for the coupling constraints.

This is essentially a KKT system which can be expensive to solve

directly or via Schur complement. By exploring a special structure

of 𝑷 , we propose a change-of-variable method to implicitly handle

the constraints.

4.2 Change of Variable

Y
1

Y
2

Y
3

X
1

X
2

X
3

X
4

X
5

If we assume 𝑿 can be expressed

as barycentric coordinates of 𝒀 , e.g.

through subdivision, we will be able

to directly define a set of sparse vec-

tor basis for the null space of 𝑷 . To

illustrate this in 1D, consider 𝒀 as a 2-segment polyline with 3 nodes

𝒀1, 𝒀2, 𝒀3, then subdividing once gives 𝑿1 = 𝒀1, 𝑿2 = (𝒀1 + 𝒀2)/2,
𝑿3 = 𝒀2, 𝑿4 = (𝒀2 + 𝒀3)/2, 𝑿5 = 𝒀3. We set

𝑷 =



1 0 0

1/2 1/2 0

0 1 0

0 1/2 1/2
0 0 1



, 𝑸 =



−1/2 0

1 0

−1/2 −1/2
0 1

0 −1/2



, (9)

where each row of 𝑷 ∈ R𝑛𝑋 ×𝑛𝑌 stores the interpolation weights

of both low- and high-res points, and each column of 𝑸 ∈
R
𝑛𝑋 ×(𝑛𝑋 −𝑛𝑌 ) corresponds to a high-res point, with coefficients

carefully chosen to ensure orthogonality to all columns of 𝑷 , i.e.

𝑷T𝑸 = 0. For 3D cases, please refer to our supplemental docu-

ment for pseudo-code. With the sparse null-space matrix 𝑸 , we can
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Figure 5: Sparsity pattern of [𝑷 ,𝑸]. We subdivide coarse grids

with different initial resolutions to achieve a final resolution

of 128 × 128. For example, a 64 × 64 grid only needs one subdi-

vision. Here we visualize the sparsity pattern and record the

number of nonzero entries 𝑛𝑧. Regardless of the number of

subdivisions, the sparsity pattern of [𝑷 ,𝑸] remains consis-

tently nice. Note that here we did not duplicate the entries

for the 3 dimensions.

rewrite the coupling constraints as

𝒙 = 𝑷𝒚 + 𝑸𝒛 (10)

by introducing the high-frequency variable 𝑧 measuring wrinkle

magnitudes. In this way, after time discretization (e.g. with im-

plicit Euler here), our dynamical system can be reformulated as an

unconstrained optimization

𝒘𝑛+1
= argmin

𝒘

1

2
∥𝒘 − 𝒘̃𝑛 ∥𝑴𝑤

+ ℎ2
(
𝐸𝑥 ( [𝑷 ,𝑸]𝒘) + 𝐸𝑦 ( [𝑰 , 0]𝒘)

)

(11)

followed by velocity update 𝒗𝑛+1𝑤 = (𝒘𝑛+1 − 𝒘𝑛)/ℎ, where 𝒘 =

[𝒚T, 𝒛T]T, 𝒘̃𝑛
= 𝒘𝑛 + ℎ𝒗𝑛𝑤 , ℎ is the time step size, and

𝑴𝑤 =

[
𝑴𝑦 + 𝑷T𝑴𝑥𝑷 𝑷T𝑴𝑥𝑸

𝑸T𝑴𝑥𝑷 𝑸T𝑴𝑥𝑸

]
. (12)

Please see our supplemental document for detailed derivations.

Ourmethod also supportsmultiple subdivisions to capture awide

range of wrinkles with various wavelengths. For any node on the

finer levels, its material space coordinates are still the barycentric

interpolation inside one triangle element on the prismmesh surface,

which at most depends on 3 prism mesh nodes. This means that 𝑷

will always have at most 3 nonzeros per row. Then for constructing

𝑷 ’s null-space basis, similar to our 1D illustration, each column of𝑸

corresponding to a node on the finer levels needs at most 4 nonzeros,

which are the fine node itself and the 3 fine nodes collocated with

the top or bottom nodes of a prism element. Therefore, our basis

matrices 𝑷 and 𝑸 always maintain their nice sparsity patterns

regardless of the number of subdivisions (Fig. 5). In practice, 2 or 3

subdivisions can already enable efficient simulation of high-quality

wrinkles (Fig. 12).

Algorithm 1 Alternating Minimization

1: 𝒚 ← 𝒚𝑛 , 𝒛 ← 𝒛𝑛 , 𝒚̃𝑛 ← 𝒚𝑛 + ℎ𝒗𝑛𝑦 , 𝒛̃𝑛 ← 𝒛̃𝑛 + ℎ𝒗𝑛𝑧
2: 𝒘̃𝑛 ← [(𝒚̃𝑛)T, (𝒛̃𝑛)T]T
3: do

4: // Low-frequency Step

5: 𝒙 ← 𝑷𝒚 + 𝑸𝒛,𝒘 ← [𝒚T, 𝒛T]T

6: 𝑯 ← 𝑴𝑦 + 𝑷T𝑴𝑥𝑷 + ℎ2
(
∇2𝐸𝑦 (𝒚) + 𝑷T∇2𝐸𝑥 (𝒙)𝑷

)

7: 𝒈 ← [𝑰 , 0]𝑴𝑤 (𝒘 − 𝒘̃𝑛) + ℎ2
(
∇𝐸𝑦 (𝒚) + 𝑷T∇𝐸𝑥 (𝒙)

)

8: 𝒑𝑦 ← −𝑯−1𝒈 // via Cholesky factorization

9: 𝛼 ← CCD-aware Backtracking Line Search

10: 𝒚 ← 𝒚 + 𝛼𝒑𝑦

11: // High-frequency Step

12: 𝒙 ← 𝑷𝒚 + 𝑸𝒛,𝒘 ← [𝒚T, 𝒛T]T
13: 𝑯 ← 𝑸T𝑴𝑥𝑸 + ℎ2𝑸T∇2𝐸𝑥 (𝒙)𝑸
14: 𝒈 ← [0, 𝑰 ]𝑴𝑤 (𝒘 − 𝒘̃𝑛) + ℎ2𝑸T∇𝐸𝑥 (𝒙)
15: 𝒑𝑧 ← −𝑯−1𝒈 // via matrix-free Conjugate Gradient

16: 𝛼 ← Backtracking Line Search

17: 𝒛 ← 𝒛 + 𝛼𝒑𝑧
18: while 1

ℎ
∥𝒑𝑦 ∥ > 𝜖 or 1

ℎ
∥𝒑𝑧 ∥ > 𝜖

19: 𝒚𝑛+1 ← 𝒚, 𝒛𝑛+1 ← 𝒛

20: 𝒗𝑛+1𝑦 ← (𝒚𝑛+1 −𝒚𝑛)/ℎ, 𝒗𝑛+1𝑧 ← (𝒛𝑛+1 − 𝒛𝑛)/ℎ
21: return 𝒚𝑛+1, 𝒛𝑛+1, 𝒗𝑛+1𝑦 , 𝒗𝑛+1𝑧

5 ALTERNATING MINIMIZATION

As the low and high frequency dynamics are sufficiently indepen-

dent, we apply an alternating minimization strategy to efficiently

solve the time-stepping system in Eq. 11, applying customized

solvers for both subproblems.

Specifically, for each time step 𝑛, we alternate between inexactly

solving a low-frequency step

𝒚𝑖+1 = argmin
𝒚

1

2





[
𝒚

𝒛𝑖

]
−𝒘̃𝑛





𝑴𝑤

+ℎ2
(
𝐸𝑥 (𝑷𝒚+𝑸𝒛𝑖 ) +𝐸𝑦 (𝒚)

)
(13)

and a high-frequency step

𝒛𝑖+1 = argmin
𝒛

1

2





[
𝒚𝑖+1

𝒛

]
− 𝒘̃𝑛





𝑴𝑤

+ ℎ2𝐸𝑥 (𝑷𝒚𝑖+1 + 𝑸𝒛) (14)

until convergence, where 𝑖 is the number of alternating passes. We

apply the line search method with projected Newton (PN) [Li et al.

2020] to robustly solve for both steps.

For the low-frequency steps, since the system for 𝒚 is usually in

a small-to-medium scale, we apply direct Cholesky factorization to

solve for the search direction in each PN iteration.

For the medium-to-large scale system in the high-frequency

steps, we instead apply a matrix-free Jacobi-preconditioned con-

jugate gradient method to solve for the search direction. For the

cases with multiple subdivisions, we have tested further splitting

the solve per level of subdivision but observed similar performance.

This is because we did not enforce orthogonality between modes

from different levels of subdivision when constructing 𝑸 , since this

preserves the nice sparsity pattern. Please see our pseudo-code in

Alg. 1 for more details.
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1 × 10 1 × 100 1 × 1000

1 × 10 1 × 100 1 × 1000

Ours

Full  
Integration

Figure 6: 2D cantilever beam. Static equilibrium of a 2D can-

tilever beam (left end fixed) under gravity simulated using

our element with different integration schemes, where high-

res full integration is adopted as the reference. Our results

converge early even with a single layer of 10 elements, while

full integration converges slower.

6 EXPERIMENTS

We implement our method in C++ with Eigen for basic linear alge-

bra operations, TBB for CPU multi-threading, and Thrust for GPU

parallelization. We use CHOLMOD [Chen et al. 2008] to solve the

thick shell systems on CPU, while developing our own matrix-free

Conjugate Gradient solver on GPU. We use neo-Hookean and ECI

[Li et al. 2022] for the elasticity and inelasticity of thick shells, ARAP

and discrete hinge [Grinspun et al. 2003] for the coupled membrane,

and IPC [Li et al. 2020] for frictional contact. Note that some of our

examples only contain thick shells. For the examples with comple-

mentary wrinkle coupling, since the membrane is closely attaching

the thick shell, it is sufficient to only handle contact on the thick

shells, which provides better efficiency. This is an option we expose

to users. All our experiments are performed on a 24-core 3.50GHz

Intel i9-10920X machine with an Nvidia RTX 3090 GPU. The pa-

rameters and timing of our simulations are provided in Table 2.

As follows, we start by validating our method on 2D cantilever

beam tests (Fig. 6 and 7). We then evaluate different design choices

of our method on discretizing volumetric objects (Fig. 11), and

capturing fine wrinkling details (Fig. 12). We also compare our

method with linear tetrahedral FEM and discrete shell on effectively

capturing thickness deformations (ğ 6.1). Then we demonstrate our

method’s capability of realistically simulating thick garments (Fig. 1)

and its potential to be used as wrinkle enhancement tools (ğ 6.2).

6.1 Ablation and Comparative Studies

2D cantilever beam. We begin with validating the effectiveness of

our reduced integration by comparing its results to those obtained

through full integration (4 quadratures in 2D). We use the classic

cantilever beam experiment, fixing the left end of a beam in 2D and

letting it bend under gravity (Fig. 6). As a reference, we use high-

resolution full integration and overlay it with our results. With

our dual-quadrature scheme, our results quickly converge under

refinement even with only a single layer of 10 elements (Fig. 6 top).

However, we observe that full integration converges at a much

higher resolution than ours (Fig. 6 bottom).

To further verify our method, we compare our results with the-

oretical solutions by superimposing the data from our simulation

onto the master curve presented in Romero et al. [2021]. The mas-

ter curve uniquely determines the aspect ratio (𝐻/𝑊 , see Fig. 7

bottom right) of the cantilever beam under static equilibrium as

a function of the the dimensionless gravito-bending parameter

log(Γ)
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Figure 7: Comparison with theoretical solutions. We super-

impose our results of the 2D cantilever beam simulation onto

the master curve presented in Romero et al. [2021]. The blue

and red dashed lines correspond to the asymptotic expres-

sions for small and large Γ. Our results quickly converge to

the master curve as the thickness of the beam decreases.

Γ =

12(1−𝜈2 )𝜌𝑔𝐿3
𝐸ℎ2 computed using the beam’s length (𝐿), thickness

(ℎ), density (𝜌), Young’s modulus (𝐸), Poisson’s ratio (𝜈), and gravi-

tational acceleration (𝑔). We conduct the experiment using three

1𝑚-long beams, with thicknesses of 0.1𝑚, 0.01𝑚, and 0.001𝑚, re-

spectively. All beams are discretized with a 1 × 100 element grid.

Using different Young’s modulus, we simulate with 13 Γ values per

thickness. Our simulation results quickly converges to the master

curve as thickness of the beam decreases (Fig. 7).

Yoga mat. In this example, we capture thickness deformation

while rolling a yoga mat from one side on the floor and then tie it up

with a buckle (Fig. 8). After becoming static, we can observe that the

radius of the circular cross section grows from the middle to both

sides, and the buckle in the middle creates sharp deformations on

the mat (Fig. 8 bottom right). These are all thickness deformations

that codimensional models are not able to capture. Here, accurate

frictional contact provided by IPC is also crucial in simulating the

rolling dynamics.

Metal board. Our method can also effectively capture thickness

evolution under plasticity. In Fig. 9, we simulate a stretching metal

board with a single layer of prism elements. The visualization of the

Figure 8: Yoga mat. A yoga mat rolled from one side on the

floor and then tied up by a buckle.
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Figure 9: Metal board. Elongating a metal board, the smooth

thickness decreases and plastic deformations are effectively

captured by our method.

Ours:

Linear Tets:

Figure 10: Coke can. Using real-world aluminiumparameters,

our method (top) can generate sharp wrinkles and buckling

on the compressed coke can, while Li et al. [2022] (bottom)

suffers from severe shear locking issues.

normal strain at each node demonstrates the smooth propagation

of thickness changes resulted from plastic deformation.

Coke can. We use the coke can example from Li et al. [2022] to

further demonstrate the shear locking free property of our method

under plasticity. We setup the same scene in our code but using real-

world aluminum parameters (𝐸 = 70𝐺𝑃𝑎, yield stress= 0.3𝐺𝑃𝑎) for

the can. Our method generates compressed coke cans with sharp

wrinkles and buckling while Li et al. [2022] results in much thicker

behaviors due to shear locking (Fig. 10). (In their paper, 0.1× real
parameters are used to avoid shear locking.)

Hand over pillow. Here we show that our prism element is also

capable of discretizing volumetric objects. We discretize the vis-

coelastic pillow from Li et al. [2022] using 1, 2, and 3 layers of prism

elements, where we extrude a rounded square mesh with spatially

varying thickness to accurately represent the curvy profile (Fig. 11).

Pressing the pillow using a hand-shaped collision object, all our

results are left with a hand print, which gradually disappears as the

hand moves away (see our video). Here we setup the prism mesh

to match the surface resolution of the input in Li et al. [2022]. With

2 or 3 layers, the magnitude of our print can already well-match

their result, achieving a 4.7× or 2.5× faster run time as we have

much less interior elements but no shear locking.

Wrinkle Mat. Next, we study the performance of our method on

capturing fine wrinkling details with different number of subdivi-

sions on the membrane. We drop 2 small rigid cubes onto a soft mat

1 layer 2 layers 3 layers Linear Tets

Midsurface Raw mesh

Figure 11: Hand over pillow. Discretizing the pillow using

1, 2, and 3 layers of prism elements, our method can more

efficiently simulate the hand-printing viscoelastic effects

demonstrated in Li et al. [2022]. The 3-layer shell can repro-

duce high-resolution linear tets results withmuch fewerDOF,

while a single layer would produce a shallower handprint.

No subdivision 1 subdivision

2 subdivisions 3 subdivisions Zoom-In of 
3 subdivisions

Perspective view of 3 subdivisions

Figure 12: Wrinkle mat. 2 rigid cubes dropped onto a soft

mat simulated as a single-layer thick shell coupled with a

membrane on its top. With more subdivisions on the mem-

brane in the setup, more significant and diverse wrinkles are

captured.

simulated as a single-layer thick shell coupled with a membrane

on its top (Fig. 12 top right). The thick shell only contains 2K prism

elements, and we compare results by setting up the membrane

with 0, 1, 2, and 3 subdivisions. For 0 subdivision, the membrane

shares the same coarse mesh with the thick shell, and we can barely

observe any wrinkles (Fig. 12 top left). For 1 subdivision, only dis-

connected wrinkles with small magnitude are generated (Fig. 12

top middle). For 2 or 3 subdivisions, we can observe smooth and

significant wrinkles with different wavelengths in the same scene

(Fig. 12 bottom).

We then compare directly solving Eq. 11 using projected Newton

and Cholesky factorization (Joint) to our methods with CPU (’) or

GPU (*) version of the Conjugate Gradient (CG) method on the

wrinkle mat example (see Table 1). On the CPU, our alternating

minimization method with matrix-free CG can already achieve an

up to 4× speedup and faster convergence compared to the Joint

method. Implementing our CG solver on the GPU, we gain another

up to 5× speedup especially when using high-resolution membrane

mesh.
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Table 1: Solver comparison. Statistics of Fig. 12 with different

solvers. Ours’/Ours* refers to the CPU/GPU versions of our

method respectively.

Example Solver Min./Frame #Iter./Frame

1 subdiv Joint/Ours’/Ours* 0.09/0.05/0.04 23.1/14.3/13.8

2 subdiv Joint/Ours’/Ours* 1.17/0.26/0.13 32.6/13.6/14.1

3 subdiv Joint/Ours’/Ours* 13.99/3.77/0.74 30.0/21.3/21.2

Original (Linear Tets) Enhanced (2 subdivisions) Zoom-In View

Figure 13: Animation processing. Given an input surface

mesh sequence (left), our method can treat it as a low-

frequency boundary condition and augment it with realistic

fine wrinkles (middle and right).

6.2 Wrinkle Enhancement

Our method can also serve as a wrinkle enhancement tool for an

existing animation sequence or 3D model.

Animation processing. Given an input animation sequence (sur-

face meshes alone is sufficient), we can take the input meshes as

the low-frequency degrees of freedom 𝒚, and subdivide its rest

configuration to construct the high-frequency membrane mesh

𝑿 and the basis [𝑷 ,𝑸]. Then we run our method with only the

high-frequency steps, setting the position and velocity of 𝒚 in each

time step as boundary conditions. Taking the hand over pillow se-

quence generated using Li et al. [2022] as an example, as the stretch

and compression on 𝒚 guide the low-frequency deformations of

𝒙 , we efficiently enrich the animation with fine wrinkling details

(Fig. 13). Under this setting, our method is in a similar spirit to

complementary dynamics [Benchekroun et al. 2023; Zhang et al.

2020].

Geometric modeling. Similarly, if we take a single 3D surface

mesh, subdivide it to construct our fine membrane mesh and the

basis, our method can also augment wrinkles on it, setting the input

mesh as boundary conditions. Here, the key is to treat the initial

state of the fine membrane elements as pre-compressed. In Fig. 14,

the rest shape of each fine element is scaled by 1.5× along the

principal curvature direction computed using libigl [Jacobson et al.

2018]. After simulating for several time steps, interesting wrinkles

tracing the surface profile are generated.

7 CONCLUSION AND FUTUREWORKS

We presented a novel method for simulating the intricate dynamics

of multi-layer continuum thick shells. Discretized with our dual-

quadrature prism finite elements, the thick shell model is free from

Input Output Input (back view) Output (back view)

Figure 14: Geometric modeling. Given an input surface mesh,

our method can augment it with realistic fine wrinkles by

simulating pre-compressed fine membranes attached to it.

shear locking and naturally incorporates three-dimensional elasto-

plastic and viscoelastic constitutive models. By coupling a high-

resolution membrane layer on top of the thick shell, we enabled

the efficient capture of complementary high-frequency wrinkles. In

addition to opening up a new possibility for fast, high-quality, and

thickness-aware simulations of a wide variety of thick structures,

ourmethod also has the potential to serve as awrinkle enhancement

tool for animation processing and geometric modeling.

Our method inspires numerous future works. For instance, one

major limitation of our complementary wrinkle coupling is that the

wrinkle profiles that can be captured may be mesh dependent as

the mesh connectivity at the coarsest level directly determines the

low-frequency basis under linear subdivision. This is also because

we used all modes of the base mesh to constrain the low-frequency

displacement of the high-resolution membrane. Thus, enabling

user-oriented low-frequency mode design or selection to mitigate

the mesh dependency issue will be very meaningful.

Additionally, we are interested in exploring an automatic way of

generating multi-layer prism meshes from arbitrary input surface

geometries. This will improve the accessibility of our method for

simulating specially structured volumetric objects. Last but not

least, our change-of-variable strategy based on defining sparse null-

space basis vectors could lead to solver innovations for a variety of

equality-constrained problems in physically-based animation and

geometry processing.
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