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Figure 1: Thick Fashion. Our method can realistically capture both the thickness dynamics and the fine wrinkling details
of leather garments, down jackets, and jeans. A single layer of our dual-quadrature prism elements is used to discretize the
interior volume of these thick garments without shear locking, and a high-resolution membrane is coupled on the surface to

generate complementary high-frequency wrinkles.

ABSTRACT

We present a novel mesh-based method for simulating the intricate
dynamics of (potentially multi-layered) continuum thick shells. In
order to accurately represent the constitutive behavior of structural
responses in the thickness direction, we develop a dual-quadrature
prism finite element formulation that is free from shear locking
and naturally incorporates three-dimensional elastoplastic and vis-
coelastic constitutive models. Additionally, we introduce a sim-
ple and effective technique for coupling a high-resolution mem-
brane layer on top of the thick shell to enable complementary
high-frequency deformation modes that generate realistic wrin-
kles. With our novelly designed sparse basis vectors for the high-
frequency deformations, the constrained Lagrangian mechanics
problem is expressed as an unconstrained optimization and then
efficiently solved by a custom alternating minimization technique.
Our method opens up a new possibility for fast, high-quality, and
thickness-aware simulations of leather garments, pillows, mats,
metal boards, and potentially a variety of other thick structures.
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1 INTRODUCTION

Thin shell simulation has been extensively studied in computer
graphics over the past decades. The combined use of codimensional
geometry and physical modeling has allowed for realistic dynamic
simulations of daily wearing fabrics, papers, cards, and metal sheets
with detailed wrinkles and complex motion. In contrast, the sim-
ulation of thick shells, such as leather jackets and yoga mats, has
received relatively limited attention within the field of computer
graphics. The primary obstacle here is the need to accurately de-
pict the dynamic evolution in thickness and wrinkles while also
ensuring efficient computational performance.
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A commonly adopted practice in augmenting thin shell simu-
lations with thickness is to impose a contact offset between mid-
surfaces [Li et al. 2018; Narain et al. 2012]. While superficially
appearing to be powerful, this approach faces difficulties in con-
sistently maintaining the distance offset. Additionally, it lacks a
physically intuitive and controllable mechanism for modeling the
evolution of thickness over time. Recently, the Incremental Poten-
tial Contact (IPC) [Li et al. 2020] model was proposed as a robust
and accurate contact handling solution for nonlinear elastic solids
with arbitrary codimensions [Li et al. 2021]. In addition to guaran-
teeing an inelastic thickness (contact offset), IPC also demonstrates
a certain degree of thickness dynamics on codimensional mate-
rials (see e.g. Fig. 18 in Li et al. [2021]) due to its penalty force
nature. However, it lacks meaningful constitutive models in the
normal-direction response, fails to consider modes of shearing de-
formation, and does not offer a practical way for visualizing the
explicit geometry of thick structures.

Computer graphics practitioners in the industry also explored
animating thick shells as visual geometries fully embedded in a
volumetric body. Despite its convenience, this approach tends to
encounter obstacles in capturing accurate frictional contact. Addi-
tionally, complex and parameter intensive anisotropic elastic mod-
els are mandated for properly resolving bending behaviors while
avoiding artificially stiffened bending penalties and stretchy arti-
facts. This issue naturally arises when using volumetric linear finite
elements, where bending deformation could only be resolved via
shearing, imposing additional elastic forces. This behavior is called
shear locking, which has been extensively studied in mechanical
engineering, where reduced spatial integration methods [Cardoso
et al. 2008; Trinh et al. 2011] have been developed to ignore certain
shearing modes and avoid locking without resorting to expensive
higher-order elements or impractically fine tessellations.

We follow the idea of reduced integration and propose a dual-
quadrature prism element for practical thick shells, balancing accu-
racy and efficiency. The two quadratures are chosen as the Guassian
quadratures in the thickness direction, both on the center line of
the prism, perfectly ignoring trapezoidal shearing modes to avoid
locking. Our model can capture accurate bending behaviors even
with a coarse tessellation. Based on the finite strain theory, our
model naturally supports common three-dimensional elastoplastic
and viscoelastic constitutive models [Li et al. 2022] for simulating
inelastic behaviors. In addition to single-layer shells, our prism
elements can also serve as an effective spatial discretization for
volumetric bodies that have a simple-topology medial surface.

To take advantage of the fact that our prism elements can ac-
curately resolve bending even at a low resolution, we augment a
membrane layer with higher resolution on the surface of the thick
shell to efficiently capture fine wrinkling details. The membrane
and thick shells are spectrally coupled, where the low-frequency
displacement modes of the membrane perfectly matches that of
the thick shell, ensuring close attachment while allowing high-
frequency wrinkles to form. With novelly defined sparse basis
vectors for both the low- and high- frequency modes, the coupling
is implicitly achieved via a change of variable derived based on La-
grangian mechanics. As the low- and high- frequency deformations
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are sufficiently independent, we further propose an alternating min-
imization framework equipped with custom solvers to efficiently
step in time.

In summary, our contributions include

o a dual-quadrature prism finite element formulation for effi-
cient and robust simulation of elastoplastic and viscoelastic
multi-layer thick shells without shear locking (§ 3);

e a change-of-variable method to couple coarse thick shell
interior and fine membrane surface for efficiently capturing
complementary fine wrinkling details (§ 4);

e an alternating minimization method with custom nonlinear
and linear solvers to efficiently solve our coupled system

§5).
2 RELATED WORK

Continuum Solid-Shell Elements. Solid-shell elements are initially
investigated by Hauptmann and Schweizerhof [1998]; Miehe [1998];
Parisch [1995]; Schoop [1986] in mechanical engineering. Com-
pared to classical shell models such as the Kirchoff-Love [Chen et al.
2018; Panc 1975] and the Mindlin-Reissner [Bathe and Dvorkin
1985; Guo et al. 2018], solid-shell elements also capture strains
and stresses in thickness direction and allows general 3D material
laws to be applied [Harnau and Schweizerhof 2002]. Furthermore,
without rotational degrees of freedom, solid-shell elements avoid
complicated updates of the rotation vector in geometrically non-
linear analyses, and they enable convenient treatment of bound-
ary conditions and coupling with solid elements [Hauptmann and
Schweizerhof 1998].

To efficiently avoid various locking issues, the elasticity on the
solid-shell elements are often integrated with reduced integration
methods such as the assumed natural strain (ANS) method [Kim
et al. 2005; Sze and Yao 2000; Trinh et al. 2011] and the enhanced
assumed strain (EAS) method [Cardoso et al. 2008; Schwarze and
Reese 2009]. The key insight for both types of methods is that parts
of the strains in the element are assumed to be in their natural
state or represented by a higher-order polynomial, rather than
being calculated from the nodal displacements. These methods
are particularly useful for problems involving large deformations,
as certain deformation modes can be ignored to avoid locking.
Inspired by this line of research, we apply a prismatic element
to efficiently discretize multi-layer thick shells, and integrate the
elasticity using only 2 quadratures on the central vertical line per
element to conveniently avoid shear locking.

Wrinkle Simulation. Efficiently augmenting coarse base anima-
tion with fine wrinkling details has drawn lots of attention in com-
puter graphics. Grinspun et al. [2002] proposed an adaptive re-
finement method to simulate wrinkles and folds using finer basis
functions obtained from subdivisions. Bergou et al. [2007] employed
constrained Lagrangian mechanics to simulate a high-resolution
surface following the dynamics of an art-directed low-resolution
target. Rohmer et al. [2010] added dynamic wrinkles with user-
guided wrinkle size to a coarse-scale simulation by analyzing the
strain tensor in real-time. Miiller and Chentanez [2010] applied
position-based dynamics to compute fine wrinkles by simulating
high-resolution patches constrained to an input low-resolution sim-
ulation. Chen et al. [2013] simulated fine wrinkles in the cloth-body
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interactions by capturing the friction and air pressure between the
cloth and body. Zuenko and Harders [2019] solved for an amplitude
and phase field to simulate the wrinkling of human skin and other
materials where a stiff membrane is attached to a soft body.

Our complementary wrinkle coupling idea resembles a lot Rémil-
lard and Kry [2013] and Casafranca and Otaduy [2022], where they
both couple a fine membrane surface to a coarse mesh by match-
ing the low-frequency displacements. However, Rémillard and Kry
[2013] define the constraints using the averaged positions of both
meshes, and they directly solve a KKT system to augment static
high-frequency wrinkles. Later, Li and Kry [2014] extended this
idea to simulate wrinkles of multi-layer skin, with different lay-
ers coupled via similar constraints. Casafranca and Otaduy [2022]
define the constraints using low-frequency basis as we do. They
focus on a special discretization where the coarse mesh is the cen-
troidal Voronoi tessellation of the fine mesh, so that 0-th order
basis can be used to make their modified preconditioned conjugate
gradient solver tractable with better sparsity of the preconditioning
matrices. Instead, our method supports a hierarchy of tessellations
and couples different levels of dynamics in a monolithic fashion.
By defining the null-space basis for subdivision meshes, our un-
constrained system has no redundant degrees of freedom, and its
sparsity remains nice even with multiple subdivisions.

Others such as the data-driven methods and those based on the
tension field theory (TFT) have also shown effective in enhanc-
ing coarse simulation with fine wrinkles. For instance, Chen et al.
[2021] applied the TFT to simulate efficiently parameterized wrin-
kles based on compression-free coarse cloth simulations. TFT was
also successfully applied to simulate wrinkles on inflatable struc-
tures [Skouras et al. 2014]. For Data-driven methods, Wang et al.
[2010] added fine details to relatively skin-tight garments by learn-
ing the cloth deformation on the pose of an underlying mannequin.
Kavan et al. [2011] learned a dense upsampling operator to obtain
more geometric details on a coarse simulated mesh. Zurdo et al.
[2012] proposed an algorithm for synthesizing cloth wrinkles as a
function of the deformation of a low-resolution cloth and a set of
example poses.

3 REDUCED PRISM ELEMENTS

Inspired by Trinh et al. [2011], we design a reduced prism finite
element to explicitly track the thickness evolution of multi-layer
shells. With dual-quadrature reduced integration, shear locking
can be avoided even at coarse discretization with low-order basis
functions.

3.1 Kinematics

In the material space, for a prism with midsurface nodes X, Xa,
X3 € R3 and corresponding directors Ni, Np, N3 € R3, any point
X € R3 inside the prism can be parameterized by ¢ = (A1, A2, y) €
[0,1] x [0,1 — A1] x [-1,1] (Fig. 2 left), which gives its material
space position

X(q) =Xi +/11(X2 —Xl) +Az(X3 —X1)+

V(N 4+ (No = N+ 2o(Ns — Ny, D

Here the 3 directors can take any vector in R3 to construct a wide
variety of thick shells with curvy rest configurations of varying
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Figure 2: Parameterization and interpolation of our prism
element. Spatial coordinates are parameterized with 1, 1,
and y.

thicknesses, as long as the prism is not inverted or degenerated.
With barycentric weights and bilinear interpolation, we construct
the prism element in an isoparametric fashion and obtain the world
space mapping of X as

x(q) = x1 + A1(x2 — x1) + A2 (x3 — x1)+
y(n1 +}.1(n2 — n1) +/12(n3 - nl)),

@

where x1, x2, x3 € R? and n1, ny, n3 € R3? are the world space
counterparts of the midsurface nodes and directors respectively
(Fig. 2 right). Now we can evaluate the deformation gradient at X
as

ax ax [ox\ 7!
Flg) = =(qg)==Z) | 3
@- 0= (5] ®)
where z—’q‘ and % are both linear functions of 14, A2, y; see the

supplementary for details.

3.2 Spatial Discretization

We follow Li et al. [2022] to adopt a unified energy-based formu-
lation of hyperelasticity, elastoplasticity and viscoplasticity. The
potential energy on the entire thick shell domain Q° (material
space) discretized by our prism elements is integrated as

/QO Y(F)dX ~ Z/QO V(F)dX
= Zil/ol /01—)L1 /_I W(Fi(q))| (%)l ’dyd/lzdll,

where subscript i refers to quantities of the i-th prism element.
Applying Gaussian quadrature in each dimension, the triple integral
here can be properly approximated.

Nevertheless, approximating this triple integral with high accu-
racy can lead to shear locking [Belytschko et al. 2014; Bletzinger
et al. 2000]. To illustrate this in 2D, in the ideal setting, a cantilever
beam has nearly no shearing anywhere, with the majority of bend-
ing force originating from the tangential stretch or compression
at different levels along the thickness direction (Fig. 3a). To cap-
ture the same deformation, however, coarse linear elements must
undergo significant shearing away from the central vertical line,
which can exert additional elastic forces to resist bending (Fig. 3b).

Therefore, we propose a reduced integration scheme to com-
pletely ignore the trapezoidal shearing mode while evaluating the

©
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Figure 3: 2D Illustration of shear locking. Linear elements
artificially incur shearing strain, limiting bending displace-
ments.

deformation gradient. This can be conveniently achieved by only
placing the Gaussian quadrature along the central vertical line,
which gives our reduced potential energy

Pe= 3 g (vrtan)| S @]+ v |5 @) ©

where q1 = (1/3,1/3,-V3/3), g2 = (1/3,1/3,¥3/3) are the two
quadratures. Note that only using a single quadrature will com-
pletely ignore the thickness modes and lead to unstable dynamics.
Additionally, we do not apply the assumed strain method as in Trinh
et al. [2011] to scale down the transverse shear component, since
we find that ignoring trapezoidal modes alone is already sufficient
to avoid shear locking under bending deformations.

Our method can also be used to discretize thicker volumes utiliz-
ing multiple layers of prism elements. However, due to our reduced
integration, the discretized volume will not exhibit isotropic elastic
behaviors. Thus, our elements are particularly effective for the effi-
cient discretization of special-structured volumes, such as a pillow
(Fig. 11) or a down jacket (Fig. 1).

4 COMPLEMENTARY WRINKLE COUPLING

To efficiently capture fine wrinkling details on the surface of the
coarse thick shell, we attach a fine membrane to it, matching their
low-frequency displacements in the coupled region and allowing
high-frequency wrinkles to form.

4.1 Problem Formulation

We first transform the degrees of freedom of the thick shells from
the midsurface to the outer surface nodal positions y2;-1 = x;”id -
njandyy; = x;.”id+n j»and stack them together to form y. Then, we
introduce a high-resolution codimension-1 membrane mesh with all
its nodal degrees of freedom stacked as x. At the rest configuration,
the membrane collocates with the thick shell surface (Fig. 4 left),
and the coordinates of each membrane node can be expressed as a

linear transformation of Y, namely
X =Py, (©)

where X and Y are the material space counterparts of x and y, and
each row of the matrix P contains the interpolation weights. The
column vectors of the tall matrix P contain low-frequency modes
of the membrane’s displacement.
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Figure 4: 2D Illustration of complementary wrinkle coupling.
Note that the membrane can also be coupled with the entire
thick shell surface.

In the world space, we only constrain the low-frequency dis-
placement between x and y to match, which gives the constraint

x = Py + Ax, (7)

where Ax is the high-frequency displacements (Fig. 4 right) with
PTAx = 0. If we rewrite this constraint as PT(x — Py) = 0 and
apply Lagrangian mechanics, we obtain the spatially discretized
dynamical system

do _ dx

d_: =M; 1(—VEx(x) +PA), @ =0x

doy -1 T dy T

?—My (—VEy(y)—P PA), E—Uy, P (x—Py)—O

®)
where Ey and Ey are the potential energies of the membrane and
thick shell including strain energy, gravity, frictional contact, etc.,
and A is the Lagrange multiplier vector for the coupling constraints.
This is essentially a KKT system which can be expensive to solve
directly or via Schur complement. By exploring a special structure
of P, we propose a change-of-variable method to implicitly handle
the constraints.

4.2 Change of Variable

If we assume X can be expressed
as barycentric coordinates of Y, e.g. X X X5 X X

through subdivision, we will be able & £ B
to directly define a set of sparse vec- Y, Y, Y,

tor basis for the null space of P. To

illustrate this in 1D, consider Y as a 2-segment polyline with 3 nodes
Y1, Y2, Y3, then subdividing once gives X1 = Y1, X2 = (Y1 +Y2)/2,
X3 =Y, X4 = (Y2 +Y3)/2, X5 = Y3. We set

1 0 0 -1/2 0
1/2 1/2 0 1 0
p=|0o 1 of, O0=]|-1/2 -1/2{, )
0 1/2 1/2 0 1
0o o0 1 0 -1/2

where each row of P € R"™*"Y stores the interpolation weights
of both low- and high-res points, and each column of Q €
R2xX(nx=ny) corresponds to a high-res point, with coefficients
carefully chosen to ensure orthogonality to all columns of P, i.e.
PTQ = 0. For 3D cases, please refer to our supplemental docu-
ment for pseudo-code. With the sparse null-space matrix Q, we can
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x10* 64 X 64, 1 subdiv x10* 32 X 32, 2 subdiv x10* 16 X 16, 3 subdiv
0

0 0
2 2 2
4 4 4
6 I 6 U 6
8 8 8
0 2 4 6 8 xl0 0o 2 4 6 8 xlot 0 2 4 6 8 xl10*
nz =132610 nz = 182274 nz = 207106
x10* 8 X 8,4 subdiv x10* 4 X 4,5 subdiv x10* 2 X 2, 6 subdiv
0 0 0
2 2 2
4 4 4
6 6 6
8 8 8
0 2 4 6 8 x 10* 0 2 4 6 8 x 10* 0 2 4 6 8 x 10*
nz = 219522 nz = 225730 nz = 228834

Figure 5: Sparsity pattern of [P, Q]. We subdivide coarse grids
with different initial resolutions to achieve a final resolution
of 128 x 128. For example, a 64 X 64 grid only needs one subdi-
vision. Here we visualize the sparsity pattern and record the
number of nonzero entries nz. Regardless of the number of
subdivisions, the sparsity pattern of [P, Q] remains consis-
tently nice. Note that here we did not duplicate the entries
for the 3 dimensions.

rewrite the coupling constraints as
x =Py+0z (10)

by introducing the high-frequency variable z measuring wrinkle
magnitudes. In this way, after time discretization (e.g. with im-
plicit Euler here), our dynamical system can be reformulated as an
unconstrained optimization

1
W = argmin ~[w =" lar,, + h*(Ex ([P, QIw) + Ey (L, 0lw)
w
(11)
followed by velocity update o5 = (w1 — w™)/h, where w =
[yT, zT]T, w =w" + ho?,, h is the time step size, and

M,, = (12)

My +PTMP PTM.Q
O'™M.P  Q"™M.Q|

Please see our supplemental document for detailed derivations.

Our method also supports multiple subdivisions to capture a wide
range of wrinkles with various wavelengths. For any node on the
finer levels, its material space coordinates are still the barycentric
interpolation inside one triangle element on the prism mesh surface,
which at most depends on 3 prism mesh nodes. This means that P
will always have at most 3 nonzeros per row. Then for constructing
P’s null-space basis, similar to our 1D illustration, each column of Q
corresponding to a node on the finer levels needs at most 4 nonzeros,
which are the fine node itself and the 3 fine nodes collocated with
the top or bottom nodes of a prism element. Therefore, our basis
matrices P and Q always maintain their nice sparsity patterns
regardless of the number of subdivisions (Fig. 5). In practice, 2 or 3
subdivisions can already enable efficient simulation of high-quality
wrinkles (Fig. 12).
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Algorithm 1 Alternating Minimization

Lye—yze2 Y —y"+hop, 2"« 2" + hof
2w [T EHTT

3: do
4 // Low-frequency Step
5: x — Py+Qzw«— [y, 27T

6 He My+PTMP+h? (VzEy(y) + PTVZEx(x)P)
7 g [LO0]My(w —w") + h? (VEy(y) + PTVEx(x))

8: py<—-H ~1g // via Cholesky factorization
9: a « CCD-aware Backtracking Line Search
10: y—y+apy
11: // High-frequency Step
12: x — Py+Qz,w — [yT,27]
13 H e QOTM,0+hQTV2E,(x)0
14 g — [0, I]Myy(w —w") + h2QTVE, (x)

T

15: pz «— —H g // via matrix-free Conjugate Gradient
16: a « Backtracking Line Search
17: z—z+ap,
g 1 1
1s: while 7 [lpyll > eor £llpzll > €
n+l1 n+l1

19: y —y,z —z
20: UZH — (yn+l _ y")/h, U;Hl — (Zn+1 _ z”)/h

21: return y"*t!, 2", UZH, optl

5 ALTERNATING MINIMIZATION
As the low and high frequency dynamics are sufficiently indepen-
dent, we apply an alternating minimization strategy to efficiently
solve the time-stepping system in Eq. 11, applying customized
solvers for both subproblems.

Specifically, for each time step n, we alternate between inexactly
solving a low-frequency step
-

. 1
y"*! = arg min —H
y 2

2 i
i T (Ee(Py+02) +Ey (3)) (13)
and a high-frequency step

. 1 i+1 B
Z"*! = argmin —“ [y ] -w"
z 2 z

" +h2Ex(Py'™ +02)  (14)

until convergence, where i is the number of alternating passes. We
apply the line search method with projected Newton (PN) [Li et al.
2020] to robustly solve for both steps.

For the low-frequency steps, since the system for y is usually in
a small-to-medium scale, we apply direct Cholesky factorization to
solve for the search direction in each PN iteration.

For the medium-to-large scale system in the high-frequency
steps, we instead apply a matrix-free Jacobi-preconditioned con-
jugate gradient method to solve for the search direction. For the
cases with multiple subdivisions, we have tested further splitting
the solve per level of subdivision but observed similar performance.
This is because we did not enforce orthogonality between modes
from different levels of subdivision when constructing Q, since this
preserves the nice sparsity pattern. Please see our pseudo-code in
Alg. 1 for more details.
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Figure 6: 2D cantilever beam. Static equilibrium of a 2D can-
tilever beam (left end fixed) under gravity simulated using
our element with different integration schemes, where high-
res full integration is adopted as the reference. Our results
converge early even with a single layer of 10 elements, while
full integration converges slower.

6 EXPERIMENTS

We implement our method in C++ with Eigen for basic linear alge-
bra operations, TBB for CPU multi-threading, and Thrust for GPU
parallelization. We use CHOLMOD [Chen et al. 2008] to solve the
thick shell systems on CPU, while developing our own matrix-free
Conjugate Gradient solver on GPU. We use neo-Hookean and ECI
[Lietal. 2022] for the elasticity and inelasticity of thick shells, ARAP
and discrete hinge [Grinspun et al. 2003] for the coupled membrane,
and IPC [Li et al. 2020] for frictional contact. Note that some of our
examples only contain thick shells. For the examples with comple-
mentary wrinkle coupling, since the membrane is closely attaching
the thick shell, it is sufficient to only handle contact on the thick
shells, which provides better efficiency. This is an option we expose
to users. All our experiments are performed on a 24-core 3.50GHz
Intel i9-10920X machine with an Nvidia RTX 3090 GPU. The pa-
rameters and timing of our simulations are provided in Table 2.
As follows, we start by validating our method on 2D cantilever
beam tests (Fig. 6 and 7). We then evaluate different design choices
of our method on discretizing volumetric objects (Fig. 11), and
capturing fine wrinkling details (Fig. 12). We also compare our
method with linear tetrahedral FEM and discrete shell on effectively
capturing thickness deformations (§ 6.1). Then we demonstrate our
method’s capability of realistically simulating thick garments (Fig. 1)
and its potential to be used as wrinkle enhancement tools (§ 6.2).

6.1 Ablation and Comparative Studies

2D cantilever beam. We begin with validating the effectiveness of
our reduced integration by comparing its results to those obtained
through full integration (4 quadratures in 2D). We use the classic
cantilever beam experiment, fixing the left end of a beam in 2D and
letting it bend under gravity (Fig. 6). As a reference, we use high-
resolution full integration and overlay it with our results. With
our dual-quadrature scheme, our results quickly converge under
refinement even with only a single layer of 10 elements (Fig. 6 top).
However, we observe that full integration converges at a much
higher resolution than ours (Fig. 6 bottom).

To further verify our method, we compare our results with the-
oretical solutions by superimposing the data from our simulation
onto the master curve presented in Romero et al. [2021]. The mas-
ter curve uniquely determines the aspect ratio (H/W, see Fig. 7
bottom right) of the cantilever beam under static equilibrium as
a function of the the dimensionless gravito-bending parameter
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Figure 7: Comparison with theoretical solutions. We super-
impose our results of the 2D cantilever beam simulation onto
the master curve presented in Romero et al. [2021]. The blue
and red dashed lines correspond to the asymptotic expres-
sions for small and large I'. Our results quickly converge to
the master curve as the thickness of the beam decreases.

.2 3
I'= M computed using the beam’s length (L), thickness

(h), density (p), Young’s modulus (E), Poisson’s ratio (v), and gravi-
tational acceleration (g). We conduct the experiment using three
1m-long beams, with thicknesses of 0.1m, 0.01m, and 0.001m, re-
spectively. All beams are discretized with a 1 X 100 element grid.
Using different Young’s modulus, we simulate with 13 T values per
thickness. Our simulation results quickly converges to the master
curve as thickness of the beam decreases (Fig. 7).

Yoga mat. In this example, we capture thickness deformation
while rolling a yoga mat from one side on the floor and then tie it up
with a buckle (Fig. 8). After becoming static, we can observe that the
radius of the circular cross section grows from the middle to both
sides, and the buckle in the middle creates sharp deformations on
the mat (Fig. 8 bottom right). These are all thickness deformations
that codimensional models are not able to capture. Here, accurate
frictional contact provided by IPC is also crucial in simulating the
rolling dynamics.

Metal board. Our method can also effectively capture thickness
evolution under plasticity. In Fig. 9, we simulate a stretching metal
board with a single layer of prism elements. The visualization of the

Figure 8: Yoga mat. A yoga mat rolled from one side on the
floor and then tied up by a buckle.
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Normal strain

Figure 9: Metal board. Elongating a metal board, the smooth

thickness decreases and plastic deformations are effectively
captured by our method.

1.0

Ours:

Linear Tets:

Figure 10: Coke can. Using real-world aluminium parameters,
our method (top) can generate sharp wrinkles and buckling
on the compressed coke can, while Li et al. [2022] (bottom)
suffers from severe shear locking issues.

normal strain at each node demonstrates the smooth propagation
of thickness changes resulted from plastic deformation.

Coke can. We use the coke can example from Li et al. [2022] to
further demonstrate the shear locking free property of our method
under plasticity. We setup the same scene in our code but using real-
world aluminum parameters (E = 70GPa, yield stress= 0.3GPa) for
the can. Our method generates compressed coke cans with sharp
wrinkles and buckling while Li et al. [2022] results in much thicker
behaviors due to shear locking (Fig. 10). (In their paper, 0.1X real
parameters are used to avoid shear locking.)

Hand over pillow. Here we show that our prism element is also
capable of discretizing volumetric objects. We discretize the vis-
coelastic pillow from Li et al. [2022] using 1, 2, and 3 layers of prism
elements, where we extrude a rounded square mesh with spatially
varying thickness to accurately represent the curvy profile (Fig. 11).
Pressing the pillow using a hand-shaped collision object, all our
results are left with a hand print, which gradually disappears as the
hand moves away (see our video). Here we setup the prism mesh
to match the surface resolution of the input in Li et al. [2022]. With
2 or 3 layers, the magnitude of our print can already well-match
their result, achieving a 4.7X or 2.5X faster run time as we have
much less interior elements but no shear locking.

Wrinkle Mat. Next, we study the performance of our method on
capturing fine wrinkling details with different number of subdivi-
sions on the membrane. We drop 2 small rigid cubes onto a soft mat
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Raw mesh

Linear Tets

1 layer 2 layers

3 layers

Figure 11: Hand over pillow. Discretizing the pillow using
1, 2, and 3 layers of prism elements, our method can more
efficiently simulate the hand-printing viscoelastic effects
demonstrated in Li et al. [2022]. The 3-layer shell can repro-
duce high-resolution linear tets results with much fewer DOF,
while a single layer would produce a shallower handprint.

No subdivision

1 subdivision

Zoom-In of

3 subdivisions

Figure 12: Wrinkle mat. 2 rigid cubes dropped onto a soft
mat simulated as a single-layer thick shell coupled with a
membrane on its top. With more subdivisions on the mem-
brane in the setup, more significant and diverse wrinkles are
captured.

simulated as a single-layer thick shell coupled with a membrane
on its top (Fig. 12 top right). The thick shell only contains 2K prism
elements, and we compare results by setting up the membrane
with 0, 1, 2, and 3 subdivisions. For 0 subdivision, the membrane
shares the same coarse mesh with the thick shell, and we can barely
observe any wrinkles (Fig. 12 top left). For 1 subdivision, only dis-
connected wrinkles with small magnitude are generated (Fig. 12
top middle). For 2 or 3 subdivisions, we can observe smooth and
significant wrinkles with different wavelengths in the same scene
(Fig. 12 bottom).

We then compare directly solving Eq. 11 using projected Newton
and Cholesky factorization (Joint) to our methods with CPU () or
GPU (*) version of the Conjugate Gradient (CG) method on the
wrinkle mat example (see Table 1). On the CPU, our alternating
minimization method with matrix-free CG can already achieve an
up to 4X speedup and faster convergence compared to the Joint
method. Implementing our CG solver on the GPU, we gain another
up to 5% speedup especially when using high-resolution membrane
mesh.
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Table 1: Solver comparison. Statistics of Fig. 12 with different
solvers. Ours’/Ours” refers to the CPU/GPU versions of our
method respectively.

Min./Frame #Iter./Frame

0.09/0.05/0.04

Example Solver

1 subdiv  Joint/Ours’/Ours® 23.1/14.3/13.8

2 subdiv  Joint/Ours’/Ours*  1.17/0.26/0.13  32.6/13.6/14.1

3 subdiv  Joint/Ours’/Ours*  13.99/3.77/0.74  30.0/21.3/21.2

Enhanced (2 subdivisions) Zoom-In View

Original (Linear Tets)

Figure 13: Animation processing. Given an input surface
mesh sequence (left), our method can treat it as a low-
frequency boundary condition and augment it with realistic
fine wrinkles (middle and right).

6.2 Wrinkle Enhancement

Our method can also serve as a wrinkle enhancement tool for an
existing animation sequence or 3D model.

Animation processing. Given an input animation sequence (sur-
face meshes alone is sufficient), we can take the input meshes as
the low-frequency degrees of freedom y, and subdivide its rest
configuration to construct the high-frequency membrane mesh
X and the basis [P, Q]. Then we run our method with only the
high-frequency steps, setting the position and velocity of y in each
time step as boundary conditions. Taking the hand over pillow se-
quence generated using Li et al. [2022] as an example, as the stretch
and compression on y guide the low-frequency deformations of
x, we efficiently enrich the animation with fine wrinkling details
(Fig. 13). Under this setting, our method is in a similar spirit to
complementary dynamics [Benchekroun et al. 2023; Zhang et al.
2020].

Geometric modeling. Similarly, if we take a single 3D surface
mesh, subdivide it to construct our fine membrane mesh and the
basis, our method can also augment wrinkles on it, setting the input
mesh as boundary conditions. Here, the key is to treat the initial
state of the fine membrane elements as pre-compressed. In Fig. 14,
the rest shape of each fine element is scaled by 1.5x along the
principal curvature direction computed using libigl [Jacobson et al.
2018]. After simulating for several time steps, interesting wrinkles
tracing the surface profile are generated.

7 CONCLUSION AND FUTURE WORKS

We presented a novel method for simulating the intricate dynamics
of multi-layer continuum thick shells. Discretized with our dual-
quadrature prism finite elements, the thick shell model is free from

Y. Chen, T. Xie, C. Yuksel, D. Kaufman, Y. Yang, C. Jiang, M. Li
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Input Output

Input (back view)

Output (back view)

Figure 14: Geometric modeling. Given an input surface mesh,
our method can augment it with realistic fine wrinkles by
simulating pre-compressed fine membranes attached to it.

shear locking and naturally incorporates three-dimensional elasto-
plastic and viscoelastic constitutive models. By coupling a high-
resolution membrane layer on top of the thick shell, we enabled
the efficient capture of complementary high-frequency wrinkles. In
addition to opening up a new possibility for fast, high-quality, and
thickness-aware simulations of a wide variety of thick structures,
our method also has the potential to serve as a wrinkle enhancement
tool for animation processing and geometric modeling.

Our method inspires numerous future works. For instance, one
major limitation of our complementary wrinkle coupling is that the
wrinkle profiles that can be captured may be mesh dependent as
the mesh connectivity at the coarsest level directly determines the
low-frequency basis under linear subdivision. This is also because
we used all modes of the base mesh to constrain the low-frequency
displacement of the high-resolution membrane. Thus, enabling
user-oriented low-frequency mode design or selection to mitigate
the mesh dependency issue will be very meaningful.

Additionally, we are interested in exploring an automatic way of
generating multi-layer prism meshes from arbitrary input surface
geometries. This will improve the accessibility of our method for
simulating specially structured volumetric objects. Last but not
least, our change-of-variable strategy based on defining sparse null-
space basis vectors could lead to solver innovations for a variety of
equality-constrained problems in physically-based animation and
geometry processing.
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