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Abstract

Due to intense interest in the potential applications of quantum computing, it is critical to understand the basis for

potential exponential quantum advantage in quantum chemistry. Here we gather the evidence for this case in the most

common task in quantum chemistry, namely, ground-state energy estimation, for generic chemical problems where

heuristic quantum state preparation might be assumed to be efficient. The availability of exponential quantum advan-

tage then centers on whether features of the physical problem that enable efficient heuristic quantum state preparation

also enable efficient solution by classical heuristics. Through numerical studies of quantum state preparation and

empirical complexity analysis (including the error scaling) of classical heuristics, in both ab initio and model Hamilto-

nian settings, we conclude that evidence for such an exponential advantage across chemical space has yet to be found.

While quantum computers may still prove useful for ground-state quantum chemistry through polynomial speedups,
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it may be prudent to assume exponential speedups are not generically available for this problem.

Introduction

The most common task in quantum chemistry is computing the ground electronic energy. The exponential quantum

advantage (EQA) hypothesis for this task is that for a large set of relevant (ªgenericº) chemical problems, this may

be completed exponentially more quickly (as a function of system size) on a quantum versus classical computer (for

a representative sample of papers that refer to EQA, see Ref. [1]). Rigorously, computing the ground-state of even

simple Hamiltonians can be exponentially hard on a quantum computer [2]. However, such Hamiltonians might not

be relevant to generic chemistry. Thus, the specific exponential quantum advantage (EQA) hypothesis considered

here, is that generic chemistry involves Hamiltonians which are polynomially easy for quantum algorithms (with

respect to ground-state preparation) and simultaneously still exponentially hard classically, even using the best classical

heuristics.

In this work, we examine the evidence for this EQA hypothesis, within the fault-tolerant quantum setting Ð the

most advantageous setting for quantum computing. We do not attempt a rigorous proof (or disproof) as such proofs

cannot be obtained, not least because what is ªgenericº chemistry is not precisely defined. Instead, we proceed using

numerical experiments supported by theoretical analysis, and study whether heuristic quantum state preparation is

exponentially easier than classical heuristic solution in typical problems; and whether the cost of classical heuristics

in such problems, for a given error, scales exponentially with system size.

Results

Statement of the problem

We compute the ground-state eigenvalue E of the electronic SchrÈodinger operator (Hamiltonian) of a chemical system

discretized with a basis set, and the problem size is the basis size L. We consider the case where increasing L

corresponds to increasing physical system size (i.e. number of atoms) with basis size proportional to system size

(other scenarios are discussed in Supplementary Note 2.1). The absolute ground-state energy E increases with L, and

in physical problems we expect extensivity (i.e. limL→∞ E(L) ∝ L for a chemically uniform system); in this limit,

the energy density Ē = E/L may be the quantity of interest. Thus depending on the setting, the relevant error can be

ϵ (error in E) or ϵ̄ (error in Ē).
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Fault tolerant algorithms for ground-state quantum chemistry

Fault tolerant quantum algorithms are ones which employ deep circuits (e.g. depth is a function of 1/ϵ). The most

famous one in quantum chemistry is quantum phase estimation (QPE) [3, 4]. We focus on QPE for simplicity; qualita-

tive features of the complexity remain similar in ªpost-QPEº algorithms [5]. Phase estimation approximately measures

the energy with approximate projection onto an eigenstate. The cost has 3 components (i) preparing an initial state

Φ, (ii) the phase estimation circuit, and (iii) the number of repetitions (to produce the ground-state Ψ0 rather than any

eigenstate). The cost to obtain E to precision ϵ is

poly(1/S)[poly(L)poly(1/ϵ) + C] (1)

where C corresponds to (i), poly(L)poly(1/ϵ) corresponds to (ii), and poly(1/S) (= 1/S2 for QPE) with S =

|⟨Φ|Ψ0⟩| corresponds to (iii). We term S overlap and S2 weight.

Motivated by the poly(L) cost of (ii), and assuming an exp(L) cost for classical solution, it is often informally stated

that QPE yields EQA for the ground-state quantum chemistry task [1]. However, the number of repetitions (poly(1/S))

may also depend on L: this stems from the quality of state preparation. The restriction to generic chemistry effectively

means we assume that good state preparation is not exponentially hard due to unspecified additional structure. But such

additional structure could also aid classical heuristics, and for EQA, the state preparation cost must be exponentially

less than the classical solution cost.

State preparation and EQA

As a first state preparation heuristic, we can prepare a state specified by an approximate classical ansatz (ansatz state

preparation). (We assume once an ansatz solution is specified, it is easy to prepare on the quantum device.) Often,

simple states, such as the Hartree-Fock or Kohn-Sham ground-state (single Slater determinants) are considered in

ansatz state preparation, as they are hoped to have good overlap with Ψ0 [6, 7]; the poly(1/S) cost is then not further

quantitatively considered. But while good overlap with such simple states can be observed in small molecules, EQA

is an asymptotic statement, thus we should consider the limit of large L.

The orthogonality catastrophe [8, 9] has previously been discussed in the context of state preparation in the large L

limit [10]. For a set of O(L) non-interacting subsystems, the global ground-state is the product of the subsystem

ground-states, thus if the local overlap between the approximate classical ansatz and ground-state for each subsystem

is ∼ s < 1, then the global overlap is sO(L) i.e. it decreases exponentially. This is sometimes viewed as an obstacle

to ansatz state preparation, but in fact it does not rule it out; the issue is more subtle, because the above analysis
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assumes that both the ansatz and the actual ground-state have some product structure. But one need not consider a

classical ansatz with (approximate) product structure; and, at least in principle, ground-state correlations could mean

that the global overlap is not guaranteed to be well approximated by a product of local overlaps. Also, even if one

uses a product-like ansatz to approximate a ground-state of near-product form, one can improve the local overlap as a

function of L, such that the global overlap is 1/poly(L) or better.

The relevant consideration for EQA however, is that if classical heuristics can efficiently prepare states with such

good overlap for large L (for some systems), they may also efficiently obtain the ground-state energy to the desired

precision.

As an alternative to ansatz state preparation, we can prepare the state adiabatically (adiabatic state preparation (ASP)).

This means, we evolve slowly from the ground-state of a solvable initial Hamiltonian to that of the desired Hamil-

tonian [11, 12, 13, 4]. This requires that the ground-state gap along the path be not too small; for paths where the

smallest minimum gap ∆min ≥ 1/poly(L) (which we will term ªprotectedº), ASP plus QPE provides a polynomial

cost quantum algorithm. Since a protected gap is not guaranteed using an arbitrary initial Hamiltonian and path,

ASP is a heuristic quantum algorithm. An extreme problem that expresses the difficulty of finding a good path is

unstructured search, where ∆min acquires a strong dependence on the ground-state Υ0 of the initial Hamiltonian,

∆min ∼ |⟨Υ0|Ψ0⟩| [14], yielding exponential cost when using adiabatic algorithms.

The above raises several issues. First, in correlated quantum systems with competing ground-states, different phases

could be separated by first-order phase transitions (where the gap is not protected) requiring ASP to start in the correct

phase. Assuming one uses classical heuristics to prepare such a starting point and choice of path, one encounters

similar questions to those raised in the discussion of ansatz state preparation. Second, one might ask how common the

above situation is in generic chemistry, i.e. whether interesting chemical problems allow for initial Hamiltonians and

paths with a protected gap to be trivially found.

The power of classical heuristics

ªExactº classical methods for ground state determination, such as exact diagonalization, are exponentially expensive

on a classical computer (see Supplementary Note 2.3). Thus the typical methods used in quantum chemistry are

classical heuristics, which come in a wide variety for different problems (see Supplementary Note 2.2). The critical

questions for EQA are (i) do these heuristics require exp(L) cost for given ϵ or ϵ̄ in their application domain, (ii) does

the patchwork of heuristics cover chemical space, and (iii) if there are gaps in coverage in practice, do we require

classical methods of exp(L) cost to cover them?
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EQA assumes exponential-scaling cost of classical heuristic algorithms for given ϵ (or ϵ̄) across generic problems. We

will examine this assumption in our numerical experiments. However, as actually employed in calculations, classical

heuristics are often executed with poly(L) cost without necessarily achieving a specific accuracy, complicating the

comparison with rigorous quantum algorithms. In particular, the error dependence can impact the EQA comparison,

for example, a poly(L) exp(ϵ̄−1) classical algorithm implies exp(L) cost for given ϵ. Thus we will also examine the

empirical precision dependence of classical heuristics with respect to ϵ or ϵ̄.

Analysis of state preparation in Fe-S clusters of nitrogenase

Iron-sulfur (Fe-S) clusters are amongst the most common bioinorganic motifs in Nature [15], and the Fe-S clusters of

nitrogenase have become a poster child problem for quantum chemistry on quantum devices [16, 17]. In the current

context, they provide a concrete setting to assess the EQA hypothesis, in particular, the behaviour of quantum state

preparation strategies.

Specifically, we consider iron-sulfur clusters containing 2, 4, 8 transition metal atoms (the latter includes the famous

FeMo-cofactor) in Figure 1. The 2, 4 metal clusters will be referred to as [2Fe-2S], [4Fe-4S] clusters, while the 8 metal

clusters include the P-cluster (8Fe) and the FeMo-cofactor (7Fe, 1Mo). We note that the P-cluster and FeMo-cofactor

are the largest Fe-S clusters found in Nature. We represent the electronic structure in active spaces with Fe 3d/S 3p

character constructed from Kohn-Sham orbitals. Within the occupation number to qubit mapping, this corresponds

to up to 40 qubits ([2Fe-2S]), up to 72 qubits ([4Fe-4S]), and up to 154 qubits (P-cluster and FeMo-co) (see Supple-

mentary Note 4.1). For [2Fe-2S], exact solutions can be obtained using exact full configuration interaction (FCI). For

all clusters, we obtain a range of approximate solutions using the quantum chemistry density matrix renormalization

group (DMRG) [18, 19, 20, 21, 22] with a matrix product state (MPS) bond dimension D; increasing D improves

the approximation, allowing extrapolation to the exact result (see Supplementary Note 4.3). Note that the classical

calculations in this section are of interest mainly to provide data to understand quantum state preparation.

We first examine the nature of the ground-state Ψ0 and the cost of ansatz state preparation. For this, we compute the

weight of a Slater determinant S2 = |⟨ΦD|Ψ0⟩|
2, shown in Figure 1B. ΦD is parametrized by its orbitals {ϕ}, and

we choose a priori, or optimize, {ϕ} to maximize this weight (for a best-case scenario that uses information from the

solution Ψ0, see Supplementary Note 4.4). The weights decrease exponentially over a small number of metal centers,

and are already very small in FeMo-co (∼ 10−7). The number of QPE repetitions is poly(1/S), yielding a large

prefactor even for an ªoptimizedº Slater determinant.

We next prepare more complex states with better overlap. We use a single configuration state function (a linear
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combination of Slater determinants that is an eigenfunction of total spin [23]). The weights improve but still show

exponential decay to small values.

These results indicate that the magnitude of the ansatz overlap can become a relevant concern even in systems of

modest size when using ansatz state preparation, thus we should consider improved state preparation. Assuming the

ground-state is of approximately product form, we can obtain some rough insight into improved global ansatz state

preparation (e.g. for 8 metal clusters) from the behaviour of improving the state locally (i.e. for the 2 metal clusters);

we require poly(1/I) cost for the [2Fe-2S] fragment (I is the infidelity 1 − S2) for efficient global state preparation.

In Supplementary Note 3.1 we show that this cost is indeed poly(1/I), but also that the energy error is poly(I). Thus

under these assumptions, improving the local overlap sufficiently also implies efficient classical solution for the global

energy. For any finite system, it may be possible to engineer a practical quantum advantage for some target precision

from a sufficiently good ansatz overlap and a favourable ratio of classical and quantum costs. But the problem of

finding a classical heuristic that efficiently yields 1/poly(L) overlap but which cannot also efficiently reach the target

precision remains.

We next compute the ASP cost for a simplified nact = 12 active space (24 qubit) [2Fe-2S] model (see Supplementary

Note 5.1). The path is a heuristic input, and we use one which linearly interpolates the Hamiltonian H(s) (with ground-

state Υ0(s)) between an initial Hamiltonian (s = 0, with ground-state Υ0(0)) and the true Hamiltonian (s = 1, with

ground-state Υ0(1) ≡ Ψ0); the path preserves spin symmetry. We consider two families of H(0); a set of mean-

field Hamiltonians (with different Slater determinant ground-states) and a set of interacting Hamiltonians (these retain

interactions among q active spin-orbitals (qubits), definitions in Supplementary Note 5.2).

Tight bounds on the ASP time (TASP) are difficult to obtain (see Supplementary Note 2.5). However, we have ver-

ified that the adiabatic estimate T est
ASP ∼ maxs τ(s), with τ(s) = |⟨Υ0(s)|dH(s)/ds|Υ1(s)⟩|/∆

2(s) with ∆(s) the

ground-state gap and Υ1(s) the first excited state of H(s), is a reasonable estimate for the desired preparation fidelity

(here assumed 75% final weight) by carrying out time-dependent simulations of ASP for simple instances to compute

TASP/T
est
ASP (Figure 2B); for a range of examples, this ratio is O(1). Thus we use T est

ASP as the ASP time below.

Figure 2C shows TASP across the sets of H(0); it varies over 8 orders of magnitude depending on the choice of H(0).

We see a trend 1/(mins ∆(s)) ∼ poly(1/|⟨Υ0|Ψ0⟩|) and thus TASP ∼ poly(1/|⟨Υ0|Ψ0⟩|) reminiscent of unstructured

search. The practical consequence is that an a priori good choice of initial Hamiltonian is non-trivial; the mean-field

Hamiltonian with the lowest ground state energy gives a large TASP > TQPE (an estimate of the total coherent QPE

evolution time for 90% confidence, ϵ=10−3Eh, see analysis in Supplementary Note 3.5), while out of the interacting

H(0)’s, we need to include almost all the interactions when diagonalizing H(0) for the initial state (20 out of 24
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qubits) before TASP < TQPE. Although these results are for the smallest FeS cluster, the dependence of TASP on S is

problematic for EQA should it scale to larger interesting problems, and it illustrates the importance of heuristics to

find a good initial starting point for ASP in relevant chemical problems. As discussed above, if classical heuristics are

used for this task, this raises the question of whether they are exponentially advantageous over the classical heuristics

for solution.

Empirical complexity analysis of classical heuristics

The Fe-S cluster simulations raise questions as to whether high quality quantum state preparation can be assumed

to be exponentially easier than classical heuristic solution. We now consider if classical heuristics in fact display

exp(L) cost for fixed ϵ or ϵ̄, as is required to establish EQA. We do so by considering examples that arguably represent

much of chemical space, which are evidence of classical heuristics scaling to large problems and high accuracy at

polynomial cost for fixed ϵ̄. (If the error scaling is poly(1/ϵ̄) independent of L, this further implies poly(L) cost

overhead to achieve fixed ϵ). We note that the calculations below represent only a small slice of relevant evidence from

classical calculations; related calculations can be found in the literature, although our focus here is on characterizing

the calculations e.g. with respect to cost and precision in a way useful for understanding EQA. Some further discussion

of these systems and other calculations relevant to EQA is in Supplementary Note 3.6.

For ªsingle-referenceº chemical problems (see Supplementary Note 6) coupled cluster (CC) wavefunctions are often

described as the gold-standard. The heuristic assumes that correlations of many excitations can be factorized into

clusters of fewer excitations; if the maximal cluster excitation level is independent of L, the cost is poly(L) (assuming

a non-exponential number of iterations for solution) without guaranteed error. To establish the error dependence, Fig-

ure 3A shows the empirical convergence of error as a function of cost, consistent with poly(1/ϵ) scaling, for a small

molecule (N2). By the extensivity of the coupled cluster wavefunction, this translates to poly(L)poly(1/ϵ̄) cost for a

gas of non-interacting N2 molecules, and thus poly(L)poly(1/ϵ) given the error convergence above. We can take this

as a conjectured complexity of coupled cluster in single-reference problems. To practically test this scaling form on

larger systems, we introduce another heuristic. CC methods can be formulated to exploit locality, a commonly ob-

served and widely conjectured feature of physical ground-states (including gapless systems, see Supplementary Note

2.4). This yields the local CC heuristic that has cost linear in L in gapped systems [24, 25]. Figure 3B illustrates the ap-

plication of local CC to n-alkanes, a set of organic molecules, with the associated computational timing. This suggests

the cost is O(L), while the computed enthalpy of formation per carbon achieves constant error versus experimental

data, reflecting constant ϵ̄ as a function of L, consistent with the conjectured complexity. Many biomolecules are

single-reference problems, allowing local coupled cluster methods to be applied to protein-fragment-scale simulations
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(Figure 3C).

Strongly correlated materials (e.g. bulk analogs of the Fe-S clusters) remain challenging to treat with ab initio quan-

tum chemistry (although there has been considerable progress in recent years [29, 30]). To obtain insight into the

computational complexity, it is more practical to study simpler models of correlated materials (e.g. the Heisenberg

and Hubbard models, often used to study quantum magnets and high temperature superconductors [31, 32]). Many

methods can now access large parts of these model phase diagrams to reasonable accuracy without exp(L) cost. The

use of locality is common to several heuristics for strongly correlated problems; tensor networks are an example of

such a class of heuristics and we examine illustrative applications below. (Note that this is not an exhaustive study of

tensor networks, nor of other heuristics (such as quantum embedding); for additional discussion see Supplementary

Note 3.6).

Figure 4 shows results from a tensor network ansatz [33], where the expressiveness of the ansatz is controlled by the

bond dimension D. The contraction here is explicitly performed with poly(D) (typically a high polynomial) cost,

thus for given D (assuming the number of iterations is not exponential in D or L (see Supplementary Note 7)), the

algorithm cost is poly(L)poly(D), without guaranteed error. ϵ̄ and computational cost are shown as a function of L

in the 3D cubic Heisenberg model, and ϵ̄ as a function of D and L in the 2D Hubbard model. (Note: these examples

were chosen for ease of generating exact data, rather than representing the limits of classical methods in size, accuracy,

or complexity of physics; see Supplementary Note 3.6 for other examples). Figure 4A shows that the cost is close to

O(L) in the 3D Heisenberg model for up to 1000 sites, while achieving close to constant ϵ̄. Less data is available for

the error scaling as accessible D remain small; in particular it is currently too expensive to reach large enough D to

meaningfully study the ϵ̄ scaling in 3D. However in the 2D Hubbard model (Figure 4B) we see ϵ̄ ∼ 1/poly(D) (or

slightly better) across a range of studied D, (with a weak dependence on L) even at the challenging 1/8 doped point of

the model. Assuming this error form holds asymptotically, the observed empirical cost is poly(L)poly(D)poly(1/ϵ̄),

which corresponds to poly(L)poly(D)poly(1/ϵ) for the assumed error scaling, and we can conjecture that this holds

also in 3D.

Although the Hubbard and Heisenberg models are believed to contain the basic physics of many strongly correlated

materials, moving from such simplified models to more detailed quantum chemistry models (i.e. ab initio Hamiltoni-

ans) will certainly increase complexity. But establishing EQA requires evidence that adding the polynomial number

of terms in the Hamiltonian causes the classical heuristic to fail or become exponentially expensive. The history of

development of classical heuristics does not support this, as methods originally developed on simpler models routinely

graduate to ab initio simulations. For example, the coupled cluster methods described above were first developed for
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use in model simulations, as were simpler tensor networks such as the density matrix renormalization group and tree

tensor networks now used in ab initio calculations [18, 34, 35]; Supplementary Note 3.6 provides more discussion of

this point as well as shows the performance of a quantum embedding heuristic for the 2D and 3D hydrogen lattices,

ab initio analogs of the 2D Hubbard and 3D Heisenberg systems in Fig. 4. Further examples in the literature consider

the application of many different classical heuristics to ab initio or model chemical ground-states of complex systems

including strongly correlated materials [29, 30, 22, 36, 25, 27, 37, 32, 38]. Although the computational complexity is

not formally analyzed, the success of such studies of large and complex problems is compatible with the view that the

ground-state quantum chemistry problem is often soluble with classical heuristics, to an energy density error ϵ̄ rele-

vant to physical problems, with poly(L) cost. Thus, while there are many chemistry problems that cannot currently be

addressed by classical methods and further study can be expected, the barrier to solution may be of polynomial (even

if impractically large) rather than exponential cost.

Discussion

We have examined the case for the exponential quantum advantage (EQA) hypothesis for the central task of ground-

state determination in quantum chemistry. The specific version of EQA that we examined required quantum state

preparation to be exponentially easy compared to classical heuristics, and for classical heuristics to be exponentially

hard. Our numerical simulations highlight that heuristics are necessary to achieve efficient quantum ground-state

preparation. At the same time, we do not find evidence for the exponential scaling of classical heuristics in a set of

relevant problems. The latter suggests that quantum state preparation can be made efficient for the same problems.

However, as EQA is based on the ratio of costs, this does not lead to EQA.

Numerical calculations are not mathematical proof of asymptotics with respect to size and error, nor can we exclude

EQA in specific problems. However, our results suggest that without new and fundamental insights, there may be

a lack of generic EQA in this task. Identifying a relevant quantum chemical system with strong evidence of EQA

remains an open question.

We did not consider tasks other than ground-state determination, nor do we rule out polynomial speedups. Depending

on the precise form, polynomial quantum speedups could be associated with useful quantum advantage, as even a

polynomial classical algorithm does not mean that solutions can be obtained in a practical time. Both aspects may

prove important in the further development of quantum algorithms in quantum chemistry. For further discussion, we

refer to the FAQ (see Supplementary Note 1).
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Data Availability

The FCI/DMRG data for state preparation in Fe-S clusters of nitrogenase are available in Supplementary Notes 3.1,

3.2 and 4.1±4.6. The ASP data are available in Supplementary Notes 3.3, 5.1, and 5.2. The CC data are available in

Supplementary Notes 6.1 and 6.2 The PEPS DMRG/VMC data are available in Supplementary Notes 7.1±7.3.

Code Availability

Source codes are available from the authors on request.
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Figure 1: Ansatz state preparation and ansatz weights for model Fe-S clusters. A, Structural models of

[2Fe-2S], [4Fe-4S], P-cluster, and FeMo-co. B, Weight of two different types of ansatz state: largest weight

determinant (ΦD) (purple) and largest weight configuration state function (ΦCSF) (orange) as a function

of the number of metal centers in each cluster (using split-localized orbitals). PN, Psyn, Pox here refer to

different oxidation states of the metal ions in the P-cluster. Both types of ansatz state show an exponential

decrease in weight with the number of metal centers. For the [2Fe-2S] clusters, we also show results for

the largest weight determinant using natural orbitals (empty symbols).

Figure 2: Adiabatic state preparation for a model [2Fe-2S] cluster. A, Structure and simplified active space

model of [2Fe-2S] cluster. B, ASP time and the adiabatic estimate. We see that the ratio TASP/T
est
ASP is

O(1). C, Adiabatic estimates (T est
ASP) for two families of initial Hamiltonians against the weight of the initial

ground state (Υ0) in the final ground state (Ψ0) (|⟨Υ0|Ψ0⟩|
2), showing an inverse dependence on the initial

weight. The mean-field Hamiltonians are constructed to have different Slater determinants as their ground-

state, while the interacting Hamiltonians contain the full electron interaction amongst nact orbitals. Additional

discussion in Supplementary Notes 3.3 and 5.

Figure 3: Computational complexity of classical heuristics for molecular systems. A, Energy error of a ni-

trogen molecule (equilibrium geometry) as a function of the level of CC approximation, against a computa-

tional time metric. Data taken from Ref. [26], time metric defined in Supplementary Note 3.7. The observed

precision cost is like poly(1/ϵ). B, Cost of a state-of-the-art reduced-scaling coupled cluster (CCSD(T))

implementation scales nearly-linearly with the system size in gapped systems, as demonstrated here for

n-alkanes (CmH2m+2) with m = [20 . . . 120]. Size-extensivity of the coupled-cluster ansatz ensures constant

error per system subunit, as illustrated in the subfigure for the error of explicitly-correlated reduced-scaling

CCSD(T)[27] (see Supplementary Note 6.1 for details) with respect to the available experimental gas-phase

enthalpy of formation in the standard state for n-alkanes with m = [2 . . . 20]. C, Reduced-scaling CCSD(T)

implementations can be routinely applied to systems with thousands of electrons on a few computer cores,

as demonstrated here for a small fragment of photosystem II. [28]

Figure 4: Computational complexity of classical heuristics for models of strongly correlated material sys-

tems. A, Relative energy error of a tensor network (PEPS) with respect to system sizes 33 to 103 for the

3D Heisenberg cube model with a bond dimension (D) of 4. In bottom panel: total computational time in

seconds, divided by number of sites, as a function of system size, demonstrating poly(L) (close to linear)

computational effort. B, Energy convergence of PEPS with respect to the bond dimension for 2D Hubbard

models at half filling (4× 4 lattice, in top panel) and the challenging 1/8 doping point (4× 4, 8× 4 and 16× 4
lattice, in bottom panel). The plots are consistent with 1/ϵ̄ ∼ poly(D) with a weak dependence on L.
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