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Summary

Covariate-adaptive randomization schemes such as minimization and stratified permuted
blocks are often applied in clinical trials to balance treatment assignments across prognostic
factors. The existing theory for inference after covariate-adaptive randomization is mostly limited
to situations where a correct model between the response and covariates can be specified or the
randomization method has well-understood properties. Based on stratification with covariate lev-
els utilized in randomization and a further adjustment for covariates not used in randomization,
we propose several model-free estimators of the average treatment effect. We establish the asymp-
totic normality of the proposed estimators under all popular covariate-adaptive randomization
schemes, including the minimization method, and we show that the asymptotic distributions are
invariant with respect to covariate-adaptive randomization methods. Consistent variance estima-
tors are constructed for asymptotic inference. Asymptotic relative efficiencies and finite-sample
properties of estimators are also studied. We recommend using one of our proposed estimators
for valid and model-free inference after covariate-adaptive randomization.

Some key words: Balancing of treatment assignments; Covariate adjustment; Efficiency; Generalized regression;
Model-free inference; Multiple treatment arms; Stratification; Variance estimation.

1. Introduction

Consider a clinical trial to compare k treatments with given treatment assignment proportions
π1, . . . , πk , where k � 2 is a fixed positive integer,

∑k
t=1 πt = 1, and πt can be any known

number strictly between 0 and 1. In many trials patients are not all available for simultaneous
assignment of treatments, but rather arrive sequentially and must be treated immediately. Thus,
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34 T. Ye, Y. Yi and J. Shao

simple randomization, which assigns patients to treatments completely at random, may yield
sample sizes not following the assignment proportions across prognostic factors or covariates, e.g.,
institution, disease stage, prior treatment, gender and age, which are thought to have significant
influence on the responses of interest. A remedy is to apply covariate-adaptive randomization,
i.e., the treatment assignment of the ith patient depends on the observed covariate value of this
patient and the assignments and covariate values of all i − 1 previously assigned patients. In this
article we focus on enforcing assignment allocation across levels of a covariate vector Z whose
components are discrete or discretized continuous covariates. There are model-based approaches
of balancing discrete or continuous covariates for estimation efficiency (Atkinson, 1982, 1999,
2002; Rosenberger & Sverdlov, 2008; Senn et al., 2010; Baldi Antognini & Zagoraiou, 2011),
which are not further considered in this article. The oldest method of balancing covariates is the
minimization method (Taves, 1974) intended to balance treatment assignments across marginal
levels of Z : it assigns the ith patient by minimizing a weighted sum of squared or absolute
differences between the numbers of patients, up to the ith, assigned to treatments over marginal
levels of Z . Pocock & Simon (1975) extended Taves’ procedure to achieve minimization with a
given probability, which is still referred to as the minimization method. Other popular covariate-
adaptive randomization methods include stratified permuted block randomization (Zelen, 1974),
the stratified biased coin (Shao et al., 2010; Kuznetsova & Johnson, 2017) and the stratified urn
design (Wei, 1977; Zhao & Ramakrishnan, 2016). For nice summaries, see Schulz & Grimes
(2002) and Rosenberger & Sverdlov (2008). As pointed out in Taves (2010), from 1989 to 2008,
over 500 clinical trials implemented the minimization method to balance important covariates,
despite some criticisms by Smith (1984) and Senn et al. (2010). According to a recent review
of nearly 300 clinical trials published in 2009 and 2014 (Ciolino et al., 2019), 237 of them used
covariate-adaptive randomization.

Although data are collected under covariate-adaptive randomization, conventional inference
procedures constructed based on simple randomization are often applied in practice. This has
raised concerns because statistical inference on treatment effects should be made using procedures
valid under the particular randomization scheme used in data collection. Applying conventional
inference after covariate-adaptive randomization may lead to invalid results, especially when
the minimization method is used, because its theoretical property remains largely unclear. The
European Medicines Agency (2015) guidelines raised concerns and specifically pointed out that

possible implications of dynamic allocation methods [minimization] on the analysis, e.g.,
with regard to bias and Type I error control should be carefully considered, …conventional
statistical methods do not always control the Type I error.

Starting with Shao et al. (2010), there has been significant progress in understanding the
theoretical properties of statistical tests under covariate-adaptive randomization, e.g., Hu & Hu
(2012), Shao & Yu (2013), Ma et al. (2015), Bugni et al. (2018, 2019), Ye (2018) and Ye & Shao
(2019). Another important stream of statistical inference methods is based on permutation tests or
rerandomization inference, e.g., Simon & Simon (2011), Kaiser (2012) and Bugni et al. (2018).
However, except for Bugni et al. (2019), all theoretical results are established under the assumption
that either a correct model between the responses of interest and covariates is available or the
covariate-adaptive randomization procedure has a well-understood property; these are described
as type 1 or type 2 in § 2 of the current paper. Model misspecification often occurs, especially
when there are many covariates, and the minimization method is neither type 1 nor type 2. The
minimization method is applied very often in practice (Pocock & Simon, 1975), mainly because
it aims to minimize the imbalance across marginal levels of Z , not every joint level of Z , which is
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sufficient in many applications. Enforcing treatment balance in every joint level of Z may cause
sparsity of data when the dimension of Z is not small.

To fill the gap, in this paper we propose asymptotically valid inference on the average treatment
effect defined as the difference between population response means of every treatment pair, under
covariate-adaptive randomization, including minimization. Our main idea is to apply stratification
according to the levels of discrete Z , and to adjust for covariates not used in treatment randomiza-
tion through generalized regression. Our estimator without adjusting for covariates, which is not
the most efficient one, coincides with the estimator derived under a different approach in Bugni
et al. (2019).Asymptotic normality of the proposed treatment effect estimators is established with
explicit limiting variance formulae that can be used for inference as well as comparing relative
efficiencies. Our results are not only model free, i.e., only the existence of second-order moments
of the responses and covariates are required, but also invariant with respect to covariate-adaptive
randomization schemes, i.e., the same inference procedure can be applied under any covariate-
adaptive randomization. We also study and compare inference procedures by simulations, and
illustrate our method in a real-data example.

2. Preliminaries

Let I be the treatment indicator vector that equals et if treatment t is assigned, where et
denotes the k-dimensional vector whose tth component is 1 and whose other components are 0,
t = 1, . . . , k . Let Y (t) be the potential response under treatment t, W be a vector of all observed
covariates, and Z be a discrete function of W utilized in covariate-adaptive randomization. For
patient i, let Ii, Wi and Y (t)

i (t = 1, . . . , k) be realizations of I , W and Y (t) (t = 1, . . . , k)

respectively, where i = 1, . . . , n and n is the total number of patients in all treatment arms. For
every patient i, Ii is generated after Zi is observed, and only the potential response from the
treatment indicated by Ii is observed, i.e., we observe Yi = Y (t)

i if and only if Ii = et .
After all treatment assignments are made and responses are collected, we would like to make

inferences based on the observed data {Wi, Ii, Yi, i = 1, . . . , n}. For our inference procedure
studied in § 3, we describe some minimal conditions. The first is about the population for potential
responses and covariates.

Condition 1. We have that (Y (1)
i , . . . , Y (k)

i , Wi) (i = 1, . . . , n), are independent and identically
distributed as (Y (1), . . . , Y (k), W ) and Y (t) has finite second-order moment, t = 1, . . . , k .

Condition 1 is model free as there is no assumption on the relationship between W and the
potential response Y (t) that may be continuous or discrete.

Under simple randomization, the Ii are independent of the (Y (1)
i , . . . , Y (k)

i , Wi), and are inde-
pendent and identically distributed with pr(Ii = et) = πt . To enforce assignment proportions at
each joint level of Z treated as stratum, three popular covariate-adaptive randomization schemes
are the stratified permuted block randomization method (Zelen, 1974), the stratified biased coin
method (Shao et al., 2010; Kuznetsova & Johnson, 2017) and the stratified urn design (Wei, 1977;
Zhao & Ramakrishnan, 2016).

The minimization method (Taves, 1974; Pocock & Simon, 1975; Han et al., 2009) is the same
as the stratified biased coin method if Z is one-dimensional, but is very different from the above
three stratification methods with a multivariate Z . It aims to enforce the assignment ratio across
marginal levels of Z , not every stratum defined by the joint level of Z . Assignments are made by
minimizing a weighted sum of squared or absolute differences between the numbers of patients
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assigned to treatment arms across marginal levels of Z . Because only marginal levels of Z are
considered in minimization, this method is also called the marginal method in Ma et al. (2015)
and Ye & Shao (2019).

We assume the following minimal conditions for covariate-adaptive randomization.

Condition 2. We have that (Ii, i = 1, . . . , n) and (Y (1)
i , . . . , Y (k)

i , Wi, i = 1, . . . , n) are
conditionally independent given Z1, . . . , Zn.

Condition 3. The covariate vector Z is discrete with finitely many levels given in a set Z . For
each t = 1, . . . , k , pr(Ii = et | Z1, . . . , Zn) = πt for i = 1, . . . , n, and {n(z)}−1Dt(z) converges
to 0 in probability as n → ∞ for every z ∈ Z , where n(z) is the number of patients with Zi = z,
and Dt(z) = nt(z) − πtn(z) with nt(z) being the number of patients with Zi = z assigned to
treatment t.

Condition 2 is reasonable because given the Zi, the Wi contain covariates not used in random-
ization, and treatment assignments do not affect the potential responses, although they do affect
the observed responses Yi. Condition 3 holds for most covariate-adaptive randomization schemes
(Baldi Antognini & Zagoraiou, 2015), and certainly for all schemes considered in this paper,
minimization, and three stratified designs: the permuted block, biased coin and urn designs.

We classify all covariate-adaptive randomization methods into the following three types in
terms of Dt(z) defined in Condition 3.

Type 1: For every t and z, {n(z)}−1/2Dt(z) → 0 in probability as n → ∞.

Type 2: For every t, Dt(z), z ∈ Z , are independent and, for every t and z, {n(z)}−1/2Dt(z)
d−→

N (0, vt) with a known vt > 0, where
d−→ denotes convergence in distribution as n → ∞.

Type 3: Methods not in type 1 or 2.

The three types are defined based on their degree in enforcing the balancedness according to
the given assignment proportions within every joint level of Z . Type 1 is the strongest, since Dt(z)
measures the imbalance of assignments within stratum z. The property {n(z)}−1/2Dt(z) → 0 in
probability is stronger than {n(z)}−1Dt(z) → 0 in probability in Condition 3. Type 2 is weaker
than type 1 in enforcing the balancedness, as it requires {n(z)}−1/2Dt(z) converging in distribution,
not in probability, to 0, although it is still stronger than {n(z)}−1Dt(z) → 0 in probability.

Representatives of type 1 methods are the stratified permuted block randomization and strat-
ified biased coin methods. Specifically, under stratified permuted block randomization, Dt(z) is
bounded by the maximum block size. For the stratified biased coin method, it follows from a
result in Efron (1971) that Dt(z) is bounded in probability. The stratified urn design is type 2
with vt = 1/12 when k = 2 and π1 = π2 = 1/2 (Wei, 1978). Simple randomization treated as a
special case of covariate-adaptive randomization is also type 2. Finally, the minimization method
is type 3, since it is neither type 1 nor type 2 (Ye & Shao, 2019). Specifically, under minimization,
Dt(z) and Dt(z′) with z =| z′ are not independent, and their relationship is complicated, because
assignments are made according to marginal levels of Z .

For type 1 methods, some theoretical results in statistical testing have been established; see,
for example, Shao et al. (2010), Shao &Yu (2013), Bugni et al. (2018, 2019),Ye (2018) andYe &
Shao (2019). Bugni et al. (2018, 2019) and Ye & Shao (2019) also considered type 2 methods. In
the next section we propose inference procedures on average treatment effects, and establish their
asymptotic validity under general covariate-adaptive randomization, including minimization.
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3. Inference on the average treatment effect

In this paper we consider inference on the average treatment effect vector

θ = (θ2, . . . , θk)
T, θt = E(Y (t) − Y (1)), (1)

where aT is the transpose of vector a and E denotes the population expectation. The average
treatment effect for any two fixed treatment arms t and s can be obtained as θt − θs.

To make asymptotically valid inference on θ defined in (1), the key is to construct an estimator
of θ and derive its asymptotic distribution. Under simple randomization, the simplest estimator
of θt is the response mean difference Ȳt − Ȳ1, where Ȳt is the sample mean of responses under
treatment t = 1, . . . , k . Although Ȳt − Ȳ1 is asymptotically normal under type 1 or 2 covariate-
adaptive randomization, it is generally not efficient as covariate information is not utilized in
estimation. More seriously, the asymptotic distribution of Ȳt − Ȳ1 is not known under type 3
covariate-adaptive randomization such as the minimization method. Bugni et al. (2018, § 4.2)
derived a different estimator of θ , called the strata fixed effect estimator, but its asymptotic
normality is established only for type 1 or 2 covariate-adaptive randomization and, thus, it cannot
be used under type 3 randomization such as the minimization method.

Let Ȳt(z) be the sample mean of the Yi with Zi = z under treatment t = 1, . . . , k . The following
stratified response mean differences with strata being all joint levels of Z is proposed in Bugni
et al. (2019, (8)):

θ̂ = (θ̂2, . . . , θ̂k)
T, θ̂t =

∑
z∈Z

n(z)

n
{Ȳt(z) − Ȳ1(z)}, (2)

although Bugni et al. (2019) provided θ̂ in a different form derived under a fully saturated linear
regression. If the weight n(z)/n in (2) is replaced by the population weight pr(Z = z), then θ̂ is
exactly the stratified estimator in survey sampling. We use n(z)/n in (2) as pr(Z = z) is unknown.

Although θ̂t in (2) utilizes information from Z by stratification and is asymptotically more
efficient than the simple estimator Ȳt − Ȳ1 or the strata fixed effect estimator in Bugni et al.
(2018), it does not make use of covariate information in W , but not in Z . Note that W may contain
components that are not in Z , but are related with the potential responses Y (t) (t = 1, . . . , k) or
some components of Z are discretized components of W and the remaining information after
discretization is still predictive of Y (t) (t = 1, . . . , k).

Let X be a function of W that we want to further adjust for. We now consider improving θ̂

in (2) by utilizing X . To maintain model-free estimation, we do not impose any model between
Y (t) and X , but adjust for covariate X within each Z = z by applying the generalized regression
approach in survey sampling, first discussed in Cassel et al. (1976) and studied extensively in
the literature (for example, Särndal et al., 2003; Lin, 2013; Shao & Wang, 2014; Ta et al., 2020).
Since this approach is model assisted, but not model based, i.e., a model is used to derive efficient
estimators that are still asymptotically valid even if the model is incorrect, it suits our purpose of
utilizing covariates without modelling.

Let Xi be the value of covariate X for patient i, X̄t(z) be the sample mean of the Xi with Zi = z
under treatment t, nt(z) and n(z) be defined as in Condition 3, and

β̂t(z) =
⎡
⎣ k∑

t=1

∑
i:Ii=et ,Zi=z

{Xi − X̄t(z)}{Xi − X̄t(z)}T

⎤
⎦

−1
n(z)

nt(z)

∑
i:Ii=et ,Zi=z

{Xi − X̄t(z)}Yi.
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Within treatment t and Z = z, β̂t(z) is a least-squares-type estimator of the coefficient vector in
front of X under a linear model between Y (t) and X , but the model is not required to be correct.
Then, our first proposed estimator of θ after adjusting for covariates is

θ̂A = (θ̂2, A, . . . , θ̂k , A)T,
θ̂t, A =

∑
z∈Z

n(z)

n
{Ȳt, A(z) − Ȳ1, A(z)},

Ȳt, A(z) = Ȳt(z) − {X̄t(z) − X̄ (z)}Tβ̂t(z),

(3)

where X̄ (z) is the sample mean of the Xi of all patients with Zi = z.
Within Zi = z, if we assume that the linear models under all treatments have the same coefficient

vector for X , i.e., a homogeneous analysis of covariance model holds between the observed
response and (X , I ), then we can replace β̂t(z) by

β̂(z) =
⎡
⎣ k∑

t=1

∑
i:Ii=et ,Zi=z

{Xi − X̄t(z)}{Xi − X̄t(z)}T

⎤
⎦

−1
k∑

t=1

∑
i:Ii=et ,Zi=z

{Xi − X̄t(z)}Yi,

which is in fact a weighted average of the β̂t(z). Again, the model is not required to be correct in
order to use β̂(z). This leads to an alternative estimator of θ after adjusting for covariates,

θ̂B = (θ̂2, B, . . . , θ̂k , B)T,
θ̂t, B =

∑
z∈Z

n(z)

n
{Ȳt, B(z) − Ȳ1, B(z)},

Ȳt, B(z) = Ȳt(z) − {X̄t(z) − X̄ (z)}Tβ̂(z).

(4)

When k > 2, X̄ (z), β̂t(z) and β̂(z) involve data from patients in treatment arms other than
treatments t and 1.

The following theorem, proved in the Supplementary Material, derives the asymptotic distribu-
tions of θ̂A in (3) and θ̂B in (4) under covariate-adaptive randomization, including minimization.
The asymptotic distribution of θ̂ in (2) is a special case of the result for θ̂A by setting X = 0.

Theorem 1. Assume that Conditions 1–3 hold, and that var(X | Z = z) is positive definite for
any z ∈ Z . As n → ∞,

√
n(θ̂A − θ)

d−→ N (0, �A + �V ),

√
n(θ̂B − θ)

d−→ N (0, �B + �V ),

where

�A = diag〈π−1
t E[var{Y (t) − X Tβt(Z) | Z}]〉 + π−1

1 E[var{Y (1) − X Tβ1(Z) | Z}]ιk−1ι
T
k−1

+ E{B(Z)Tvar(X | Z)B(Z)},
�B = diag〈π−1

t E[var{Y (t) − X Tβ(Z) | Z}]〉 + π−1
1 E[var{Y (1) − X Tβ(Z) | Z}]ιk−1ι

T
k−1,

�V = covariance matrix of the vector {E(Y (2) − Y (1) | Z), . . . , E(Y (k) − Y (1) | Z)}T,
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βt(z) = {var(X | Z = z)}−1cov(X , Y (t) | Z = z) for t = 1, . . . , k, β(z) = ∑k
t=1 πtβt(z),

diag〈dt〉 denotes the (k − 1)× (k − 1) diagonal matrix with diagonal elements d2, . . . , dk , ιk−1 is
the (k −1)-dimensional column vector of ones, and B(Z) = {β2(Z)−β1(Z), . . . , βk(Z)−β1(Z)}.

Theorem 1 is model free and is applicable to any covariate-adaptive randomization method
satisfying Conditions 2 and 3, most noticeably the minimization method, for which very little
is known about its theoretical property, as the minimization method is neither type 1 nor type 2
as described in § 2. This provides a solid foundation for valid and model-free inference after
minimization.

The asymptotic result in Theorem 1 is invariant with respect to randomization methods, i.e.,
�A, �B and �V do not depend on the randomization scheme. In other words, each estimator of θ

in (2)–(4) has the same asymptotic distribution and efficiency regardless of which randomization
scheme is used for treatment assignments, including simple randomization. This is intrinsically
different from many existing results that are dependent on randomization methods (Shao & Yu,
2013; Ma et al., 2015; Bugni et al., 2018). The only result invariant with respect to randomization
methods that can be found in the literature is Bugni et al. (2019, Theorem 3.1) for θ̂ in (2),
although Bugni et al. (2019) do not explicitly state this invariance property.

Due to the use of covariate-adaptive randomization, the sample mean Ȳt is not an average
of independent random variables and, thus, the asymptotic distributions of estimators in (2)–(4)
cannot be obtained by directly applying the central limit theorem for the sum of independent

random variables. We overcome this difficulty by decomposing the tth component of θ̂ − θ as
the sum of the following two uncorrelated terms:

Ut =
∑
z∈Z

n(z)

n

[
{Ȳt(z) − Ȳ1(z)} − {E(Y (t) | Z = z) − E(Y (1) | Z = z)}

]
,

Vt =
∑
z∈Z

n(z)

n
{E(Y (t) | Z = z) − E(Y (1) | Z = z)} − θt .

Conditioned on (I1, . . . , In, Z1, . . . , Zn), Ut is an average of independent terms, so its limiting
distribution can be derived by applying the central limit theorem, which consequently provides
the unconditional asymptotic distribution of Ut . For Vt , the only random part is n(z) whose
limiting distribution can be easily derived. For θ̂A or θ̂B, a similar decomposition can be obtained
with the same Vt and a different Ut incorporating the covariate adjustment term. Details can be
found in the Supplementary Material.

This decomposition is not only the key to establishing the asymptotic result, but also identifies
two sources of variation. The variation of potential responses after stratifying by Z and adjusting
for X is represented by �A. The variation from treatment effect heterogeneity is measured by �V .
We allow arbitrary treatment effect heterogeneity, i.e., different subgroups according to levels of
Z may benefit differently from the treatment. If there is no treatment effect heterogeneity, then
�V = 0.

In applications, it is often of interest to make inference on the average treatment effect

E(Y (t) − Y (s)) = θt − θs (5)

between two fixed arms t and s. The estimators of θt − θs under the three methods in (2)–(4) are
θ̂t − θ̂s, θ̂t, A − θ̂s, A and θ̂t, B − θ̂s, B. Their asymptotic distributions and the asymptotic relative
efficiencies among them are summarized in the following theorem.
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Theorem 2. (i) Under the assumptions in Theorem 1,

√
n{θ̂t − θ̂s − (θt − θs)} d−→ N (0, σ 2

t, s, U + σ 2
t, s, V ),

√
n{θ̂t,A − θ̂s,A − (θt − θs)} d−→ N (0, σ 2

t, s, A + σ 2
t, s, V ),

√
n{θ̂t,B − θ̂s, B − (θt − θs)} d−→ N (0, σ 2

t, s, B + σ 2
t, s, V ),

where

σ 2
t, s, U = π−1

t E{var(Y (t) | Z)} + π−1
s E{var(Y (s) | Z)},

σ 2
t, s, A = π−1

t E[var{Y (t) − X Tβt(Z) | Z}] + π−1
s E[var{Y (s) − X Tβs(Z) | Z}]

+ E[{βt(Z) − βs(Z)}Tvar(X | Z){βt(Z) − βs(Z)}],
σ 2

t, s, B = π−1
t E[var{Y (t) − X Tβ(Z) | Z}] + π−1

s E[var{Y (s) − X Tβ(Z) | Z}],
σ 2

t, s, V = var{E(Y (t) − Y (s) | Z)}.

(ii) The difference between the asymptotic variances of θ̂t − θ̂s and θ̂t, A − θ̂s, A is

σ 2
t, s, U − σ 2

t, s, A = {πtπs(πt + πs)}−1E
[{πsβt(Z) + πtβs(Z)}Tvar(X | Z){πsβt(Z) + πtβs(Z)}]

+ {(πt + πs)
−1 − 1}E [{βt(Z) − βs(Z)}T var(X | Z) {βt(Z) − βs(Z)}]

� 0,

where the equality holds if and only if, for every z ∈ Z ,

πsβt(z) + πtβs(z) = 0 and {βt(z) − βs(z)}(1 − πt − πs) = 0. (6)

(iii) The difference between the asymptotic variances of θ̂t, B − θ̂s, B and θ̂t, A − θ̂s, A is

σ 2
t, s, B − σ 2

t, s, A = π−1
t E

[{βt(Z) − β(Z)}Tvar(X | Z){βt(Z) − β(Z)}]
+ π−1

s E
[{βs(Z) − β(Z)}Tvar(X | Z){βs(Z) − β(Z)}]

− E
[{βt(Z) − βs(Z)}T var(X | Z) {βt(Z) − βs(Z)}]

� 0,

where the equality holds if and only if, for every z ∈ Z ,

β(z) = (πs + πt)
−1{πsβt(z) + πtβs(z)} and {βt(z) − βs(z)}(1 − πt − πs) = 0. (7)

Theorem 2 indicates that θ̂t, A − θ̂s, A is always asymptotically more efficient than θ̂t − θ̂s
unless (6) holds, in which case the two estimators have the same asymptotic efficiency. This
theoretically corroborates the perception that covariate adjustment with a full set of treatment–
covariate interactions cannot hurt efficiency. When there are more than two treatments, 1 −
πt − πs > 0 and, consequently, (6) holds only when βt(z) = βs(z) = 0 for every z, i.e., X is
uncorrelated with the potential responses Y (t) and Y (s) after conditioning on Z so that adjusting
for X is unnecessary. When there are only two treatments, (6) also holds if πt = πs = 1/2 and
βt(z) = −βs(z) for every z. An example is given in § 4.
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Note that β̂(z) used in θ̂B ignores the fact that cov(X , Y (t) | Z = z) may depend on treatment t.
That is why θ̂t, B−θ̂s, B is asymptotically not as efficient as θ̂t, A−θ̂s, A in general, and σ 2

t, s, B = σ 2
t, s, A

when these covariances are the same for every t and every z, i.e., β1(z) = · · · = βk(z). An
exceptional case is that σ 2

t, s, A = σ 2
t, s, B when there are only two treatments and πt = πs = 1/2.

In fact, θ̂t, B − θ̂s, B may be asymptotically less efficient than θ̂t − θ̂s, i.e., covariate adjustment
with only the main effects may hurt efficiency, a perspective in Freedman (2008) and Lin (2013).
For example, there are scenarios in which (6) holds, but (7) does not. Simulation examples are
given in § 4, where comparisons of θ̂t − θ̂s, θ̂t, A − θ̂s, A and θ̂t,B − θ̂s,B are made.

To make model-free inference on θ defined in (1), we only need to apply Theorem 1 and
construct consistent estimators of limiting variances. We focus on inference for θt − θs defined
in (5) with fixed t and s; other parameters of θ can be similarly treated. Let S2

t (z) be the sample
variance of the Yi in the group of patients under treatment t with Zi = z, S2

t, A(z) be S2
t (z) with

Yi replaced by Yi − X T
i β̂t(z), S2

t, B(z) be S2
t (z) with Yi replaced by Yi − X T

i β̂(z), and �̂(z) be the
sample covariance matrix of the Xi within Zi = z. It is shown in the Supplementary Material that,
under Conditions 1–3, the following estimators are consistent for σ 2

t, s, U , σ 2
t, s, V , σ 2

t, s, A and σ 2
t, s, B,

respectively:

σ̂ 2
t, s, U =

∑
z∈Z

n(z)

n

{
S2

t (z)

πt
+ S2

s (z)

πs

}
,

σ̂ 2
t, s, A =

∑
z∈Z

n(z)

n

[
S2

t, A(z)

πt
+ S2

s, A(z)

πs
+ {β̂t(z) − β̂s(z)}T�̂(z){β̂t(z) − β̂s(z)}

]
,

σ̂ 2
t, s, B =

∑
z∈Z

n(z)

n

{
S2

t, B(z)

πt
+ S2

s, B(z)

πs

}
,

σ̂ 2
t, s, V =

∑
z∈Z

n(z)

n

{
Ȳt(z) − Ȳs(z)

}2 − (θ̂t − θ̂s)
2,

regardless of which type of covariate-adaptive randomization method is used. Note that σ̂ 2
t, s, U

for θ̂t − θ̂s is different from the estimator obtained from Bugni et al. (2019, (36)).

4. Simulation results

There have been many publications on empirical studies under covariate-adaptive randomiza-
tion in the last four decades. Some recent results are presented in Senn et al. (2010), Kahan &
Morris (2012) and Xu et al. (2016).

To evaluate and compare our proposed estimators θ̂t − θ̂s, θ̂t, A − θ̂s, A and θ̂t, B − θ̂s, B in terms
of estimation bias and standard deviation, and to examine variance estimators and the related
asymptotic confidence intervals based on Theorem 1, we present some simulation results in this
section. We consider two covariates, i.e., W = (X1, X2), where X1 is binary with pr(X1 = 1) =
1/2 and, conditioned on X1, X2 ∼ N (X1 − 0.5, 1). For the potential responses, we consider two
treatments in cases I–III and three treatments in case IV:

Case I: Y (1) | W ∼ N (4X1 + 2X2, 1), Y (2) | W ∼ N (ϕ + 4X1 + 2X2, 1).
Case II: Y (1) | W ∼ N (4X1 − 2X2, 1), Y (2) | W ∼ N (ϕ + 4X1 + 2X2, 1).

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/109/1/33/6157823 by guest on 02 February 2022

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asab015#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asab015#supplementary-data


42 T. Ye, Y. Yi and J. Shao

Table 1. Smallest expected number of patients among all stratum–
treatment combinations

Allocation
n Z No. levels 1 : 1 1 : 2 1 : 2 : 2

100 X1 2 25.0 16.7 10.0
X1, d2 4 7.7 5.1 3.1
X1, d4 8 2.4 1.6 1.0

500 X1 2 125.0 83.3 50.0
X1, d2 4 38.6 25.7 15.4
X1, d4 8 12.1 8.1 4.8

Case III: Y (1) | W ∼ N (0.25 + 3X1 + 0.2X 2
2 , X1 + 0.5), Y (2) | W ∼ N (ϕ + 4X1 + 2X2, 1).

Case IV: Y (3) | W ∼ N (ψ + 1 + 2X1 − X2, 1), and Y (1) and Y (2) are the same as case III.

We use ϕ = ψ = 1 in the simulation, which does not affect the relative performance of estimators
and coverage probability of related confidence intervals.

Case I has homogeneous treatment effects; case II has treatment effect heterogeneity since
the effects of X2 on Y (1) and Y (2) have different signs; case III has the most severe treatment
effect heterogeneity as Y (1) | W and Y (2) | W have very different distributions; case IV considers
multiple treatments.

We consider three different Z in covariate-adaptive randomization. The first one is Z = X1
with two levels, in which case the function of W not used in randomization, but still related to the
potential responses is h(W ) = X2. The second Z is Z = (X1, d2) with four levels, where d2 is the
discretized X2 with two categories, (−∞, 0) and [0, ∞), and h(W ) is the continuous value of X2
in (−∞, 0) or (0, ∞). The third Z is Z = (X1, d4) with eight levels, where d4 is the discretized X2
with four categories, (−∞, −0.8), [−0.8, 0), [0, 0.8) and [0.8, ∞), and h(W ) is the continuous
value of X2 in (−∞, −0.8), (−0.8, 0), (0, 0.8) or (0.8, ∞). In all cases, X = X2 is equivalent to
h(W ) and is used in covariate adjustment.

For the randomization method, we consider minimization with treatment allocation 1 : 1 or
1 : 2 for cases I–III, and 1 : 2 : 2 for case IV. Simulation results for two other randomization
methods, the stratified permuted block randomization and the stratified urn design, can be found
in the Supplementary Material.

We consider the total sample size n = 100 or 500. For these sample sizes, the smallest possible
expected numbers of patients within a stratum and treatment according to number of Z levels
are given in Table 1. It can be seen that when n = 100 and Z = (X1, d4) has eight levels,
with nonnegligible probability, the number of patients in some stratum–treatment combination
is fewer than two and thus calculation of estimators in (2)–(4), and their variance estimators is
not possible. Therefore, for cases I–III, we omit the scenario with n = 100 and Z = (X1, d4). For
case IV, we focus on n = 500 and Z = (X1, d2).

Tables 2 and 3 report the bias, standard deviation, average estimated standard deviation and
coverage probability of asymptotic 95% confidence intervals, estimate ±1.96 SE, of θ̂t − θ̂s,
θ̂t, A − θ̂s, A and θ̂t, B − θ̂s, B for cases I–IV. Every scenario is evaluated with 2000 simulation runs.

From Tables 2 and 3 we see that all the estimators have negligible biases that are smaller than
1% in most cases. The variance estimators or average estimated standard deviations are very
accurate, so that the coverage probabilities of confidence intervals are adequate. Even when the
smallest expected number of patients is as small as 5.1 or 7.7 in the case of n = 100 and a Z with
four levels, θ̂t, A − θ̂s, A and θ̂t, B − θ̂s, B perform well.
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Table 2. Bias, standard deviation, average estimated standard deviation and coverage probability

of 95% asymptotic confidence intervals under minimization for cases I–III
Treatment allocation 1 : 1 Treatment allocation 1 : 2

n Case Z Estimator Bias SD SE CP Bias SD SE CP
500 I X1 θ̂ −0.0038 0.1980 0.1999 0.9590 0.0070 0.2159 0.2124 0.9465

θ̂B −0.0016 0.0909 0.0893 0.9445 0.0016 0.0954 0.0949 0.9510
θ̂A −0.0016 0.0908 0.0893 0.9445 0.0017 0.0954 0.0948 0.9490

X1, d2 θ̂ −0.0029 0.1492 0.1466 0.9450 −0.0013 0.1537 0.1553 0.9560
θ̂B −0.0017 0.0900 0.0893 0.9455 −0.0011 0.0962 0.0947 0.9440
θ̂A −0.0018 0.0901 0.0894 0.9455 −0.0009 0.0965 0.0945 0.9435

X1, d4 θ̂ 0.0005 0.1143 0.1150 0.9560 0.0003 0.1237 0.1219 0.9485
θ̂B 0.0010 0.0903 0.0893 0.9505 0.0013 0.0967 0.0946 0.9425
θ̂A 0.0007 0.0908 0.0893 0.9500 0.0010 0.0990 0.0944 0.9415

II X1 θ̂ 0.0085 0.2212 0.2191 0.9480 0.0067 0.2320 0.2303 0.9505
θ̂B 0.0086 0.2222 0.2185 0.9495 0.0063 0.2563 0.2541 0.9430
θ̂A 0.0086 0.2214 0.2191 0.9500 0.0078 0.2255 0.2212 0.9470

X1, d2 θ̂ 0.0084 0.2201 0.2191 0.9480 0.0076 0.2284 0.2251 0.9465
θ̂B 0.0076 0.2214 0.2178 0.9440 0.0078 0.2407 0.2344 0.9350
θ̂A 0.0085 0.2204 0.2190 0.9475 0.0077 0.2242 0.2212 0.9450

X1, d4 θ̂ 0.0057 0.2222 0.2192 0.9440 0.0104 0.2256 0.2230 0.9405
θ̂B 0.0061 0.2233 0.2177 0.9425 0.0108 0.2289 0.2254 0.9420
θ̂A 0.0057 0.2221 0.2190 0.9430 0.0101 0.2252 0.2211 0.9420

III X1 θ̂ 0.0003 0.1716 0.1731 0.9475 0.0072 0.1691 0.1667 0.9425
θ̂B 0.0029 0.1495 0.1477 0.9500 0.0048 0.1675 0.1656 0.9475
θ̂A 0.0031 0.1496 0.1479 0.9480 0.0081 0.1546 0.1533 0.9465

X1, d2 θ̂ 0.0016 0.1580 0.1593 0.9490 0.0032 0.1603 0.1595 0.9465
θ̂B 0.0050 0.1468 0.1470 0.9460 0.0061 0.1621 0.1576 0.9420
θ̂A 0.0032 0.1464 0.1474 0.9480 0.0052 0.1559 0.1523 0.9440

X1, d4 θ̂ 0.0042 0.1528 0.1525 0.9465 0.0049 0.1601 0.1557 0.9405
θ̂B 0.0080 0.1495 0.1468 0.9425 0.0094 0.1577 0.1539 0.9395
θ̂A 0.0048 0.1493 0.1474 0.9450 0.0069 0.1573 0.1521 0.9410

100 I X1 θ̂ −0.0001 0.4504 0.4487 0.9500 0.0064 0.4696 0.4743 0.9500
θ̂B 0.0019 0.2041 0.1983 0.9370 −0.0003 0.2175 0.2098 0.9365
θ̂A 0.0017 0.2044 0.2260 0.9645 0.0015 0.2242 0.2432 0.9615

X1, D2 θ̂ −0.0019 0.3214 0.3308 0.9520 −0.0059 0.3481 0.3489 0.9500
θ̂B 0.0005 0.2041 0.1983 0.9440 −0.0046 0.2184 0.2094 0.9375
θ̂A −0.0003 0.2046 0.2202 0.9625 −0.0029 0.2269 0.2372 0.9575

II X1 θ̂ −0.0074 0.4863 0.4903 0.9525 −0.0106 0.5114 0.5151 0.9455
θ̂B −0.0051 0.4930 0.4831 0.9420 −0.0152 0.5695 0.5585 0.9390
θ̂A −0.0048 0.4925 0.4891 0.9455 −0.0117 0.5017 0.4967 0.9455

X1, D2 θ̂ −0.0125 0.4799 0.4892 0.9525 −0.0046 0.4856 0.5014 0.9520
θ̂B −0.0114 0.4928 0.4759 0.9345 −0.0051 0.5239 0.5099 0.9350
θ̂A −0.0106 0.4862 0.4754 0.9375 −0.0066 0.4895 0.4807 0.9380

III X1 θ̂ −0.0048 0.3925 0.3871 0.9455 −0.0025 0.3715 0.3719 0.9500
θ̂B 0.0048 0.3350 0.3270 0.9410 −0.0005 0.3733 0.3639 0.9405
θ̂A 0.0047 0.3350 0.3331 0.9440 0.0089 0.3459 0.3411 0.9445

X1, D2 θ̂ −0.0109 0.3495 0.3560 0.9535 −0.0055 0.3459 0.3549 0.9525
θ̂B 0.0055 0.3341 0.3224 0.9405 0.0089 0.3490 0.3432 0.9355
θ̂A 0.0039 0.3314 0.3259 0.9480 0.0191 0.3317 0.3334 0.9410

Since k = 2, θ̂ = θ̂2 − θ̂1, θ̂A = θ̂2, A − θ̂1, A and θ̂B = θ̂2, B − θ̂1, B. SD, standard deviation; SE, average estimated
standard deviation; CP, coverage probability.
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Table 3. Bias, standard deviation, average estimated standard deviation and coverage probability
of 95% asymptotic confidence interval under minimization for case IV with n = 500

t s θt − θs Estimator Bias SD SE CP
2 1 1 θ̂t − θ̂s −0.0007 0.1907 0.1901 0.9515

θ̂t, B − θ̂s, B 0.0040 0.1840 0.1821 0.9470
θ̂t, A − θ̂s, A 0.0058 0.1777 0.1726 0.9375

3 1 1 θ̂t − θ̂s −0.0004 0.1541 0.1546 0.9445
θ̂t, B − θ̂s, B 0.0037 0.1616 0.1615 0.9445
θ̂t, A − θ̂s, A 0.0052 0.1479 0.1460 0.9395

3 2 0 θ̂t − θ̂s 0.0004 0.2094 0.2082 0.9505
θ̂t, B − θ̂s, B −0.0002 0.2077 0.2048 0.9445
θ̂t, A − θ̂s, A −0.0006 0.2019 0.2007 0.9495

With homogeneous treatment effects in case I, a more informative Z leads to a more efficient
θ̂t − θ̂s. However, the same phenomenon may not exist when treatment effect heterogeneity exists,
though a more informative Z does not lead to a less efficient θ̂t − θ̂s.

Adjusting for covariates, i.e., using θ̂t, A − θ̂s, A or θ̂t, B − θ̂s, B, may lead to substantial improve-
ments over θ̂t − θ̂s in terms of standard deviation, which again agrees with our theory. The
improvement is larger when a less informative Z is utilized in randomization, such as Z = X1.
Another interesting observation is that a different Z used in randomization does not affect the
standard deviation of θ̂t, A − θ̂s, A or θ̂t, B − θ̂s, B very much.

The comparison of θ̂t, A − θ̂s, A and θ̂t, B − θ̂s, B is also consistent with our theory in § 3. Under
1 : 1 treatment allocation or homogeneous treatment effects, θ̂t, B − θ̂s, B is as good as θ̂t, A − θ̂s, A.
When the treatment allocation is 1 : 2 and treatment effect heterogeneity exists, θ̂t, B − θ̂s, B is
not as good as θ̂t, A − θ̂s, A and could be even worse than θ̂t − θ̂s. The same is observed when the
treatment allocation is 1 : 2 : 2.

In case II with 1 : 1 treatment allocation, cov(X , Y (2) | Z = z) = −cov(X , Y (1) | Z = z), i.e.,
(6) holds and, thus, θ̂t − θ̂s and θ̂t, A − θ̂s, A have very similar standard deviations, as predicted by
Theorem 2. In this particular case, θ̂t, B − θ̂s, B is also as good as θ̂t, A − θ̂s, A.

5. Real-data example

For illustration, we apply our methods to a real-data example from Chong et al. (2016), whose
goal is to evaluate the contribution of low dietary iron intake to human capital attainment by mea-
suring the causal effect of reducing adolescent anemia on school attainment. The dataset is pub-
licly available at https://www.openicpsr.org/openicpsr/project/113624/
version/V1/view. In brief, Chong et al. (2016) conducted an experiment on students aged
from 11 to 19 in rural Peru, where iron deficiency is high, to study whether the following three
promotional videos, considered as three treatments, can encourage students to increase their iron
intake and hence improve their school performance. The first video shows a popular soccer player
encouraging iron supplements to maximize energy; the second video shows a physician encour-
aging iron supplements for overall health; and the third placebo video shows a dentist encouraging
oral hygiene without mentioning iron at all. A stratified permuted block randomization design
was applied to assign 219 students to the three treatments with allocation 1 : 1 : 1, using the
student’s school grade as covariate Z with Z = {1, 2, 3, 4, 5}. Four students were excluded from
the analysis for various reasons (Chong et al., 2016). The number of students in each stratum by
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Table 4. Number of students in stratum by treatment combination in
real-data example

Soccer Physician Placebo
z = 1 16 17 15
z = 2 19 20 19
z = 3 15 15 16
z = 4 10 11 12
z = 5 10 10 10

Table 5. Estimate, SE, and p-value for the real-data example
Soccer versus placebo Physician versus placebo

Estimate SE p-value Estimate SE p-value

θ̂t −0.051 0.205 0.803 0.409 0.207 0.048
θ̂t, B −0.089 0.203 0.661 0.444 0.202 0.028
θ̂t, A −0.045 0.198 0.821 0.484 0.197 0.014

Treatment 1 is placebo.

treatment is given in Table 4, which shows that no stratum by treatment has too few units to apply
our methods.

As an example, we follow Bugni et al. (2019) and consider the outcome of academic achieve-
ment, which is a standardized average of a student’s academic grades from a given semester
in subjects of math, foreign language, social sciences, science and communications. Estimates
θ̂t − θ̂s, θ̂t, A − θ̂s, A and θ̂t, B − θ̂s, B and their average estimated standard deviations are reported
in Table 5 for the average treatment effect between the soccer player and placebo videos, or
physician and placebo videos, together with the p-values associated with two-sided tests of no
treatment effect. The estimates from θ̂t − θ̂s are the same as those in Bugni et al. (2019). The
covariate X used in θ̂t, A − θ̂s, A and θ̂t, B − θ̂s, B is the baseline anemia status thought to have an
interactive effect with treatment on the outcome, as mentioned in Chong et al. (2016). It can be
seen that the average estimated standard deviation of θ̂t, A − θ̂s, A is the smallest and, in terms of
p-values, the effect between physician and placebo videos is only marginally significant when
θ̂t − θ̂s is used, but very significant based on our proposed θ̂t, A − θ̂s, A.

6. Concluding remarks

To improve asymptotic efficiency, we recommend θ̂A in (3) since it is asymptotically better
than θ̂ in (2) or θ̂B in (4). In the special case of two treatment arms with equal allocation, we
recommend θ̂B, since it is asymptotically equivalent to θ̂A and has better empirical performance.

As a full stratification according to Z is required, one limitation of the estimators in (2)–(4) is
that all strata need to have large enough sizes. In view of the empirical results in § 4 and § 5 and in
Ye & Shao (2019), we recommend our procedures when there are at least 10 units in every stratum-
treatment combination. Our future research is to study how to combine strata with too small sizes.
Both covariate-adaptive randomization in treatment assignment and adjustment for covariates in
estimation can gain efficiency, and covariate-adaptive randomization has the practically important
advantage of balancing assignments across prognostic factors. Thus, another future research area
is to study how to choose Z and X from the entire W .
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