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The visual system uses sequences of selective glimpses
to objects to support goal-directed behavior, but how is
this attention control learned? Here we present an
encoder—decoder model inspired by the interacting
bottom-up and top-down visual pathways making up
the recognition-attention system in the brain. At every
iteration, a new glimpse is taken from the image and is
processed through the “what” encoder, a hierarchy of
feedforward, recurrent, and capsule layers, to obtain an
object-centric (object-file) representation. This
representation feeds to the “where” decoder, where the
evolving recurrent representation provides top-down
attentional modulation to plan subsequent glimpses and
impact routing in the encoder. We demonstrate how the
attention mechanism significantly improves the accuracy
of classifying highly overlapping digits. In a visual
reasoning task requiring comparison of two objects, our
model achieves near-perfect accuracy and significantly
outperforms larger models in generalizing to unseen
stimuli. Our work demonstrates the benefits of
object-based attention mechanisms taking sequential
glimpses of objects.

Objects are the units through which we interact
with the world and perform tasks (Spelke, 1990; Peters
& Kriegeskorte, 2021; Scholl, 2001). Consider the
simple task of searching for an object in a cluttered
environment (e.g., a paper clip in a busy drawer). This
task requires one to sequentially move spatial attention
to select objects and to use object-based attention to
route and bind the features of these objects so that
they can be recognized as a target or nontarget. The
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role of the attention mechanism in this process is to
make the objects in the sequence the figure, in order to
facilitate interacting with the object and performing the
task (Scholl & Pylyshyn, 1999; Vecera, 2000). Works
have also suggested that object-based attention is
important for achieving human-level performance in
accuracy and generalization (George et al., 2017; Scholl,
2001). However, in contrast to spatial (Desimone
& Duncan, 1995; Adeli, Vitu, & Zelinsky, 2017) or
feature-based attention (Maunsell & Treue, 20006;
Lindsay & Miller, 2018; Adeli & Zelinsky, 2018), where
attention studies can focus on simple, well-defined
visual features (e.g., location, color, etc.), the units
of selection for object-based attention (Baldauf &
Desimone, 2014; Ekman, Roelfsema, & de Lange,
2020; Lei, Benjamin, & Kording, 2021) are entities
consisting of complex spatial properties (shapes)
and distributed feature representations. Moreover,
perception is akin to hypothesis testing, where a
top-down modulation reflecting object hypotheses
and goals affects object selection and bottom-up
processing. Leveraging recent developments in deep
learning (LeCun, Bengio, & Hinton, 2015), here
we model a general-purpose object-based attention
mechanism, requiring solutions to three subtasks:
(a) solving the binding problem, grouping features of
each object, and using object-centric representation
learning; (b) capturing the interaction between a
(largely) bottom-up mechanism for recognition
and a top-down mechanism for attention planning
using encoder—decoder models; and (c) learning to
sequentially sample objects using end-to-end training.
To solve the object binding problem (Treisman,
1996), recent deep neural networks (DNNs) have been
proposed that create object-centric representations
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of the entities in a scene by spatially segregating

the features from the background and dynamically
grouping those features in spatial and representational
domains (Greff, van Steenkiste, & Schmidhuber, 2020).
This segregation and grouping relies on (bottom-up)
part-whole matching and Gestalt processes interacting
with (top-down) objectness priors and knowledge of
object categories (Greff et al., 2020; Vecera, 2000;
Wagemans et al., 2012). Objects are represented in
separate “slots” (Greff et al., 2020; Goyal et al., 2019;
Burgess et al., 2019; Locatello et al., 2020; Eslami et al.,
2016), realizing the cognitive concept of “object files”
(Kahneman, Treisman, & Gibbs, 1992; Goyal et al.,
2020). A recent development in this domain, capsule
networks (CapsNets) (Sabour, Frosst, & Hinton, 2017;
Hinton, Sabour, & Frosst, 2018), attempts to represent
scenes as parse trees. Capsules in different layers
represent visual entities at different levels of object
granularity in the image, from small object parts in the
lower levels to whole objects at the top level. Capsules
provide an encapsulation and grouping of object
representations that has shown benefits for performing
object-based and class-conditioned reasoning for
downstream tasks (e.g., deflecting adversarial attacks;
Qin, Frosst, Raffel, Cottrell, & Hinton, 2020). In this
context, we adopt the following definitions. We refer
to “binding” as the encapsulation of visual feature
information in the slot for a given object, meaning
that the object is responsible for the information in
the slot becoming bound into a representation. By
“object representation,” we refer to the totality of
bound information in an object’s slot, and we evaluate a
learned object representation by using it to reconstruct
the object. These formulations do not capture certain
aspects of bound object representations (e.g., a
three-dimensional structure), yet they still have broad
implications for the modeling of visual perception (e.g.,
the prediction of global shape perception by humans;
Doerig, Schmittwilken, Sayim, Manassi, & Herzog,
2020; Rodriguez-Sanchez & Dick, 2019).

An object-centric perspective requires an integrated
attention-recognition mechanism that is nicely
embodied by the interacting structures organized
along the ventral and dorsal visual pathways in the
brain (Ungerleider & Haxby, 1994; Ungerleider &
Pessoa, 2008). The ventral “what” pathway is involved
in feature processing and recognizing objects and
scenes (Felleman & Van Essen, 1991; Ungerleider &
Haxby, 1994). Core object recognition refers to the
rapid recognition of briefly presented objects (100
ms) (VanRullen & Thorpe, 2001) and is believed to
be carried out primarily in the initial feedforward
processing pass in the ventral pathway (DiCarlo,
Zoccolan, & Rust, 2012). Modeling works support
this claim by showing that neural activation along this
pathway during core object recognition can be predicted
(Cadieu et al., 2014; Giiglii & van Gerven, 2015; Cichy,
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Khosla, Pantazis, Torralba, & Oliva, 2016) using
feedforward convolutional neurals networks (CNNs;
LeCun, Bottou, Bengio, & Haffner, 1998; LeCun
et al., 2015) trained on the same recognition tasks.
However, difficult recognition tasks require recurrent
and feedback connections beyond the feedforward
pass (Kietzmann et al., 2019; Kar & DiCarlo, 2021;
Spoerer, McClure, & Kriegeskorte, 2017; Wyatte, Jilk,
& O’Reilly, 2014). The dorsal “where” pathway is
believed to be involved in the spatial prioritization of
visual inputs and the guidance of actions to objects
(Bisley & Goldberg, 2010; Szczepanski, Pinsk, Douglas,
Kastner, & Saalmann, 2013). Here we take inspiration
from the role played by dorsal structures in providing
attentional modulation of ventral pathway activity, as
shown in previous work (Deco & Rolls, 2004; Bisley
& Goldberg, 2010). The attention signal generated
in the dorsal pathway prioritizes and modulates the
routing of the visual inputs in the ventral pathway for
the purpose of improving object classification success
and better performing the task. The repetition of this
process imposes seriality on behavior when confident
classification decisions are needed, making visual
perception a sequential process. Previous neurocognitive
modeling work on an integrated attention-recognition
mechanism (Deco & Rolls, 2004) has been largely hand
designed and applied only to simpler stimuli, limitations
that could be better addressed with a learning-based
approach.

Our model of object-based attention employs
the general structure of autoencoders (and more
generally encoder—decoders). This class of models
learns to encode the sensory input into a compact
representation that captures the important aspects
of the input and then decode that representation to
reconstruct the sensory input (or translate it into
another modality, e.g., image to text) (Kingma &
Welling, 2013; Xu et al., 2015). Notably, the DRAW
(Gregor, Danihelka, Graves, Rezende, & Wierstra,
2015) architecture introduced a sequential spatial
attention mechanism to variational autoencoders
(VAEs; Kingma & Welling, 2013) and showed that
the model can learn to iteratively glimpse different
parts of the input images and reconstruct them. Our
premise is that the encoder—decoder framework loosely
maps onto interactions between the dorsal and ventral
processing in the human brain’s attention-recognition
system. We believe core object recognition along the
ventral pathway can be mapped to encoder processing.
Decoder processing maps onto dorsal pathway, from
which originates the top-down attention signal that
modulates ventral activity. These encoder and decoder
steps are taken iteratively, creating a repeating cycle of
prioritization and selection. Within this framework, we
present OCRA, an object-centric recurrent attention
model that combines recurrent glimpse-based attention
and object-centric representation learning. Like a
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CapsNet, it performs encapsulation of features to
structure the higher-level representations for object
processing. However, we place this structure within the
aforementioned encoder—decoder model with recurrent
attention, thereby enabling integration of structured
information across multiple attentional glimpses. We
show that capsule-based binding of object features
and grouping is effective in the sequential detection of
multiple objects. It is also very effective in performing
visual reasoning tasks (judging whether two randomly
generated shapes are the same or different; Fleuret

et al., 2011) and on a challenging generalization task
where the model is tested on stimuli that are different
from the training set.

Adeli, Ahn, & Zelinsky

OCRA architecture

The architecture for OCRA is shown in Figure 1.
Building on the DRAW model (Gregor et al., 2015),
the “attention window” in OCRA is a grid of filters
applied to a variable-sized area of the image. However,
because the number of filters covering the attention
window remains constant, as the window gets bigger,
it samples increasingly low-resolution information,
creating a trade-off between the size of the attention
window and the resolution of information extracted.

Ventral ‘What’ Recognition

Read Attention

read glimpse
. Encoder
- . RNN

Primary Capsules

Dynamic
Routing

Decoder
RNN mask
O Object Capsules
g:l'i‘mpse
Write Attention
Dorsal ‘Where’ Spatial Attention @

' Reconstruction Classification based on ||L,|| ';
§ 33 Model Output | |

Figure 1. OCRA architecture. At each timestep of ventral processing, the encoder inputs a new read glimpse that is taken from the
image using an attention window specified by the decoder RNN. The read glimpse is first processed using a small CNN network to
obtain features that are then input to a recurrent layer. The primary capsules are read from this recurrent activation using a linear
mapping and are dynamically routed through agreement to the class capsules. The magnitude of the class capsules determines the
evidence for a class in the selected glimpse. For the dorsal processing, the class (digit) capsules are then masked to only route the
most active capsule to the decoder RNN where the representations are maintained over timesteps. This representation is used to
plan attentional glimpses for the reading operation—what gets routed in the ventral pathway and also using a similar mechanism for
reconstructing the image by generating where and what to write to the canvas. The connection from decoder RNN to encoder RNN
allows the ongoing recurrent representation to also further modulate routing in the ventral pathway. We only use this connection for
the visual reasoning task. This sequential process is iterated for multiple steps, after which the cumulative magnitude of the class
capsules determines the final classification. Both the class capsules and the cumulative canvas are used for training.
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Figure 2. Visual illustrations of read and write attention mechanisms.

This property is aligned with “zoom lens” theories

of human attention (Eriksen & James, 1986; Miiller,
Bartelt, Donner, Villringer, & Brandt, 2003) that
similarly propose a trade-off between resolution and

a variable-sized attention process that can be broadly
or narrowly allocated to an input (see Figure 2 for

a visual illustration of the attention mechanism).

The original DRAW model (Gregor et al., 2015) was
formulated as an autoregressive VAE, as it was trained
for stepwise self-supervised reconstruction. In contrast,
our formulation uses a deterministic encoder—decoder
approach. We train OCRA to predict both the category
classification, based on object-centric capsules, and an
image reconstruction, based on decoder output. An
overview of the OCRA components, loss functions, and
implementation details is provided in this section. A
pytorch (Paszke et al., 2019) implementation of OCRA
with additional details and results is provided.
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Read and write attention: At each timestep, a glimpse,
g1, 1s sampled through applying a grid of N x N
Gaussian filters on the input image x. We set the
glimpse size to 18 x 18 for our experiments, with a
sample glimpse shown in Figure 1 (left). The Gaussian
filters are generated using four parameters: gy, gy, 9,
o2, which specify the center coordinates of the attention
window, the distance between equally spaced Gaussian
filters in the grid, and the variance of the filters,
respectively. All of these parameters are computed via
a linear transformation of the previous steP decoder
RNN (recurrent neural network) output 4| using

a weight matrix W,,,,, which makes the attentlon
mechanism fully differentiable. A similar procedure
applies to the write attention operation. The decoder
RNN output 49¢ is linearly transformed into an M x M
write patch w, (set to 18 x 18 in our experiments), which
is then multiplied by the Gaussian filters to reconstruct
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the written parts in the original image size (Figure 1,
right). The Gaussian filters used for the write operation
differed from those used for the read operation and
were computed from four parameters obtained from a
separate linear transformation, Wyire_astention, Of the
decoder RNN output 49, An illustration of the read
and write attention operations is provided in Figure 2.
Encoder: After a glimpse is selected from the input
image by the read attention operation, it is processed
first using a two-layer CNN with 32 filters in each layer.
Kernel sizes were set to 5 and 3, respectively, for the
first and the second layers. Each convolutional layer is
followed by max pooling with a kernel size of 2 and a
stride of 2, and rectified linear units (ReLU) were used
for nonlinear activation functions. Given the glimpse
size of 18 x 18, the resulting 32 feature maps are of size
4 x 4. The feature maps, g/”"", are reshaped (to a vector
of size 512) and used as input to the encoder RNN,
along with the encoder RNN hidden state from the
previous step, 4". We used long short-term memory
(LSTM) (Hochreiter & Schmidhuber, 1997) units (size
512) for the recurrent layers in our model.

Latent capsule representations and dynamic routing: We
use a vector implementation of capsules (Sabour et al.,
2017) where the magnitude of the vector represents
the existence of the visual entity and the orientation
characterizes its visual properties. The primary-level
capsules are generated through a linear readout of

the encoder RNN, 4¢"¢. These capsules are meant to
represent lower-level visual entities (“parts™) that belong
to one of the higher-level capsules in the object capsule
layer (“whole”). To find this part-whole relationship,
we used the dynamic routing algorithm proposed by
Sabour et al. (2017). Dynamic routing is an iterative
process where the assignments of parts to whole objects
(coupling coefficients) are progressively determined by
agreement between the two capsules (measured by the
dot product between the two vector representations).
Each primary level capsule (i) provides a prediction
for each object-level capsule (j). These predictions are
then combined using the coupling coefficients (cij) to
compute the object-level capsule. Then the agreement
(dot product) between the object-level capsules and the
predictions from each primary-level capsule impacts
the coupling coefficients for the next routing step.

For example, if the prediction for a digit capsule

j from a primary capsule i, (/" < W,” pi), highly
agrees with the computed digit capsule (3, ¢/ p/"),

the coupling coefficient ¢/’ is enhanced so that more
information is routed from primary capsule i to object
capsule j. Coupling coefficients are normalized across
the class capsule dimension following the max—min
normalization (Zhao, Kleinhans, Sandhu, Patel, &
Unnikrishnan, 2019) as in Equation 1. Lower and
upper bounds for normalization, /b and ub, were set

to 0.01 and 1.0. This routing procedure iterates three
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times. We used this method instead of the softmax
normalization in Sabour et al. (2017) because we
observed the latter method would not differentiate
between the coupling coefficients. In our experiments,
we used 40 primary-level capsules, each a vector of
size 8. The object capsules are vectors of size 16, and
there are 10 of them corresponding to the 10-digit
categories for the multiobject recognition task and 4 of
them for the visual reasoning task. For the object-level
capsules, we use a squash function (Equation 2) to
ensure that its vector magnitude is within the range of 0
to 1. For the mutliobject recognition task, these would
represent the probability of a digit being present in the
glimpse at each step. Once the routing is completed,
we compute the vector magnitude (L2 norm) of each
object capsule to obtain classification scores. The final
digit classification is predicted based on the scores
accumulated over all timesteps. For the visual reasoning
task, two capsules (among four total) were designated
to be the response capsules, and the cumulative
magnitude of these capsules was used for predicting the
same—different responses.

B Ry S ) )
¢ = I+ (ub — [h)— M

ij ] QY
max(c;) — min(c,")

2 J
g = il v

S AR

Decoder: The object capsules provide a structured
representation that can be used for decoding and
glimpse selection. We first mask the object capsules so
that only the vector representation from the most active
capsule is forwarded to the decoder RNN, which also
inputs the hidden state from the previous step, h;’j‘l
Because the decoder maintains through recurrence
the ongoing and evolving object-based representation
of the image, it is best suited to determine the next
read glimpse location (as discussed earlier). The state
of the decoder RNN is also used through two linear
operations to determine what and where to write in the
canvas to reconstruct the image.

Loss function

OCRA outputs object classification scores
(cumulative capsule magnitudes) and image
reconstruction (cumulative write canvas). Losses
are computed for each output and combined with a
weighting as in Equation 3. For reconstruction loss,
we simply computed the mean squared differences
in pixel intensities between the input image and the
model’s reconstruction. For classification, we used
margin loss (Equation 4). For each class capsule j, the
first term is only active if the target object is present
(T; > 0) where minimizing the loss pushes the capsule
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magnitude to be bigger than target capsule magnitude
minus a small margin (m). The second term is only
active when the target capsule magnitude is zero, and
in that case, minimizing the loss pushes the predicted
capsule magnitude to be below a small margin (m). For
all the experiments in this article, we used an Adam
optimizer (Kingma & Ba, 2014).

Total Loss = Z Class Lossj + AreconRecon Loss — (3)

Jjeclass

ClassLoss = Y max(0, min(T;, 1)) - max(0, (T; — m)

jeclass
_”d1”)2 + Aabsent - max(0, 1 — Tj)
-max(0, ||d;|| — m)2 ()

Stimuli generation

MultiMNIST-cluttered dataset: We generated the
MultiMNIST-cluttered dataset to be similar to the
cluttered translated MNIST dataset from Mnih, Heess,
Graves, and Kavukcuoglu (2014). For each image, two
digits and six digit-like clutter pieces are placed in
random locations on a 100 x 100 blank canvas. All
digits were sampled from the original MNIST dataset
(LeCun et al., 1998), and the two digits in each image
could be from the same or different categories. Clutter
pieces were generated from other MNIST images by
randomly cropping 8 x 8 patches. We generated 180K
images for training and 30K for testing, ensuring to
maintain the same MNIST training/testing separation.
MultiMNIST dataset: We generated the MultiMNIST
dataset following the method from Sabour et al. (2017).
Each image in this dataset contains two overlapping
digits sampled from different classes of the MNIST
handwritten digits dataset (LeCun et al., 1998) (size
28 x 28 pixels). After the two digits are overlaid, each
is shifted randomly up to 4 pixels in horizontal and
vertical directions, resulting in images of size 36 x

36 pixels with on average 80% overlap between the
digit bounding boxes. We generated 3 million images
for training and 500K images for testing and ensured
that the training/testing sets were generated from the
corresponding MNIST sets (i.e., the training set in
MultiMNIST was only generated from the training set
in MNIST).

SVRT Task I: We generated the Synthetic Visual
Reasoning Test (SVRT) stimuli using the code from
Fleuret et al. (2011). We generated 60K images for
training and validation and 10K images for testing.
The images are 64 x 64 pixels. The stimuli for the
generalization task were generated using the code
modified from Puebla and Bowers (2022). For each
of the nine types, we generated 6K images for
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training (54K in total) and 1.2K for testing (10.8K
in total). We also generated 5.4K images for the four
out-of-distribution (OOD) shape types that were only
used for testing.

Object-based attention mechanisms endow a model
with the ability to effectively segregate and represent
different objects in order to perform a task. To test
this in OCRA, we used multiobject recognition and
visual reasoning tasks. First, the model’s ability to
segregate the figure objects from background clutter
is tested on the MultiMNIST-cluttered dataset (Ba,
Mnih, & Kavukcuoglu, 2015). Second, we test the
model’s recognition performance when objects are
highly overlapped (and thus occluded) using the
MultiMNIST task (Sabour et al., 2017). We also
examine the model’s performance on learning visual
reasoning using a paradigm similar to Task 1 of SVRT
(Fleuret et al., 2011), where the model must detect
whether two randomly generated objects in a given
scene are the same or different. All model accuracy
results reported in this section are averages of five runs
(see supplementary material for training details and
hyperparameter selection for different experiments).
For recognition tasks, accuracy is measured on the
image level, meaning that the response is correct only if
both objects in an image are recognized correctly.

Objects in clutter

Recognizing an object in a noisy environment
requires the grouping and binding of the object’s
features and their segregation from the noisy
background and potentially other objects. We tested
whether our model could learn to bind and segregate
objects using the MultiMNIST-cluttered task. The
stimuli for this task are generated by placing two
random digits and multiple object-like distractor pieces
on a canvas (see Stimuli generation).

Figure 3A shows OCRA’s ability to recognize the
two digits over five timesteps for a sample image from
this task. The top row shows the size and location
of the attention window for each step. Note that
OCRA makes its initial glimpse (left column) large (and
therefore spatially biased to the center) so as to cover
most of the image, presumably to obtain its version of
scene gist. The second row shows the information being
read from each attention glimpse, in image dimensions.
The blurring observed over Steps 1 to 3 illustrates the
aforementioned zoom-lens relationship between the
size of the glimpse window and its resolution, owed
to OCRA’s attention having a constant number of
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Figure 3. (A) Stepwise process of moving the glimpse over a sample MultiMNIST-cluttered image. The read attention windows are
overlaid as green boxes on the original image in the first row. The read glimpse is shown in the second row, and the bottom row
shows the cumulative canvas and the location of write attention as a red box. The most active capsule and the corresponding capsule
magnitudes are displayed at the bottom for each step. (B) Sample classification and reconstruction predictions for OCRA on the
MultiMNIST-cluttered task. The green digits show the ground truth and correct model predictions, and erroneous predictions from

the model are in red.

filters. We define a reconstruction mask that is the
averaged sum of all the read glimpses converted into
image dimensions (average of Figure 3A, middle row).
This mask would specify the image areas that the
model had glimpsed by the end of each trial and is
used during training to only penalize the model for
not reconstructing those areas. In other words, this
mask effectively focuses the loss so that the model is
accountable for reconstructing only the areas where it
had glimpsed, allowing the model to be selective with
its glimpses and write operations and avoid glimpsing
at distractors. The most active capsule that is routed to
the decoder at each step, and its magnitude, is provided
at the bottom.

Downloaded from jov.arvojournals.org on 10/30/2023

OCRA learns to take sequential glimpses of the
image at different scales to detect and classify the
digits. Additionally, it learns to write these glimpses
to the canvas only when it is confident of the digit
classification. As Figure 3A shows, this interacting
attention-recognition process enables OCRA to
recognize digits embedded in considerable noise. Note
also that the model learns that recognition requires the
sequential disengagement of attention from one object
and the movement of the glimpse window to the other
object so that it too can be recognized, as illustrated
by the object-centric additions to the canvas in the
figure. Note that this serial behavior parallels the fact
that human object recognition is also serial, at least for
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Figure 4. (A) Stepwise process of moving the glimpse over a sample MultiMNIST image. The read attention windows are overlaid as
green boxes on the original image in the first row. The second row shows the cumulative canvas and the location of write attention as
a red box with the most active capsule for each step displayed at the bottom. (B) Sample classification and reconstruction predictions
for OCRA on the MultiMNIST task. The green digits show the ground truth and correct model predictions and erroneous predictions

from the model are in red.

objects complex enough to require a feature binding
(Treisman, 1996). Figure 3B shows more examples of
model predictions, with correct responses on the left
side and errors on the right. Most errors by OCRA
on this task are due to the digits overlapping with
each other or with noise pieces in ways that change
their appearance from the underlying ground truth.
Supplementary Figure S1 shows the glimpse-based
reconstruction for few sample images with correct
model predictions.

OCRA performed the MultiMNIST-cluttered
task with 94% accuracy, which is comparable to
other glimpse-based models (Mnih et al., 2014; Ba
et al., 2015). While this broadly confirms the value
of including a glimpse-based attention mechanism,
there are notable differences in our approach. First,
OCRA’s attention mechanism is differentiable and
therefore easy to train, in contrast to the reinforcement
learning-based mechanisms employed in earlier work.
Another difference is the use of a context network in
Ba et al. (2015) that inputs the whole image to the
model in a separate pathway to plan attention selection,
thereby separating it from the recognition pathway.
OCRA has one pathway and strings together glimpses

Downloaded from jov.arvojournals.org on 10/30/2023

from multiple steps to have an integrated recognition
and attention planning mechanism. Our model does
this through its “zoom lens” attention processes that
can switch between local and global scales as needed.
OCRA’s early glimpses are taken from the whole
image, providing the model with a low-resolution gist
description (Figure 3A, middle row, left) that allows
it to plan future glimpses. Reflecting its object-centric
design, OCRAs later glimpses are focused on individual
objects to mediate the recognition and reconstruction
processes.

Overlapping objects

Objects commonly occlude each other, and to
study the attention-recognition system under these
conditions, we used the MultiMNIST task. This task
involves recognizing digits having an average of 80%
overlap between their bounding boxes. Figure 4A
shows OCRA'’s glimpse behavior on a sample image.
The model starts with a more global glimpse but then
moves its attention window, first to one object and
then to the other, recognizing and reconstructing each
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Model Model size (# parameters) Average accuracy (SEM)
CapsNet (Sabour et al., 2018) 11.36M 87.3% (+0.16)
OCRA-3glimpse 3.87M 92.76% (£0.11)
OCRA-10glimpse 3.87M 94.92% (+0.17)
Table 1. MultiMNIST classification accuracy.

Model # of glimpses Capsules Model size Average accuracy (SEM)
OCRA (proposed) 3 Yes 3.87M 92.76% (+0.11)
OCRA-Recurrent No Yes 8.58M 91.02% (+0.14)
OCRA-Feedforward No Yes 6.47M 89.37% (1+0.10)
OCRA-no Capsules 3 No 3.87M 91.96% (+0.13)

Table 2. Ablation study results on MultiMNIST classification.

sequentially. The most active capsule at each processing
timestep is indicated by the digits below the second row.
The gradual spreading of the reconstruction shown
in the bottom row is consistent with the spreading
of attention within an object, a pattern hypothesized
by object-based models of attention (Jeurissen, Self,
& Roelfsema, 2016; Ekman et al., 2020). However,
the gradual reconstruction does not show a clean cut
between the two objects in the cumulative canvas,
which we believe is due to the model having only seen
the objects in these highly occluded images in this
task (and never in isolation) and not being provided
with object segmentations (only the classification
ground truth). Figure 4B shows samples of the model
making correct and incorrect predictions, as well as
the resulting reconstructions. Table 1 shows OCRA’s
overall accuracy in this task (whether both objects in the
image are correctly classified) compared to the CapsNet
model (Sabour et al., 2017) where the MultiMNIST
task was originally introduced. Our model with three
glimpses significantly outperforms the CapsNet model
while having only one third the number of parameters.
Finally, we observed a clear effect of the number of
timesteps on model performance, with the error rate
dropping from 3 timesteps to 10 timesteps. Just as
human recognition benefits from longer attention
sampling when discriminations are difficult, so too does
OCRA’s performance.

To more clearly understand the model dynamics,
we conducted experiments starting from the
OCRA-3glimpse model and ablated different model
components. Namely, we conducted separate ablations
for the object-centric representation, the sequential
glimpse mechanism, and the model’s recurrent
processing, to measure their impact on model
performance. Results are shown in Table 2.
The role of recurrence and attention glimpse mechanisms:
In the first ablation experiment, we asked how OCRA’s
performance compares to a recurrent model that uses
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object-centric representation but lacks an ability to
obtain glimpse samples. OCRA-Recurrent (Table 2)
performs multistep processing on the input image
using the recurrence in its encoder and decoder RNNs
but cannot glimpse at specific locations. The model
therefore receives the entire image as input at each
processing step, which also requires it to have more
parameters (36 x 36 pixel input compared to 18 x

18 pixel glimpse). We then trained this model using three
timesteps to make it comparable to OCRA-3glimpse.
As shown in Table 2, accuracy for OCRA-Recurrent

is lower than for OCRA-3glimpse, highlighting

the importance of the glimpse mechanism in our
model performance. We next removed the recurrence
mechanism completely from OCRA, leaving a model
that makes one feedforward pass with the full-resolution
image as its input. This feedforward model then binds
features for each object in separate category capsules
before feeding them to the decoder (without masking
the object capsules) to reconstruct the whole image at
once. Table 2 shows that this feedforward model is not
only less accurate than OCRA but also less accurate
than OCRA-Recurrent. This comparison broadly
supports previous work arguing for a role of recurrent
dynamics in assisting recognition tasks involving high
degrees of occlusion (Spoerer et al., 2017; Wyatte et al.,
2014). This benefit of recurrence on object recognition
is hypothesized to be due to recurrence, providing
more computational depth (Nayebi et al., 2022; van
Bergen & Kriegeskorte, 2020; Schwarzschild, Gupta,
Ghiasi, Goldblum, & Goldstein, 2021) and leveraging
contextualized iterative computations (van Bergen &
Kriegeskorte, 2020). Taken together, while our results
show that recurrent computation can improve accuracy
in challenging recognition tasks with high occlusion,
pairing recurrence with an attention glimpse mechanism
is particularly effective in improving performance.

The role of object-centric representation: To examine the
impact of the object-centric representation on model
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performance, we replaced the capsule architecture
with two fully connected layers (the same size as
two capsule layers; 320 and 160 units) followed by

a classification readout. This new model, OCRA-no
Capsules, iteratively processes the image, and its
classification scores are a linear readout from the
second fully connected layer representation at each
timestep, which are then combined across timesteps
to make the final classification decision. As shown in
Table 2, accuracy for OCRA-no Capsules was lower
than OCRA, highlighting the effect of object-centric
representation on performance in this task. However,
this effect was relatively small compared to the ablations
of recurrent attention, suggesting that a recurrent
model can to an extent compensate for the reduced
information encapsulation that results from removal
of the capsule architecture. The model has a glimpse
mechanism and is free to route information globally,
thereby potentially reducing the benefit derived from
feature encapsulation on this task.

Visual reasoning

The ability to reason over visual entities and the
relations between them is an important cognitive ability
in humans and other animals (Oden, Thompson, &
Premack, 1990; Hafri & Firestone, 2021) with perhaps
the ability to judge whether two objects are the same
or different being the most fundamental form of visual
reasoning. Fleuret et al. (2011) proposed the SVRT
as a benchmark for testing this capability in artificial
intelligence (Al) systems. Here our focus is on Task
I in this benchmark (see examples in Figure 5A),
which tests a model’s ability to judge whether two
randomly generated objects in an image are the same
or different. While behavioral results showed that
humans were able to perform this task easily, early
CNN models applied to this task failed to reach high
levels of accuracy, thereby exposing a shortcoming
(Stabinger, Rodriguez-Sanchez, & Piater, 2016; Kim,
Ricci, & Serre, 2018). However, later works found that
deeper CNN models (with more layers and residual
connections) such as the ResNet (He, Zhang, Ren, &
Sun, 2016) family of models can perform this task at
near-perfect accuracy (>99%) while shallower models
such as AlexNet (Krizhevsky, Sutskever, & Hinton,
2012) perform at chance level (Messina, Amato,
Carrara, Gennaro, & Falchi, 2021; Funke et al., 2021).
This comparison identifies computational depth as an
important factor in learning this task.

Interestingly, alternative approaches have also
achieved high levels of accuracy on this task despite
using smaller networks. For example, siamese networks,
where two networks using shared parameters are
applied to the two objects in the scene, are able to
learn this task (Kim et al., 2018). Placing the objects
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in different image channels of the input can improve
the models’ performance on this task as well (Stabinger,
Peer, & Rodriguez-Sanchez, 2021b). In the context of
attention, these approaches are assuming a preattentive
binding of features to objects by feeding the objects
separately to each network (the case with siamese
networks) or by providing them in separate channels.
This assumption is broadly consistent with object-based
attention, but it avoids the role of attention in solving
the binding problem, which has long been considered
a fundamental function of attention (Treisman, 1996).
Consistent with OCRA and as argued by Stabinger,
Peer, Piater, and Rodriguez-Sanchez (2021a) (also
see Ricci, Cadéne, & Serre, 2021), a more general
approach would be to model the object-based attention
process itself and to detect and bind the features of the
objects through application of sequential processing
(see Vaishnav et al., 2021, for an alternative approach
for studying the role of bottom-up feature and spatial
attention but focused on training efficiency on this
task). Additionally, greater computational depth can be
achieved through more recurrent sequential processing
rather than a greater number of layers (Schwarzschild
et al., 2021).

As shown in Figure 5B (top row), the model
starts with a global glimpse but then immediately
switches to a serial attention allocation, moving its
glimpse window first to one object and then to the
other. Based on this serial behavior, the first-attended
object is represented by one object capsule, and this
object-centric representation is maintained in the
encoder—decoder RNNs across timesteps. When
the model glimpses the second object, the recurrent
representation would then bias the model to route
information from the second object to one of two
response capsule slots (same or different). This biasing
is realized by a feedback connection from the decoder
RNN to the encoder RNN that we added to OCRA for
this task. The encoder RNN therefore uses feedforward,
recurrent, and feedback inputs to update its activity
as each timestep. The model is trained using the
classification and reconstruction losses similar to the
previous tasks. Over training, the model learns to route
and reconstruct the second glimpsed object to the first
response capsule if its features match those of the first
object (which are being maintained through recurrent
processing) and to the second response capsule if
the features are different. Note that we do not have
explicit working memory modules in our model, but the
connection loops and the local recurrent connections do
realize that function by maintaining the features of the
first glimpsed object. In addition to capsules dedicated
to the two objects, we also anticipated the need for a
gist capsule (used most often for the initial glimpse) and
perhaps a temporary object representation that forms
when the glimpse moves between objects, bringing the
total number of capsules used in the representational
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Figure 5. OCRA performing visual reasoning tasks. (A) Four sample images from SVRT Task 1, which require a same or different
response. (B) Stepwise visualization of OCRA’s behavior on a sample test image. The top row shows the model’s read attention

window in green at each time step. The bottom row shows the cumulative canvas with each write attention window in red.
(C) Sample images and model reconstruction on the OOD generalization task with each column corresponding to a different object
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shape. Left: in-distribution testing dataset. Right: out-of-distribution testing dataset. (D) Average model accuracy for both ResNet18
(gray) and OCRA (cyan) on the original test set and the OOD test set on average, by OOD shape type. Both models achieve
near-perfect accuracy on the original test set, but OCRA significantly outperforms the ResNet18 on most of the generalization tasks.
Error bars show standard error. (E) The sequential processing of four OOD sample images, with each row corresponding to a different
00D shape. The original images are shown on the right and the stepwise cumulative reconstructions are shown on the left, which

clearly illustrate object-based behavior.

Model Average accuracy (SEM)

ResNet18 99.1% (£0.43)
OCRA 99.14% (+0.38)
OCRA-no Capsules 91.38% (42.79)
OCRA-no Feedback 92.10% (+1.81)

Table 3. Ablation study results on visual reasoning.

bottleneck to 4. The bottom row of Figure 5B shows
the cumulative write canvas with the location and extent
of the write attention for each of the 10 timesteps. Note
again that OCRA does not just reconstruct the two
objects serially, but its attention also gradually spreads
within an object (Jeurissen et al., 2016; Ekman et al.,
2020).

Table 3 shows model accuracy on this task. OCRA
achieved the same near-perfect level of accuracy
(99.1%) as a ResNet18 model on this task. We then
performed two ablation studies to examine the effect
of the feedback connection and the object-centric
representation bottleneck. The model without capsules
was constructed similarly to the previous section;
capsule layers were replaced by fully connected layers
and a classification readout. For the no-feedback model,
we simply removed the feedback connection between
the decoder RNN and the encoder RNN. We found
that ablating either of these components from OCRA
significantly impacted its accuracy (Table 3). This
shows that OCRA performs this task well by learning
to leverage both an object-centric representation and a
feedback mechanism for top-down biasing in order to
modulate bottom-up information routing.
Generalization to out-of-distribution stimuli: As
discussed earlier, deeper CNNs can solve the same-—
different task in the SVRT benchmark. However, recent
work revealed a major weakness (Puebla & Bowers,
2022). These authors argued that the true test of
whether a model learned the concept of “sameness”
is to show that it can generalize to other displays
where the pixel distribution of the generated objects is
different from the pixel distribution in the training set
(e.g., different shapes). Models evaluated on this dataset
would therefore be asked to generalize to OOD stimuli,
something that humans do well. We tested OCRA
and ResNet18 on a task adopted and modified from
Puebla and Bowers (2022). The training set includes a
collection of nine different types of stimuli, as shown
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in Figure 5C (left, top row). This was done to create

a diverse training set to allow the models to learn a
rich feature representation for performing this task. We
then evaluated the models on the original test set and
the OOD generalization test set, which is a collection
of four types of stimuli with different shapes from the
training set (examples shown in Figure 5C, right, top
row).

Figure 5C (bottom row) shows examples of OCRA
reconstructions for some in-distribution test samples on
the left (see Supplementary Figure S2 for the cumulative
canvas obtained over successive glimpses of attention
for these samples) and OOD test samples on the
right. As shown in Figure 5D, OCRA and the ResNet
model both achieved near-perfect accuracy on the
in-distribution test set for this task (leftmost bars). We
found a very different result on the OOD generalization
test, where OCRA significantly outperformed the
ResNet model; Figure 5D shows the average accuracy
over the OOD dataset and comparisons divided by
the OOD test shape. These results confirm previous
work (Puebla & Bowers, 2022) showing that ResNet
models critically struggle with same—different judgment
generalization. However, OCRA’s sequential and
object-centric processing of the image generalizes to
the OOD samples, as evident in the cumulative canvas
for the four examples shown in Figure S5E, enabling
significantly better performance. Lastly, note that
OCRA’s reconstruction quality for the OOD images is
not as good as for the original test images (comparing
Figure 5C left and right bottom rows), showing that the
model still struggles with representing these stimuli and
that there is room for improvement.

Object-based attention endows humans with the
ability to perform an unparalleled diversity of tasks,
and we took inspiration from this mechanism in
building OCRA. Its object-based sequential processing
and recurrent computations, combined with its
cognitively plausible (zoom-lens) glimpse mechanism,
give OCRA processing depth comparable to larger
networks. OCRA’s two-pathway architecture also
took inspiration from ventral and dorsal pathways in
the primate brain. Its behavior reflects an interaction
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between bottom-up and top-down processes such that
feedforward processing is enriched and guided by
current top-down hypotheses. The results show that the
synthesis of these principles can lead to a model having
improved robustness and generalizability, noting that we
demonstrated this under challenging conditions where
a mechanism for parsing the scene into entities and

a recurrent process for iterative attentional sampling
might prove beneficial. We also observed in the model
behavior another hallmark of object-based attention,
the gradual filling in of the objects (Jeurissen et al.,
2016), although for now, this remains only a qualitative
observation.

While many works at the intersection of machine
learning and cognitive neuroscience have focused
on convolutional and recurrent neural networks,
encoder—decoder methods have the potential to be
very useful in modeling behavior and brain responses.
The generative nature of this method makes it suitable
for modeling different top-down modulations and
feedback processing. To date, these models have been
used to study effects of top-down feedback in the
ventral pathway (Svanera, Morgan, Petro, & Muckli,
2021; Al-Tahan & Mohsenzadeh, 2021) and to model
predictive coding (Huang et al., 2020), mental imagery
(Breedlove, St-Yves, Olman, & Naselaris, 2020), and
continual learning (van de Ven, Siegelmann, & Tolias,
2020). More generally, these models can also be used for
representation learning, where they can be trained using
self-supervised methods to generate the visual input.

In doing this, the bottleneck representation becomes

a more compact representation of the image, which
through the introduction of additional constraints

can be disentangled and made interpretable (Storrs,
Anderson, & Fleming, 2021; Higgins et al., 2021). In
our work, we used this framework to model not only
ventral pathway processing but also its interaction, with
dorsal feedback addressing the relative paucity of work
in modeling the dorsal pathway (but see Bakhtiari,
Mineault, Lillicrap, Pack, & Richards, 2021, for a
dual-stream architecture interpretation) compared

to the ventral pathway. Our work is therefore timely
and will hopefully help to close what is a gap in the
cognitive modeling literature relating attention and
recognition.

OCRA employed a glimpse-based (“hard”) attention
mechanism as this approach has the promise of making
recognition and reasoning models more accurate,
efficient, and interpretable as they would only have
to focus processing resources on smaller and relevant
areas of the image (Mnih et al., 2014; Ba et al., 2015;
Cordonnier et al., 2021; Elsayed, Kornblith, & Le,
2019; Wang, Lv, Huang, Song, Yang, & Huang, 2020;
Rangrej, Srinidhi, & Clark, 2022; Papadopoulos,
Korus, & Memon, 2021). An alternative approach is
for the top-down processing to create spatial masks
to route object-specific information from one layer
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to the next (Lei et al., 2021). Another approach
toward modeling top-down attention has focused on
“soft”-attention models that capture certain aspects

of feature-based attention (Desimone & Duncan,
1995; Maunsell & Treue, 2006), where top-down
modulations weight the incoming representations based
on task relevance (Xu et al., 2015; Navalpakkam &
Itti, 2005). In this vein, transformer-based attention
mechanisms (Vaswani et al., 2017) have recently been
used to create models with an integrated process of
soft-attention sampling and recognition (Zoran et al.,
2020; Jaegle et al., 2021), leading to better performance
on adversarial images. In these models, the ongoing
state representation produces queries that are matched
to keys from the bottom-up processing to create
attention weightings for new sampling of bottom-up
values and the updating of the state representation.
We believe that combining these approaches with the
proposed glimpse-based mechanism helps to build a
more robust model, one that not only learns an optimal
policy for making attention glimpses but also biases
feature processing along the processing hierarchy via
top-down modulation in order to reflect current object
hypotheses.

The discovery of objects in the visual input, and
representing them in ways that are conducive to
performing downstream tasks, has become an attractive
area of research for understanding the relationship
between deep learning (connectionist) approaches
and human-like symbolic and object-based reasoning
(Garnelo & Shanahan, 2019; Greff et al., 2020). In
these models, a first stage of generating segmented
representations of the objects in a scene is followed by
a second stage of modeling the interaction between
these objects, either through a key-query attention
mechanism (similar to transformers) (Goyal et al., 2020;
Ding, Hill, Santoro, Reynolds, & Botvinick, 2021) or
by graph neural networks (Qi, Wang, Pathak, Ma, &
Malik, 2020). These object-centric models provide the
necessary representational capabilities to realize object
files and make broad connections to object-based
effects on behavior (Peters & Kriegeskorte, 2021; Goyal
et al., 2020). These approaches allow a model to work
and learn at an object-level and should be particularly
useful in modeling the varied aspects of object-based
attention (Pooresmaceili & Roelfsema, 2014; Vecera
& O'reilly, 1998; Lei et al., 2021; George et al., 2017;
Dedieu, Rikhye, Lazaro-Gredilla, & George, 2021). In
return, we believe that this object-centric perspective
can facilitate translation of ideas and inductive biases
from the object-based attention literature, and cognitive
science more generally, to build more robust and
generalizable Al systems.

Keywords: object-based attention, object-centric
representation, object recognition, deep neural networks,
visual pathways, visual reasoning
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