A Method for Parallelized Fast Dynamic Cascading
Failure Simulation of Power System

Sina Gharebaghi, Nilanjan Ray Chaudhuri, Ting He, and Thomas La Porta
School of Electrical Engineering and Computer Science
The Pennsylvania State University
University Park, PA 16802, USA
svg5765 @psu.edu, nuc88 @engr.psu.edu, tzh58 @psu.edu, and tll12@psu.edu

Abstract—A new approach called Backward Euler method
with Predictor-Corrector (BEM-PC) for simulating cascading
failure in dynamic models of power systems was recently pro-
posed. It applied Backward Euler integration method (BEM) with
stiff decay property while overcoming its so-called hyperstability
issue. The method led to a significant simulation speedup without
sacrificing accuracy in tracking cascading path when compared
with traditional solution techniques like Trapezoidal integration
method (TM). In this paper, we demonstrate that a further
speedup can be achieved by a parallelized version of BEM-
PC, which we call BEM-PC-parallel (BEM-PCP). In this version,
the predictor subprocess of BEM-PC is run in multiple parallel
processors for identification of oscillatory instability using eigen-
decomposition of the system matrix at post-disturbance unstable
equilibria. Monte-Carlo studies on a 2,383-bus Polish system
confirm that BEM-PCP is on average 17% faster than BEM-
PC and ~ 40 times as fast as TM while maintaining the same
accuracy as BEM-PC.

Index Terms—Dynamic model, Cascading failure, Backward
Euler method, Oscillatory instability, Parallel computation,
Trapezoidal method.

I. INTRODUCTION

ASCADING failures in power systems can originate

from multiple reasons including line tripping and/or
failure of primary equipment like generators and transformers.
Therefore, it is important to perform statistical analysis of
initial outages using a detailed dynamic model of the grid,
which can closely represent the ground truth. Unfortunately,
this entails repeatedly solving nonlinear coupled differential
algebraic equations (DAEs) for a much longer time than
typical planning studies that run for ~ 20-30 s. Due to
computational complexity, such studies have been proven to be
elusive, and have forced the power community to use Quasi-
Steady-State (DC-QSS, AC-QSS) models [1], which despite
recent improvements [2], cannot capture many phenomena in
the dynamic models.

A. Literature Review: Dynamic Models for Cascading Failure

Although some papers have reported research on dynamic
cascading failure models, their computational inefficiency
issue has largely remained unresolved. Reference [3] has
focused on understanding the interaction of protection schemes
and system dynamics during cascading outages. In this regard,
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it provides a brief overview of dynamics and protection, exist-
ing modeling techniques, simulation frameworks, and research
gaps. A dynamic model of cascading outages in power grids
with renewable resources is proposed in [4]. Authors in [5]
discusses development of a dynamic model that fits high
performance computing simulation environments. Paper [6]
suggests a parallel strategy suitable for deployment on a super-
computer in order to improve the computational speed of
cascading failure simulations. Papers [3]-[6] are review and
proposition oriented — they did not perform any comprehensive
cascading failure simulations.

Authors in [7] suggests a network-based structure-
preserving dynamic model for cascade simulations. The au-
thors attempted to demonstrate that simpler models may not
be reliable for investigating cascade outages, and presence or
absence of protection mechanism can lead to different results.
However, the proposed model is built on the classical model of
generators with swing equations, which is not able to capture
the stability issues coming from excitation systems [8], [9].

Pacific Northwest National Laboratory’s (PNNL’s) Dynamic
Contingency Analysis Tool (DCAT) [10] simulates severe con-
tingencies by alternating between dynamic and QSS models
for cascading failures while integrating the hybrid model with
protection schemes and automatic corrective actions. Paper
[11] introduces a bi-level probabilistic risk assessment dy-
namic model for cascading events incorporating slow and fast
cascades. A detailed dynamic model, COSMIC, for cascading
outage simulation triggered by N — 2 contingencies has been
proposed in [12]. Authors in [13] demonstrate results of a
detailed dynamic cascading failure model on a 2, 000-bus test
system. A selection of N — 2 line outages out of the 100
most important lines in the system are applied as the initial
disturbance.

B. Gaps in Literature

Although valuable contributions have been made in [10]—
[13], the computational cost vs accuracy trade-off of these dy-
namic models still remains an obstacle for statistical analyses.
For example, (i) ref. [10]: switching between dynamic and
QSS models is complicated, and may lead to inaccuracies in
the proposed hybrid model; (ii) ref. [12]: COSMIC is effec-
tively tested only for 88 out of the 1,200 /N —2 contingencies,
which led to dependent failures; (iii) ref. [13]: only those



TABLE I: Performance comparison of the state-of-art cascading failure models

Quasi-Steady-State (QSS) Models

Detailed Phasor-based Dynamic Models

Attributes Conventional method
DC-QSS AC-QSS (TM/R-K) BEM-PC BEM-PCP
Accuracy Highly inaccurate results | Mostly inaccurate results Ground truth™ ~Ground truth Same as BEM-PC

Simulation speed Extremely fast Very fast

Fast-On average, up to 35 times

faster than TM in Polish system Faster than BEM-PC

Extremely slow

Statistical analysis Feasible Feasible

Not feasible Feasible Feasible

* We define the ‘ground truth’ as the cascading failure simulation result produced by the state-of-the-art TM/R-K approaches.

contingencies that stopped in a 50 s simulation time have been
analyzed using a constant integration time-step of ~ 0.004 s.
Therefore, these approaches do not solve the computational
challenge facing statistical analysis of cascading failures.

C. Overview of BEM-PC Method

A new approach called Backward Euler method with
Predictor-Corrector (BEM-PC) [14], [15] was recently pro-
posed by the authors to fill the existing gaps. BEM-PC utilizes
Backward Euler integration method (BEM) with stiff decay,
which allows large integration step-sizes and achieves a signif-
icant simulation speedup compared to traditional Trapezoidal
method (TM). The so-called hyperstability issue in BEM
is addressed in BEM-PC by introducing a novel predictor-
corrector approach.

Hyperstability in an integration method is defined as its
property of producing a stable response converging to the
unstable equilibrium when solving differential equations with
instability. Hyperstability in BEM corresponds to the zone
highlighted in gray outside the unit circle in the right-half
plane of Fig. 1, while that is not the case for TM. Figure 2
shows time-domain plots of rotor angle of the generator in a
single-machine-infinite-bus (SMIB) system following a fault
in one of the parallel lines and its tripping at ¢ = 5 s. The left
subplot in Fig. 2 indicates that for the stable case, BEM with
stiff decay can take large time steps and capture identical end
results as TM. However, for a case with oscillatory instability
(right subplot) BEM converges to an unstable equilibrium,
producing erroneous end results. Note that BEM in this figure
does not refer to BEM-PC. This reveals that BEM without
predictor-corrector approach can be vulnerable in presence of
oscillatory instability while it is well-known that oscillatory
instability is manifested in many power systems — see [8], [9]
for example. In contrast, Monte-Carlo simulation of BEM-
PC proposed in [14], [15] indicates a remarkable speedup
compared with TM-based simulation while attaining the same
cascade paths and end results of cascade with a very high
accuracy. This makes BEM-PC a capable tool for exhaustive
statistical analysis of cascading failure.

D. Contribution of this Paper

The objective of this paper is to perform the parallelization
of a subprocess within BEM-PC, leading to an improved
version called BEM-PC Parallel (BEM-PCP). Monte-Carlo
simulation of 2,383-bus Polish system in [14] shows that
the predictor subprocess of BEM-PC consumes on average
~ 25% of total CPU-time for simulating each contingency.
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Fig. 1: Absolute stability regions of TM (left) and BEM (right)
shown in gray for so-called fest equation & = Axz. A is a
complex number indicating the eigenvalue of a system matrix.
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Fig. 2: Rotor angle time-domain plot of SMIB system with a
line outage at t = 5 s; BEM vs TM. Left: Stable case, Right:
Case with hyperstability. Oscillatory instability is introduced
by making damping coefficient of machine negative.

Since the predictor subprocess is parallelizable, it motivates us
to develop BEM-PCP and decrease the corresponding CPU-
time by using parallel computing. We demonstrate that further
speedup is possible using the BEM-PCP approach. Table I
compares the performance of BEM-PCP with the state-of-art
cascading failure simulation methods. This table claims that
BEM-PCP can speedup cascade simulations while maintaining
the exact accuracy as BEM-PC. The rest of the paper attempts
to prove this assertion.

II. DYNAMIC SIMULATION OF CASCADING FAILURES:
PRELIMINARIES & PROPOSED METHOD

A. Preliminaries

Dynamic models of cascading failure simulation can be
expressed as a set of coupled nonlinear DAEs augmented with
inequalities that incorporate discrete relay actions

&= f(z,V,z) (1
0=1I(z,V,z) = Yn(2)V )
0> h(x,V,2). (3)

Here, x and V' denote the state vector of machines, and vector
of real and imaginary parts of nodal voltages, respectively. The
status of relays are represented by a vector of binary variables
z. The real and imaginary parts of injected currents at each bus
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Fig. 3: Flowchart of BEM-PCP. ¢t = ¢;,i € {0,1,...,n — 1}: instants of tiers of cascade. (b): Parallelized predictor subprocess.
(c): Corrector subprocess. Subprocess (b) is performed as parallel computation.

are indicated by vector I, and Yy is the real form of network’s
admittance matrix.

In the cascading failure simulations, Initial Value Problems
(IVPs) on sets of DAEs (1)-(2) are formed and solved in-
dependently following each event. Every discontinuity by a
discrete change in the system such as relay action is called
an event. Among two existing approaches for solving IVPs in
power systems, partitioned and simultaneous [8], [9], we will
rely on the simultaneous approach with implicit integration
method, which can benefit efficiency of simulations using
variable time-step.

B. Proposed BEM-PCP Methodology

Figure 3 shows the flowchart of BEM-PCP approach, where
parallelized predictor-corrector is proposed to: 1) overcome
the hyperstability issue of BEM, and 2) speedup the predictor
subprocess of BEM-PC [14].

Subprocess (a) — Cascading failures simulation: In this
subprocess, cascade simulations run using variable-step BEM
in a serial manner. The cascading failure is triggered with
initial bus outages and tripping connected lines to those buses
at to. Following each event, IVP(s) are solved with known
initial condition (¢, Vj, 29) for each island. Appropriate re-
lays such as out-of-step machine protection, overcurrent (OC)
relays, and undervoltage load shedding (UVLS) relays are
modeled in the cascade simulations. Simulations in subprocess
(a) are stopped if i) steady state is reached in the time-domain
simulation with no expected relay action, or ii) the island under
consideration collapses.

Subprocess (b) — Parallelized predictor: This subprocess
starts after cascading simulations in subprocess (a). For each
post-event island that is posed as an independent IVP, it
must be verified that there is no oscillatory instability. Due
to the independent nature of these IVPs, they can be solved
in parallel to speedup simulations. Therefore, each IVP with
corresponding known initial condition is assigned to a parallel
core. Simulations are run using variable-step BEM for suitable
periods 4 ;s to reach the stable or unstable equilibrium points.
Relay actions that imply a discrete change in the simulations
are inhibited. Once the equilibrium is reached, the system ma-
trix (A-matrix) of the linearized model around the equilibrium

is calculated using Jacobian matrix which is a by-product of
BEM simulations. For more details, see [14].

For each post-event island, we inspect the eigenvalues of the
A matrix for any inter-area/local oscillatory unstable mode. We
are interested in the earliest instant of oscillatory instability
(ty) among all events, since results after that instant are
inaccurate and have to be corrected.

Subprocess (c) — Corrector: If any oscillatory instability is
detected in subprocess (b), we find out machines or group
of machines that are participating in the unstable mode by
investigating right eigenvectors of speeds of machines that are
calculated in subprocess (b). Next, appropriate pre-specified
special protection scheme (SPS) as in the ground truth is
applied. Runtime of subprocess (c) in BEM-PCP is negligible.

After SPS commands are executed, we repeat simulations
in subprocess (a) from ¢, and re-apply subprocesses (b) and
(c) for events after 7. The sequence of subprocesses in Fig.
3 are stopped once no oscillatory instability is detected.

Remarks on modelling:

1—- Machine model: We consider a detailed 4'"-order machine
model with E,;, E;l, 0, Aw states integrated with static exciter
and a first-order governor model with E;q and P, states [9]
in BEM-PCP and all benchmarks.

2— Relay model: All models include identical UVLS relays
for tripping loads in buses with voltages below a threshold
vy, With delay Tgexlgs , OC relays for tripping overloaded
lines with delay nggy, generators out-of-step protection, and
pre-specified functional SPS actions for protections against
oscillatory instability modes with trip delay Tfjai.

3— Adaptive COI-frame: Instead of using Real-Imaginary
network frame rotating at synchronous speed, in each island
we project all phasors on Center-of-Inertial (COI)-reference
frame rotating with w.,; = Zl ir 621%4 H,w; speed, where
i 3

w; and H; are the rotor speed ealgd inertia constant of the ith
machine. M refers to set of all machines in the island. COI-
frame will add two additional states dcor and Awcor to each
island. For more details, such as appropriate initializations of
states including speed and angle of COI-frame, please see [14].
Adaptive COI-frame is identically applied to BEM-PCP and
other models.




4— Structure of cascade model: Since TM does not suffes
from hyperstability, it only runs subprocess (a) in Fig. 3
However, BEM-PCP is required to run the whole process ir
Fig. 3 iteratively until no oscillatory instability is detected
Although BEM-PCP runs subprocesses (b), and (c) in additior
to subprocess (a) that TM runs, it uses much larger step-sizes
than TM due to stiff decay property, which makes BEM-PCF
much faster than TM. For more details on the stiff decay
property, please see [16].

III. CASE STUDIES

The Polish system during winter 1999 —2000 peak condition
[17] is used as test network to contrast results of BEM-PCP,
BEM-PC [14], and the traditional approach based on TM. The
Polish network has 2,383 buses, 327 machines, and 2,896
lines. We disconnect 3 buses and connected lines at t = 3
s to start cascading failure. Relay characteristics are used as
in [14]. BEM-PCP is using variable step-size changing from
Atin = 0.02 s to Atyee = 0.4 s like BEM-PC. Monte-
Carlo simulations with 500 random initial node outages are
performed in AMD Ryzen 7 3800X CPU with 32 GB RAM.
For comparing BEM-PC against TM, 4 servers with 2.2 GHz
Intel Xeon Processor, 24 CPU/server, and 128 GB RAM in
PSU’s ROAR facility [18] were used. In the simulations,
traditional TM-based cascading failure simulation reflects the
ground truth.

A. Results of Monte-Carlo Runs

As mentioned before, BEM-PCP is able to speedup BEM-
PC simulations by taking advantage of parallel computation in
subprocess (b) in Fig. 3, while preserving the exact accuracy as
BEM-PC. Subplots in Fig. 4 demonstrate how often demand
loss and number of line outages at the end of cascade are
above a certain level for TM and BEM-PC/BEM-PCP. This
figure exhibits almost an exact match among results of TM
and BEM-PC/BEM-PCP.

Table II compares various results of BEM-PC [14] against
TM for 500 Monte-Carlo simulations. Other than runtime
ratios in this table, the remaining data are applicable to
contrast BEM-PCP against TM (since BEM-PC and BEM-
PCP produce identical results). This table presents errors in
state (connected or disconnected) of buses, machines, and lines
at the end of cascade. Also, it provides maximum errors in
the voltage magnitude, voltage angles of buses, and frequency
of machines. The central tendency measures and maximum
values shows a very high accuracy for BEM-PC/BEM-PCP
in replicating TM results. Path agreement measure (R) [12],
[14] compares dependent branch outages (line outages after
initial disturbance excluding initial disconnections) in the
corresponding contingencies in TM and BEM-PC/BEM-PCP.
R =1 shows complete agreement in dependent line outages
during cascade. Different measures for R in Table II shows
that models have an almost complete agreement in cascade
path. Finally, measures for runtime ratio in the table indicates
that BEM-PC is on average ~ 35 times faster than TM.

)

s ' | ;

—-u.

> 0o
T

== BEM-PC/BEM-PCP 4

S e

o
=

T
']

1

fraction of cases
demand loss > x

=
o

10 10%

(

)

co

------
o
~-.
~,

fraction of cases
lines out > x
o
=
T
4
1

(

S

10? ulr‘
z, number of lines out
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Fig. 5: Boxplots of runtimes of subprocesses (a) and (b) in
BEM-PC as in Fig. 3 during 500 MC runs of Polish system.
Runtimes are expressed as a % of total runtimes BEM-PC.

Figure 5 shows box — whisker plots of runtimes of sub-
processes (a), and (b) in BEM-PC expressed as a % of total
runtimes of BEM-PC. It indicates that, on average, runtime of
subprocess (b) is 29% of total CPU-time of each simulation
for BEM-PC. This is the only part that BEM-PCP is able to
speedup w.r.t. BEM-PC. Runtime of subprocess (c) in Fig. 3
is negligible. The left box-whisker plot in Fig. 6 represents
ratios of total and subprocess (b) runtimes of corresponding
cases in BEM-PC w.r.t. BEM-PCP. This plot reveals that on
average BEM-PCP is ~ 17% faster than BEM-PC, while
achieving an average of 1.9 times speedup in subprocess (b)
compared to BEM-PC. The right subplot demonstrates that for
BEM-PCP in average ~ 0.5%, and 3% of total runtime and
CPU-time of subprocess (b) in each case can be attributed to
overhead of parallel computation. When running in parallel,
data need to be shared between processors and sometimes
processors need to coordinate. This communication between
processors increases runtime known as overhead. We used
modified version of ParTicToc [19] in MATLAB to calculate
CPU-time of individual processors in parallel computation and
compute the overhead.

TABLE 1II: (a) End of cascade error, (b) path agreement
measure (R), and (c¢) run time in TM w.r.t. BEM-PC [14]

mean min max median
error in buses 0.1220 0 8 0
state of machines 0.0620 0 3 0
lines 0.1600 0 7 0
maximum [v], pu 0.0008 0 0.0360 2.1e=5
error in Zv, deg. 0.1441 0 10.1075 4.0e—4
f,Hz 0.0165 0 0.2414 8.4e—5
R 0.9922 0.75 1 1
runtime ratio 34.6097 | 1.1593 | 430.3984 | 24.7959




TABLE III: End-of-cascade comparison: Oscillatory instability
case. Runtimes are normalized w.r.t. runtime of BEM-PCP.

Approach | demand loss | lines out | mach. Out | cascade duration, s | runtime ratio
™ 0.92 35 3 115.66 45.94
BEM 0.18 10 0 43.69 0.18
BEM-PC 0.92 35 3 115.96 1.14
BEM-PCP 0.92 35 3 115.96 1
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Fig. 6: Left: Boxplots of ratios of total and subprocess (b)
runtimes of BEM-PC w.r.t BEM-PCP for MC runs. Right:
Boxplots of runtimes of overhead of parallel computation
in BEM-PCP expressed as a % of total and subprocess (b)
runtimes of BEM-PCP for MC runs.
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Fig. 7: Hyperstability case: Speeds of G286 and G290 in
system with oscillatory instability in the middle of cascade.

B. Oscillatory Instability Challenge & Efficiency of BEM-PCP

In this section, the accuracy of BEM-PCP is tested against
a case with oscillatory instability in the system. Simulations
for this section were ran in PSU’s ROAR facility [18]. In
the tested scenario, we create oscillatory instability by making
damping coefficient of some of machines negative at some
time in the middle of cascade. The pre-specified SPS that trips
two unstable machines with highest magnitude of oscillations
is applied after 4.5 s upon detection of unstable mode. In
TM this happens through an explicit SPS action. However,
in the BEM-PC and BEM-PCP the functional SPS actions
are performed through eigendecomposition of system matrix
and finding participating machine(s) in the oscillatory unstable
mode in subprocess (b). Figure 7 and Table III compare results
of BEM-PCP, BEM-PC, TM, and BEM without PC approach.
Figure 7 plots speeds of G286 and G290 as wagg and wagg. As
can be seen in the figure, cascade path for BEM is different
with others. However, BEM-PCP is able to follow exact path
and end results of cascade as in TM. SPS in TM and BEM-
PCP trips unstable machine G286, 4.5 s upon detection of
oscillatory instability. Table III indicates that the end results of
cascade for the test case with oscillatory instability is identical
for TM, BEM-PC, and BEM-PCP where BEM-PCP is much
faster than TM, and it is able to speedup BEM-PC by 14%.

IV. CONCLUSION

BEM-PC was recently proposed as an approach for speed-
ing up dynamic simulations of cascading failures in power
systems. Results of simulations for BEM-PC represented a
significant speedup with high accuracy in replicating cascade
simulation results of traditional methods such as TM. This
paper demonstrated that a further speedup in BEM-PC is
possible through a parallelized version of BEM-PC which is
called BEM-PCP. The parallelized version is able to accelerate
the predictor subprocess of BEM-PC using multiple parallel
processors. Monte-Carlo studies on a 2, 383-bus Polish system
indicated that BEM-PCP is on average 17% faster than BEM-
PC while producing identical results as BEM-PC.
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