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Abstract

Knowledge representation and reasoning (KRR) systems describe and reason with complex concepts and

relations in the form of facts and rules. Unfortunately, wide deployment of KRR systems runs into the prob-

lem that domain experts have great difficulty constructing correct logical representations of their domain

knowledge. Knowledge engineers can help with this construction process, but there is a deficit of such spe-

cialists. The earlier Knowledge Authoring Logic Machine (KALM) based on Controlled Natural Language

(CNL) was shown to have very high accuracy for authoring facts and questions. More recently, KALMFL,

a successor of KALM, replaced CNL with factual English, which is much less restrictive and requires very

little training from users. However, KALMFL has limitations in representing certain types of knowledge,

such as authoring rules for multi-step reasoning or understanding actions with timestamps. To address these

limitations, we propose KALMRA to enable authoring of rules and actions. Our evaluation using the UTI

guidelines benchmark shows that KALMRA achieves a high level of correctness (100%) on rule authoring.

When used for authoring and reasoning with actions, KALMRA achieves more than 99.3% correctness on

the bAbI benchmark, demonstrating its effectiveness in more sophisticated KRR jobs. Finally, we illustrate

the logical reasoning capabilities of KALMRA by drawing attention to the problems faced by the recently

made famous AI, ChatGPT.

KEYWORDS: knowledge authoring, knowledge representation and reasoning, natural language understand-

ing, frame-based parsing

1 Introduction

Knowledge representation and reasoning (KRR) systems represent human knowledge as facts,

rules, and other logical forms. However, transformation of human knowledge to these logical

forms requires the expertise of knowledge engineers with KRR skills, which, unfortunately, is

scarce.

To address the shortage of knowledge engineers, researchers have explored the use of differ-

ent languages and translators for representing human knowledge. One idea was to use natural

language (NL), but the NL-based systems, such as OpenSesame (Swayamdipta et al. 2017) and

SLING (Ringgaard et al. 2017), had low accuracy, and led to significant errors in subsequent rea-

soning. The accuracy issue then motivated researchers to consider Controlled Natural Language

(CNL) (Fuchs et al. 2008; Schwitter 2002) for knowledge authoring. Unfortunately, although

CNL does improve accuracy, it is hard for a typical user (say, a domain expert) to learn a CNL

grammar and its syntactic restrictions. Furthermore, systems based on either NL or CNL cannot
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identify sentences with the same meaning but different forms. For example, ªMary buys a carº

and ªMary makes a purchase of a carº would be translated into totally different logical repre-

sentations. This problem, known as semantic mismatch (Gao et al. 2018a), is a serious limitation

affecting accuracy.

The Knowledge Authoring Logic Machine (KALM) (Gao et al. 2018b) was introduced to

tackle semantic mismatch problem, but this approach was based on a CNL (Attempto (Fuchs

et al. 2008)) and had heavy syntactic limitations. Recently, the KALMFL system (Wang et al.

2022) greatly relaxed these restrictions by focusing on factual English sentences, which are suit-

able for expressing facts and queries and require little training to use. To parse factual sentences,

KALMFL replaced the CNL parser in the original KALM system with an improved neural NL

parser called mSTANZA. However, this alteration brought about several new issues that are typ-

ical in neural parsers, such as errors in part-of-speech and dependency parsing. KALMFL then

effectively addressed these issues and achieved high accuracy in authoring facts and queries with

factual sentences.

In this paper, we focus on other types of human knowledge that KALMFL does not cover,

such as, rules and actions. We further extend KALMFL to support authoring of rules and actions,

creating a new system called KALM for Rules and Actions (or KALMRA).1 KALMRA allows

users to author rules using factual sentences and perform multi-step frame-based reasoning using

F-logic (Kifer and Lausen 1989). In addition to rule authoring, KALMRA incorporates a for-

malism known as Simplified Event Calculus (SEC) (Sadri and Kowalski 1995) to represent and

reason about actions and their effects. The use of authored knowledge (facts, queries, rules, and

actions) allows for logical reasoning within an underlying logical system for reasoning with the

generated knowledge. This system must align with the scope of the knowledge that KALMRA

can represent, and supports the inference of new knowledge from existing one. In terms of im-

plementation, we found a Prolog-like system is more suitable for frame-based parsing, so we

implemented KALMRA in XSB (Swift and Warren 2012). However, the knowledge produced

by KALMRA contains disjunctive knowledge and function symbols, so we chose the answer set

programming system DLV (Leone et al. 2006) as the logical system for reasoning about the

generated knowledge.2 Evaluation on benchmarks including the UTI guidelines (Shiffman et al.

2009) and bAbI Tasks (Weston et al. 2015) shows that KALMRA achieves 100% accuracy on

authoring and reasoning with rules, and 99.3% on authoring and reasoning about actions. Fi-

nally, we assess the recently released powerful dialogue model, ChatGPT3, using bAbI Tasks,

and highlight its limitations with respect to logical reasoning compared to KALMRA.

The paper is organized as follows: Section 2 reviews the KALMFL system and some logic

programming techniques, Section 3 introduces the new KALMRA system and describes how it

represents rules and actions, Section 4 presents the evaluation settings and results, and Section 5

concludes the paper and discusses future work.

1 https://github.com/yuhengwang1/kalm-ra
2 Other ASP logic programming systems, such as Potassco (Gebser et al. 2019), lack the necessary level of support for

function symbols and querying.
3 https://chat.openai.com/chat
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2.2 Disjunctive Information and Frame Reasoning

Our reasoning subsystem combines Answer Set Programming (ASP) with aspects of frame-based

reasoning.

DLV (Leone et al. 2006) is a disjunctive version of Datalog that operates under the ASP

paradigm. It extends Datalog by adding support for disjunction in facts and rule heads, thus

providing greater expressiveness for disjunctive information than KRR systems based on the

well-founded semantics (e.g., XSB (Swift and Warren 2012)). Furthermore, DLV’s support for

function symbols and querying makes it more convenient for working with frames (Fillmore

et al. 2006) than other ASP systems, such as Potassco (Gebser et al. 2019).

F-logic (Kifer et al. 1995; Kifer and Lausen 1989) is a knowledge representation and ontology

language that combines the benefits of conceptual modeling with object-oriented and frame-

based languages. One of its key features is the ability to use composite frames to reduce long

conjunctions of roles into more compact forms, matching ideally the structure of FrameBase’s

frames. For example, F-logic frames5 can be used to answer the question ªWhat did Mary buy?º

given the fact ªMary bought a car for Bob,º whose ULRs, shown below, are not logically equiv-

alent (the fact has more roles than the query).

frame("Commerce_buy",[rl("Buyer","Mary"),rl("Goods",car),rl("Recipient","Bob")]).

?- frame("Commerce_buy",[rl("Buyer","Mary"),rl("Goods",What)]). What=car.

2.3 Event Calculus for Reasoning about Actions and their Effects

The event calculus (EC) (Kowalski and Sergot 1989) is a set of logical axioms that describe the

law of inertia for actions. This law states that time-dependent facts, fluents, that are not explicitly

changed by an action preserve their true/false status in the state produced by that action. Here we

use the simplified event calculus (SEC) (Sadri and Kowalski 1995), which is a simpler and more

tractable variant of the original EC. A fluent in SEC is said to hold at a particular timestamp if it

is initiated by an action and not terminated subsequently. This is formalized by these DLV rules:

holdsAt(F,T2) :-

happensAt(A,T1), initiates(A,F), timestamp(T2), T1 < T2,

not stoppedIn(T1,F,T2).

stoppedIn(T1,F,T2) :-

happensAt(A,T), terminates(A,F), timestamp(T1), T1 < T, timestamp(T2), T < T2.

Here happensAt/2 represents a momentary occurrence of action A at a timestamp. If an action

is exogenous insertion of a fluent f at time t then we also represent it as happensAt(f,t).

Example 1 demonstrates the use of happensAt/2.

Example 1 The sentence ªMary goes to the bedroom. The bedroom is north of the garden.º is

represented as follows:

happensAt(frame("Travel",[rl("Person","Mary"),rl("Place",bedroom)]),1).

happensAt(frame("North_of",[rl("Entity1",bedroom),rl("Entity2",garden)]),2).

person("Mary"). place(bedroom). entity(bedroom). entity(garden). timestamp(1..2).

5 We depart from the actual syntax of F-logic as it is not supported by the DLV system. Instead, we implemented a small
subset of that logic by casting it directly into the already supported DLV syntax.
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The first happensAt/2 introduces an action of traveling from place to place while the second

happensAt/2 uses an observed (i.e., exogenously inserted) fluent "North of"(bedroom,garden).

Observable fluents are supposed to be disjoint from action fluents, and we will use a special pred-

icate, observable/1, to recognize them in SEC rules. Timestamps indicate the temporal relation

between the action and the observed fluent. Predicates person/1, place/2, entity/2, define

the domain of roles, while timestamp/1 restricts the domain of timestamps.

The predicates initiates(Action,Fluent) and terminates(Action,Fluent) in SEC

are typically used to specify domain-specific axioms that capture the initiation and termination

of fluents.

3 Extending KALMFL or Rules and Actions

This section describes an extension of KALMFL to handle rules and actions (KALMRA).

Since we want to be able to handle disjunctive information required by some of the bAbI

tasks, we made a decision to switch the reasoner from XSB which was used in KALMFL to an

ASP-based system DLV (Leone et al. 2006) that can handle disjunction in the rule heads. Thus,

the syntax of the ULR, i.e., the logical statements produced by KALMRA, follows that of DLV.

A number of examples inspired by the UTI guidelines and bAbI Tasks are used in this section to

illustrate the workings of KALMRA.

3.1 Authoring and Reasoning with KALMRA ules

Rules are important to KRR systems because they enable multi-step logical inferences needed for

real-world tasks, such as diagnosis, planning, and decision making. Here we address the problem

of rule authoring.

3.1.1 Enhancements for Representation of Facts

First we discuss the representation of disjunction, conjunction, negation, and coreference, which

is not covered in KALMFL.

Conjunction and Disjunction. The KALMRA system prohibits the use of a mixture of con-

junction and disjunction within a single factual sentence to prevent ambiguous expressions such

as ªMary wants to have a sandwich or a salad and a drink.º To represent a factual sentence

with homogeneous conjunction or disjunction, the system first parses the sentence into a set of

component ULRs. For conjunction, KALMRA uses this set of ULRs as the final representation.

For disjunction, the component ULRs are assembled into a single disjunctive ULR using DLV’s

disjunction v as shown in Example 2.

Example 2 The factual sentence with conjunction ªDaniel administers a parenteral and an oral

antimicrobial therapy for Maryº is represented as the following set of ULRs:

frame("Cure",[rl("Doctor","Daniel"),rl("Patient","Mary"),

rl("Therapy",antimicrobial),rl("Method",parenteral)]).

frame("Cure",[rl("Doctor","Daniel"),rl("Patient","Mary"),

rl("Therapy",antimicrobial),rl("Method",oral)]).

doctor("Daniel"). patient("Mary"). therapy(antimicrobial).

method(parenteral). method(oral).
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where the predicates doctor, patient, therapy, and method define the domains for the roles.

These domain predicates will be omitted in the rest of the paper, for brevity.

The disjunctive factual sentence ªDaniel administers a parenteral or an oral antimicrobial

therapy for Maryº is represented as the following ULR:

frame("Cure",[rl("Doctor","Daniel"),rl("Patient","Mary"),

rl("Therapy",antimicrobial),rl("Route",parenteral)])

v frame("Cure",[rl("Doctor","Daniel"),rl("Patient","Mary"),

rl("Therapy",antimicrobial),rl("Route",oral)]).

Negation. The KALMRA system supports explicit negation through the use of the negative

words ªnotº and ªnoº. Such sentences are captured by appending the suffix ª notº to the name

of the frame triggered by this sentence.

Example 3 The explicitly negated factual sentence ªDaniel’s patient Mary does not have UTIº

is represented by

frame("Medical_issue_not",[rl("Doctor","Daniel"),rl("Patient","Mary"),

rl("Ailment","UTI")]).

Coreference. Coreference occurs when a word or a phrase refers to something that is men-

tioned earlier in the text. Without coreference resolution, one gets unresolved references to un-

known entities in ULRs. To address this issue, KALMRA uses a coreference resolution tool neu-

ralcoref,6 which identifies and replaces coreferences with the corresponding entities from the

preceding text.

Example 4 The factual sentences ªDaniel’s patient Mary has UTI. He administers an antimicro-

bial therapy for her.º are turned into

frame("Medical_issue",[rl("Doctor","Daniel"),rl("Patient","Mary"),

rl("Ailment","UTI")]).

frame("Cure",[rl("Doctor","Daniel"),rl("Patient","Mary"),

rl("Therapy",antimicrobial)]).

where the second ULR uses entities "Daniel" and "Mary" instead of the pronouns ªheº and

ªshe.º

3.1.2 Rule Representation

Rules in KALMRA are expressed in a much more restricted syntax compared to facts since,

for knowledge authoring purposes, humans have little difficulty learning and complying with

the restrictions. Moreover, since variables play such a key role in rules, complex coreferences

must be specified unambiguously. All this makes writing rules in a natural language into a very

cumbersome, error-prone, and ambiguity-prone task compared to the restricted syntax below.

Definition 1 A rule in KALMRA is an if-then statement of the form ªIf P1, P2, ..., and Pn, then

C1, C2, ..., or Cmº, where

1. each Pi (i = 1..n) is a factual sentence without disjunction;

2. each C j ( j = 1..m) is a factual sentence without conjunction;

6 https://github.com/huggingface/neuralcoref
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3. variables in C j ( j = 1..m) must use the explicitly typed syntax (Gao et al. 2018a) and must

appear in at least one of the Pi (i = 1..n). E.g., in the rule ªIf Mary goes to the hospital, then

$doctor sees Maryº, the explicitly typed variable $doctor appears in the conclusion without

appearing in the premise, which is prohibited. Instead, the rule author must provide some

information about the doctor in a rule premise (e.g., ªand she has an appointment with

$doctorº). This corresponds to the well-known ªrule safetyº rule in logic programming.

4. variables that refer to the same thing must have the same name. E.g., in the rule ªIf $patient

is sick, then $patient goes to see a doctorº, the two $patient variables are intended to refer

to the same person and thus have the same name.

Here are some examples of rules in KALMRA.

Example 5 The KALMRA rule ªIf $doctor’s $patient is a young child and has an unexplained

fever, then $doctor assesses $patient’s degree of toxicity or dehydrationº is represented as fol-

lows:

frame("Assessing",[rl("Doctor",Doctor),rl("Patient",Patient),

rl("Item",toxicity)])

v frame("Assessing",[rl("Doctor",Doctor),rl("Patient",Patient),

rl("Item",dehydration)]) :-

frame("People_by_age",[rl("Person",Patient),rl("Type",child)]),

frame("Medical_issues",[rl("Doctor",Doctor),rl("Patient",Patient),

rl("Ailment",fever),rl("Cause",unexplained)]).

KALMRA supports two types of negation in rules: explicit negation (Gelfond and Lifschitz

1991) and negation as failure (with the stable model semantics (Gelfond and Lifschitz 1988)).

The former allows users to specify explicitly known negative factual information while the latter

lets one derive negative information from the lack of positive information. Explicit negation in

rules is handled the same way as in fact representation. Negation as failure must be indicated

by the rule author through the idiom ªnot provableº, which is then converted into the predicate

not/1. The idiom ªnot provableº is prohibited in rule heads.

Example 6 The KALMRA rule ªIf not provable $doctor does not administer $therapy for $pa-

tient, then $patient undergoes $therapy from $doctorºis represented as follows:

frame("Undergoing",[rl("Doctor",Doctor),rl("Patient",Patient),

rl("Therapy",Therapy)]) :-

not frame("Cure_not",[rl("Doctor",Doctor),rl("Patient",Patient),

rl("Therapy",Therapy)]),

patient(Patient), doctor(Doctor), therapy(Therapy).

where patient/1, doctor/1, and therapy/1 are domain predicates that ensure that variables

that appear under negation have well-defined domains.

3.1.3 Queries and Answers

Queries in KALMRA must be in factual English and end with a question mark. KALMRA trans-

lates both Wh-variables and explicitly typed variables into the corresponding DLV variables.

Example 7 shows how KALMRA represents a query with variables.

Example 7 The query ªWho undergoes $therapy?º has the following ULR:

frame("Undergoing",[rl("Patient",Who),rl("Therapy",Therapy)])?
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KALMRA then invokes the DLV reasoner to compute query answers. DLV has two inference

modes: brave reasoning and cautious reasoning. In brave reasoning, a query returns answers that

are true in at least one model of the program and cautious reasoning returns the answers that are

true in all models. Users are free to choose either mode.

Example 8 For instance, if the underlying information contains only this single fact

{frame("Undergoing",[rl("Patient","Mary"),rl("Therapy",mental)]).}

then there is only one model and both modes return the same result:

{Who="Mary",Therapy=mental}

In case of ªMary or Bob undergoes a mental therapyº, two models are are computed:

{frame("Undergoing",[rl("Patient","Mary"),rl("Therapy",antimicrobial)]).}

{frame("Undergoing",[rl("Patient","Bob"),rl("Therapy",antimicrobial)]).}

In the cautious mode there would be no answers while the brave mode yields two:

{Who="Mary",Therapy=mental}

{Who="Bob",Therapy=mental}

3.2 Authoring and Reasoning with Actions

Time-independent facts and rules discussed earlier are knowledge that persists over time. In

contrast, actions are momentary occurrences of events that change the underlying knowledge,

so actions are associated with timestamps. Dealing with actions and their effects, also known as

fluents, requires an understanding of the passage of time. KALMRA allows users to state actions

using factual English and then formalizes actions as temporal database facts using SEC discussed

Section 2.3. The following discussion of authoring and reasoning with actions will be in the SEC

framework.

Reasoning based on SEC requires the knowledge of fluent initiation and termination. This

information is part of the commonsense and domain knowledge supplied by knowledge engi-

neers and domain experts via high-level fluent initiation and termination statements (Definition

2) and KALMRA translates them into facts and rules that involve the predicates initiates/2

and terminates/2 used by Event Calculus. Knowledge engineers supply the commonsense part

of these statements and domain experts supply the domain-specific part.

Definition 2 A fluent initiation statement in KALMRA has the form ªA/Fobs initiates Finitº and a

fluent termination statement in KALMRA has the form ªA/Fobs terminates Ftermº, where

1. action A, observed fluent Fobs, initiated fluent Finit , and terminated fluent Fterm are factual

sentences without conjunction or disjunction;

2. variables in Finit use explicitly typed syntax and must appear in A (or in Fobs when a fluent

is observed) to avoid unbound variables in initiated fluents;

3. variables that refer to the same thing must have the same name.

Example 9 shows how KALMRA represents fluent initiation and termination.

Example 9 The commonsense initiation statement ª$person travels to $place initiates $person

is located in $placeº would be created by a knowledge engineer and translated by KALMRA as

the following rule:

initiates(frame("Travel",[rl("Person",Person),rl("Place",Place)]),

frame("Located",[rl("Entity",Person),rl("Location",Place)])):-

person(Person), place(Place).
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Here person/1 and place/1 are used to guarantee rule safety. Since, any object can be in one

place only at any given time, we have a commonsense termination statement ª$person travels

to $place1 terminates $person is located in $place2.º This statement would also be created by

knowledge engineers and translated by KALMRA as follows:

terminates(frame("Travel",[rl("Person",Person),rl("Place",Place)]),

frame("Located",[rl("Entity",Person),rl("Location",Place2)])):-

person(Person), place(Place), entity(Person), location(Place2), Place!=Place2.

KALMRA also enhances rules by incorporating temporal information, allowing the inference

of new knowledge under the SEC framework. The process begins by requiring users to specify

their domain knowledge on fluents in the form of rules described in Definition 1. Then KALMRA

translates these rules into ULRs, with each premise and conclusion linked to a timestamp via

the holdsAt/2 predicate. We call these rules time-related because they enable reasoning with

fluents containing temporal information. Here is an example of a time-related rule.

holdsAt(ULRC1,T) v ... v holdsAt(ULRCm,T) :-

holdsAt(ULRP1,T), ..., holdsAt(ULRPn,T).

where all holdsAt/2 terms share the same timestamp T, since the disjunction of conclusion

ULRs ULRC1, ..., ULRCm holds immediately if all premise ULRs ULRP1, ..., ULRPn hold simulta-

neously at T.

KALMRA incorporates temporal information in queries also using holdsAt/2. In this rep-

resentation, the second argument of holdsAt/2 is set to the highest value in the temporal do-

main extracted from the narrative. For Example 1, a time-related query can be represented as

holdsAt(ULRQ,3)?, where ULRQ is the ULR of the query and 3 is the timestamp that exceeds

all the explicitly given timestamps.

4 KALMRA valuation

In this section, we assess the effectiveness of KALMRA-based knowledge authoring using two

test suites, the clinical UTI guidelines (Committee on Quality Improvement 1999) and the bAbI

Tasks (Weston et al. 2015).

4.1 Evaluation of Rule Authoring

The UTI guidelines (Committee on Quality Improvement 1999) is a set of therapeutic recommen-

dations for the initial Urinary Tract Infection (UTI) in febrile infants and young children. The

original version in English was rewritten into the ACE CNL (Shiffman et al. 2009) for the as-

sessment of ACE’s expressiveness. We rewrite the original English version into factual English,

as shown in Appendix A. This new version has a significant number of rules with disjunctive

heads, as is common in the real-world medical domain.

The experimental results show that KALMRA is able to convert the UTI guidelines document

into ULRs with 100% accuracy.

4.2 Evaluation of Authoring of Actions

The 20 bAbI tasks (Weston et al. 2015) were designed to evaluate a system’s capacity for natural

language understanding, especially when it comes to actions. They cover a range of aspects,
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such as moving objects (tasks 1-6), positional reasoning (task 17), and path finding (task 19).

Each task provides a set of training and test data, where each data point consists of a textual

narrative, a question about the narrative, and the correct answer. Fig. B 1 in Appendix B presents

20 data points from 20 bAbI tasks respectively. We used the test data for evaluation. Each task in

the test data has 1,000 data points.

Table 1. Result Comparisons

STM ILA KALMRA

TASK Acc. Acc. #I&T #Rules Acc.

1 Single Supporting Fact 100 100 2 0 100

2 Two Supporting Facts 99.79 100 4 1 100

3 Three Supporting Facts 97.87 100 4 1 100

4 Two Argument Relations 100 100 4 0 100

5 Three Argument Relations 99.43 100 4 0 100

6 Yes/No Questions 100 100 2 0 100

7 Counting 99.19 100 4 0 100

8 Lists/Sets 99.88 100 4 0 100

9 Simple Negation 100 100 4 0 100

10 Indefinite Knowledge 99.97 100 2 0 100

11 Basic Coreference 99.99 100 2 0 100

12 Conjunction 99.96 100 2 0 100

13 Compound Coreference 99.99 100 2 0 93.1

14 Time Reasoning 99.84 100 2 0 100

15 Basic Deduction 100 100 0 1 100

16 Basic Induction 99.71 93.6 2 1 93.6

17 Positional Reasoning 98.82 100 8 20 100

18 Size Reasoning 99.73 100 0 1 100

19 Path Finding 97.94 100 12 4 100

20 Agent’s Motivations 100 100 5 6 100

Average 99.61 99.68 3.45 1.75 99.34

The comparison systems in this evaluation include a state-of-the-art neural model on bAbI

Tasks, STM (Le et al. 2020); an approach based on inductive learning and logic program-

ming (Mitra and Baral 2016) that we call LPA here; and a recent sensation, ChatGPT. The com-

parison with STM and ILA results are displayed in Table 1, where ª#I&Tº denotes the number

of user-given initiation and termination statements (Definition 2) used to specify each particular

task in KALMRA. The table shows that KALMRA achieves accuracy comparable to STM and

ILA. ChatGPT has shown impressive ability to give correct answers for some manually-entered

bAbI tasks even though (we assume) it was not trained on that data set. However, it quickly be-

came clear that it has no robust semantic model behind its impressive performance and it makes

many mistakes on bAbI Tasks. The recent (Jan 30, 2023) update of ChatGPT fixed some of the

cases, while still not being able to handle slight perturbations of those cases. Three such errors

are shown in Table 2, which highlights the need for authoring approaches, like KALMRA, which

are based on robust semantic models.
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Table 2. ChatGPT Error Cases

Task 2 Task 17 Task 19

2 Supporting Facts Positional Reasoning Path Finding

Mary went to the kitchen. The red square is below The garden is west of the hallway.

Mary got the apple. the blue square. The kitchen is west of the garden.

Mary got the ball. The red square is left of The garden is north

Mary got the book. the pink rectangle. of the bathroom.

Mary went to the bedroom. The bedroom is east

Mary went to the garden. of the bathroom.

Mary dropped the book. The hallway is west of the office.

Q: Where is the apple? Q: Is the blue square below Q: How do you go from the

the pink rectangle? bathroom to the hallway?

ChatGPT: ... not specified ChatGPT: ... not specified ChatGPT: ... east..., ... south...

Correct: garden Correct: no Correct: east, north

As to KALMRA, it does not achieve 100% correctness on Tasks 13 (Compound Coreference)

and 16 (Basic Induction). In Task 13, the quality of KALMRA’s coreference resolution is entirely

dependent on the output of neuralcoref, the coreference resolver we used. As this technology

improves, so will KALMRA. Task 16 requires the use of the induction principles adopted by bAbI

tasks, some of which are questionable. For instance, in Case 2 of Table 3, the color is determined

by the maximum frequency of that type, whereas in Case 3, the latest evidence determines the

color. Both of these principles are too simplistic and, worse, contradict each other.

Table 3. KALMRA Error Cases

Case1 Case 2 Case 3

Task 13 Compound Coreferences Task 16 Basic Induction

Mary and Sandra went Brian is a swan. Berhnard is a rhino.

back to the bedroom. Greg is a swan. Brian is a rhino.

Then they moved to the kitchen. Julius is a swan. Bernhard is white.

Sandra and Daniel went Greg is gray. Brian is white.

back to the bathroom. Julius is gray. Lily is a lion.

Then they went to the office. Bernhard is a lion. Lily is yellow.

Lily is a swan. Greg is a rhino.

Berhnard is green. Greg is green.

Brian is white. Julius is a rhino.

Q: Where is Daniel? Q: What color is Lily? Q: What color is Julius?

KALMRA: bathroom KALMRA: gray, white KALMRA: green, white

bAbI Correct: office bAbI Correct: gray bAbI Correct: green
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5 Conclusion and Future Work

The KALMFL system (Wang et al. 2022) was designed to address the limitations of KALM (Gao

et al. 2018a) in terms of expressive power and the costs of the actual authoring of knowledge by

human domain experts. KALM did not support authoring of rules and actions, and it required

abiding a hard-to-learn grammar of the ACE CNL. In this paper, we introduced KALMRA, an

NLP system that extends KALMFL to authoring of rules and actions by tackling a slew of prob-

lems. The evaluation results show that KALMRA achieves 100% accuracy on authoring rules,

and 99.34% accuracy on authoring and reasoning with actions, demonstrating the effectiveness

of KALMRA at capturing knowledge via facts, actions, rules, and queries. In future work, we plan

to add non-monotonic extensions of factual English to support defeasible reasoning (Wan et al.

2009), a more natural way of human reasoning in real life, where conclusions are derived from

default assumptions, but some conclusions may be retracted when the addition of new knowledge

violates these assumptions.
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