Theory and Practice of Logic Programming

THEORY AND PRACTICE
OF LoGICc PROGRAMMING

CAMBRIDGE

UNIVERSITY PRESS

Knowledge Authoring for Rules and Actions

Journal: | Theory and Practice of Logic Programming

Manuscript ID | Draft

Manuscript Type: | Original Article

Date Submitted by the

Author: n/a

Complete List of Authors: | Wang, Yuheng; Stony Brook University,
Fodor, Paul; Stony Brook University, Computer Science
Kifer, Michael; Stony Brook University, Computer Science

Keywords: | Knowledge Representation and Nonmonotonic Reasoning

Computing Classification
System (CCS):

Knowledge representation and reasoning (KRR) systems describe and
reason with complex concepts and relations in the form of facts and
rules. Unfortunately, wide deployment of KRR systems runs into the
problem that domain experts have great difficulty constructing correct
logical representations of their domain knowledge. Knowledge engineers
can help with this construction process, but there is a deficit of such
specialists. The earlier Knowledge Authoring Logic Machine (KALM) based
on Controlled Natural Language

Abstract: | (CNL) was shown to have very high accuracy for authoring facts and
questions. More recently, KALMFL,

a successor of KALM, replaced CNL with factual English, which is much
less restrictive and requires very

little training from users. However, KALMFL has limitations in
representing certain types of knowledge,

such as authoring rules for multi-step reasoning or understanding
actions with timestamps. To address these

limitations, we propose KALMRA to enable authoring of rules and actions.

Cambridge University Press




Page 1 of 14

Theory and Practice of Logic Programming

Our evaluation using the UTL

guidelines benchmark shows that KALMRA achieves a high level of
correctness (100%) on rule authoring.

When used for authoring and reasoning with actions, KALMRA achieves
more than 99.3% correctness on

the bAbI benchmark, demonstrating its effectiveness in more
sophisticated KRR jobs.

SCHOLARONE™
Manuscripts

Cambridge University Press




Theory and Practice of Logic Programming

Under consideration for publication in Theory and Practice of Logic Programming 1

Knowledge Authoring for Rules and Actionsx

YUHENG WANG, PAUL FODOR, and MICHAEL KIFER

Stony Brook University, Stony Brook, NY, USA
(e-mail: {yuhewang,pfodor,kifer}@cs.stonybrook.edu)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Knowledge representation and reasoning (KRR) systems describe and reason with complex concepts and
relations in the form of facts and rules. Unfortunately, wide deployment of KRR systems runs into the prob-
lem that domain experts have great difficulty constructing correct logical representations of their domain
knowledge. Knowledge engineers can help with this construction process, but there is a deficit of such spe-
cialists. The earlier Knowledge Authoring Logic Machine (KALM) based on Controlled Natural Language
(CNL) was shown to have very high accuracy for authoring facts and questions. More recently, KALMFL,
a successor of KALM, replaced CNL with factual English, which is much less restrictive and requires very
little training from users. However, KALMFT has limitations in representing certain types of knowledge,
such as authoring rules for multi-step reasoning or understanding actions with timestamps. To address these
limitations, we propose KALMRA to enable authoring of rules and actions. Our evaluation using the UTI
guidelines benchmark shows that KALMRA achieves a high level of correctness (100%) on rule authoring.
When used for authoring and reasoning with actions, KALMR” achieves more than 99.3% correctness on
the bAbI benchmark, demonstrating its effectiveness in more sophisticated KRR jobs. Finally, we illustrate
the logical reasoning capabilities of KALMRA by drawing attention to the problems faced by the recently
made famous Al, ChatGPT.

KEYWORDS: knowledge authoring, knowledge representation and reasoning, natural language understand-
ing, frame-based parsing

1 Introduction

Knowledge representation and reasoning (KRR) systems represent human knowledge as facts,
rules, and other logical forms. However, transformation of human knowledge to these logical
forms requires the expertise of knowledge engineers with KRR skills, which, unfortunately, is
scarce.

To address the shortage of knowledge engineers, researchers have explored the use of differ-
ent languages and translators for representing human knowledge. One idea was to use natural
language (NL), but the NL-based systems, such as OpenSesame (Swayamdipta et al. 2017) and
SLING (Ringgaard et al. 2017), had low accuracy, and led to significant errors in subsequent rea-
soning. The accuracy issue then motivated researchers to consider Controlled Natural Language
(CNL) (Fuchs et al. 2008; Schwitter 2002) for knowledge authoring. Unfortunately, although
CNL does improve accuracy, it is hard for a typical user (say, a domain expert) to learn a CNL
grammar and its syntactic restrictions. Furthermore, systems based on either NL or CNL cannot

* Research partially funded by NSF grant 1814457.

Cambridge University Press

Page 2 of 14



Page 3 of 14

Theory and Practice of Logic Programming

2 Yuheng Wang, Paul Fodor, and Michael Kifer

identify sentences with the same meaning but different forms. For example, “Mary buys a car”
and “Mary makes a purchase of a car” would be translated into totally different logical repre-
sentations. This problem, known as semantic mismatch (Gao et al. 2018a), is a serious limitation
affecting accuracy.

The Knowledge Authoring Logic Machine (KALM) (Gao et al. 2018b) was introduced to
tackle semantic mismatch problem, but this approach was based on a CNL (Attempto (Fuchs
et al. 2008)) and had heavy syntactic limitations. Recently, the KALM'" system (Wang et al.
2022) greatly relaxed these restrictions by focusing on factual English sentences, which are suit-
able for expressing facts and queries and require little training to use. To parse factual sentences,
KALM'™ replaced the CNL parser in the original KALM system with an improved neural NL
parser called mSTANZA. However, this alteration brought about several new issues that are typ-
ical in neural parsers, such as errors in part-of-speech and dependency parsing. KALMF" then
effectively addressed these issues and achieved high accuracy in authoring facts and queries with
factual sentences.

In this paper, we focus on other types of human knowledge that KALMF does not cover,
such as, rules and actions. We further extend KALMF" to support authoring of rules and actions,
creating a new system called KALM for Rules and Actions (or KALMRA).! KALMRA allows
users to author rules using factual sentences and perform multi-step frame-based reasoning using
F-logic (Kifer and Lausen 1989). In addition to rule authoring, KALMRA incorporates a for-
malism known as Simplified Event Calculus (SEC) (Sadri and Kowalski 1995) to represent and
reason about actions and their effects. The use of authored knowledge (facts, queries, rules, and
actions) allows for logical reasoning within an underlying logical system for reasoning with the
generated knowledge. This system must align with the scope of the knowledge that KALMRA
can represent, and supports the inference of new knowledge from existing one. In terms of im-
plementation, we found a Prolog-like system is more suitable for frame-based parsing, so we
implemented KALMR” in XSB (Swift and Warren 2012). However, the knowledge produced
by KALMRA contains disjunctive knowledge and function symbols, so we chose the answer set
programming system DLV (Leone et al. 2006) as the logical system for reasoning about the
generated knowledge.? Evaluation on benchmarks including the UTI guidelines (Shiffman et al.
2009) and bAbI Tasks (Weston et al. 2015) shows that KALMRA achieves 100% accuracy on
authoring and reasoning with rules, and 99.3% on authoring and reasoning about actions. Fi-
nally, we assess the recently released powerful dialogue model, ChatGPT?, using bAbI Tasks,
and highlight its limitations with respect to logical reasoning compared to KALMRA,

The paper is organized as follows: Section 2 reviews the KALMF" system and some logic
programming techniques, Section 3 introduces the new KALMRA system and describes how it
represents rules and actions, Section 4 presents the evaluation settings and results, and Section 5
concludes the paper and discusses future work.

U https://github.com/yuhengwangl/kalm-ra

2 Other ASP logic programming systems, such as Potassco (Gebser et al. 2019), lack the necessary level of support for
function symbols and querying.

3 https://chat.openai.com/chat
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2 Background
2.1 Knowledge Authoring Logic Machine for Factual Language

The Knowledge Authoring Logic Machine (KALM) (Gao et al. 2018b; Gao et al. 2018a) al-
lows users to author knowledge using Attempto Controlled English (ACE) (Fuchs and Schwitter
1996). However, ACE’s grammar is too limiting and poses a high learning curve, particularly for
non-technical users. To mitigate this problem, KALM was extended to KALM for Factual (En-
glish) Language (KALMFL) (Wang et al. 2022) by introducing factual (English) sentences and
focusing on authoring facts and simple queries. Factual sentences express atomic database facts
and queries (e.g. “Mary buys a car’). They can become more complex with adnominal clauses
(e.g. “Mary buys a car that is old”) and can be combined via “and” and “or” (e.g. “Mary buys
a car and Bob buys a watch”). In comparison, sentences not expressing factual information (e.g.
“Fetch the ball” or “Oh, well”’) are non-factual and are not allowed. Factual sentences can be cap-
tured through properties based on dependency analysis and Part-of-Speech (POS) tagging (Wang
et al. 2022), which is a very mild restriction compared to complex grammars such as in ACE.
This means that users do not need to master complex grammars. Instead, they can simply write
normal sentences that describe database facts, or basic Boolean combinations of facts and, as
long as they avoid fancy language forms, their sentences will be accepted.

KALMFL is a two-stage system following the structured machine learning paradigm. In the
first stage, known as the training stage, KALMFL constructs logical valence patterns (LVPs) by
learning from training sentences. An LVP is a specification that tells how to extract role fillers
for the concepts represented by the English sentences related to that LVP. In the second stage,
known as the deployment stage, the system does semantic parsing by applying the constructed
LVPs to convert factual English sentences into unique logical representations (ULRs). Fig. 1(a)
depicts the training stage of KALMFL with the key steps explained in the accompanying text.

Frames
Factual A.?:::::ng N Syntactic +| Constructing
Sentences 9 Parsing g LVPs
Sentences

i

(a) Training stage

Factual Syntactic .| Frame-based o| Constructing
Sentences Parsing g Parsing g ULRs

(b) Deployment stage

Fig. 1. The frameworks of the KALM' system

Annotating Training Sentences. To enable semantic understanding of a domain of discourse,
knowledge engineers must first construct the required background knowledge in the form of
KALMFT frames. The overall structure of most of these frames can be adopted from FrameNet (Baker
et al. 1998) and converted into the logic form required by KALMF. Then, knowledge engineers
compose training sentences and annotate them using KALMF frames. For example, the anno-
tated training sentence (1), below, indicates that the meaning of “Mary buys a car” is captured
by the Commerce_buy frame; the word that triggers this frame, a.k.a. the lexical unit (LU), is the

Cambridge University Press



Page 5 of 14 Theory and Practice of Logic Programming

4 Yuheng Wang, Paul Fodor, and Michael Kifer

2nd word “buy” or its synonym “purchase”; and, the 1st and the 4th words, “mary” and “car”,
play the roles of Buyer and Goods in the frame.

train("Mary buys a car","Commerce_buy","LU"=2, [purchase],

ey

["Buyer"=1+required, "Goods"=4+required]) .

Syntactic Parsing. KALM'™ then performs syntactic parsing using mSTANZA* (Wang et al.
2022) and automatically corrects some parsing errors. Fig. 2 shows two mSTANZA parses, where
the colored boxes contain POS tags and the labeled arrows display dependency relations.

bpunct punct
obj obj
[PROPNJ " \VERB) de‘ NOUN PUNCT PROPNS """ \VERs/ DETT" " _\-

Mary buys a Bob bought a watch
(@) (b)

Fig. 2. mSTANZA parses

Construction of LVPs. mSTANZA parses, along with annotations of sentences, allow KALMFL
to construct LVPs that specify how to fill the roles of a frame triggered by an LU. For example,
by synthesizing the information in training sentence (1) and the mSTANZA parse in Fig. 2(a),
KALM' learns that, to fill the roles Buyer and Goods of the Commerce_buy frame triggered
by the LU “buys”, one should extract the subject and object of “buys” through the dependency
relations nsubj and obj, respectively. This learned knowledge about role-filling is encoded as
an LVP (2) as follows:

lvp(buy, "Commerce_buy", [pattern("Buyer", [nsubj] ,required),

2
pattern("Goods", [obj] ,required)]) . @

The deployment stage of KALMFL is illustrated in Fig. 1(b). Two key steps in this stage are
further explained below.
Frame-based Parsing. When an unseen factual sentence comes in, KALMF" triggers all possi-
ble LVPs using the words in the sentence. Then, the triggered LVPs are applied to this sentence
to extract role fillers and a frame-based parse of this sentence is generated. For example, a new
sentence “Bob bought a watch” is parsed as Fig. 2(b) by mSTANZA. It triggers LVP (2) using
the LU “bought” (whose base form is “buy”). KALMF then extracts the role filler “Bob” for
the role Buyer according to the dependency list [nsubjl. Similarly, “watch” is extracted for the
role Goods according to the dependency [obj].
Constructing ULRs. Ultimately, frame-based parses are represented as ULR facts that capture
the meaning of the original English sentences and are suitable for querying. For example, the
ULR for the factual sentence “Bob bought a watch”, below, indicates that the meaning of the
sentence is captured by the Commerce_buy frame, that “Bob” is the Buyer, and “watch” plays
the role of Goods, where rl/2 represents instances of (role, role-filler) pairs.

frame ("Commerce_buy", [r1("Buyer","Bob") ,r1("Goods" ,watch)]).

4 A modification of STANZA (Qi et al. 2020) that returns ranked lists of parses rather than just one parse.
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2.2 Disjunctive Information and Frame Reasoning

Our reasoning subsystem combines Answer Set Programming (ASP) with aspects of frame-based
reasoning.

DLV (Leone et al. 2006) is a disjunctive version of Datalog that operates under the ASP
paradigm. It extends Datalog by adding support for disjunction in facts and rule heads, thus
providing greater expressiveness for disjunctive information than KRR systems based on the
well-founded semantics (e.g., XSB (Swift and Warren 2012)). Furthermore, DLV’s support for
function symbols and querying makes it more convenient for working with frames (Fillmore
et al. 2006) than other ASP systems, such as Potassco (Gebser et al. 2019).

F-logic (Kifer et al. 1995; Kifer and Lausen 1989) is a knowledge representation and ontology
language that combines the benefits of conceptual modeling with object-oriented and frame-
based languages. One of its key features is the ability to use composite frames to reduce long
conjunctions of roles into more compact forms, matching ideally the structure of FrameBase’s
frames. For example, F-logic frames> can be used to answer the question “What did Mary buy?”
given the fact “Mary bought a car for Bob,” whose ULRs, shown below, are not logically equiv-
alent (the fact has more roles than the query).

frame ("Commerce_buy", [r1("Buyer","Mary") ,r1("Goods",car),r1("Recipient","Bob")]).
?7- frame ("Commerce_buy", [r1("Buyer","Mary"),rl("Goods",What)]). What=car.

2.3 Event Calculus for Reasoning about Actions and their Effects

The event calculus (EC) (Kowalski and Sergot 1989) is a set of logical axioms that describe the
law of inertia for actions. This law states that time-dependent facts, fluents, that are not explicitly
changed by an action preserve their true/false status in the state produced by that action. Here we
use the simplified event calculus (SEC) (Sadri and Kowalski 1995), which is a simpler and more
tractable variant of the original EC. A fluent in SEC is said to hold at a particular timestamp if it
is initiated by an action and not terminated subsequently. This is formalized by these DLV rules:

holdsAt(F,T2) :-
happensAt(A,T1), initiates(A,F), timestamp(T2), T1 < T2,
not stoppedIn(T1,F,T2).

stoppedIn(T1,F,T2) :-

happensAt (A,T), terminates(A,F), timestamp(T1), T1 < T, timestamp(T2), T < T2.

Here happensAt/2 represents a momentary occurrence of action A at a timestamp. If an action
is exogenous insertion of a fluent f at time ¢ then we also represent it as happensAt (f,t).
Example 1 demonstrates the use of happensAt/2.
Example 1 The sentence “Mary goes to the bedroom. The bedroom is north of the garden.” is
represented as follows:

happensAt (frame ("Travel", [r1("Person", "Mary") ,r1("Place",bedroom)]),1).

happensAt (frame ("North_of", [r1("Entityl",bedroom) ,r1("Entity2",garden)]),2).
person("Mary"). place(bedroom). entity(bedroom). entity(garden). timestamp(1l..2).

5 We depart from the actual syntax of F-logic as it is not supported by the DLV system. Instead, we implemented a small
subset of that logic by casting it directly into the already supported DLV syntax.

Cambridge University Press

Page 6 of 14



Page 7 of 14 Theory and Practice of Logic Programming

6 Yuheng Wang, Paul Fodor, and Michael Kifer

The first happensAt/2 introduces an action of traveling from place to place while the second
happensAt/2 uses an observed (i.e., exogenously inserted) fluent "North_of" (bedroom, garden).
Observable fluents are supposed to be disjoint from action fluents, and we will use a special pred-
icate, observable/1, to recognize them in SEC rules. Timestamps indicate the temporal relation
between the action and the observed fluent. Predicates person/1, place/2, entity/2, define
the domain of roles, while timestamp/1 restricts the domain of timestamps.

The predicates initiates(Action,Fluent) and terminates(Action,Fluent) in SEC
are typically used to specify domain-specific axioms that capture the initiation and termination
of fluents.

3 Extending KALMY! or Rules and Actions

This section describes an extension of KALMFL to handle rules and actions (KALMRA).

Since we want to be able to handle disjunctive information required by some of the bAbl
tasks, we made a decision to switch the reasoner from XSB which was used in KALMFL to an
ASP-based system DLV (Leone et al. 2006) that can handle disjunction in the rule heads. Thus,
the syntax of the ULR, i.e., the logical statements produced by KALMRA, follows that of DLV.
A number of examples inspired by the UTI guidelines and bAbI Tasks are used in this section to
illustrate the workings of KALMRA,

3.1 Authoring and Reasoning with KALM®A ules

Rules are important to KRR systems because they enable multi-step logical inferences needed for
real-world tasks, such as diagnosis, planning, and decision making. Here we address the problem
of rule authoring.

3.1.1 Enhancements for Representation of Facts

First we discuss the representation of disjunction, conjunction, negation, and coreference, which
is not covered in KALMF",

Conjunction and Disjunction. The KALMRA system prohibits the use of a mixture of con-
junction and disjunction within a single factual sentence to prevent ambiguous expressions such
as “Mary wants to have a sandwich or a salad and a drink.” To represent a factual sentence
with homogeneous conjunction or disjunction, the system first parses the sentence into a set of
component ULRs. For conjunction, KALMRA uses this set of ULRs as the final representation.
For disjunction, the component ULRs are assembled into a single disjunctive ULR using DLV’s
disjunction v as shown in Example 2.

Example 2 The factual sentence with conjunction “Daniel administers a parenteral and an oral
antimicrobial therapy for Mary” is represented as the following set of ULRs:

frame("Cure", [r1("Doctor","Daniel") ,r1("Patient","Mary"),
r1("Therapy",antimicrobial) ,r1("Method",parenteral)]).
frame("Cure", [r1("Doctor","Daniel") ,r1("Patient","Mary"),
r1("Therapy",antimicrobial) ,r1("Method",oral)]).
doctor("Daniel"). patient("Mary"). therapy(antimicrobial).
method (parenteral). method(oral).

Cambridge University Press
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where the predicates doctor, patient, therapy, and method define the domains for the roles.
These domain predicates will be omitted in the rest of the paper, for brevity.

The disjunctive factual sentence “Daniel administers a parenteral or an oral antimicrobial
therapy for Mary” is represented as the following ULR:

frame("Cure", [r1("Doctor","Daniel") ,r1("Patient","Mary"),
r1("Therapy",antimicrobial) ,r1("Route",parenteral)])
v frame("Cure", [r1("Doctor","Daniel"),r1("Patient","Mary"),
r1("Therapy",antimicrobial) ,r1("Route",oral)]).

Negation. The KALMRA system supports explicit negation through the use of the negative
words “not” and “no”. Such sentences are captured by appending the suffix “_not” to the name
of the frame triggered by this sentence.

Example 3 The explicitly negated factual sentence “Daniel’s patient Mary does not have UTI”
is represented by

frame("Medical_issue_not", [r1("Doctor","Daniel"),r1("Patient","Mary"),
r1("Ailment","UTI")]).

Coreference. Coreference occurs when a word or a phrase refers to something that is men-
tioned earlier in the text. Without coreference resolution, one gets unresolved references to un-
known entities in ULRs. To address this issue, KALMRA uses a coreference resolution tool neu-
ralcoref,® which identifies and replaces coreferences with the corresponding entities from the
preceding text.

Example 4 The factual sentences “Daniel’s patient Mary has UTI. He administers an antimicro-
bial therapy for her.” are turned into

frame("Medical_issue", [r1("Doctor","Daniel"),r1("Patient","Mary"),
r1("Ailment","UTI")]).
frame("Cure", [r1("Doctor","Daniel"),r1("Patient","Mary"),
r1("Therapy",antimicrobial)]).

where the second ULR uses entities "Daniel" and "Mary" instead of the pronouns “he” and

13 i)

she

3.1.2 Rule Representation

Rules in KALMRA are expressed in a much more restricted syntax compared to facts since,
for knowledge authoring purposes, humans have little difficulty learning and complying with
the restrictions. Moreover, since variables play such a key role in rules, complex coreferences
must be specified unambiguously. All this makes writing rules in a natural language into a very
cumbersome, error-prone, and ambiguity-prone task compared to the restricted syntax below.
Definition 1 A rule in KALMRA is an if-then statement of the form “If P|, P, ..., and P,, then
Ci1,Cy, ...,or C,,”, where

1. each P; (i = 1..n) is a factual sentence without disjunction;

2. each C; (j = 1..m) is a factual sentence without conjunction;

 https://github.com/huggingface/neuralcoref
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3. variables in C; (j = 1..m) must use the explicitly typed syntax (Gao et al. 2018a) and must
appear in at least one of the P; (i = 1..n). E.g., in the rule “If Mary goes to the hospital, then
$doctor sees Mary”, the explicitly typed variable $doctor appears in the conclusion without
appearing in the premise, which is prohibited. Instead, the rule author must provide some
information about the doctor in a rule premise (e.g., “and she has an appointment with
Sdoctor”). This corresponds to the well-known “rule safety” rule in logic programming.

4. variables that refer to the same thing must have the same name. E.g., in the rule “If $patient
is sick, then $patient goes to see a doctor”, the two $patient variables are intended to refer
to the same person and thus have the same name.

Here are some examples of rules in KALMRA,
Example 5 The KALMRA rule “If $doctor’s $patient is a young child and has an unexplained
fever, then $doctor assesses Spatient’s degree of toxicity or dehydration” is represented as fol-
lows:

frame("Assessing", [r1("Doctor",Doctor) ,rl("Patient",Patient),
r1("Item",toxicity)])
v frame("Assessing", [r1("Doctor",Doctor),rl1("Patient",Patient),
r1("Item",dehydration)]) :-
frame ("People_by_age", [r1("Person",Patient) ,r1("Type",child)]),
frame("Medical_issues", [r1("Doctor",Doctor),rl("Patient",Patient),
r1("Ailment",fever),r1("Cause",unexplained)]).

KALMRA supports two types of negation in rules: explicit negation (Gelfond and Lifschitz
1991) and negation as failure (with the stable model semantics (Gelfond and Lifschitz 1988)).
The former allows users to specify explicitly known negative factual information while the latter
lets one derive negative information from the lack of positive information. Explicit negation in
rules is handled the same way as in fact representation. Negation as failure must be indicated
by the rule author through the idiom “not provable”, which is then converted into the predicate
not/1. The idiom “not provable” is prohibited in rule heads.

Example 6 The KALMRA rule “If not provable $doctor does not administer $therapy for $pa-
tient, then $patient undergoes $therapy from $doctor”is represented as follows:

frame ("Undergoing", [r1("Doctor",Doctor) ,r1("Patient" ,Patient),
rl1("Therapy",Therapy)]) :-
not frame("Cure_not", [r1("Doctor",Doctor),rl("Patient",Patient),
r1("Therapy",Therapy)]),
patient(Patient), doctor(Doctor), therapy(Therapy).

where patient/1, doctor/1, and therapy/1 are domain predicates that ensure that variables
that appear under negation have well-defined domains.

3.1.3 Queries and Answers

Queries in KALMRA must be in factual English and end with a question mark. KALMRA trans-
lates both Wh-variables and explicitly typed variables into the corresponding DLV variables.
Example 7 shows how KALMRA represents a query with variables.

Example 7 The query “Who undergoes $therapy?” has the following ULR:

frame ("Undergoing", [r1("Patient" ,Who) ,r1("Therapy",Therapy)])?

Cambridge University Press
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KALMRA then invokes the DLV reasoner to compute query answers. DLV has two inference
modes: brave reasoning and cautious reasoning. In brave reasoning, a query returns answers that
are true in at least one model of the program and cautious reasoning returns the answers that are
true in all models. Users are free to choose either mode.

Example 8 For instance, if the underlying information contains only this single fact

{frame ("Undergoing", [r1("Patient","Mary") ,r1("Therapy",mental)]).}
then there is only one model and both modes return the same result:

{Who="Mary",Therapy=mental}

In case of “Mary or Bob undergoes a mental therapy”, two models are are computed:

{frame ("Undergoing", [r1("Patient","Mary") ,r1("Therapy",antimicrobial)]) .}
{frame ("Undergoing", [r1("Patient","Bob"),r1("Therapy",antimicrobial)]l).}

In the cautious mode there would be no answers while the brave mode yields two:

{Who="Mary",Therapy=mental}
{Who="Bob" ,Therapy=mental}

3.2 Authoring and Reasoning with Actions

Time-independent facts and rules discussed earlier are knowledge that persists over time. In
contrast, actions are momentary occurrences of events that change the underlying knowledge,
o actions are associated with timestamps. Dealing with actions and their effects, also known as
fluents, requires an understanding of the passage of time. KALMRA allows users to state actions
using factual English and then formalizes actions as temporal database facts using SEC discussed
Section 2.3. The following discussion of authoring and reasoning with actions will be in the SEC
framework.

Reasoning based on SEC requires the knowledge of fluent initiation and termination. This
information is part of the commonsense and domain knowledge supplied by knowledge engi-
neers and domain experts via high-level fluent initiation and termination statements (Definition
2) and KALMRA translates them into facts and rules that involve the predicates initiates/2
and terminates/2 used by Event Calculus. Knowledge engineers supply the commonsense part
of these statements and domain experts supply the domain-specific part.

Definition 2 A fluent initiation statement in KALMRA has the form “A/F,p, initiates Fy,;;” and a
fluent termination statement in KALMRA has the form “A/F,p, terminates Fyopm”, Where

1. action A, observed fluent F,, initiated fluent Fj,;, and terminated fluent F;.,,, are factual
sentences without conjunction or disjunction;

2. variables in Fj,;; use explicitly typed syntax and must appear in A (or in F,,; when a fluent
is observed) to avoid unbound variables in initiated fluents;

3. variables that refer to the same thing must have the same name.

Example 9 shows how KALMRA represents fluent initiation and termination.
Example 9 The commonsense initiation statement “$person travels to $place initiates $person
is located in $place” would be created by a knowledge engineer and translated by KALMRA as
the following rule:
initiates(frame("Travel", [r1("Person",Person),rl1("Place",Place)]),

frame("Located", [r1("Entity",Person),rl("Location",Place)])):-
person(Person), place(Place).

Cambridge University Press
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Here person/1 and place/1 are used to guarantee rule safety. Since, any object can be in one
place only at any given time, we have a commonsense termination statement “8person travels
to $placel terminates $person is located in $place2.” This statement would also be created by
knowledge engineers and translated by KALMRA as follows:

terminates (frame("Travel", [r1("Person",Person),r1("Place",Place)]),
frame("Located", [r1("Entity",Person),rl("Location",Place2)])):-
person(Person), place(Place), entity(Person), location(Place2), Place!=Place2.

KALMRA also enhances rules by incorporating temporal information, allowing the inference
of new knowledge under the SEC framework. The process begins by requiring users to specify
their domain knowledge on fluents in the form of rules described in Definition 1. Then KALMRA
translates these rules into ULRs, with each premise and conclusion linked to a timestamp via
the holdsAt/2 predicate. We call these rules time-related because they enable reasoning with
fluents containing temporal information. Here is an example of a time-related rule.

holdsAt (ULRC1,T) v ... v holdsAt(ULRCm,T) :-
holdsAt (ULRP1,T), ..., holdsAt(ULRPn,T).

where all holdsAt/2 terms share the same timestamp T, since the disjunction of conclusion
ULRs ULRC1, ..., ULRCm holds immediately if all premise ULRs ULRP1, ..., ULRPn hold simulta-
neously at T.

KALMRA incorporates temporal information in queries also using holdsAt/2. In this rep-
resentation, the second argument of holdsAt/2 is set to the highest value in the temporal do-
main extracted from the narrative. For Example 1, a time-related query can be represented as
holdsAt (ULRQ, 3) 7, where ULRQ is the ULR of the query and 3 is the timestamp that exceeds
all the explicitly given timestamps.

4 KALMRA valuation

In this section, we assess the effectiveness of KALMRA-based knowledge authoring using two
test suites, the clinical UTI guidelines (Committee on Quality Improvement 1999) and the bAbI
Tasks (Weston et al. 2015).

4.1 Evaluation of Rule Authoring

The UTI guidelines (Committee on Quality Improvement 1999) is a set of therapeutic recommen-
dations for the initial Urinary Tract Infection (UTI) in febrile infants and young children. The
original version in English was rewritten into the ACE CNL (Shiffman et al. 2009) for the as-
sessment of ACE’s expressiveness. We rewrite the original English version into factual English,
as shown in Appendix A. This new version has a significant number of rules with disjunctive
heads, as is common in the real-world medical domain.

The experimental results show that KALMRA is able to convert the UTI guidelines document
into ULRs with 100% accuracy.

4.2 Evaluation of Authoring of Actions

The 20 bAbI tasks (Weston et al. 2015) were designed to evaluate a system’s capacity for natural
language understanding, especially when it comes to actions. They cover a range of aspects,
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such as moving objects (tasks 1-6), positional reasoning (task 17), and path finding (task 19).
Each task provides a set of training and test data, where each data point consists of a textual
narrative, a question about the narrative, and the correct answer. Fig. B 1 in Appendix B presents
20 data points from 20 bADI tasks respectively. We used the test data for evaluation. Each task in
the test data has 1,000 data points.

Table 1. Result Comparisons

| STM| ILA | KALMRA
TASK | Acc.| Acc.| #I&T #Rules  Acc.
1 Single Supporting Fact 100 100 2 0 100
2 Two Supporting Facts 99.79 100 4 1 100
3 Three Supporting Facts 97.87 100 4 1 100
4 Two Argument Relations 100 100 4 0 100
5 Three Argument Relations | 99.43 100 4 0 100
6 Yes/No Questions 100 100 2 0 100
7 Counting 99.19| 100 4 0 100
8 Lists/Sets 99.88 100 4 0 100
9 Simple Negation 100 100 4 0 100
10 Indefinite Knowledge 99.97 100 2 0 100
11 Basic Coreference 99.99 100 2 0 100
12 Conjunction 99.96 100 2 0 100
13 Compound Coreference 99.99 100 2 0 93.1
14 Time Reasoning 99.84 100 2 0 100
15 Basic Deduction 100 100 0 1 100
16 Basic Induction 99.71| 93.6 2 1 93.6
17 Positional Reasoning 98.82 100 8 20 100
18 Size Reasoning 99.73 100 0 1 100
19 Path Finding 97.94| 100 12 4 100
20 Agent’s Motivations 100 100 5 6 100
Average | 99.61] 99.68| 3.45 175  99.34

The comparison systems in this evaluation include a state-of-the-art neural model on bAbI
Tasks, STM (Le et al. 2020); an approach based on inductive learning and logic program-
ming (Mitra and Baral 2016) that we call LPA here; and a recent sensation, ChatGPT. The com-
parison with STM and ILA results are displayed in Table 1, where “#1&T” denotes the number
of user-given initiation and termination statements (Definition 2) used to specify each particular
task in KALMRA, The table shows that KALMRA achieves accuracy comparable to STM and
ILA. ChatGPT has shown impressive ability to give correct answers for some manually-entered
bADI tasks even though (we assume) it was not trained on that data set. However, it quickly be-
came clear that it has no robust semantic model behind its impressive performance and it makes
many mistakes on bAbI Tasks. The recent (Jan 30, 2023) update of ChatGPT fixed some of the
cases, while still not being able to handle slight perturbations of those cases. Three such errors
are shown in Table 2, which highlights the need for authoring approaches, like KALMRA, which
are based on robust semantic models.
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Table 2. ChatGPT Error Cases

Task 2 Task 17 Task 19
2 Supporting Facts Positional Reasoning Path Finding
Mary went to the kitchen. The red square is below The garden is west of the hallway.
Mary got the apple. the blue square. The kitchen is west of the garden.
Mary got the ball. The red square is left of The garden is north
Mary got the book. the pink rectangle. of the bathroom.
Mary went to the bedroom. The bedroom is east
Mary went to the garden. of the bathroom.
Mary dropped the book. The hallway is west of the office.
Q: Where is the apple? Q: Is the blue square below | Q: How do you go from the
the pink rectangle? bathroom to the hallway?
ChatGPT: ... not specified ChatGPT: ... not specified ChatGPT: ... east..., ... south...
Correct: ~ garden Correct:  no Correct:  east, north

As to KALMRA it does not achieve 100% correctness on Tasks 13 (Compound Coreference)
and 16 (Basic Induction). In Task 13, the quality of KALMRA’s coreference resolution is entirely
dependent on the output of neuralcoref, the coreference resolver we used. As this technology
improves, so will KALMRA, Task 16 requires the use of the induction principles adopted by bAbI
tasks, some of which are questionable. For instance, in Case 2 of Table 3, the color is determined
by the maximum frequency of that type, whereas in Case 3, the latest evidence determines the
color. Both of these principles are too simplistic and, worse, contradict each other.

Table 3. KALMRA Error Cases

Casel | Case 2 Case 3
Task 13 Compound Coreferences | Task 16 Basic Induction
Mary and Sandra went Brian is a swan. Berhnard is a rhino.
back to the bedroom. Greg is a swan. Brian is a rhino.
Then they moved to the kitchen. Julius is a swan. Bernhard is white.
Sandra and Daniel went Greg is gray. Brian is white.
back to the bathroom. Julius is gray. Lily is a lion.
Then they went to the office. Bernhard is a lion. Lily is yellow.
Lily is a swan. Greg is a rhino.
Berhnard is green. Greg is green.
Brian is white. Julius is a rhino.
Q: Where is Daniel? | Q: What color is Lily? | Q: What color is Julius?
KALMRA: bathroom KALMRA: gray, white| KALMRA: green, white
bAbI Correct: office bAbI Correct: gray bAbI Correct: green
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5 Conclusion and Future Work

The KALM system (Wang et al. 2022) was designed to address the limitations of KALM (Gao
et al. 2018a) in terms of expressive power and the costs of the actual authoring of knowledge by
human domain experts. KALM did not support authoring of rules and actions, and it required
abiding a hard-to-learn grammar of the ACE CNL. In this paper, we introduced KALMRA, an
NLP system that extends KALMF™" to authoring of rules and actions by tackling a slew of prob-
lems. The evaluation results show that KALMRA achieves 100% accuracy on authoring rules,
and 99.34% accuracy on authoring and reasoning with actions, demonstrating the effectiveness
of KALMRA at capturing knowledge via facts, actions, rules, and queries. In future work, we plan
to add non-monotonic extensions of factual English to support defeasible reasoning (Wan et al.
2009), a more natural way of human reasoning in real life, where conclusions are derived from
default assumptions, but some conclusions may be retracted when the addition of new knowledge
violates these assumptions.
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