This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING

DAO?: Overcoming Overall Storage Overflow in
Intermittently Connected Sensor Networks

Bin Tang™, Hung Ngo, Yan Ma, and Basil Alhakami

Abstract— Many emerging sensor network applications oper-
ate in challenging environments wherein the base station is
unavailable. Data generated from such intermittently connected
sensor networks (ICSNs) must be stored inside the network
for some unpredictable time before uploading opportunities
become available. Consequently, sensory data could overflow
the limited storage capacity available in the entire network,
making discarding valuable data inevitable. To overcome such
overall storage overflow in ICSNs, we propose and study a new
algorithmic framework called data aggregation for overall storage
overflow (DAO?). Utilizing spatial data correlation that commonly
exists among sensory data, DAO? employs data aggregation
techniques to reduce the overflow data size while minimizing the
total energy consumption in data aggregation. At the core of our
framework are two new graph theoretical problems that have not
been studied. We refer to them as traveling salesmen placement
problem (TSP?) and quota traveling salesmen placement problem
(Q-TSP?). Different from the well-known multiple traveling
salesman problem (mTSP) and its variants, which mainly focus
on the routing of multiple salesmen initially located at fixed
locations, TSP? and Q-TSP? must decide the placement as well
as the routing of the traveling salesmen. We prove that both
problems are NP-hard and design approximation, heuristic, and
distributed algorithms. Our algorithms outperform the state-of-
the-art data aggregation work with base stations by up to 71.8%
in energy consumption.

Index Terms— Sensor networks, data aggregation, approxima-
tion and distributed algorithms, graph theory.

I. INTRODUCTION

VERALL Storage Overflow. Sensor networks have been

deployed to tackle some of the most fundamental
problems facing human beings, such as disaster warnings,
climate change, and renewable energy. These emerging
scientific applications include underwater or ocean sensor
networks [9], [21], [26], [33], [41], [58], wind and solar
harvesting [32], [38], seismic sensor networks [40], [53],
and monitoring of volcano eruption and glacial melting [17],
[45]. One common characteristic of these applications is that
they are all deployed in challenging environments, such as
in remote or inhospitable regions or under extreme weather,

Manuscript received 21 August 2022; revised 14 March 2023; accepted
23 April 2023; approved by IEEE/ACM TRANSACTIONS ON NETWORKING
Editor L. Fu. This work was supported in part by NSF Grants CNS-1419952
and CNS-2131309. (Corresponding author: Bin Tang.)

The authors are with the Department of Computer Science,
California State University, Dominguez Hills, Carson, CA 90747 USA
(e-mail: btang@csudh.edu; hung.ngo.tm@gmail.com; hi.yanma@gmail.com;
balhakamil @toromail.csudh.edu).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TNET.2023.3273553, provided by the authors.

Digital Object Identifier 10.1109/TNET.2023.3273553

to continuously collect large volumes of data for a long period
of time.

It is usually impossible to deploy high-power, high-storage
data-collecting base stations in those challenging environ-
ments. Consequently, large amounts of generated sensory
data are stored inside the network for some unpredictable
period of time and then collected by periodic visits of data
mules or robots [25], [54], [57], or by low-rate satellite
links [42], [55]. We refer to such sensor networks without
the base station as intermittently connected sensor networks
(ICSNs). In inhospitable environments, ICSNs must operate
more resiliently than traditional sensor networks wherein base
stations are always available.

In this paper, we focus on how to achieve data resilience
in ICSNs. Data resilience refers to the long-term viability and
availability of data despite insufficiencies of (or disruptions
to) the physical infrastructure that stores the data. In ICSNs,
one such disruption is sensor storage overflow. On one side,
sensing a wide range of physical properties in the real world,
above scientific applications generate massive amounts of
data, such as videos or high-resolution images [25]. On the
other side, storage is still a severe resource constraint of
sensor nodes despite the advances in energy-efficient flash
storage [33]. Consequently, the massive sensory data could
overflow the data storage of sensor nodes and cause data
loss. Such storage overflow problem is further exacerbated in
ICSNs, wherein the high-storage base stations are not available
to collect and store the data.

To avoid data loss, our previous works have designed a suite
of techniques to offload overflow data from storage-depleted
sensor nodes to nearby sensor nodes with available stor-
age [23], [24], [46], [47], [56]. However, if these offloaded
data cannot be collected and uploaded timely by data mules or
satellite links, they could soon overflow the available storage
in the entire network. Unfortunately, any of the existing data
offloading techniques cannot alleviate this. We refer to this
newly identified obstacle in the ICSNs as overall storage
overflow. Below we give a more concrete example.

Motivating Example: Consider a recent application of under-
water exploration and monitoring [9], [26], where camera
sensors take pictures of the underwater scenes while an
autonomous underwater vehicle (AUV) is dispatched period-
ically to collect the pictures from the sensors. Suppose there
are 100 underwater camera sensors, 10 of which generate
one 640 x 480 JPEG color image per second. Even using
the latest 16 GB parallel NAND flash sensor storage [29],
it takes less than one day to exhaust the storage of all the

1558-2566 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on October 31,2023 at 04:03:25 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2710-9076

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

100 camera sensors, causing an overall storage overflow. If the
AUV cannot be dispatched timely due to inclement weather,
discarding valuable data becomes inevitable. We thus answer
the following question: How to preserve the large amounts of
data in ICSNs despite the overall storage overflow?

Contributions: To overcome overall storage overflow,
we propose to utilize spatial correlation that commonly exists
among sensory data [52] and employ data aggregation tech-
niques to reduce the overflow data size. The spatial cor-
relation of sensory data is due to the proximity of sensor
nodes detecting the same event of interest, thus producing
data of similar values. For example, the partial overlapping
between scenes from different cameras could produce similar
and redundant images in the above underwater exploration
scenario. We create a new algorithmic framework called data
aggregation for overall storage overflow (DAO?). At the core
of DAO? are two fundamental graph-theoretical problems
called rraveling salesmen placement problem (TSP?) and
quota traveling salesmen placement problem (Q-TSP?). Unlike
the classic multiple traveling salesman problem (mTSP) and its
variants [10], [50], before finding the routing for each traveling
salesman, TSP? and Q-TSP2 need to decide first how many
of them are needed and where to place them. This makes the
problems more general and more challenging than the classic
mTSP. To our knowledge, both TSP? and Q-TSP? are not
studied before.

To solve DAO?, we design a suite of energy-efficient opti-
mal, approximation, heuristic, and distributed data aggregation
algorithms with rigorous performance guarantee analyses. One
novelty of our aggregation techniques is two graph structures
uniquely derived from the DAO? called aggregation network
and minimum q-edge forest, where ¢ is the number of sensor
nodes that aggregate their overflow data (or the number of
cities to visit in the TSP jargon). The minimum g-edge forest
is a set of aggregation trees of total g cycle-less edges.
It generalizes the minimum spanning tree, one of the most
fundamental graph structures, and accurately captures the
information needed for energy-efficient data aggregation.

After being aggregated to the size accommodable by the
network, the overflow data can then be stored in sensor nodes
with available storage using techniques proposed in [23], [24],
[47], and [56] (see Example 1 in Section II). Note that we do
not consider how to upload data from sensor nodes to the
base station, which has been studied extensively using data
mules or robots [19], [25], [44], [54], [57]. In our conference
paper [46], we solved DAO?-U, a special and uniform case of
DAO? where all the data nodes have the same overflow data
size and the same correlation coefficient, and all the storage
nodes have the same storage capacity. Our main contributions
and paper organizations are as follows.

1). We identify and formulate a new algorithmic framework
called DAO? that tackles the overall storage overflow prob-
lem in ICSNs. (Section I and IT)

2). We show that DAO?-U is equivalent to TSP?, which
is NP-hard. We design a suite of optimal, approximation,
and heuristic algorithms. In particular, the approximation
algorithm achieves (2 — 1) approximation ratio, where ¢ is
the number of aggregators. (Section III)

IEEE/ACM TRANSACTIONS ON NETWORKING

Data nodes @ Storage nodes O

° (@] []
Initiator

N

A‘ggregato?s’ !
° o -

Fig. 1. Tlustrating DAO2.

3). We show that DAO? is equivalent to Q-TSP? and again
design a suite of optimal, approximation, and heuristic
algorithms. In particular, the approximation algorithm has
an approximation ratio of log?Q, where Q is the targeted
total data size reduction. (Section IV)

4). We design a suite of distributed data aggregation algo-
rithms for the DAO? with performance guarantees and time
and message analyses. (Section V)

5). Our algorithms outperform the existing data aggregation
work with the base station by up to 71.8% in energy
consumption. (Section VI)

II. PROBLEM FORMULATION OF DAO?

This section introduces the DAO? and its network, data
spatial correlation, and energy models. We then formulate the
problem and illustrate it with an example.

Problem Statement of DAO?: Fig. 1 illustrates the DAO?.
Some sensor nodes are close to the events of interest and thus
are constantly generating sensory data and have depleted their
storage. Such sensor nodes with depleted storage spaces while
still generating data are data nodes. The newly generated data
that can no longer be stored at a data node is overflow data.
To avoid data loss, overflow data must be offloaded to sensor
nodes with available storage (referred to as storage nodes).
However, the total size of the overflow data is larger than
the total available storage from the storage nodes, causing
an overall storage overflow. Aggregating the overflow data is
needed before offloading them to storage nodes.

In DAO?, one or more data nodes will be selected as the
initiators, which start the aggregation process by sending
their overflow data to visit other data nodes in a multi-hop
manner. When a non-initiator data node receives the data, it is
made aware of the spatial correlation of the data and becomes
an aggregator (refer to Spatial Correlation Data Model for
more details). That is, it aggregates its own overflow data and
then forwards the initiator’s entire overflow data to another
data node. This continues until enough data nodes become
aggregators such that the total size of the overflow data in the
ICSN after aggregation equals to or is slightly less than the
total available storage in the ICSN. The goal of DAO? is to
minimize the energy consumption in this process by finding
the initiators and aggregators and the routes among them. Note
that when a storage node receives any data, it relays it in its
entirety as the entire data spatial correlation information is
needed for data aggregation.

Network Model: The ICSN is represented as an undirected
connected graph G(V, E), where V = {1,2,...,|V|} is the
set of |V| sensor nodes and E is the set of |E| edges. There
are p data nodes, denoted as V;, where data node ¢ € Vj
has R; bits of overflow data. The rest |V| — p sensor nodes

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on October 31,2023 at 04:03:25 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TANG et al.: DAO?: OVERCOMING OVERALL STORAGE OVERFLOW IN ICSNs

are storage nodes, where storage node j € V — V; has m;
bits of available storage space. Due to the overall storage
overflow, Zievd R, > jev_v, M- Let Q denote the data
size that needs to be reduced via data aggregation; Q = >
Ri =3 jev_v, M-

Spatial Correlation Data Model: Let H(X) denote the
entropy of a discrete random variable X, and H(X|Y") denote
the conditional entropy of X given that random variable Y
is known. If data node 7 receives no side information
(i.e., overflow data) from other data nodes, its overflow data
is entropy coded as H (i|j1,. .., jp) = R; bits, ji € VgAji #
i,1 < k < p. If data node ¢ receives side information from at
least one other data node, its overflow data is entropy coded
as H(Z|j1,7jp) =T S Rl

We denote p; = 1 — r;/R; as the correlation coefficient
of data node ¢, thus R; - p; is the amount of data size
reduction at ¢ after aggregation when it receives an initiator’s
data. p; indicates the data redundancy level at data node 3.
p; = 0 means ¢’s data is entirely different from others and thus
cannot be aggregated; p; = 1 means ¢’s data is a duplicate
copy of others’ data and therefore can be obliterated. Note
that given any instance of overall storage overflow, it must
be > iy, (Ri - pi) > Q for a feasible data aggregation; i.e.,
the data aggregation can achieve the targeted data reduction
Q with the given p;.

The well-known joint entropy-based coding model inspires
our model in [15]." This model, however, assumes that dif-
ferent sensor nodes not only have the same amount of data
but also have the same level of data correlations. In a real
scenario, usually, the farther away a sensor node is from the
event of interest, the less data it generates; the closer of two
sensor nodes, the higher similarity of their generated data.
With varying data sizes and varying correlation coefficients,
our model is thus more realistic and more general. We make
two assumptions.

Assumption 1: Each data node can be either an initiator,
an aggregator, or none, but not both. An initiator cannot be
an aggregator because the entirety of its data serves as side
information for other data nodes to aggregate. An aggregator
cannot be an initiator since its aggregated data loses the side
information needed for other nodes’ aggregation.

Assumption 2: Each aggregator ¢ can be visited multiple
times by the same or different initiators (if that is more energy-
efficient). However, its data can only be aggregated once,
reducing the size from R; to r;. This is because i’s data
reduction is based on its spatial correlation coefficient p;, not
how often initiators visit it.

Energy Model: We adopt the first-order radio model [22]
for the battery power consumption of sensor nodes.
When node wu sends R,-bit data to its one-hop
neighbor v over distance [, ,, transmission cost at u
is Et(Rualu,v) = FEeee X Ry + €amp X R, x li;w
receiving cost at v is E.(R,) =

i€Vy

FEeee X R,. Here,

'We are aware of other distributed coding techniques such as Slepian-Wolf
coding [59]. In their model, each node has R bits of data, which can be
reduced to r < R bits when the node receives side information from others.
However, they need a global correlation structure and thus are impractical for
large networks.

TABLE I
SUMMARY OF THE NOTATIONS
DAO?

G(V,E) The ICSN graph
Vg and p The set and number of data nodes, where V; C V'
R; Overflow data size at data node ¢ before aggregation
ri < R; Overflow data size at data node ¢ after aggregation
pi Correlation coefficient at data node 4, p; =1 —r;/R;
m; Storage capacity of a storage node j € V — Vy
Q Q= Zievd R; — zjeV—Vd my, total data reduction
T, a Set and number of initiators, 1 < a < p
I; 4t initiator, 1 < j < a
W; Aggregation walk or path starting with I
w(Ru,u,v) Aggregation cost of sending R, bits from u to v
¢(Ru, W;) Aggregation cost of sending R,, bits along W;

DAO?-U
R Overflow data size at a data node before aggregation
r,r<R Overflow data size at a data node after aggregation
m Storage capacity of a storage node in V' — Vj
q Number of aggregators needed

TSP? and Q-TSP?

G(V',E") Aggregation network for TSP and Q-TSP?
w(u,v) Weight of an edge (u,v) € E’
d(u,v) Length of the shortest path between nodes u,v € V'

pri Prize available at node i € V'’
mode; Traveling mode (cost per traveled distance) at node ¢
Target prize to collect

Q
per(Cy, Cj) Prize-cost ratio of two fragments C; and C);

B(u,v) Benefit of an edge (u,v) € E’, B(u,v) = %
T Total traveling cost in TSP? and Q-TSP?
Ecee = 100nJ/bit is the energy consumption per bit

on transmitter and receiver circuits, and €gpy =
100 pJ/bit/m? is the energy consumption per bit on
transmit amplifier.

Let W = {vy,v2,...,0,} be a walk, a sequence of n
nodes with (v;,v;41) € E and vy # v, (if all nodes in W
are distinct, W is a path). Let w(R,, u,v) = Ey(Ry,ly) +
E,(Ry) = Ry X (2 Eeiec + €amp X lfm}), and ¢(R,, W) =
Z?:_llw(Ru,vi,viH) be the aggregation cost on W, the
energy consumption of sending R, -bit from v; to v,, along W.
We assume a contention-free MAC protocol exists to avoid
overhearing and collision (e.g., [12]).

Problem Formulation of DAO*: The goal of DAO? is to find
a set of a (1 < a < p) initiators Z and corresponding set of a
aggregation walks/paths W = {W1,Ws, ..., W,}, where W
(1 < j < a) starts from a distinct initiator I; € Z, s.t. the
total amount of data reduction }._,(R; - p;) >= Q while
minimizing the fotal aggregation cost), i, c(Ri;, Wj).
Here, A = U;lzl{Wj —{I;} —Gj} is all the aggregators being
visited and G; is the set of storage nodes in W;. Table I lists
all the notations used in different problems.

Example 1: Fig. 2 gives an example of DAO? in a grid
ICSN of 9 nodes (we use the grid only for illustration
purposes). Nodes B, D, E, (G, and [are data nodes, with
Rp=Rg=2and Rp = Rg = Ry = 1. Nodes A, C, F and
H are storage nodes, with m; = 1 for all of them except that
m 4 = 2. The energy cost on any edge is 1 for one data unit,
pi = 1/2 at any data node 7. Overall storage overflow arises
as there are seven units of overflow data but only five units
of storage spaces, giving @ = 2. The optimal solution, shown
in the blue arrowed line, selects D as the initiator and sets its
aggregation path as D, F, and B, with a total aggregation cost

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on October 31,2023 at 04:03:25 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

A(2) B(2) C(1)
O O
D(1)
O
G(1) H(1) I(1)

Fig. 2. An example for DAO2. Numbers in the parentheses are R; (for data
nodes @) and m; (for storage nodes o).

of 2. After aggregation, the sizes of overflow data at B, F,
D, G, and I are 2, 1, 0, 1, 1, respectively, totaling five units.
Note that two units of data at B now include 1 unit of B’s
own aggregated data and 1 unit of initiator D’s intact data.
Now the five units of overflow data can be stored in the five
storage spaces, solving the overall overflow problem. |

Data Offloading After Data Aggregation: After aggregation,
data is offloaded from data nodes to storage nodes with
minimum energy consumption. Our previous work [24], [47]
has shown this can be modeled as a minimum cost flow
problem [1], which can be solved optimally and efficiently.
One optimal solution in Fig. 2 is offloading the two units of
data at B to A, E’s 1 unit data to C, G’s 1 unit data to H,
and I’s 1 unit of data to F, resulting in an offloading cost of
six. In this paper, we only focus on data aggregation as data
offloading can be achieved optimally, and leave integrating
them into a more unified energy-efficient solution as future
work.

III. ALGORITHMIC SOLUTIONS FOR DAO?-U

In this section, we study a special and uniform case of
DAO2, referred to as DAO?-U. In DAOg-U, all the data nodes
have the same overflow data size and correlation coefficient
(ie, R, =R, i =r,and p, = p=1—71/R, 1 € V)
and all the storage nodes have the same storage capacity
(e, mj=m, jeV —Vy.

A. Problem Formulation of DAO*-U

We first derive the valid range of p for the occurrence of
both overall storage overflow and feasible aggregation. The
overall storage overflow condition gives px R > (|V|—p)xm,
thus p > Iv‘m . Denote the number of aggregators needed as g.
Since each aggregator reduces its overflow data size by (R—r)

and the total anticipated data size reduction is p x R — (|V| —
p) xm =px (R+m)—|V|x m, we have
px (R+m)—|V|xm

= . 1

qa= o] (D

Next, we compute the upper bound of p for feasible data
aggregation. As at least one data node needs to be the initiator
to start the aggregation process, there can only be a maximum
of p—1 ag%regators (Assumption 1). We therefore have ¢ =
[(Brm)—[V]xm R+m VIXm1 < — 1, which gives p < L%j
The Vahd range of p for the occurrence of both overall storage
overflow and feasible aggregation is therefore

|V |m < L|V|mfR+r
m+ R - m+r

I 2

IEEE/ACM TRANSACTIONS ON NETWORKING

A(1) B(1) C(1)
®

D(1) F(1)

G(1) H1) (1)

Fig. 3. An example for DAOZ2-U. Numbers are R; (for data nodes e) and
m (for storage nodes o). The blue arrowed line shows the aggregation path.

Given a valid p value and its corresponding g value, meaning
q data nodes are aggregators and the rest p — ¢ data nodes can
be initiators (Assumption 1), DAO?-U is to determine a set
of a (1 < a < (p — q)) initiators Z and a corresponding
set of a aggregation walks: Wi, Wa, ..., W,, where W;
(1 < j < a) starts from a distinct initiator I; € Z, such that
|U?:1{Wj —{I;} — G;}| = ¢ aggregators are visited while
the total aggregation cost in this process >, -, ¢(R, Wj) is
minimized.

Example 2: Fig. 3 shows the same ICSN in Fig. 2. For
DAO?-U, lets assume R = m = 1 and p = 3/4. Overall
storage overflow exists as there are four units of storage space
while five units of overflow data. The number of aggregators
q = 4 following Equation 1, leaving one data node as the
initiator. One optimal solution is selecting B as the initiator
and setting its aggregation path as B, E, D, G, H, and I,
as shown in the blue arrowed line. It has a total aggregation
cost of 5. After aggregation, the sizes of overflow data at B, F,
D, G, and I are 0, 3/4, 3/4, 3/4, and 7/4, respectively, which
is a total of 4 units and thus can be offloaded to storage nodes
using techniques in [24] and [47]. Note that 7/4 units of data
at I now include 3/4 units of I’s own aggregated overflow
data and one unit of initiator B’s overflow data. O

DAO?-U gives rise to a new graph-theoretical problem,
referred to as traveling salesmen placement problem (TSP?).
Next, we formulate TSPQ, prove its NP-hardness, and design
a(2-— %)—approximation algorithm. We then prove that the
DAO?-U in an ICSN is equivalent to the TSP? in a prop-
erly transformed graph of the ICSN, called aggregation net-
work. Therefore the algorithms for TSP? can be applied to
solve DAO?-U

B. Traveling Salesmen Placement Problem (TSP?)

1) Problem Formulation and NP-Hardness: Given an undi-
rected weighted graph G’ = (V', E’) with |V’| nodes and |E’|
edges, a cost metric that represents the distance or traveling
time between two adjacent nodes, and that the number of
nodes that must be visited is g. The objective of the TSP? is
to determine a set of at most |V'| — q starting nodes, at each
of which a salesman is placed and then starts to visit some
nodes following a walk, such that a) all together ¢ nodes are
visited, and b) total cost of the walks is minimized.

Let w(u,v) denote the weight of edge (u,v) € FE'.
We assume that triangle inequality holds: for edges
(2,9), (9:2), (2.2) € B', w(a,y) +w(y, 2) > w(z,z). Given
awalk W = {v1,v,...,0,}, let ¢(W) =377 w(vs,vig1)
denote its cost. The objective of TSP? is to decide:

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on October 31,2023 at 04:03:25 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TANG et al.: DAO?: OVERCOMING OVERALL STORAGE OVERFLOW IN ICSNs

(a) B-Walk.

(b) LP-Walk.

Fig. 4. (a) B-walkis u, 6,7, 6, 8, 6, u, v, 1, 2, 1, 3, 1, v, 4, 5, with cost
of 16. (b) LP-walk is 2,1,3,1,v,4,5,4,v,u,6,7,6,8, costing 14. B and «—
indicate the first and last node in a walk, respectively. Here, w(u,v) = 2 and
weights of other edges are 1.

o the set of a (1 < a < |V’| — ¢) starting nodes Z C V', and
o the set of a walks W1, Wa, ..., W,: W; (1 < j < a) starts
from a distinct node I; € Z, and |UJj_, {W; — {I;}}| = ¢,

such that fotal cost 3, ., ¢(W;) is minimized.

Theorem I: The TSP? is NP-hard.

Proof: See Supplementary Materials.]

2) Approximation Algorithm for TSP?: We introduce some
definitions before presenting the approximation algorithm.

Definition 1 (Binary Walk (B-Walk), q-Edge Forest): Given
a tree T C G’ with a maximum-weight edge (u,v) (ties are
broken randomly), T is divided into (u,v) and subtrees T,
and T,. The B-walk on 7T, denoted as Wg(T), starts from
u and visits all the nodes in T following depth-first-search
(DFS), and then visits v, from which it visits all the nodes in
T, following DFS and stops when all the nodes are visited.

A forest F' of G’ is a subgraph of G’ that is acyclic (and
possibly disconnected). A g-edge forest, denoted as Fi, is a
forest with ¢ edges. O

Fig. 4(a) shows a tree T with w(u,v) = 2 and weights of
other edges being 1, and a B-walk of cost 16. In B-walk, each
edge in T}, is traversed twice, and each edge in T, is traversed
once or twice. B-walk saves cost traversing a tree since the
maximum-weight (u,v) is traversed only once.

Lemma 1: ¢<(Wgp(T)) < (2 — ﬁ) x ¢(T). Here ¢(T) =
> ecr w(e) and |T'| is the number of edges in 7'

Proof: See Supplementary Materials.]

Approximation Algorithm: Algo. 1 works as follows. Lines
1 and 2 sort all the edges in E’ in the non-descending order of
their weights and initialize an empty edge set E,. The while
loop in lines 3-9 finds the first ¢ edges in E’ that do not
cause a cycle and store them in E,. It then obtains a g-edge
forest G'[E,] (line 10). Each connected component of G'[E,]
is either linear or a tree. If it is linear, a salesman is placed at
one end of it and then visits the rest nodes exactly once; if it
is a tree, u or v, a salesman is placed at u or v, where (u,v)
is the maximum-weight edge, and then does a B-walk to visit
all the nodes (lines 11-15).

Discussions: Algo. 1 takes O(|E’|log|E’|) and works alike
the well-known Kruskal’s minimum spanning tree (MST)
algorithm [14], except that instead of finding |V’| — 1 edges
to connect all the nodes in V, it finds ¢ < |V'| — 1 edges to
“connect” some nodes in V'. Therefore, Algo. 1 generalizes
Kruskal’s algorithm, and MST is a special case of g-edge
forest. We show that G'[E,] is a minimum q-edge forest
defined below.

Algorithm 1 Approximation Algorithm for TSP?

Input: G'(V', E’) and number of nodes to visit ¢;
Output: a walks: Wi, Wa,..., Wy, and 37, c(Wj);
Notations: E,: set of ¢ cycleless edges in G;
G'[E,]: subgraph of G’ induced by E,, a g-edge forest;
C(G'[E,)): set of connected components in G'[E,];
Cj: the j'" connected component in C(G'[E,]);
1. Letw(er) <w(e2) < ... <wlepg));
2 E, = ¢ (empty set), i = j =k = 1;
3 while (k < ¢q)
4. if (e; is a cycleless edge w.r.t. E,)
5 B,=E,U{e}:
6 I++;
7 end if
8. T++;
9. end while
10. Let |C(G'[E,])| = a; /*a connected components™*/
11. for (1 <j<a)

12. if (C; is linear) Place a salesman at one end node
of C; and visits the rest nodes in C; once;

13. if (C; is a tree) Place a salesman at u or v, where
(u,v) is the maximum-weight edge, and do a
B-walk on Cj;

14. Let the resulted walk (or path) be W;;

15. end for

16. RETURN Wy, Ws,..., Wy, and Y2, o, c(W)).

Definition 2 (Minimum q-Edge Forest): Let c(F,) =
>_ecr, We denote the cost of a g-edge forest Fyy in G'. Let
F, be the set of all g-edge forests in G’. A g-edge forest Fr

is minimum iff c(F;") < e(F),VF, € F. O
Lemma 2: G'[E,] is a minimum g¢-edge forest.
Proof: See Supplementary Materials. []

Let O be an optimal algorithm of TSP? with a minimum
cost of 0. Next we show ¢(G'[E,]) is a lower bound of O.
Lemma 3: ¢(G'[Eq]) < O.

Proof: See Supplementary Materials. []
Theorem 2: Algo. 1is a (2 — %)-approximation algorithm.
Proof: See Supplementary Materials. []

Corollary 1: If C; (1 < j < a) resulted from Algo. 1 are
all linear, Algo. 1 is optimal.

When a B-Walk traverses 7, first and then T;,, each edge
in T, is traversed twice while each edge in 7, once or twice.
A simple improvement is to traverse, between 7T, and T, the
one with a smaller cost first. We refer to this special case of
B-Walk as smaller-tree-first-walk (STF-walk). Indeed Fig. 4(a)
shows an STF-walk.

A Heuristic Algorithm: Next, we present a heuristic algo-
rithm. It differs with Algo. 1 only in line 13; instead of a
B-walk along each tree, it does a longest-path walk defined
below.

Definition 3 (Longest-Path Walk (LP-Walk)): Let P =
{v1,v2,...,v,} be a longest path in tree T'. A LP-walk starts
from vy, visiting all the nodes in 1" following DFS, and ends
at v,, so every edge in P is traversed exactly once. O

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on October 31,2023 at 04:03:25 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6
B
1
D E
G 2 |
(a) (b) (c) (d)
Fig. 5. (a) Aggregation network G’ of ICSN G in Fig. 3. (b) 4-edge forest

F, resulted from Algo. 1. (¢) B-walk on Fy. (d) Aggregation walk in G with
aggregation cost of 6. The numbers on the edges are their weights.

In LP-walk, since edges in the longest path are traversed
only once, the cost of a walk can be further reduced. Find-
ing the longest path in a tree is to find the shortest path
among all pairs of leaf nodes and choose the longest one,
which takes O(|V|?). Fig 4(b) shows an LP-walk costing 14.
Because the maximum-weight edge (u,v) is not necessarily
on the longest path P, we cannot obtain a performance
guarantee for LP-walk. However, we show empirically in
Section VI that it outperforms Algo. 1 by 15% — 30%
in terms of energy consumption under different network
parameters.

C. Equivalency Between TSP and DAO?-U

Now we transform the original ICSN G(V, E) into an
aggregation network G'(V',E’), and prove that solving
DAO?-U in G is equivalent to solving TSP? in G’.

Definition 4 (Aggregation Network G' (V' E")): V' is the
set of p data nodes in V, V' = V. For any two data nodes
u,v € V', an edge (u,v) € E’ exists if all the shortest paths
between v and v in G do not contain any other data nodes.
For edge (u,v) € E’, its weight w(u,v) is the cost of the
shortest path between « and v in G. O

After applying Algo. 1 on G'(V', E’), the resulting starting
nodes in V' become the initiators in ICSN graph G(V, E),
and the rest nodes in V'’ become aggregators nodes in G.

Example 3: Fig. 5(a) shows the aggregation network G’ of
the ICSN graph G in Fig. 2. Fig. 5(b) shows a 4-edge forest
F, of G’ from Algo. 1. Fig. 5(c) shows the B-walk on F,
wherein [is selected as the initiator by Algo. 1, and the rest
of the nodes (i.e., B, D, E, G) become aggregators. Fig. 5(d)
shows the aggregation walk in G by replacing each edge (u, v)
in F, with a shortest path between u and v in G. The total
aggregation cost following this walk is 6, one more than the
optimal cost shown in Example 2. The B-walk in this example
happens to be an LP-walk. O

Note that the aggregation network G’ is a new graph struc-
ture different from the distance graph in computing Steiner
tree [27]. A distance graph of data nodes in G is a complete
graph G4 with the weight of every edge (u,v) € G4 being
the cost of the shortest path from w to v in G whereas an
aggregation network does not need to be complete.

Theorem 3: DAO?-U in the ICSN graph G is equivalent to
TSP? in aggregation network graph G”.

Proof: See Supplementary Materials.]

IEEE/ACM TRANSACTIONS ON NETWORKING

IV. ALGORITHMIC SOLUTIONS FOR DAO?

In this section, we study the general DAO? with heteroge-
nous overflow data sizes R;, the data sizes after aggregation r;,
correlation coefficients p;, and storage capacities m,;. We show
that DAO? equals another new graph theoretical problem.
We refer to it as the quota traveling salesmen placement
problem (Q-TSP2), which generalizes TSP? in the previous
section. Below we formulate Q-TSP?, prove its equivalency to
DAO?, and propose approximation and heuristic algorithms.

A. Quota Traveling Salesmen Placement Problem (Q-TSP?)

Problem Formulation: In an undirected weighted graph
G’ = (V',E’) with |[V’| nodes (or cities) and |E’| edges, wy,
is the weight on edge (u,v) € E’ (indicating the distance
from u to v), node i € V' has a prize pr; to be collected,
and Q is the targeted quota to collect.? Besides, node i has
a value of mode;, which is a salesman’s traveling cost per
unit distance if he is placed and starts traveling at i.> Given
a walk W = {vy,vs,...,v,}, the traveling cost on W by a
salesman from node 7 is ¢(i, W) = mode; ~Z;.L;11 w(vj, vjq1).
The objective of the Q-TSP? is to determine a) a set of
starting nodes T C V', at I; € 1 a salesman is placed,
and b) a walk W, along which a sequence of nodes he
visits, s.t. total traveling cost T = 3, _.c 7| c(I;, W;) is
minimized while the total collected prizes ike apre > Q.

Here, A = Uljal{Wj — {I;}} are all the nodes the salesmen
visit and exclude their starting nodes. This is to be consistent
with Assumption 1 in DAO? wherein the initiator’s data cannot
be aggregated; thus, no prize is to be collected at initiators
(however, our solutions can be easily adjusted for the case
that prizes can be collected at starting nodes).

The TSP? studied in Section III-B is a special case of the Q-
TSP? with pr; = mode; = 1 and Q = ¢. Therefore Q-TSP? is
at least NP-hard. Below we first show that DAO? in ICSN
graph G is equivalent to Q-TSP? in the aggregation network
G’ defined in Section III-C. We then design approximation
and heuristic algorithms for Q-TSP? and illustrate them using
the DAO? example in Fig. 2.

Theorem 4: DAO? in the ICSN graph G is equivalent to
Q-TSP? in aggregation network graph G’.

Proof: See Supplementary Materials.

B. Approximation Algorithm for Q-TSP?

Before presenting Algo. 2, we first give a few definitions.
We use d(u,v) to denote the shortest path length between any
two nodes u,v € V.

Definition 5 (Prize of a Fragment and Prize-Cost Ratio of
Two Fragments): The prize of a fragment (i.e., connected
component) C; in G, denoted as pr(C;), is the sum of prizes
on all nodes in Cjy; ie., pr(C;) = Zuecq; pry. Given any
two fragments C; and C; in G, their distance, denoted as
d(C;,Cj), is the smallest length of all the shortest paths
between C; and Cj; i.e., d(C;, C;) = min{d(u,v)lu € C;,v €

ZZ kev’ PTk > Q; otherwise the problem is not feasible.
3For example, different nodes could have different transportation means
available (cars, trains, and air), which incur different costs per unit distance.

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on October 31,2023 at 04:03:25 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TANG et al.: DAO?: OVERCOMING OVERALL STORAGE OVERFLOW IN ICSNs

B(1) B B
1
D(0-5 ~ k) D E D E
2
° ° °
G(0.5) 1(0.5) G [G [
(@ (b) ©

Fig. 6. (a) Aggregation network G’ of ICSN G in Fig. 2. The numbers in the
parentheses are the prizes available at data nodes. (b) and (c) are two possible
solutions, with (c) being optimal. Algo. 2 outputs both (b) and (c) whereas
Algo. 3 outputs only (c).

C;}. The prize-cost ratio, denoted as per(C;, C;), is the ratio
of the smaller prize of C; and C; to the distance between

them; i.e., per(C;, C;) = MELELLTICD), O

The idea of Algo. 2 is to iteratively merge two fragments
with the largest pcr until the total prize of all the fragments
with at least two nodes (i.e., combined fragments) reaches Q.
It starts with n fragments, each is one node, and its ID is
the node’s ID. In each iteration, it combines two fragments
with the largest pcr using the shortest path between them (ties
are broken randomly) and updates the total prize (i.e., quota)
collected so far (lines 3-9). It then takes the smaller ID as the
ID of the new combined fragment and updates its prize as the
sum of the prizes of both fragments and the prizes at the nodes
on the connecting shortest path (lines 10-12). It also finds the
starting node (with the smallest mode value) in the combined
fragment, so its prize is excluded from the collected quota
(lines 13-14). This continues until the combined fragments’
total prize reaches Q. Finally, a traveling salesman is placed
at the starting node in each combined fragment, then visits
all other nodes in the combined fragment to collect prizes
by traversing each edge at most twice, and returns the total
collected prizes and total traveling cost (lines 16-21). The time
complexity of Algo. 2 is O(Q - [V']).

Example 4: For the DAO? example in Fig. 2, the amount of
data reduction at data node 7 is the prize pr; available at node
i in Q-TSP?, and the total amount of data reduction to achieve
is the total prize Q to collect. Thatis, Q@ = 2, prg = prg =1,
and prp = prg = pr;y = 0.5. Next, we show how Algo. 2
solves this example. Fig. 6(a) shows its aggregation network.
Fig. 6(b) and (c) show two solutions by Algo. 2. In Fig. 6(b),
G dispatches a salesman to visit D, F and B, collecting a total
prize of 2.5 with a total traveling cost of 3. Fig. 6(c) indeed
gives the optimal solution wherein D dispatches a salesman to
visit E' and B, collecting total prizes of 2 with a total traveling
cost of 2. O

When all the nodes have the same prizes and modes, Algo. 2
degenerates to Algo. 1. Algo. 2 is inspired by Awerbuch
et al. [6] that solves a special case of Q-TSP2. In particular,
they considered a quota-driven salesman problem in which
a single traveling salesman collects prizes in different cities
to reach a target quota while minimizing the traveling cost.
It proposed an O(log?R) approximation algorithm where R is
the quota. It is based on an approximation for the k-minimum-
spanning-tree problem (k-MST), finding a tree of the least
weight that spans exactly k vertices on a graph. We thus give
the below theorem without proof.

Theorem 5: When only one traveling salesman is allowed,
Algo. 2 achieves O(log®Q) approximation for Q-TSP?.

Algorithm 2 Approximation Algorithm for Q-TSP2
Input: G(V', E’), pr, at node u, targeted quota Q;
Output: total collected prizes quota, total traveling cost 7 ;
Notations: quota: prizes collected so far, initially zero;
C: the set of all the fragments,
C = {01,02, . ,C|V/|}, initially C; = {Z}, Vi e V',
A: IDs of the resultant combined fragments, initially empty;

1. quota=T =0, A= ¢ (empty set);
2. while (quota < Q)
I (Ci+,Cj+) has the maximum pcr
3. (1%,J7) = argmax(; jy where i je 4, PCT (Cis C);
4. d(u,v) =d(Cs+,Cj«), where u € Cix,v € Cj+;
5. E(u,v) are all edges on the shortest path btw u, v;
6. N(u,v) are all the nodes on the shortest path
between (and excluding) u, v, could be empty;
7. if (|Ci+| == 1) quota += pr(C;-);
8. if (|Cj+| ==1) quota += pr(C;-);

9. quota += ZiEN(u,v) pri;
/I Merge into the fragment with smaller ID;
10. a = min{i*, j*}, b = max{i*, j*};
11. C,=C,UCyUE(u,v), A= AU{a};
12, pr(Ca) +=pr(Ch) + Xien(u,0) PTi>
/I Starting node’s prize is not in the collected quota
13. y= argminueca modey;
14. quota —= pry;
15. end while
/I' A includes the IDs of the combined fragments
16. for (each element i € A)
17. § = argmin, . mode,; // starting node in C;
18. Place a salesman at s, let W, denote the walk
along which he visits all nodes in C; by
traversing each edge at most twice;
19. T +=c(s,W;);
20. end for
21. RETURN quota and 7.

C. Heuristic Algorithm for Q-TSP?

Algo. 2 iteratively combines two fragments that yield the
maximum prize-cost ratio until prize quota Q is reached.
One drawback of this approach is that the combined two
fragments could have prizes much larger than the target
Q, thus costing more energy than necessary. For example,
the solution in Fig. 6(b) collects prizes of 2.5, 25% more
than target quota @ = 2, and costs 3, 50% more than the
optimal cost of 2 obtained in Fig. 6(c). We thus design a
prize-collecting scheme viz. Algo. 3 that takes place on a
local and more fine-grained level than Algo. 2, and shows
that it constantly outperforms Algo. 2. We first give the below
definition.

Definition 6 (Benefit of an Edge): The benefit of edge e =
(u,v), denoted as B(e), is the ratio of the sum of the prizes
on its two end nodes to its weight; B(e) = % O

Algo. 3 below iteratively adds cycleless edges with maxi-
mum benefit into the fragments until Q or a slightly higher
amount of prizes is collected. There are three possible cases
when adding a cycleless edge e;: a) it starts a new combined

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on October 31,2023 at 04:03:25 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

fragment (lines 6-9), b) it connects two existing combined
fragments (lines 10-13), or c) e; merges with one existing
combined fragment (lines 14-20). In each case, the starting
node and the collected prizes in the newly combined fragment
are updated accordingly. Next, the traveling salesman is placed
at the node in each combined fragment with the smallest
mode value. Finally, the salesman is dispatched to visit all
other nodes to collect prizes by traversing each edge at most
twice, with the total collected prizes and total cost returned
(lines 24-28). The time complexity of Algo. 3 is
O(|E’|log|E’| + Q).

Example 5: In Fig. 6(a), as B(B,E) > B(D,E) >
B(D,G) > B(E,I) > B(G,I), Algo. 3 selects edges (B, E)
and (D, E) and dispatches salesman from D to visit £ and
B, which is the optimal solution shown in Fig. 6(c). O

Discussions: Algo. 2 and 3 are mainly designed for one
round of aggregation to achieve the performance approxima-
tion ratio. As such, it is based upon the assumption that after
one round of aggregation and data offloading, the uploading
opportunities will arrive timely to collect the data and empty
the storage spaces of all the sensor nodes. Another round of
sensing and aggregation will then take place. Otherwise, when
both newly generated data and old aggregated data are present
in the BSN, the data correlation model introduced in this paper
can no longer work. The algorithms still work in a dynamic
situation wherein different sensor nodes emerge as data nodes
emerge. As long as the aggregated data can be collected timely
by the uploading opportunities, the aggregation frequency can
be kept up to speed with the arrival frequency of the uploading
opportunities. The data aggregation process, triggered when
the overflow data size is larger than the available storage space
in the BSN, can always occur.

Algo. 1 for TSP? is a special case of Algo. 2 and 3 for
Q-TSP?. When all nodes have the same prizes, the largest
prize-cost ratio of two fragments in Algo. 2 and the edge with
the largest benefit in Algo. 3 degenerate to the cycless edge
with the smallest weight in Algo. 1, and the resultant ¢-edge
forest in Algo. 1 is indeed the merged fragments found in
Algo. 2 and Algo. 3.

V. DISTRIBUTED ALGORITHMS
A. Distributed Algorithms for DAO?-U

The distributed algorithm, referred to as Distributed
DAOZ-U, consists of three stages. First, it constructs the
aggregation network of the data nodes G'(V’, E’) from the
ICSN G(V, E) by a modified distributed Bellman-Ford algo-
rithm [37]. Second, the data nodes in the aggregation network
cooperatively find the g-edge forest (i.e., a set of aggregation
trees) based on a classic distributed MST algorithm [20], [39].
Third, an initiator is selected for each aggregation tree in the
g-edge forest and starts the data aggregation process to reduce
the overflow data size. Below we illustrate each stage in detail.

Stage 1 (Constructing Aggregation Network): The dis-
tributed Bellman-Ford (DBF) algorithm [37] is a well-known
asynchronous technique to compute the shortest paths between
nodes in a network. Each node (data node or storage node)
initially only has direct knowledge of its local links and sends

IEEE/ACM TRANSACTIONS ON NETWORKING

Algorithm 3 Benefit-Based Algorithm for Q-TSP2
Input: G'(V', E’), prize pr, at node u, targeted quota Q;
Output: total collected prizes quota, total traveling cost 7 ;
0. Notations:

E,.: set of cycleless edges selected for prize-collecting;

quota: prizes collected so far, initially zero;

sel(u): if node u € V' is selected, initially false;

¢: indices for edges; j: indices for fragments;

C: the set of all the fragments,

C= {Cl,CQ, .. .,C|V/‘}, initially C; = {Z}, Vi e V',
A: IDs of the resultant combined components;
ts;: the traveling salesman in component C;, 1 < j < a;

1. B(e1) > B(ez2) > ... > Blejg)); // Sort edges in B
2. i=1,quota=0,a=0, A= Ep. = ¢ (empty set);
3. while (quota < Q) // process e; in decreasing order of 5
4. Lete; = (nl,ng);
5. if (e; causes a cycle w.r.t. F),.) continue;

/I e; initiates a new fragment
6. if (sel(n1) == sel(ng) == false)
7. sel(ny) = sel(ng) = true;

quota += (pry, + pra,);

8. if (n1 < TZQ) A=AU {nl}, Cn1 = {ei};
9. else A =AU {na}, Cp, = {e;};

/I e; merges two existing combined fragments
10. else if (sel(nq) == sel(nq) == true)

11. Let Cp and C. be n; and n9’s belonged fragments;
/I Merge into the fragment with smaller ID

12. if(bSC)AZA—{C},CbZCbUCC;

13. else A=A—{b}, C.=C,UCy;

14. else // e; merges with a combined fragment

15. if (sel(n1) == false) z = nq;

16. else x = ny; // sel(ny) == false

17. quota += pr,, sel(x) = true;

18. Let the fragment e; merges with be Cj;

19. if (z<b)A=A—-{b}U{z};

20. end else

21. E,. = E,.U{e};

22. i++;

23. end while

24. for (each element 7 in A)

25. s = argmin, . o mode,,; // starting node in C;
Place a salesman at s, who visits each node

in C; by traversing each edge at most twice;

Let the resultant walk be W;;

26 T +=c(s, Wy);

27. end for

28. RETURN quota and 7.

messages about its perceived shortest path lengths (i.e., the
routing table) to all other nodes to its neighbors. When a
neighbor receives the message, if it finds that its cost to a
node is greater than the sum of its cost to the sender and
the sender’s cost to that node, it updates its routing table and
sends it to its neighbors. This takes place iteratively until all
the nodes have the accurate shortest path information to other

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on October 31,2023 at 04:03:25 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TANG et al.: DAO?: OVERCOMING OVERALL STORAGE OVERFLOW IN ICSNs

nodes in the network. The message size in DBF is O(|V]),
where |V is the number of nodes in the ICSN.

However, there are two challenges when we apply DBF
to construct aggregation networks. First, it is well known
that the message complexity of asynchronous DBF could be
exponential [7]. This can be overcome by the fact that wireless
communication is generally broadcast. Using broadcast, the
message complexity of DBF is reduced to O(|V|?). Second,
to construct an aggregation network on top of DBF, each data
node needs to find if it has a “direct” link with another data
node in the aggregation network. To do this, the message sent
by any node includes the shortest paths to all other nodes and
has a size of O(|V'|?). After receiving this information, a data
node checks its shortest path to each other data node; if there
are no other data nodes on this shortest path, it has an edge
over this data node in the aggregation network, and the cost
of the edge is the cost of the corresponding shortest path.

Stage 2 (Constructing q-Edge Forest): Next, the p data
nodes cooperate to find a g-edge forest in the aggregation
network in a distributed manner. We propose two algorithms:
a baseline algorithm and a fragment-based algorithm.

Baseline Algorithm: The baseline algorithm works as fol-
lows. At the end of aggregation network construction, each
data node knows the IDs of other data nodes and the shortest
paths to them. The node with the smallest ID is thus selected as
the leader. Then every node sends the weights of all its incident
edges to the leader, following the shortest path between them.
Once the leader receives such information from all the nodes,
it executes Algo. 1 to find the minimum g-edge forest of the
aggregation network. Finally, it broadcasts the result to all
the data nodes of the aggregation network. When each data
node receives it, it checks if it is an end node of any of the
computed edges; if so, it marks these edges as tree edges in
the aggregation trees. As the baseline algorithm is essentially
a centralized algorithm implemented in a distributed manner,
it always finds the minimum g-edge forest in an aggregation
network. Next, we present a purely distributed algorithm.

Fragment-Based Algorithm: Our distributed algorithm starts
with each node being a fragment and iteratively merges them
until a forest of ¢ edges is found. Each node has level 0 and the
node ID is the fragment’s ID. In each iteration, two fragments
are combined if they have the same minimum weight outgoing
edge (MWOE). MWOE is an edge of minimum weight with
two endpoints on two fragments. Each fragment repeatedly
performs below two steps viz. finding MWOE and merging
fragments via the MWOE until q edges are found. Initially, all
edges start as basic edges. Once selected in the g-edge forest,
it is called a tree edge. If an edge is determined not to be part
of the MST, it becomes a rejected edge.

Step 1 (Finding MWOE): Each level-0 fragment marks its
MWOE as a tree edge and sends a message to the node on
the other side. The edge chosen by both nodes then merges
the two nodes, which becomes a new fragment with level 1.

For each non-level-0 fragment to find its MWOE, its leader,
the end node of the MWOE with a smaller ID, sends an
initiate message to the members of the fragment along the
tree edges. Upon receipt, each node n sends its fragment
ID and level along its basic edges to node n’ on the other

end. Then n’ compares them with its fragment ID and level
and makes the following decisions. (a) If FragmentID(n) =
FragmentID(n’), then n and n’ belong to the same frag-
ment thus they mark the edge as a rejected edge; (b) if
FragmentID(n) != FragmentID(n’) A Level(n) < Level(n’),
then n and n’ belong to different fragments thus n’ sends a
message to n about this outgoing edge; (c) if FragmentID(n)
= FragmentID(n') A Level(n) > Level(n’), n’ postpones the
response until Level(n’) > Level(n).

Next, all the leaves in the fragment send their MWOE (if
there is any) along the tree edge back to its parent. For each
non-leaf node, after receiving all the MWOE messages, it finds
the MWOE with minimum weight and sends it to its parent.
This takes place until the leader of the fragment gets the
MWOEs from all its neighbors and identifies the one with
the minimum weight as the MWOE for the entire fragment.
Finally, the leader sends a broadcast message to the entire
fragment about this new MWOE via the tree edges and starts
the fragment merging step described below.

Step 2 (Merging Fragments via the MWOE): Upon receipt
of the MWOE message, the end node of the MWOE within the
fragment, say n, becomes the new leader. It marks this MWOE
as a tree edge and sends a “request to combine” message to
the other end of the MWOE, say n’. Under two scenarios,
these two fragments will be combined. First, if n’ selects the
same edge as its MWOE and Level(n) = Level(n’), then the
level of the combined fragment increases by one, and the end
node of the MWOE with a smaller ID becomes the leader
of this new fragment (and this ID becomes the ID of this
newly formed fragment). This is called a “merge” operation.
Second, if Level(n) < Level(n’), then FragmentID(n') and
Level(n’) become the ID and level of the new fragment,
respectively. This is called the “absorb” operation. For all
other scenarios, n’ ignores the “request to combine” message
from n. Finally, the leader in the combined fragment broad-
casts a “new-fragment” message to the entire fragment along
the tree edges. Upon receipt, all the nodes update their
parent, children, and fragment identifier (the ID of the new
leader).

After each merging, the leader of the newly formed frag-
ment sends a unicast message to a centralized coordinator
(node with the smallest ID) about the number of edges in
this fragment. Once the number of edges found reaches ¢, the
coordinator sends a broadcast message to the entire network
to stop the aggregation tree construction process.

The above distributed algorithm is inspired by a classic dis-
tributed MST algorithm (referred to as GHS Algorithm [20],
[39]) with the difference that instead of finding an MST of a
network, we only need to find one g-edge forest. While the
resultant single tree in GHS Algorithm must be an MST, the
resultant g-edge forest of multiple trees is not necessarily a
minimum g-edge forest. This is because an MWOE found in
Distributed DAO?-U is not necessarily one of the ¢ smallest
cycle-less edges. We leave finding a distributed minimum g-
edge forest as future work. To find out how close the resulting
g-edge forest is to the minimum one, Section VI compares it
with the baseline algorithm, as it always finds the minimum
g-edge forest.

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on October 31,2023 at 04:03:25 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING

TABLE TI TABLE IIT

TIME AND MESSAGE COMPLEXITIES IN DISTRIBUTED DAOQ—U SUMMARY OF ALL ALGORITHMS

2 2 oty
Time Complexity | Message Complexity DAO-U DAO Existing Work
. B-Walk (Algo. 1), | Approx. (Algo. 2)
Aggregation Network O(plE]) O(plEl) Centralized | gTp. & LP-Walk | Benefit (Algo. 3) S-Tree
g-edge Forest O(p - logp) O((p + |E]) - logp) Distributed Fragment, Dist. Approx. Dist. S-Tree
Data Ageregation | O(V]). O(VIZ) | _OQV]). OV %) Baseline Dist. Benefit

Stage 3 (Data Aggregations): Recall that in data aggrega-
tion, an initiator of each fragment visits all the nodes in the
tree following the longest-path walk defined in Section III-B2.
Thus we select the initiator as one of the two leaf nodes on this
longest path with the smaller ID. To find the initiator of a tree,
we need to run the DBF algorithm to find the shortest path cost
between any two leaf nodes in the tree. Then each leaf node
broadcasts to the entire tree a message, including its ID and the
maximum path cost it has. After receiving all such messages,
the leaf node with the maximum cost (i.e., the longest path)
and smaller ID knows it is the initiator. It then transmits its
data to visit all the nodes in the tree while traversing the edges
on this longest path once.

Time and Message Complexity: Table II summarizes the
time and message complexity of the three stages of the
Distributed DAO?-U, where its second stage is fragment-
based. For data aggregation, the first number in each field is
for broadcast; the second is for unicast.

Theorem 6: Distributed DAO?-U finds an optimal aggrega-
tion cost when one initiator is allowed.

Proof: When there is only one initiator, finding a minimum
g-edge forest in data aggregation is equivalent to finding an
MST in the aggregation network. Consequently, Distributed
DAO?-U equals the GHS algorithm. Due to the optimality
of finding MST by the GHS algorithm, the optimality of
Distributed DAO?-U also sustains. |

B. Distributed Algorithms for DAO?

The Distributed DAO? is the distributed implementation
of the two DAO? algorithms viz. approximation (Algo. 2)
and Benefit-based (Algo. 3) respectively. It consists of three
stages: aggregation network construction, aggregation tree
construction, and data aggregation along the aggregation trees.
The first stage is the same as in the Distributed DAO?-U.
Below we illustrate the second and third stages for Distributed
Approximation and Distributed Benefit, respectively. Initially,
each data node in the aggregation network sends a broadcast
message to the entire network about its prize.

Algo. 2 merges two fragments with a maximum prize-cost
ratio iteratively. In its distributed implementation, the leader
of each fragment computes the prize-cost ratios with all other
fragments and broadcasts the largest value to other fragments.
Then the leaders of the two fragments with the maximum
prize-cost ratio communicate to update the new leader (smaller
ID being the leader) and total collected prizes in the newly
formed fragment. In the process, the leader of each newly
formed fragment reports the collected prizes to the centralized
coordinator. When the total prizes collected reach Q, the
coordinator sends a message to the entire network to stop the

prize-collecting process. We refer to this implementation as
Distributed Approximation.

Algo. 3 iteratively adds cycleless edges with maximum
benefit and therefore is not as amenable as Algo. 2 for dis-
tributed implementation. We thus adopt the baseline distributed
implementation for DAO?-U while considering the prizes.
In particular, a selected leader (node with the smallest ID)
gathers the topological information of the data aggregation
network together with the available prizes at nodes and exe-
cutes Algo. 3 to find data aggregation trees of the aggregation
network. It then broadcasts this result to all the data nodes,
each of which then knows whether each incident edge belongs
to an aggregation tree. We refer to this implementation as
Distributed Benefit.

We assume that all the sensor nodes have enough energy to
perform the tasks computed by the centralized (i.e., Algo. 1, 2,
and 3) and distributed algorithms (i.e., Distributed DAOQ—U,
Distributed Approximation, and Distributed Benefit). However,
when sensor nodes have limited energy, some might deplete
their energy, thus causing network partition in the data aggre-
gation process. Our distributed algorithms can be modified
accordingly to address the network partitions. For example,
in the Distributed DAO?-U, if the energy level of a node on
the longest path of an aggregation tree is below a pre-specified
threshold, it will notify the local neighborhood so that a new
path can be established for the data aggregation before it is
too late. We leave its detailed implementation as future work.

VI. PERFORMANCE EVALUATION

This section investigates and compares all the data aggrega-
tion algorithms with the state-of-the-art. Table III lists all the
compared algorithms. We write our simulators in Java on a
MacBook Pro with a 2 GHz Dual-Core Intel Core i5 processor
and 8 GB RAM. 50 or 100 sensors are uniformly distributed
in a region of 1000m x 1000m or 2000m x 2000m. The
transmission ranges of sensor nodes are 250m. The correlation
coefficient p is given as a fixed constant - How to estimate
it has been studied by existing literature [52]. Each data
point is averaged over ten runs, and the error bars indicate
95% confidence interval wherever applicable. Below we first
evaluate the centralized algorithms for DAO?*-U and DAO? in
Section VI-A and VI-B respectively, and then their distributed
implementation in Section VI-C.

A. Algorithms for DAO?-U

We first consider 50 nodes in a 1000m x 1000m region.
Unless otherwise mentioned, R = m = 512MB.

Valid Range of p: Fig. 7 shows the valid range of number
of data nodes p for different correlation coefficient p. Fig. 7(a)

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on October 31,2023 at 04:03:25 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TANG et al.: DAO?: OVERCOMING OVERALL STORAGE OVERFLOW IN ICSNs

50 T T

o (?_ T T T T T T T =
g 45 12 % p=t]
g 40 1¢ 20 p=0.7 —— 1
® 3 18 8 p]
5 30 12 14 p]
& 25 1% 12 g
5 20 41 © 10 .
g 13 18 &]
JEJ 10 *i 4+ X]
2 (5)'\ Il Il Il Il _\.1\ Il Il Il g (2)7\ Il Il Il \X\ Il Il Il Il Il

262830323436384042444648

Number of data nodes p
(b) Max number of initiators p — q.

262830323436384042444648

Number of data nodes p
(a) Number of aggregators gq.

Fig. 7. Valid range of number of data nodes p by varying p (R = m).
S 50 —r——F+—1—T++5 15%—T————

‘g 450 - STF-Walk %

400 B-Walk zesemn o L - i

2 350 gg 10% — \

g a0 185
g 250 ‘ =% 5% .
@ 200 | 85 /

g 150 ‘ ‘ T 5o i
< 10 111 Bl

g 58 pEFEFE 1 ., o

= 26 27 28 29 30 31 3233 o

26 27 28 29 30 31 32 33

p p
(a) Total aggregation cost. (b) Performance improvement.

Fig. 8. Performance improvement of STF-Walk over B-Walk.

shows for each valid p value its corresponding value of the
number of aggregators ¢q. When p = 0.1, the valid range of p
is a single value of 26, with its corresponding ¢ as 20. When
increasing p, the valid range of p expands, from 26 — 29
for p = 0.3, to 26 — 33 for p = 0.5, to 26 — 37 for
p = 0.7, to 26 — 49 for p = 1. This is because strong data
correlation leads to more data being aggregated, thus allowing
more data nodes under overall storage overflow. It also shows
that for each p, ¢ increases when increasing p. More data
nodes mean more overflow data and less available storage.
Therefore more aggregators are needed to achieve enough data
size reduction. Finally, it shows that for the same p, g decreases
when increasing p. This is implied by Equation 1, which can
be rewritten as: q = ["X(HF”L/R;_'V'X”L/R] Fig. 7(b) shows
the maximum number of allowable initiators p — ¢ for each
valid p value. There are two cases in which one initiator is
allowed: p = 0.5 and p = 33, and p = 1 and p = 49, while
multiple initiators are allowed for other cases.

Performance Improvement of STF-Walk Over B-Walk: We
first study the performance improvement of STF-Walk over
B-Walk by setting p = 0.5, a representative correlation
coefficient, and varying p from 26 to 33. Fig. 8(a) shows that
when p < 28, both STF-Walk and B-Walk yield the same total
aggregation costs. This is because when the number of data
nodes p is small, the number of aggregators ¢ is small, causing
the connected components of the resultant g-edge forests to be
all linear. In linear topologies, aggregation occurs by traversing
from one end of the linear topology to the other, resulting
in the same performances for STF- and B-Walk. However,
when p gets larger, STF-Walk performs better than B-Walk,
because STF-Walk always traverses the smaller subtree twice
while B-Walk could traverse the bigger subtree twice. Fig. 8(b)
shows that the performance improvement of STF-Walk over
B-Walk is around 5% — 10%. Therefore, for the rest of the
simulations, we adopt STF-Walk instead of B-Walk but still
refer to it as B-Walk.

Comparing B-Walk with LP-Walk Visually: Before compre-
hensively comparing B-Walk and LP-Walk, we first compare
them visually to gain some insights. We consider p = 0.5
and p = 33, which has 32 aggregators and one initiator.
Fig. 9(a) and (b) show such an ICSN and its correspond-
ing aggregation network, respectively. Fig. 9(c) shows the
corresponding 32-edge forest. Fig. 9(d) and (e) show the
aggregation walks from B-Walk and LP-Walk, respectively.
B-Walk visits 32 edges twice, resulting in a total aggregation
cost of 381.2 kilojoules (KJ), while LP-Walk only visits
12 edges twice, with a total cost of 290.6KJ, a 23.8% of
improvement upon B-Walk.

Comparing B-Walk With LP-Walk by Varying p and p: Next,
we compare the aggregation costs in B-Walk and LP-Walk in
the range of p € [26,49] with varied p. Fig. 10(a) shows that
for each p, with the increase of p, the total aggregation costs
of both B-Walk and LP-Walk increase. However, LP-Walk
constantly performs better than B-Walk. It also shows that
for the same p, with the increase of p, the aggregation costs
for both B-Walk and LP-Walk decrease. This is because more
correlation means fewer aggregators are visited, thus incurring
fewer aggregation costs.

Fig. 10(b) shows the performance improvement percentage
of LP-Walk over B-Walk is generally 10% — 20%. Combining
the 5% — 10% performance improvement of STF-Walk over
B-Walk, the performance improvement of LP-Walk over
B-Walk is around 15% — 30%. Furthermore, we observe
the smaller the p, the larger the performance improvement
percentage is. For example, when p = 26 (the only valid
value for p = 0.1), the performance improvement percentage
for p = 0.1 is 14% while zero for p = 0.3,0.5,0.7,1.0.
When p = 0.5, in its valid p range (26 — 33), it almost
always has a larger performance improvement percentage
than p = 0.7,1. When less data correlation exists, more
aggregators are visited, making larger sizes of the resul-
tant g-edge forest and its constituent trees. LP-Walk can
thus save more aggregation costs than traversing smaller
trees by traversing the longest paths of larger trees once.
Given any p, when increasing p, the number of allowed
initiators p — ¢ decreases (Fig. 7(b)). As such, performance
improvement of LP-Walk upon B-Walk increases, as shown
in Fig. 10(b).

Comparing B-Walk With LP-Walk by Varying R/m: We
compare B-Walk with LP-Walk on different R/m. When
increasing R/m, the overall storage overflow situation gets
more challenging since there is relatively more overflow data
than available storage spaces. We choose p = 0.5 and vary
R/m from 1 to 5, under which the common valid range of
p is [26,30]. Therefore we pick p = 26 and p = 30 for
comparison. Fig. 11(a) shows again that LP-Walk yields
less total aggregation cost under different R/m. Fig. 11(b)
further shows that the performance improvement percentage
of LP-Walk upon B-Walk generally increases when increas-
ing R/m. This shows LP-Walk performs even better in
more challenging overall storage overflow scenarios. When
increasing R/m, the resulting g-edge forests get larger. This
favors LP-Walk, which travels a large number of edges only
once.

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on October 31,2023 at 04:03:25 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING
® A ® 8 o4
o® g . o®% o 3
X ° x °
%¢ %@ ° = % @ b ° *®
00 b4 o-0® °
° g °
° P e ®
o
o ° o °
o s & o—a® I
o e ° ®e
I ° 2} v °

(a) ICSN of 50 nodes. (b) Aggregation network.

Fig. 9.

(c) 32-edge forest.

(d) B-Walk (381.2KJ). () LP-Walk (290.6KJ).

Visually comparing B-Walk with LP-Walk with one initiator. Black nodes are data nodes, and white nodes are storage nodes, with node ID shown

inside. Here, p = 0.5, p = 33, and ¢ = 32. B and <« indicate the first and last node in a walk, respectively.

700

T T
p=1,B-Walk —+— L T T I ! —
600 | p=1, LP-Walk 120% X g
p=0.7, B-Walk % !
500 | p=0.7, LP-Walk & 115% 4
p=0.3, B-Walk :
400 [p=0.3, LP-Walk ¥ 1 !
10%F a .
| 1 7| e/ o
200 | LR 1 5% % \j o7 b
‘ﬁﬁ i | p -
100 | o / 1 1 /H\L‘ p=0.3 ---*---
il s s 0% ' : ,

25 30 35 40 45 50 25 30 35 40 45 50
Number of Data Nodes p
(b) Performance improvement.

Number of Data Nodes p
(a) Total aggregation cost (KJ).

Fig. 10. Comparing B-Walk with LP-Walk by varying p and p.

500

p:‘ze’Brw‘a'k ‘ 25 % T T T T T T T
400 -
300 o | 7
200 .l : 7
5% |-]

100 p=30

o _

0 1 15 2 25 3 35 4 45 5
R/m g

(a) Total aggregation cost (KJ). (b) Performance improvement.

Fig. 11. Comparing B-Walk with LP-Walk by varying R/m.

B. Algorithms for DAO?

State-of-the-Art Data Aggregation Techniques: Existing
works of data aggregation in sensor networks mainly use
tree-based routing structures that connect the base station
and sensor nodes [2], [13], [28], [30], [34], [49]. Data at
sensor nodes are transmitted back to the base station along
the tree while being aggregated. As existing works consider a
single aggregation tree that spans the base station and sensor
nodes while there is no base station in DAO2, to make a fair
comparison, we construct one aggregation tree by modifying
Algo. 2. In particular, it merges two fragments with the largest
prize-cost ratio until the largest fragment collects enough quota
of Q. This largest fragment serves as the data aggregation tree
for existing work. Then, the node with the smallest prize in
this tree is selected as the base station (i.e., the initiator), from
which its overflow data is transmitted to visit all the data nodes
in the tree to aggregate their overflow data.

We refer to the above single-tree data aggregation paradigm
by existing works as S-Tree, the approximation algorithm
Algo. 2 as Approximation, and the heuristic algorithm Algo. 3
as Benefit. We randomly generate 100 sensor nodes (50 data
nodes and 50 storage nodes) in a 2000m x 2000m field with
a transmission range being 250m. As we study the general

= 1600 S — . gzsooo po—
> pproximation = pproximation
Zg 1400 Benefit 1 s 26000 Benefit
S 1200 S-Tree q § 24000 - S-Tree 1
8 1223 1 B 22000(]
= 1
8 a0 R 8 20000 1
=2 - 4
2 400 i £ 180001 /%//{/
T 200 1 > 16000 - %”
2 S S ool
%705 06 07 08 09 1 = 05 06 07 08 09 1
Correlation coefficient p Correlation coefficient p
(a) Total aggregation cost (KJ). (b) Total data size reduction.
Fig. 12. Comparing three DAO? algorithms.

case of DAO?, we set R, as a random number in [512MB,
1024MB] and m; a random number in [256MB, 512MB].
To make the data aggregation feasible (i.e., there is enough
data size reduction after aggregation), instead of randomly
setting the correlation coefficient p; and then checking its
feasibility, we assume all the data nodes have the same
correlation coefficient (i.e., p; = p). We define the threshold
correlation coefficient as the minimum feasible correlation
coefficient of all the data nodes and denote it as py,. That
. o Zievd Ri_zjevadm
1S, pth = vy R;

the data nodes from p;; to 1 in 0.1 stepwise.

Fig. 12(a) shows that Benefit outperforms Approximation,
which outperforms S-Tree in the entire range of p. The total
aggregation costs of all three algorithms decrease with the
increase of p. This is because when p is small, more aggrega-
tors are needed; thus they are more likely to form a few large
fragments. Visiting all the aggregators in these large fragments
from a few initiators is more costly than visiting more smaller
fragments. This shows that the more spatial correlation of the
data, the more cost-efficient our data aggregation techniques
are. Approximation performs more like S-Tree when p is small
and more like Benefit when p is large. This is because the
larger p, the larger prizes available at each node. Therefore,
the fragment-merging process in Approximation results in one
or a few large fragments when p is small (like S-Tree) and a
single edge is merged in a fragment each time as Benefit does
when p gets large. Benefit outperforms S-Tree between 31.6%
to 71.8% in the entire range of p.

Fig. 12(b) shows the total size reduction achieved in all
three algorithms (while the average required overflow data
size Q is 15,904 MB). It shows that both Approximation and
Benefit reduce around 16,000 MB data size for the entire range
of p, around 3% of more reduction than required. A close
look shows that Approximation aggregates more data than

’. We then increment p for all

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on October 31,2023 at 04:03:25 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TANG et al.: DAO?: OVERCOMING OVERALL STORAGE OVERFLOW IN ICSNs

TABLE IV

INVESTIGATING NUMBER OF INITIATORS a AND NUMBER OF
AGGREGATORS g W.R.T. CORRELATION COEFFICIENT p

TABLE V

THE NUMBER OF INITIATORS a AND THE NUMBER OF AGGREGATORS ¢
W.R.T. THE NUMBER OF DATA NODES p

D 55 60 65 70 | 71

q 17 34 50 67 | 70
o Baseline 113 | 132 9.5 2.5 1
Fragment | 14.8 | 189 | 143 | 2.8 1

p Approximation | Benefit | S-Tree
0.5 a 1.5 6.7 1
) q 414 40.1 41.5
a 2.8 10.5 1
06 1, 343 323 | 357
a 4.5 11.2 1
071 4 29.1 274 | 325
08 | @ 5.9 11.3 1
) q 24.5 23.8 30.5
a 6.6 10.2 1
091, 217 212 30
1 a 7.1 9.6 1
q 19.6 19.2 30
*e . e .0
N ¢
o ¢
‘% co o % et o % L 4
. ®
. 4 ° ® »
: 2 - N .o
.o .o P - . . &
RS T v 3T
(a) (b) (c)
Fig. 13. Aggregation trees in (a) Approximation, (b) Benefit, and (c) S-Tree.

Benefit at p = 0.6 and 0.7, sustaining our initial conjecture
that Approximation could yield more prizes (i.e., aggregates
more data) than Benefit. In contrast, S-Tree always looks for
a single aggregation tree to visit all the aggregators. With
the increase of p, as fewer aggregators are needed, S-Tree
thus needs more nodes to connect the targeted aggregators,
dramatically increasing the total size of data reduction.

Table IV shows the number of initiators a and the number
of aggregators g for the three algorithms. With the increase
of p, q decreases for all three algorithms — as each data node
can aggregate more data, it needs less number of data nodes
to be aggregators. However, S-Tree has more aggregators than
Approximation and Benefit at each fixed p value, showing
that it is less cost-efficient than the other two. We also
observe that with the increase of p, the number of initiators a
increases for both Approximation and Benefit. This is because
the fewer aggregators in the sensor field, the more distance
among them thus the smaller chance that they are merged
into fragments, resulting in more fragments. As each fragment
has one initiator, the number of initiators increases with the
increase of p. Note that S-Tree has only one initiator as it
always finds one aggregation tree.

Fig. 13 visually shows the resultant aggregation trees from
a typical run of the three algorithms. Benefit has 13 small
trees, whereas Approximation has four and S-Tree has one.
This demonstrates the more granular effort of Benefit in data
aggregation, wherein each initiator only visits its local data
nodes for aggregation. In contrast, in Approximation and
S-Tree, initiators could travel long distances for aggregation,
thus costing more energy.

C. Distributed Algorithms

Finally, we evaluate the performances of our designed
distributed algorithms for DAO?-U and DAO?-U, respectively.

100 nodes are randomly placed in a 2000m x 2000m region.
The transmission range is 250m.

1) Distributed Algorithms for DAO*-U: We set m = R =
512MB and compare two distributed algorithms viz. Baseline
and Fragment-based. Overhead messages of different sizes
are used in all three stages of our distributed algorithms.
In Stage 1: Aggregation network construction, the overhead
message used in distributed Bellman-Ford is 20 B, and the
overhead message used for constructing the aggregation net-
work is 1000 B, as the message includes the shortest paths
to all other nodes. There are two distributed algorithms viz.
Baseline and Fragment-based in Stage 2: Constructing ¢q-edge
Forest. In Baseline, the size of the message selecting a leader
is 20 B, and the size of the leader’s message informing the
computed results is 1000B. In Fragment-based, the overhead
messages finding MWOE and merging fragments are 20 B.
In Stage 3: Data aggregation, the message finding the initiator
of the LP-Walk is 20 B. As the overflow data packet size
of 512 MB is very large, in our simulations, it is fragmented
into 1000 data packets, each of 512 KB.

We adopt a typical correlation coefficient value p = 0.6,
find the valid range of the number of data nodes p using
Equation 2, which is [51, 71], and vary p in this range. Table V
shows the corresponding number of initiators a found in both
Baseline and Fragment and the number of aggregators q. With
the increase of the number of data nodes p, the number of
initiators needed for energy-efficient data aggregation in both
algorithms increases first and then decreases. When increasing
p initially, with the increased overflow data, more aggregators
need to be visited to achieve the required data reduction.
With the increasing number of aggregators, more connected
fragments are formed. As each tree needs one initiator, this
results in an increased number of initiators in the initial stage
of increasing p. However, with the further increase of p, the
number of aggregators increases to the extent that the different
trees they belong to begin to merge, resulting in fewer trees
and initiators.

Table VI shows the breakup of the energy cost in both Base-
line and Fragment. Among the three stages in the distributed
algorithms, the first two stages, viz. constructing aggregation
network and finding g-edge forest, cost the smallest portion
of energy, in the order of a few or tens of Joules, while the
third stage, viz. data aggregation costs the most of the energy,
in the order of Kilojoules. This shows that in data-intensive
ICSNs, most energy is spent on the payload of data aggrega-
tion instead of on the overhead cost in aggregation network
construction and finding g-edge forest. This demonstrates the
energy efficiency of our data preservation system.

2) Distributed Algorithms for DAO?: We set R; as a random
number in [S12MB, 1024MB] and m,; as a random number in
[256MB, 512MB]. We consider the distributed algorithms of

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on October 31,2023 at 04:03:25 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TABLE VI

ENERGY CONSUMPTION OF DISTRIBUTED ALGORITHMS FOR DAOZ2-U.
STAGE 1: AGGREGATION NETWORK CONSTRUCTION. STAGE 2:
FINDING ¢-EDGE FOREST. STAGE 3: DATA AGGREGATION

p 55 60 65 71
Stage 1 (J) 55.26 51.42 53.23 55.4
Stage 2 Baseline (J) 2.85 3 3.24 342
& Fragment (J) 0.81 .74 285 755
Stage 3 Baseline (KJ) 77.79 228.62 | 684.42 1682.95
& Fragment (KJ) | 134.25 | 300.82 | 696.48 | 1674.81
T T T a T T T
~ 3500 Approximation =3 24000 F Approximation
~3 3000} Benefit & Benefit
% S-Tree 22000} S-Tree
8 25001 i 2 i
5 2000w - & 20000F
g 15001 1 & 18000}
= 1000} 8
3 so0f § 16000 -
755 e e 70 g M0 60 e5 70

Number of Data Nodes p
(a) Total aggregation cost (KJ).

Number of Data Nodes p
(b) Total data size reduction.

Fig. 14. Distributed algorithm performance comparison for DAO?.

Approximation (Algo. 2), Benefit (Algo. 3), and S-Tree. Recall
that S-Tree combines fragments with the largest prize-cost
ratio iteratively like Approximation, except that it won’t
stop until the largest fragment collects enough quota of Q.
Therefore, S-Tree’s distributed implementation follows the
implementation of Approximation proposed in Section V-B,
except that the coordinator records the prizes collected by each
fragment. When the largest prize of any fragment reaches Q,
it sends a message to the entire network to stop the prize-
collecting. Finally, the node with the smallest prize in this
fragment is selected as the base station. From this, the overflow
data is transmitted to visit all the data nodes in the tree
to aggregate their overflow data by traversing each edge at
most twice. Fig. 14(a) shows the distributed S-Tree incurs
much more energy cost than distributed Approximation and
Benefit. This can be explained by Fig. 14(b), which shows
that distributed S-Tree collects more prizes than necessary.
Again, as S-Tree only allows a single data aggregation tree,
its aggregation cost is much higher than that of the other two
distributed algorithms.

VII. RELATED WORK

Below we review the prior work in the theory and sensor
networking communities, respectively.

A. Multiple and Quota Traveling Salesmen Problems

TSP? is different from well-known multiple traveling sales-
men problem (mTSP) [10] and vehicle routing problem
(VRP) [50]. mTSP determines a set of routes for multiple
salesmen who all start from and return to a single city (or
a set of cities), such that all the cities are visited exactly
once and the total cost of visiting all the cities is minimized.
VRP generalizes mTSP by adding more constraints, such
as time windows for pickup and delivery, and that vehicles
have capacities. In both mTSP and VRP, a prescribed set of
cities (or customers) must be visited, and each traveling route
must start and end at the prefixed (same or different) depots.

IEEE/ACM TRANSACTIONS ON NETWORKING

However, TSP? requires all together ¢ cities to be visited,
while a salesman can end at a node different from his starting
node. As such, TSP? needs to decide how many salesmen are
required, where to place them, and how to find each route.
Q-TSP? is different from the prize-collecting TSP (or
TSP/vehicle routing with profit) [4], [8], [18]. In prize-
collecting TSP, each vertex has a prize (or profit) to be
collected and a penalty if not visited; the goal of the trav-
eling salesman is to minimize his travel costs and penalties
while visiting enough cities to collect a prescribed amount of
prize money. The complementary problem of maximizing the
collected profit with the budgeted traveling cost is orienteering
problem [51]. As our work is to aggregate and reduce the size
of sensory data by some specified amount while minimizing
the energy cost incurred, it bears more resemblance to the
prize-collecting TSP. Below we review its related literature.
Bienstock [11] decided on a subset of vertices such that
the length of the tour plus the sum of penalties associated
with vertices not in the tour is as small as possible and
proposed a 2.5 approximation algorithm based on linear pro-
gramming relaxation. Archer et al. [3] further improved the
approximation ratio to 2 — e using Lagrangian relaxation. Tang
and Wang [48] proposed a local search-based heuristic for a
related capacitated prize-collecting TSP. Dell’ Amico et al. [16]
developed a lagrangian heuristic and obtained an upper bound
in the form of a feasible solution.
If no penalty is considered, prize-collecting TSP becomes
a quota-TSP problem [5], [6]. Awerbush [6] proposed an
O(logR) approximation algorithm where R is the quota to
collect. It is based on an approximation for the k-minimum-
spanning-tree problem (k-MST), finding a tree of the least
weight that spans exactly k vertices on a graph. Ausiello
et al. [5] studied the online version of the problem.
However, the above prize-collecting or quota TSP research
assumes only one traveling salesman. If multiple traveling
salesmen are allowed, the prize-collecting mTSP has been
studied under the name of multi-vehicle routing with profit,
to which Chapter 9 in [18] gave a comprehensive survey
of the current work. All of them, however, only focus on
routing while fixing the number of vehicles and the starting
and ending depots of the vehicles. DAO? significantly differs
from existing research for two reasons. First, not only does
DAO? needs to decide the number of salesmen but also to
determine the starting and ending node of each salesman;
that is, it studies both placements and routing of traveling
salesmen in the same problem space. Our work is the first one
to study multiple TSP prize-collecting problems considering
both placement and routing, wherein the number of salesmen,
the starting and ending node of each salesman, and the route
of each salesman must all be decided simultaneously. Second,
none of the existing TSP or mTSP problems consider that
traveling salesmen, when dispatched from different nodes,
could have different traveling modes and incur a different
cost per unit distance traveled, which uniquely arises and are
identified in DAO?. How the cost-and-time tradeoff among
various transportation means (e.g., cars, railways, and air)
impacts the solutions to various TSP problems remains largely
unexplored.

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on October 31,2023 at 04:03:25 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TANG et al.: DAO?: OVERCOMING OVERALL STORAGE OVERFLOW IN ICSNs

B. Data Aggregation in Sensor Networks

In the sensor network community, extensive research
focuses on disconnection-tolerant operations without the base
station. Some system research was conducted to design coop-
erative distributed storage systems and to improve the utiliza-
tion of the network’s data storage capacity [35], [36]. Other
research instead took an algorithmic approach by focusing on
the optimality of the solutions [23], [47], [56]. However, all the
above works assumed that enough storage space is available to
store the overflow data, thus not addressing the overall storage
overflow problem.

There is a vast amount of literature on data aggrega-
tion in sensor networks [2], [13], [28], [30], [34], [49].
Tree-based routing structures were often proposed to either
maximize network lifetime (the time until the first node
depletes its energy) [34], minimize total energy consumption
or communication cost [28], [30], or reduce the delay of
data gathering [2]. Recently, Chen et al. [13] considered
the duty-cycle sensor networks and designed two distributed
data aggregation algorithms where an aggregation tree and a
conflict-free schedule are generated simultaneously to achieve
low aggregation latency. Some other works were based on
non-tree routing structures, using mobile base stations to
collect aggregated data to maximize the network lifetime [43],
[49]. However, data aggregation in DAO? significantly differs
from existing data aggregation techniques in both goals and
techniques. First, existing data aggregation reduces the number
of transmissions by combining data from different sensors en
route to the base station to save energy. However, the goal of
data aggregation in DAO? is to aggregate the overflow data
so that they can fit into storage available, thus preventing data
loss caused by overall storage overflow in the ICSN. Second,
the underlying routing structures in most of the existing data
aggregation techniques are trees rooted at the base station
covering all sensor nodes. In DAOQ, however, since the base
station is unavailable, those routing structures are no longer
suitable. Instead, DAQ? introduces a minimum q-edge forest,
a routing structure that serves as the building block of our
techniques.

ICSNs differ from delay-tolerant sensor networks
(DTSN) [31]. In DTSNs, mobile nodes are intermittently
connected due to their mobility and low density, and
data is opportunistically forwarded to destination nodes.
In ICSNs, however, all the static sensors are connected while
disconnected from the base station, and data is uploaded to
the base station only when uploading opportunities such as
data mules become available.

VIII. CONCLUSION AND FUTURE WORK

We introduced an algorithmic framework called DAO?,
which tackles the overall storage overflow problem in emerg-
ing sensor network applications. Our work has two theoretical
significance. First, in studying DAO?, we uncovered two new
graph-theoretic problems viz. TSP? and Q-TSP?. In sharp
contrast to classic TSP and its variants that mainly focus
on the routing of salesmen, TSP? and Q-TSP2 find both
the placement and the routing of the traveling salesmen.
We designed a suite of energy-efficient optimal, approxima-
tion, heuristic, and distributed data aggregation algorithms to

solve these two problems. Second, the two building blocks
of our framework viz. aggregation network and minimum
g-edge forest are two novel graph structures not formally
identified and studied in any existing research. The minimum
g-edge forest generalizes the minimum spanning tree, one of
the most fundamental graph data structures. As such, one of
our approximation algorithms (Algo. 1) generalizes the well-
known Kruskal’s MST algorithm. Of these theoretical roots,
the techniques proposed in this paper could be applied to any
applications wherein data correlation and resource constraints
coexist, including Internet of Things applications, data centers,
and big data analytics.

One limitation of our work is that the data nodes and their
overflow data are known beforehand. In a real-time scenario
wherein data nodes emerge dynamically, the extDAO? can
still be solved by periodically executing our algorithms when-
ever new data nodes arise. Second, when sensor nodes have a
limited amount of energy, some could deplete their energy,
causing network partition in the data aggregation process.
In the future, we will design more fault-tolerant distributed
data aggregation algorithms to tackle such problems. Different
spatial correlation models (lossy or lossless) could lead to
different aggregation mechanisms. Our model is lossy in that
aggregator does not have enough information to inform other
data nodes to aggregate. In the future, we will consider a
lossless aggregation wherein a sensor node can be both an
initiator and aggregator and design new techniques to solve
the overall storage overflow problem. Finally, we treat data
aggregation and offloading as two separate stages to solve each
problem nicely. Although both stages are solved optimally or
with approximation, their combined solution is not necessarily
optimal or achieves the same approximation for the data
aggregation and offloading problem. We will integrate these
two stages to achieve an energy-efficient solution for the
overall storage overflow problem.

REFERENCES

[11 R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: The-
ory, Algorithms, and Applications. Upper Saddle River, NJ, USA:
Prentice-Hall, 1993.

[2] B. Alinia, M. H. Hajiesmaili, and A. Khonsari, “On the construction
of maximum-quality aggregation trees in deadline-constrained WSNs,”
in Proc. IEEE Conf. Comput. Commun. (INFOCOM), Apr. 2015,
pp- 226-234.

[3] A. Archer, M. H. Bateni, M. T. Hajiaghayi, and H. Karloff, “Improved
approximation algorithms for prize-collecting Steiner tree and TSP, in
Proc. IEEE FOCS, Oct. 2009, pp. 427-436.

[4] C. Archetti, M. G. Speranza, and D. Vigo, “Vehicle routing problems
with profits,” in Vehicle Routing: Problems, Methods, and Applications,
2nd ed. Philadelphia, PA, USA: SIAM, 2014, pp. 273-297.

[5]1 G. Ausiello, M. Demange, L. Laura, and V. Paschos, “Algorithms for the
on-line quota traveling salesman problem,” Inf. Process. Lett., vol. 92,
no. 2, pp. 89-94, Oct. 2004.

[6] B. Awerbuch, Y. Azar, A. Blum, and S. Vempala, “New approximation
guarantees for minimum-weight k-trees and prize-collecting salesmen,”
SIAM J. Comput., vol. 28, no. 1, pp. 254-262, Jan. 1998.

[71 B. Awerbuch, A. Bar-Noy, and M. Gopal, “Approximate distributed
Bellman—Ford algorithms,” IEEE Trans. Commun., vol. 42, no. 8§,
pp. 2515-2517, Aug. 1994.

[8] E. Balas, “The prize collecting traveling salesman problem,” Networks,
vol. 19, no. 6, pp. 621-636, Oct. 1989.

[9] S. Basagni, L. Boloni, P. Gjanci, C. Petrioli, C. A. Phillips, and
D. Turgut, “Maximizing the value of sensed information in underwater
wireless sensor networks via an autonomous underwater vehicle,” in
Proc. [EEE INFOCOM, Apr. 2014, pp. 988-996.

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on October 31,2023 at 04:03:25 UTC from IEEE Xplore. Restrictions apply.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]

[32]

[33]

[34]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

T. Bektas, “The multiple traveling salesman problem: An overview
of formulations and solution procedures,” Omega, vol. 34, no. 3,
pp. 209-219, Jun. 2006.

D. Bienstock, M. X. Goemans, D. Simchi-Levi, and D. Williamson,
“A note on the prize collecting traveling salesman problem,” Math.
Program., vol. 59, nos. 1-3, pp. 413-420, Mar. 1993.

C. Busch, M. Magdon-Ismail, F. Sivrikaya, and B. Yener, “Contention-
free MAC protocols for wireless sensor networks,” in Proc. DISC, 2004,
pp. 245-259.

Q. Chen, H. Gao, Z. Cai, L. Cheng, and J. Li, “Distributed low-latency
data aggregation for duty-cycle wireless sensor networks,” IEEE/ACM
Trans. Netw., vol. 26, no. 5, pp. 2347-2360, Oct. 2018.

T. Corman, C. Leiserson, R. Rivest, and C. Stein, Introduction to
Algorithms. Cambridge, MA, USA: MIT Press, 2009.

R. Cristescu, B. Beferull-Lozano, M. Vetterli, and R. Wattenhofer,
“Network correlated data gathering with explicit communication: NP-
completeness and algorithms,” IEEE/ACM Trans. Netw., vol. 14, no. 1,
pp. 41-54, Feb. 2006.

M. Dell’ Amico, F. Maffioli, and A. Sciomachen, “A Lagrangian heuristic
for the prize collecting travelling salesman problem,” Ann. Oper. Res.,
vol. 81, pp. 289-306, Jun. 1998.

I. Martin et al., “A high-resolution sensor network for monitoring glacier
dynamics,” IEEE Sensors J., vol. 14, no. 11, pp. 3926-3931, Nov. 2014.
D. Feillet, P. Dejax, and M. Gendreau, “Traveling salesman problems
with profits,” Transp. Sci., vol. 39, no. 2, pp. 188-205, May 2005.

M. Di Francesco, S. K. Das, and G. Anastasi, “Data collection in
wireless sensor networks with mobile elements: A survey,” ACM Trans.
Sensor Netw., vol. 8, no. 1, pp. 1-31, Aug. 2011.

R. G. Gallager, P. A. Humblet, and P. M. Spira, “A distributed algorithm
for minimum-weight spanning trees,” ACM Trans. Program. Lang. Syst.,
vol. 5, no. 1, pp. 66-77, Jan. 1983.

R. Ghaffarivardavagh, S. S. Afzal, O. Rodriguez, and F. Adib, “Ultra-
wideband underwater backscatter via piezoelectric metamaterials,” in
Proc. ACM SIGCOMM, Jul. 2020, pp. 722-734.

W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-
efficient communication protocol for wireless microsensor networks,”
in Proc. HICSS, 2000.

X. Hou, Z. Sumpter, L. Burson, X. Xue, and B. Tang, “Maximizing
data preservation in intermittently connected sensor networks,” in Proc.
IEEE 9th Int. Conf. Mobile Ad-Hoc Sensor Syst. (MASS), Oct. 2012,
pp. 448-452.

S. Hsu, Y. Yu, and B. Tang, “DRE?Z: Achieving data resilience in wireless
sensor networks: A quadratic programming approach,” in Proc. IEEE
MASS, Dec. 2020, pp. 71-79.

H. Huang, A. V. Savkin, M. Ding, and C. Huang, “Mobile robots in
wireless sensor networks: A survey on tasks,” Comput. Netw., vol. 148,
pp. 1-19, Jan. 2019.

J. Jang and F. Adib, “Underwater backscatter networking,” in Proc. ACM
SIGCOMM, 2019, pp. 187-199.

L. Kou, G. Markowsky, and L. Berman, “A fast algorithm for Steiner
trees,” Acta Inf., vol. 15, no. 2, pp. 141-145, 1981.

T.-W. Kuo and M.-J. Tsai, “On the construction of data aggregation
tree with minimum energy cost in wireless sensor networks: NP-
completeness and approximation algorithms,” in Proc. IEEE INFOCOM,
Mar. 2012, pp. 3109-3121.

H. Li, D. Liang, L. Xie, G. Zhang, and K. Ramamritham, “Flash-
optimized temporal indexing for time-series data storage on sensor
platforms,” ACM Trans. Sensor Netw., vol. 10, no. 4, pp. 62:1-62:30,
2014.

J. Li, A. Deshpande, and S. Khuller, “On computing compression
trees for data collection in wireless sensor networks,” in Proc. IEEE
INFOCOM, Mar. 2010, pp. 1-9.

Y. Li and R. Bartos, “A survey of protocols for intermittently connected
delay-tolerant wireless sensor networks,” J. Netw. Comput. Appl., vol. 41,
pp. 411423, May 2014.

W. Liang, X. Ren, X. Jia, and X. Xu, “Monitoring quality maximization
through fair rate allocation in harvesting sensor networks,” IEEE Trans.
Farallel Distrib. Syst., vol. 24, no. 9, pp. 1827-1840, Sep. 2013.

L. Liu, R. Wang, D. Guo, and X. Fan, “Message dissemination for
throughput optimization in storage-limited opportunistic underwater
sensor networks,” in Proc. 13th Annu. IEEE Int. Conf. Sens., Commun.,
Netw. (SECON), Jun. 2016, pp. 1-9.

D. Luo, X. Zhu, X. Wu, and G. Chen, “Maximizing lifetime for the
shortest path aggregation tree in wireless sensor networks,” in Proc.
IEEE INFOCOM, Apr. 2011, pp. 1566-1574.

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

IEEE/ACM TRANSACTIONS ON NETWORKING

L. Luo et al., “Design, implementation, and evaluation of EnviroMic:
A storage-centric audio sensor network,” ACM Trans. Sensor Netw.,
vol. 5, no. 3, pp. 1-35, May 2009.

L. Luo, C. Huang, T. Abdelzaher, and J. Stankovic, “EnviroStore:
A cooperative storage system for disconnected operation in sensor
networks,” in Proc. IEEE INFOCOM, May 2007, pp. 1802-1810.

N. Lynch, Distributed Algorithms. San Mateo, CA, USA:
Morgan Kaufmann, 1996.

D. Mosse and G. Gadola, “Controlling wind harvesting with wireless
sensor networks,” in Proc. Int. Green Comput. Conf. (IGCC), Jun. 2012,
pp. 1-6.

D. Peleg and V. Rubinovich, “A near-tight lower bound on the time
complexity of distributed minimum-weight spanning tree construction,”
SIAM J. Comput., vol. 30, no. 5, pp. 1427-1442, Jan. 2000.

D. E. Phillips, M. Moazzami, G. Xing, and J. M. Lees, “A sensor
network for real-time volcano tomography: System design and deploy-
ment,” in Proc. 26th Int. Conf. Comput. Commun. Netw. (ICCCN),
Jul. 2017, pp. 1-9.

M. Rahmati and D. Pompili, “UW-SVC: Scalable video coding trans-
mission for in-network underwater imagery analysis,” in Proc. IEEE
16th Int. Conf. Mobile Ad Hoc Sensor Syst. (MASS), Nov. 2019,
pp. 380-388.

F. Shahzad, “Satellite monitoring of wireless sensor networks,” Proc.
Comput. Sci., vol. 21, pp. 479-484, Jan. 2013.

Y. Shi and Y. T. Hou, “Theoretical results on base station movement
problem for sensor network,” in Proc. IEEE INFOCOM, Apr. 2008,
pp. 1-5.

R. Sugihara and R. K. Gupta, “Path planning of data mules in sensor
networks,” ACM Trans. Sensor Netw., vol. 8, no. 1, pp. 1:1-1:27,
Aug. 2011.

R. Tan, G. Xing, J. Chen, W.-Z. Song, and R. Huang, “Fusion-
based volcanic earthquake detection and timing in wireless sen-
sor networks,” ACM Trans. Sensor Netw., vol. 9, no. 2, pp. 1-25,
Mar. 2013.

B. Tang, “DAO?: Overcoming overall storage overflow in intermittently
connected sensor networks,” in Proc. IEEE INFOCOM, Apr. 2018,
pp. 135-143.

B. Tang, N. Jaggi, H. Wu, and R. Kurkal, “Energy efficient data
redistribution in sensor networks,” ACM Trans. Sensor Netw., vol. 9,
no. 2, pp. 11:1-11:28, May 2013.

L. Tang and X. Wang, “An iterated local search heuristic for the
capacitated prize-collecting travelling salesman problem,” J. Oper. Res.
Soc., vol. 59, no. 5, pp. 590-599, May 2008.

S. Tang et al., “DAWN: Energy efficient data aggregation in WSN
with mobile sinks,” in Proc. IEEE 18th Int. Workshop Quality Service
(IWQoS), Jun. 2010, pp. 1-9.

P. Toth and D. Vigo, Eds., The Vehicle Routing Problem. Philadelphia,
PA, USA: Society for Industrial and Applied Mathematics, 2001.

A. Gunawan, H. C. Lau, and P. Vansteenwegen, “Orienteering problem:
A survey of recent variants, solution approaches and applications,” Eur.
J. Oper. Res., vol. 255, no. 2, pp. 315-332, Dec. 2016.

L. A. Villas, A. Boukerche, H. A. B. FE. de Oliveira, R. B. de Araujo,
and A. A. F. Loureiro, “A spatial correlation aware algorithm to perform
efficient data collection in wireless sensor networks,” Ad Hoc Netw.,
vol. 12, pp. 69-85, Jan. 2014.

B. Weiss et al., “A power-efficient wireless sensor network for con-
tinuously monitoring seismic vibrations,” in Proc. SECON, Jun. 2011,
pp. 37-45.

A. Wichmann, T. Korkmaz, and A. S. Tosun, “Robot control strategies
for task allocation with connectivity constraints in wireless sensor
and robot networks,” IEEE Trans. Mobile Comput., vol. 17, no. 6,
pp. 1429-1441, Jun. 2018.

S. Xie, G. X. Lee, K.-S. Low, and E. Gunawan, “Wireless sensor network
for satellite applications: A survey and case study,” Unmanned Syst.,
vol. 2, no. 3, pp. 261-277, Jul. 2014.

X. Xue, X. Hou, B. Tang, and R. Bagai, “Data preservation in intermit-
tently connected sensor networks with data priority,” in Proc. IEEE Int.
Conf. Sens., Commun. Netw. (SECON), Jun. 2013, pp. 122-130.

H. Yedidsion, A. Banik, P. Carmi, M. J. Katz, and M. Segal, “Efficient
data retrieval in faulty sensor networks using a mobile mule,” in Proc.
WiOpt, 2017, pp. 1-8.

H. Zheng and J. Wu, “Data collection and event detection in the deep
sea with delay minimization,” in Proc. 12th Annu. IEEE Int. Conf. Sens.,
Commun., Netw. (SECON), Jun. 2015, pp. 354-362.

J. Zheng, P. Wang, and C. Li, “Distributed data aggregation using
Slepian—Wolf coding in cluster-based wireless sensor networks,” IEEE
Trans. Veh. Technol., vol. 59, no. 5, pp. 2564-2574, Feb. 2010.

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on October 31,2023 at 04:03:25 UTC from IEEE Xplore. Restrictions apply.

