
5

Truthful and Optimal Data Preservation in Base Station-less

Sensor Networks: An Integrated Game Theory and Network

Flow Approach

YUNING YU, SHANGLIN HSU, and ANDRE CHEN, California State University Dominguez Hills

YUTIAN CHEN, California State University Long Beach

BIN TANG, California State University Dominguez Hills

We aim to preserve a large amount of data generated inside base station-less sensor networks (BSNs) while

considering that sensor nodes are selfish. BSNs refer to emerging sensing applications deployed in challeng-

ing and inhospitable environments (e.g., underwater exploration); as such, there do not exist data-collecting

base stations in the BSN to collect the data. Consequently, the generated data has to be stored inside the

BSN before uploading opportunities become available. Our goal is to preserve the data inside the BSN with

minimum energy cost by incentivizing the storage- and energy-constrained sensor nodes to participate in the

data preservation process. We refer to the problem as DPP: data preservation problem in the BSN. Previous

research assumes that all the sensor nodes are cooperative and that sensors have infinite battery power and

design aminimum-cost flow-based data preservation solution. However, in a distributed setting and under dif-

ferent control, the resource-constrained sensor nodes could behave selfishly only to conserve their resources

and maximize their benefit.

In this article, we first solve DPP by designing an integer linear programming (ILP)-based optimal solu-

tion without considering selfishness. We then establish a game-theoretical framework that achieves provably

truthful and optimal data preservation in BSNs. For a special case of DPP wherein nodes are not energy-

constrained, referred to as DPP-W, we design a data preservation game DPG-1 that integrates algorithmic

mechanism design (AMD) and amore efficient minimum cost flow-based data preservation solution.We show

that DPG-1 yields dominant strategies for sensor nodes and delivers truthful and optimal data preservation.

For the general case of DPP (wherein nodes are energy-constrained), however, DPG-1 fails to achieve truthful

and optimal data preservation. Utilizing packet-level flow observation of sensor node behaviors computed by

minimum cost flow and ILP, we uncover the cause of the failure of the DPG-1. It is due to the packet dropping

by the selfish nodes that manipulate the AMD technique. We then design a data preservation game DPG-2

for DPP that traces and punishes manipulative nodes in the BSN. We show that DPG-2 delivers dominant

strategies for truth-telling nodes and achieves provably optimal data preservation with cheat-proof guaran-

tees. Via extensive simulations under different network parameters and dynamics, we show that our games

achieve system-wide data preservation solutions with optimal energy cost while enforcing truth-telling of

sensor nodes about their private cost types. One salient feature of our work is its integrated game theory and

network flows approach. With the observation of flow level sensor node behaviors provided by the network
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flows, our proposed games can synthesize “microscopic” (i.e., selfish and local) behaviors of sensor nodes and

yield targeted “macroscopic” (i.e., optimal and global) network performance of data preservation in the BSN.
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1 INTRODUCTION

Base Station-less Sensor Networks.Wireless sensor networks are formed by a large number of
small-size, battery-powered and resource-constrained, and spatially dispersed nodes with sensing,
computing, and communication capabilities [99]. Since their inception more than two decades
ago, they have continuously evolved into various new forms on a global scale, such as the Internet
of Things [91] and mobile crowdsensing (MCS) [49, 97] and permeate many parts of our lives
including healthcare monitoring [65], smart home and cities [71], and smart farming [32].

In this article, we focus on some emerging sensing applications deployed in challenging environ-
ments, such as inaccessible or inhospitable regions or under extreme weather. Such applications
include underwater or ocean sensor exploration [10, 30, 45, 56, 70, 103], wind and solar harvest-
ing [53, 60], seismic sensor networks [68, 78], and volcano eruption and glacial melting monitor-
ing [23, 79]. These sensing systems are designed to tackle some of the most fundamental problems
facing human beings, including scientific exploration, disaster warnings, and climate change. As
they are all deployed in challenging environments, it is not feasible to deploy high-power and
high-storage data-collecting base stations in or near the sensing field. We refer to emerging sensor
network applications without base stations as base station-less sensor networks (BSNs). BSNs are in
sharp contrast to the traditional sensor networks and the current IoT applications wherein base
stations are always available in the field to collect sensory data.
Due to the base station-less nature of a BSN, one of its essential functions is to preserve

large volumes of generated data inside the BSN. Later they can be collected by the periodic vis-
its of uploading opportunities, including autonomous underwater vehicles (AUVs) [10, 31] and
robots [44, 92, 98]. Figure 1 illustrates our BSN network model. In a BSN, some sensor nodes are
close to the events of interest and are constantly generating sensory data, thus depleting their
storage spaces. We refer to the sensor nodes with depleted storage spaces while still generating
data as data nodes and the sensor nodes with available storage as storage nodes.1 The newly gen-
erated data that can no longer be stored at storage-depleted data nodes is called overflow data. To
avoid data loss, overflow data must be offloaded to storage nodes to be preserved and wait for the
arrival of the uploading opportunities. The goal is to select storage nodes and offload the overflow
data to them while minimizing the total energy consumption in this process. Those storage nodes
selected to store overflow data are called destination nodes. We refer to the process of finding the
destination nodes and offloading overflow sensory data from data nodes to these destination nodes
as data preservation in the BSN.

1Sensor nodes that generate data but whose storage spaces are not full are considered storage nodes, as their storage can

be used to store data from other sensor nods. Besides, a data node can relay overflow data packets from another data node.
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Fig. 1. The BSN model.

Network Flows-based Solutions. Existing research has proposed a suite of network flows-based
algorithms to achieve different objectives in data preservation in the BSN [5, 19, 41, 42, 80, 82, 96].
Network flow problems [4, 34] (e.g., maximum flow, minimum cost flow, and multi-commodity
flow) are a class of computational problems that study how to move objects (e.g., goods, vehicles,
and network packets) within a flow network efficiently and cost-effectively. For example, when all
the data packets can be preserved, Tang et al. [82] designed aminimum cost flow-based optimal al-
gorithm to minimize the total energy consumption in data preservation. When not all the packets
can be preserved due to the insufficiency of energy power of sensor nodes, Xue et al. [96] designed
amaximum weighted flow-based optimal algorithm to maximize the total values of preserved data
packets. When not all the packets can be preserved due to the insufficiency of storage spaces of
sensor nodes, Tang et al. [80] proposed aggregating the data packets to reduce their sizes before
offloading them to destination nodes. They modeled the energy-efficient data aggregation in BSNs
as a new graph-theoretical problem called multiple traveling salesmen placement problem and de-
signed a constant-factor approximation algorithm. Recently, Hsu et al. [42] proposed a quadratic
programming-based algorithm to maximize data resilience in BSNs by preserving the overflow
data for the maximum time.

Motivation. All the above network flows-based solutions for data preservation in BSNs assume
that the sensor nodes are cooperative and willing to contribute their resources, including battery
power and storage spaces, to the data preservation process. With the strides made in sensor net-
work development and IoT applications over the past decade, these assumptions are no longer
invalid [16]. First, in a global-scale and distributed decision-making environment, sensor nodes
could be under the control of different users, each aiming to pursue its own self-interest and max-
imize its own benefit. For example, in the oil and gas industry, the IoT sensors that detect possi-
ble oil and gas leaks could belong to different companies with different business incentives [95].
Second, the technologically advanced sensor nodes could become more intelligent [25]. Unlike the
traditional sensors that can only sense, compute, and communicate signals to an external system,
the intelligent sensor can also perceive, reason, and learn. As such, the resource-constrained sen-
sor nodes in the BSN can behave selfishly, only to conserve their own resources and have little
incentive to participate in the data preservation. Finally, being selfish, sensor nodes can not only
hold their critical information (e.g., storage capacities and energy costs of preserving the data
packets) as private information and not report them, but also, in the worst case, misreport them to
gain more utilities and maximize their own benefit in the data preservation process. The tension
between node-centric selfishness and data-centric data preservation in the BSN, if not dealt with
well, could impede the data preservation process and compromise the functions and missions of
the aforesaid emerging sensing applications.

Our Contributions. In this article, we mitigate the above tension by carefully creating a truthful
and optimal game theory framework for data preservation in the BSN. Focusing on strategic
interaction among rational and selfish decision-makers, game theory is an ideal tool for analyzing
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decentralized and self-organizing networks like BSNs. We make the following contributions to
the article:
First, we formulate and solve a general data preservation problem in the BSN referred to as

DPP: data preservation problem. The goal of DPP is to minimize the total energy consumption

in data preservation while considering that sensor nodes have limited storage capacity and energy
power. We design an integer linear program (ILP) to solve DPP optimally. In addition, we design
another ILP to solve a relevant DPP feasibility problem, referred to as DPP-F. Given any instance
of DPP with the energy-constrained sensor nodes, DPP-F checks if all the overflow data packets
can be successfully preserved inside the BSN or not; that is, if the data preservation is feasible for
this DPP instance. In contrast, existing work only solved a special case of DPP wherein nodes have
infinite energy power [82, 83]. We refer to this special case as DPP-W in the article.
Second, we consider the selfishness of sensor nodes and design a non-cooperative game for

DPP-W. We refer to it as DPG-1: data preservation game-1. DPG-1 is based on algorithmic

mechanism design (AMD) [61–63], a subfield of game theory and network optimization. AMD
designs computationally efficient games, including strategies and payoffs, such that individual
players, motivated solely by self-interest, achieve a good system-wide solution. Therefore, AMD
techniques are suitable for achieving truthful and optimal data preservation. In particular, we con-
sider Vickrey-Clark-Groves (VCG) mechanism [17, 39, 84]. We identify the challenges of directly
applying VCG techniques in our BSN model. We prove that with these challenges, DPG-1 can still
(a) guarantee that truth-telling its private cost information (i.e., energy costs of receiving, saving,
and transmitting packets) is a node’s dominant strategy and (b) sufficiently motivate each node to
participate in optimal data preservation. Thus, DPG-1 achieves a truthful and optimal system-wide
data preservation solution with self-interested sensor nodes.
Third, we show that in DPP, wherein nodes have a finite amount of energy, DPG-1 can no longer

provide truth-telling and optimal data preservation.We find that, unlike DPP-W, a sensor node can
manipulate the VCG model and lie about its costs to receive more utilities in DPP. In doing so, a
lying node can receive more data packets than it can possibly process, resulting in data loss and
sub-optimal data preservation in the BSN. We thus design another data preservation game, viz.,
DPG-2 to fix the flawed VCGmodel used in DPG-1. We show via proof and simulations that DPG-2
delivers truth-telling as a node’s dominant strategy and achieves optimal data preservation in the
BSN while accommodating the selfish behavior of energy-constrained sensor nodes.
Finally, in contrast to many existing works that applied game theory and related techniques

to solve sensor networking problems, our work takes a network flow approach to facilitate the
game design and game-theoretical analysis. Utilizing data preservation flows computed by push-
relabel-based and ILP-based minimum cost flow algorithms, our designed games can synthesize
“microscopic” (i.e., selfish and local) behaviors of sensor nodes and transform them into targeted
“macroscopic” (i.e., optimal, global, and fault-tolerant) network performance of data preservation
in the BSN. This integrated game theory and network flow approach helps us to understand the
selfish behaviors of sensor nodes quantitatively to achieve truthful and optimal data preservation
of the BSN. Consequently, all our game-theoretical findings can be validated by our progressive
experiments. Table 1 summarizes our data preservation games, corresponding data preservation
problems, and network flow techniques.

Article Organization. The rest of the article is organized as follows: Section 2 reviews all the
related work and sets the stage for the contributions of our work. Section 3 formulates the DPP
and introduces its energy model and the cost parameters of sensor nodes. Section 4 proposes the
centralized network flow-based algorithmic solutions: push-relabel-based MCF for DPP-W and
ILP-based MCF for DPP, respectively. Section 5 considers selfish sensor nodes in DPP-W and
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Table 1. Summary of Data Preservation Games (DPGs) and Their Corresponding Data Preservation

Problems with Underlying Network Flow Techniques

Data preservation games Data preservation problems Network flow techniques

DPG-1 (Section 5) DPP-W (Section 3) Push-relabel-based MCF, viz., PR-MCF (Section 4.1)

DPG-2 (Section 6) DPP and DPP-F (Section 3) ILP-based MF and MCF, viz., ILP (A) and (B) (Section 4.2)

ILP: integer linear programming; MF: maximum flow; MCF: minimum cost flow; PR-MCF: push-relabel-based MCF.

designs data preservation game DPG-1 that provably provides optimal and truthful data preser-
vation solutions. Section 6 shows that DPG-1 does not work for the general case of DPP, finds the
cause of such, and designs a game named DPG-2 that provably provides an optimal and truthful
solution to DPP. Section 7 validates our game designs via progressive simulation results, starting
from the macroscopic network characteristics of data preservation, progressing deeper into
microscopic views of data packet flows, and finally pinpointing the game-theoretical behaviors of
the selfish sensor nodes. Section 8 concludes the article with a discussion of future work.

2 RELATEDWORK

Game theory techniques have been extensively applied to solve research problems in computer
networks in general, and wireless ad hoc and sensor networks in particular [6, 11, 66, 75]. There
are four main classes of game theoretical techniques that have been employed in the existing
research. Non-cooperative game theory studies strategies between interactions among individual
competing players, with Nash Equilibrium (NE) being its solution concept that describes a steady-
state condition for the players. Cooperative game theory models situations where players form
groups (i.e., coalitions) rather than acting individually. One of its central notations is the core,
which is the payoff allocation that no group of players has the incentive to leave its coalition
to form another coalition. The third one is called cooperation enforcement games, wherein selfish
players are incentivized to cooperate to maximize the social optimal of the system. The fourth
is mechanism design, also called reverse game theory, which takes an objectives-first approach to
design economic mechanisms or incentives to motivate rational and selfish players toward desired
objectives. In this article, we mainly take a mechanism design approach, as it suits our goal of
motivating selfish nodes to achieve optimal total data preservation cost in the BSN. Below, we
review the mechanism design work in both general networks and wireless ad hoc networks, the
game-theoretical techniques in sensor networks, including mobile crowdsensing, and the existing
data preservation research in BSNs.

MechanismDesign in General Networks. The seminal work by Nisan and Rosen [61–63] intro-
duced the framework of applying mechanism design to solve algorithmic problems where partic-
ipants are selfish. In particular, they showed that the classic VGC mechanism provides a truthful
solution for utilitarian problems where the objective function is the sum of all agents’ valuations
(i.e., costs). They studied shortest path routing between one pair of source and destination nodes
where the edges are strategic players. Feigenbaum et al. [26] treated nodes as strategic players
instead and considered multiple source-destination pairs. They designed distributed algorithms
to compute the lowest-cost routes and payments for transit nodes on all routes. In their follow-
up work [27], they studied cost-sharing multicast, wherein a source communicates with multiple
receivers along amulticast tree. They assumed the link cost is publicly known and analyzed the net-
work complexity of two mechanismsmarginal cost and Shapley value. Such incentives for sharing
as well as profit-maximization were also investigated in peer-to-peer networks [35, 76], content
distribution networks [8, 20], and mobile cloud computing [14].
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Mechanism Design in Ad Hoc Networks. Zhong et al. [105] was one of the first to apply mech-
anism design to the mobile ad hoc network and designed a practical cryptographic model for
payment delivery in such networks. Unlike the previous works where each player must have a pri-
vate cost type, it assumed the information held by each player is not totally private (as each player
maintains a public-private key pair). It also assumed all the transit nodes get the same payment
amount, indifferent from its cost in its payment model. Anderegg and Eidenbenz [7] focused on the
cost-of-energy parameters and the route discovery and recovery in a mobile ad hoc setting and de-
signed a variation of the VCG mechanism that achieved truthful and cost-efficient ad hoc routing.
They assumed that the source nodes were always truthful. Wang et al. [86, 89] studied multicast
and showed that when all the costs are private information, there is no efficient VCG-based mecha-
nism that guarantees truth-telling due to the NP-hardness of the problem. Their designedmulticast
protocols are minimum spanning tree-based approximation algorithms wherein each agent max-
imizes its profit when it truthfully reports its cost. However, their mechanism only worked on
tree-based structures. Chen et al. [12] considered the multicast under unreliable wireless links and
proposed a distributed game-based algorithm that achieves Nash Equilibrium. Recently, some re-
search [69, 93, 94] deviated from traditional ad hoc routing and considered opportunistic routing
wherein nodes overhear the packets to participate in packet forwarding. They designed games that
achieved social efficiency and Pareto-efficient Nash equilibrium with faithfulness as a given prop-
erty. Felegyhazi et al. [28] studied the Nash equilibria of packet forwarding strategies in wireless
ad hoc networks. They showed the equilibrium conditions for cooperative and noncooperative
strategies using the theory of iterative games.
Different from the above payment (or price)-based incentive mechanism, other works in ad hoc

networks proposed to use reputation or acknowledgment systems to detect routing misbehavior
and to motivate cooperation among selfish players [46, 52, 55, 58]. In particular, Li and Shen [52]
studied the incentive strategies in both reputation and price-based systems and observed that com-
bining a reputation and price-based system is a promising method to provide strong incentives.

Game-theoretical Techniques in SensorNetworks. In contrast to ad hoc network research that
mainly focuses on routing between source and destination communication pairs (i.e., one-to-one
model), sensor networks sense the environment and send the sensory data at multiple nodes back
to the base station (i.e., many-to-one model) for storage, viewing, and analysis. Existing research
works applying game theory to solve various sensor network problems include topology (and
power) control, connectivity, and coverage [43, 73, 74], duty cycling and media access control
(MAC) protocols [2, 13, 21, 100], data routing (i.e., packet forwarding) and aggregation [9, 48, 59,
64, 85], security and threats prevention [3, 54, 101], and task allocation [6, 75]. As data preservation
in BSNs is essentially a packet forwardingmechanism, below, we review all the existing works that
apply game theory to study data routing in sensor networks.
Attiah et al. [9] proposed an evolutionary routing game for energy balance in wireless sensor

networks. The goal was to reduce the load and avoid collisions on the most used routes in a dis-
tributed manner. They derived a mixed strategy Nash equilibrium and showed that it also achieves
fairness. Voulkidis et al. [85] proposed a coalitional game-theoretic scheme that maximizes the net-
work lifetime. It employed the spatial correlation among sensory data to reduce the transmitted
data packets. Kannan et al. [48] focused on length and energy-constrained information routing in
sensor networks and proposed several payoff models and utility functions. They showed that for
each utility function, there exists a Nash equilibrium. Niyato et al. [64] studied the solar-powered
sensor network that uses a sleep and wakeup strategy for energy conservation. They modeled
nodes’ sleep and wake-up strategies as a bargaining game and derived the Nash equilibrium as the
game’s solution.
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A careful study reveals that no existing work addressed data preservation in BSNs. Besides,
they mainly focused on incentivizing the nodes on the shortest path between the source and well-
known destination (e.g., base stations) or minimum spanning tree covering them. As shown in
all the above literature, such paths are one-to-one, many-to-one, or one-to-many (i.e., multicast)
communication models. Different from all existing work, our BSN model is indeed an any-to-any

model where data from any data nodes can be offloaded to any storage nodes in the BSN. As
such, it needs to decide the destination for each data packet and the routing from its data node
to the destination, which prompts a new challenge that has yet to be tackled by any previous
game theory research. To tackle this challenge, we convert the data preservation problem into a
minimum-cost network flow problem [4]. Minimum cost flow generalizes the shortest path and
minimum spanning tree and can find destinations and the routing to the destinations for the data
packets in the BSN. Compared to the existing approach, network flow techniques are better suited
for BSNs to achieve more robust data preservation. However, how game theory plays a role in
nodes’ behaviors in network flow-based problems remains largely unexplored.

Incentive Mechanisms in Crowdsensing. In recent years, incentive mechanisms have been applied

in mobile crowdsensing to exploit the “wisdom” of many mobile users [102]. They mainly focused
on designing economic mechanisms to stimulate user participation and to incentivize users to pro-
vide more accurate sensing data [22, 36, 37, 47, 50, 67, 97, 104]. Our data preservation incentive
model is similar to the crowdsensing model in that both motivate nodes or users to contribute their
resources (i.e., storage, computations, and energy); however, with different network models and
application goals. In mobile crowdsensing, the main task is enlisting users to sense the surround-
ing environment for monitoring traffic, health, or social behavior. It mainly used the Stackelberg
game [29], where the leader moves first, and then the followers move. However, a base station (i.e.,
a centralized server) still collects all the sensed data and executes the tasks. In data preservation
in BSNs, the main task is to enlist the nodes to preserve the sensed data, as no base station is
available to collect and store the data. Besides, our model has no clear distinction between leaders
and followers, as a data node can be either a leader (to offload its overflow data) or a follower (to
relay data for other data nodes). As a result, Stackelberg games are unsuitable for solving our data
preservation problem.

Data Preservation in the BSN. With its theoretical rigor and powerful applicability, network
flows and their related algorithms have been widely used in computer science, operations
research, and engineering [4, 34, 77]. Our previous data preservation research in BSNs has
indeed used the minimum cost flow to model the energy optimization [19, 82] and to achieve
fault-tolerance [81], designed a maximum weighted flow algorithm to preserve data packets of
different values [96], uncovered a suite of new multiple traveling salesman placement problems
for data aggregation [80, 83], and designed a quadratic programming solution to maximize
survival time of preserved data packets [42]. Our BSN model, with its theoretical roots in network
flows and its simplicity, may inspire new architectures for future network infrastructures and
applications. It is a very general information producer and consumer model that has not been
adequately explored in any other context.
Chen et al. [15] designed a computationally efficient and truthful VCG-based data preservation

game for BSNs assuming that storage nodes are selfish and all sensor nodes have infinite energy.
We show that when storage nodes have a limited energy power, the VCG mechanism proposed
in Reference [15] is no longer truthful. They further considered data packets to have different
values, and that both data and storage nodes are selfish [15]. They designed a voluntary data
preservation game for all the nodes in the BSN. Recently, Ly et al. [57] gave an analytical analysis
of the performance guarantee of this game, showing that under certain conditions, its worst-case
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Fig. 2. A BSNG (V ,E) with two data nodes 1 and 2, each having one data packet to offload, and two storage

nodes 3 and 4, each having two storage spaces.

budget imbalance is at most n3 times the efficiency gain, where n is the number of sensor nodes in
the network. Rivera [72] designed a suite of data preservation games that achieve NEs, and they
analyze their efficiency loss in terms of the price of anarchy and the price of stability [51].

3 PROBLEM FORMULATION OF DPP

Network Model. We represent the BSN as an undirected connected graph G (V ,E), where V =
{1, 2, . . . ,n} is the set of n sensor nodes and E is the set ofm edges. In the BSN, some sensor nodes
are close to the event of interest and generatemany data packets, thus having already depleted their
storage spaces; they are referred to as data nodes. Their newly generated data packets that cannot
be stored locally are overflow data packets. W.L.O.G., there are k data nodes Vs = {1, 2, . . . ,k },
where data node i currently has di overflow data packets, each is a bits. Let d =

∑k
i=1 di and

D = {D1,D2, . . . ,Dd } be this set of d overflow data packets. Let s (j ) ∈ Vs , 1 ≤ j ≤ d denote D j ’s
data node. The rest sensor nodes in V −Vs = {k + 1,k + 2, . . . ,n} are referred to as storage nodes,
as they have local storage spaces available. Letmi be the available free storage space (in bits) at
storage node i ∈ V − Vs . Note that sensor nodes that have generated some sensory data locally
but have not depleted their storage spaces are considered storage nodes. We assume there is a
central authority existing in the system to compute the data preservation solution and design the
corresponding mechanism, as well as to pay the rewards to the sensor nodes.
Because of the storage depletion of the data nodes, their generated overflow data packets must

be offloaded to some storage nodes to be preserved and to wait for the arrival of uploading op-
portunities. The process of offloading packets from data nodes to storage nodes is referred to as
data preservation in a BSN. Figure 2 shows a BSN G (V ,E) with two data nodes 1 and 2, each hav-
ing one overflow data packet to offload, and two storage nodes 3 and 4, each having two storage
spaces available. When the sensor nodes are selfish, offloading data packages from data nodes to
storage nodes may cause data privacy problems, which can solve by privacy-preserving incentive
mechanisms such as PrivAim [87].

Energy Model. Each sensor node i ∈ V has an initial energy level Ei . We augment the first-
order radio model [40] and consider three different kinds of energy consumption incurred in data
preservation.

• Receiving Energy Eri . When node i receives an a-bit data packet from one of its one-hop
neighbors, the amount of receiving energy it spends is Eri = a · ϵei . Here, ϵei = 100nJ/bit is
the energy consumption per bit on the receiver or transmit circuit of node i . We refer to it
as receiving parameter. Note that Eri only depends on the size of the data i receives, not the
distance between it and the sender.
• Transmission Energy Eti (j ).When node i sends a data packet of a bits to its one-hop neighbor
j over their distance li, j , the amount of transmission energy spent by i is Eti (j ) = a · ϵai ·
l2i, j + a · ϵei . Here, ϵai = 100pJ/bit/m2 is called transmission parameter, which is the energy
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consumption of sending one bit on transmit amplifier of node i . Note that Eti (j ) includes the
energy consumption on both i’s transmit amplifier and transmit circuit and depends on the
distance between nodes i and j and the data size.
• Storing Energy Esi .When node i stores a-bit data into its local storage, the amount of storing
energy it consumes is Esi = a · ϵsi . Here, ϵsi is referred to as the storing parameter and is the
energy consumption of storing one bit at node i; its default value is 100nJ/bit . Note: Es only
depends on the size of the data it stores.

When a node relays (i.e., receives then transmits) a data packet, it still needs to buffer it in its local
memory before transmitting it to the next node. However, we assume the energy cost of storing
on the memory is much smaller than the energy cost of storing on the storage, thus is negligible.

Cost Parameters of Sensor Nodes. We refer to {ϵai , ϵei , ϵsi } in the energy model as node i’s cost pa-
rameters. Our energy model differs from the well-known first-order wireless radio model [40] and
most existing research in two aspects. First, the first-order model does not consider storing en-
ergy parameterized by ϵsi , as storing energy of a sensor node is usually considered negligible com-
pared to transmission and receiving energy. However, Mathur et al. [1] examined the energy con-
sumption of different currently available flash memory, a viable storage technology for low-power,
energy-constrained wireless sensor networks. They found that read, write, and erase energy con-
sumption per byte for Hitachi MultiMedia Cards (MMC) and NAND flashmemory are 1.108 μJ and
0.062 μJ , respectively (which are equivalent to 139 nJ/bit and 8 nJ/bit , respectively). Therefore,
the energy consumption of storing data packets on sensor nodes can not be neglected, especially
considering that large amounts of data are generated and stored at sensor nodes in a BSN. Second,
existing research (e.g., Reference [48]) assumes the energy cost of transmission only depends on
distances between sensors, which implies that ϵai and ϵei have the same values for different sensor
nodes i . However, Wang and Yang [88] pointed out that energy consumption is a function of the
features of devices. Specifically, they found that the energy consumption on circuits varies signifi-
cantly from state-to-state of a sensor device and among different types of sensor devices. Following
this spirit, we assume that different sensor nodes could have different values of the same parameter.
All three cost parameters ϵai , ϵ

e
i , and ϵ

s
i are node-dependent. Table 2 shows all the notations.

Problem Formulation of DPP. Define a preservation function as p : D → V −Vs , indicating that
a data packet D j ∈ D is offloaded from its data node s (j ) ∈ Vs to a storage node p (j ) ∈ V − Vs
to be preserved. Let Pj = {s (j ), . . . ,p (j )} be the preservation path along which D j is offloaded. Let

ci, j denote node i’s energy consumption in preserving D j and ci =
∑d

j=1 ci, j be the total energy

consumption of node i in preserving all the data packets. ci, j can be represented as Equation (1)
below, with σ (i, j ) being the successor node of i on Pj .

ci, j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪
⎩

Eti (σ (i, j )) i = s (j ),
Eri + E

s
i i = p (j ),

Eri + E
t
i (σ (i, j )) i ∈ Pj − {s (j ),p (j )},

0 otherwise.

(1)

The objective of DPP is to find a preservation function p and Pj (1 ≤ j ≤ d) to minimize the total
preservation cost c in the BSN, where

c = minp

n∑

i=1

ci = minp

n∑

i=1

d∑

j=1

ci, j , (2)

under the storage constraint of storage nodes: |{j |1 ≤ j ≤ d,p (j ) = i}| · a ≤ mi , ∀i ∈ V −Vs , and
the energy constraint of all sensor nodes:

∑d
j=1 ci, j ≤ Ei , i ∈ V .

ACM Transactions on Sensor Networks, Vol. 20, No. 1, Article 5. Publication date: October 2023.



5:10 Y. Yu et al.

Table 2. Notation Summary

Notation Description

V V = {1, 2, . . . ,n} is the set of n sensor nodes
Vs Vs = {1, . . . ,k } is the set of k data nodes, and
V −Vs V −Vs = {k + 1, l + 2, . . . ,n} is the set of n − k storage nodes
di Number of overflow data packets from data node i ∈ Vs
mi Storage capacity of storage node i ∈ V −Vs
D D = {D1,D2, . . . ,Dd } is the set of d overflow data packets
s (j ) The data node of D j ∈ D
Ei Initial energy level of sensor node i
E
′
i Remaining energy level of sensor node i after data offloading

Eti (j ) Transmission energy spent by i to transmit one packet to j
Eri Receiving energy spent by i to receive one data packet
Esi Storing energy spent by i to store one data packet
ϵai Transmission parameter of node i
ϵei Receiving parameter of node i
ϵsi Storing parameter of node i
p Data offloading function p : D → V −Vs
Pj The offloading path of data packet D j ∈ D
σ (i, j ) Node i’s successor node in Pj
ci, j Node i’s energy cost of offloading data packet D j

ti ti = {ϵei , ϵai , ϵsi } is the true private type of node i
t̃i Reported private type by node i
xi, j The amount of flows on edge (i, j ) in flow networks for ILP
ci The true cost of node i
c̃V The minimum total preservation cost of the network when i reports its cost c̃i
cV−{i } The minimum total preservation cost of the network when i is removed
pi (t̃i , t−i ) The payment received by node i when it reports t̃i in DPG-1
πi (t̃i , t−i ) Node i’s utility when it reports t̃i in DPG-1
pxi (t̃i , t−i ) The payment received by node i when it reports t̃i in DPG-2
πx
i (t̃i , t−i ) Node i’s utility when it reports t̃i in DPG-2

G ′(V ′,E ′) The flow network used to solve DPP-W, where Ei = ∞
G ′′(V ′′,E ′′) The flow network used to check if a DPP instance with Ei being finite is feasible (i.e., DPP-F)
G ′′′(V ′′′,E ′′′) The flow network used to compute the minimum total data preservation cost when feasible

4 ALGORITHMIC SOLUTIONS OF DPP

We first consider a special case that sensor nodes are not energy-constrained (i.e., Ei = +∞, 1 ≤
i ≤ n) and refer to it as DPP-W. Tang et al. [82] have solved DPP-W as a minimum cost flow (MCF)
problem, which is presented below for completeness. We then consider general DPP and solve it
with an MCF-based ILP optimal solution.

4.1 Solving DPP-W

Minimum Cost Flow (MCF) Solution.We formally introduce MCF as follows: Given a directed
graph G ′ = (V ′,E ′) with a source node s and a sink node t , each edge (u,v ) ∈ E ′ has a capacity
a(u,v ) as well as a cost d (u,v ). Let f (u,v ) be the flow on edge (u,v ) ∈ E ′. The goal of MCF is
to find a flow function f to minimize the total cost of transmitting y amount of flow from s to t ,
i.e., Σ(u,v )∈E′ (d (u,v ) · f (u,v )), subject to (a) capacity constraint: f (u,v ) ≤ a(u,v ),∀(u,v ) ∈ E ′, (b)
flow conservation constraint:

∑
u ∈V ′ f (u,v ) =

∑
u ∈V ′ f (v,u), for each v ∈ V ′ − {s, t }, and (c) the

net flow out of s and the net flow into t are both y.
Tang et al. [82] has proved that the DPP-W in BSN graph G (V ,E) is equivalent to the MCF

problem in a flow networkG ′(V ′,E ′), shown in Figure 3(a), that is properly transformed from the
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Fig. 3. (a) shows the flow network G ′(V ′,E ′) transformed from BSN graph G (V ,E). (b) shows the flow

network G ′(V ′,E ′) transformed from the BSN graph G (V ,E) in Figure 2.

G (V ,E). We refer to this transformation that constructs Figure 3(a) as Transformation I, which
includes the following five steps:

Transformation I

(1) V ′ = {s} ∪ {t } ∪V , where s is the source node and t is the sink node in the flow network.
(2) E ′ = {(s, i )}∪ {(i, j )}∪ {(j, t )}, where i ∈ Vs and j ∈ V −Vs . Note that it is a complete bipartite

graph between Vs and V −Vs .
(3) For each edge (s, i ), set its capacity as di , the number of data packets at i ∈ Vs , and cost as 0.

For each edge (j, t ), set its capacity asmj , the storage capacity of j, and the cost as 0.
(4) For each edge (i, j ), set its capacity asdi and cost as c (i, j ). Here, c (i, j ) is theminimum energy

consumption sending one data packet from data node i to storage node j.
(5) Set the supply at s and the demand at t as d =

∑k
i=1 di , the total number of overflow data

packets.

We have |V ′ | = |V ′ | + 2, |E ′ | = |V | + |Vs | · |V − Vs |. The time complexity of Transformation
I is O ( |V |3), as we can use Floyd-Warshall all-pair shortest path algorithm [18] to compute c (i, j )
between any data node i and any storage node j. As an example, with this transformation, the BSN
graph shown in Figure 2 is now converted to the flow network shown in Figure 3(b).

Next, we apply MCF algorithms onG ′(V ′,E ′) to find the minimum total data preservation cost.
There are many optimal and efficient combinatorial MCF algorithms, including cycle canceling,
successive shortest path and capacity scaling, and network simplex [4]. We indeed adopt the
scaling push-relabel algorithm proposed in Reference [33]. We refer to this scaling push-relabel-
based MCF algorithm as PR-MCF. PR-MCF has the highest performance codes available for net-
work optimization and has worked well over many problem classes. It has the time complexity
of O ( |V ′ |2 · |E ′ | · log( |V ′ | · C )), where C is the maximum capacity of an edge in G ′(V ′,E ′) [33].
As |V ′ | = |V ′ | + 2, |E ′ | = |V | + |Vs | · |V − Vs | following Transformation I, PR-MCF takes
O ( |V |4 · log( |V | ·max{di ,mj })) to solve DPP-W.

4.2 Solving DPP

In the general case of DPP, where sensor nodes have limited battery power, some sensors may
exhaust their energy power during data preservation. This can cause network partition between
data nodes and storage nodes and obstruct the data preservation process. Consequently, some
data packets may not be offloaded successfully from their data nodes to some storage nodes to be
preserved. When all the d overflow data packets can be offloaded, we say the data preservation is
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Fig. 4. (a): the flow network G ′′(V ′′, E ′′) that solves DPP-F for the BSN in Figure 2. (b): the flow network

G ′′′(V ′′′,E ′′′) that finds the minimum preservation cost for the BSN in Figure 2, given that it is feasible.

feasible; otherwise, it is not feasible. Therefore, before solving DPP, we first study data preservation
feasibility problem: Given any DPP instance, can all its d overflow data packets be offloaded from
their data nodes into the BSN for data preservation due to energy constraints of sensor nodes? We
refer to this problem as DPP-F and propose a maximum flow-based ILP solution below.
Note that infeasible data preservation could be attributed to either insufficient storage spaces

or insufficient energy power of sensor nodes. In this article, we assume there are enough storage
spaces in the BSN (i.e.,

∑n
i=k+1mi ≥ d · a) thus, infeasible data preservation is attributed only to

insufficient energy.2

4.2.1 Solving DPP-F. To solve DPP-F, we transform the BSN graph G (V ,E) to another flow
networkG ′′(V ′′,E ′′). This transformation strives to represent the initial battery power Ei of sensor
node i as an edge capacity so the energy constraint of sensor nodes can play a role in the data
preservation process. When a sensor’s energy is depleted, it can no longer participate in data
preservation. This transformation, which constructs G ′′(V ′′,E ′′) from G (V ,E) and is referred to
as Transformation II, takes the following four steps:

Transformation II

(1) In G (V ,E), replace each undirected edge (i, j ) ∈ E with two directed edges (i, j ) and (j, i ).
Set the capacities of all the directed edges as +∞.

(2) Split node i ∈ V into two nodes: in-node i ′ and out-node i ′′. Add a directed edge (i ′, i ′′) with
a capacity of Ei , the initial energy level of node i . All the incoming directed edges of node i
are incident on i ′, and all the outgoing directed edges of node i emanate from i ′′. Therefore,
the two directed edges (i, j ) and (j, i ) in Step (1) are now changed to (i ′′, j ′) and (j ′′, i ′).

(3) Add a source node s , and connect s to the in-node i ′ of the data node i ∈ Vs with an edge.
Set the capacity of this edge as di , the number of data packets at data node i .

(4) Add a sink node t , and connect out-node j ′′ of the storage node j ∈ V −Vs to t . Set its edge
capacity as

mj

a
, the storage capacity of storage node j in terms of the number of data packets.

Recall thatmj is node j’s storage capacity, and a is the size of a data packet in bits.

Therefore, V ′′ = {s} ∪ {t } ∪ {i ′ : i ∈ V } ∪ {i ′′ : i ∈ V } and E ′′ = {(i ′′, j ′) : (i, j ) ∈ E} ∪ {(j ′′, i ′) :
(i, j ) ∈ E} ∪ {(i ′, i ′′) : i ∈ V } ∪ {(s, i ′) : i ∈ Vs } ∪ {(j ′′, t ) : j ∈ V −Vs }. With Transformation II, the
BSN graph G (V ,E) in Figure 2 is converted to flow network G ′′(V ′′,E ′′) in Figure 4(a). Next, we
formulate and solve ILP program (A) below on the obtained flow network G ′′(V ′′,E ′′) to find the

2We refer to infeasible data preservation due to insufficient storage spaces (i.e.,
∑n
i=k+1

mi < d ·a) as overall storage over-
flow. Overall storage overflow can be solved by aggregating the overflow data packets following their spatial correlation

pattern [80]. We leave the design of a data aggregation game under overall storage overflow as future work.
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maximum amount of data packets that can be offloaded under energy constraint. In ILP (A), xi j is
the number of flows on edge (i, j ) ∈ E ′′.

(A) maximize
∑

i ∈Vs
xsi′ (3)

s.t. xsi′ ≤ di , i ∈ Vs (4)

xi′′t ≤
mi

a
, i ∈ V −Vs (5)

xsi′ +
∑

j :(i, j )∈E
x j′′i′ =

∑

j :(i, j )∈E
xi′′j′, i ∈ Vs (6)

∑

j :(i, j )∈E
x j′′i′ =

∑

j :(i, j )∈E
xi′′j′ + xi′′t , i ∈ V −Vs (7)

Eri ×
∑

j :(i, j )∈E
x j′′i′ +

∑

j :(i, j )∈E
(Eti (j ) × xi′′j′ ) ≤ Ei , i ∈ Vs (8)

Eri ×
∑

j :(i, j )∈E
x j′′i′ +

∑

j :(i, j )∈E
Eti (j ) × xi′′j′ + Esi × xi′′T ≤ Ei , i ∈ V −Vs (9)

In ILP (A), Objective (3) is to find the maximum amount of packets that can be offloaded in the
entire network. Inequality (4) indicates the maximum number of packets data node i can offload
is di , the initial number of data packets data node i has. Inequality (5) indicates the maximum
number of packets storage node i can store is mi

a
, wheremi is the storage capacity of storage node

i , and a is the size of each packet. Equation (6) shows the flow conservation for data nodes, where
the number of its own data packets offloaded plus the number of data packets it relays for other
data nodes equals the number of data packets it transmits. Equation (7) is the flow conservation
for storage nodes, which says that data packets a storage node i receives are either relayed to other
nodes or stored by i . Inequalities (8) and (9) represent the energy constraints for data and storage
nodes, respectively.

Theorem 1. Given any DPP instance G (V ,E), if
∑
i ∈Vs

xsi′ = d when applying ILP (A) on

G ′′(V ′′,E ′′), then this DPP instance is feasible.

Proof. First, when
∑

i ∈Vs xsi′ = d , there are d amount of flows going from s to t inG ′′(V ′′,E ′′).
As the edge capacity between s and i ′ is di , it must be that di amount of flows going from s into i ′.
Due to flow conservation in all nodesV ′′ − {s, t }, it must be that di amount of flows going out of i ′′.
Second, with the node-splitting technique in Step (2) in Transformation II, the initial energy

level of node i (i.e., Ei ) is now the capacity of edge (i ′, i ′′) ∈ E ′′. As the energy consumption of
any node i , which is represented by the l.h.s of Inequality (8) and (9) in ILP (A), is less than Ei , it
guarantees that node i does not exceed its energy capacity during data preservation in G (V ,E).
Therefore, all the d packets in BSN G (V ,E) can be offloaded from their data nodes to

storage nodes while satisfying the energy constraints of sensor nodes, yielding feasible data
preservation. �

For a feasible DPP instance, we next compute its minimum total energy consumption (i.e., total
preservation cost) in Section 4.2.2.3

3For an infeasible instance due to insufficient energy of sensor nodes, our previous work [96] proposed a maximum

weighted flow-based data preservation technique to maximize the total values preserved, assuming that data packets have

different values. We leave designing a data preservation game under insufficient energy power of sensor nodes as future

work.
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4.2.2 Solving DPP. To compute the minimum total data preservation cost for a feasible DPP in-
stance, we again transform the BSN graphG (V ,E) to another different flow networkG ′′′(V ′′′,E ′′′)
following below four steps. We refer to it as Transformation III.

Transformation III

(1) In G (V ,E), replace each undirected edge (i, j ) ∈ E with two directed edges (i, j ) and (j, i ).
Split node i ∈ V into two nodes: in-node i ′ and out-node i ′′ and add a directed edge (i ′, i ′′)
with a capacity of Ei , the initial energy level of node i , and cost of zero. All the incoming
directed edges of node i are incident on i ′, and all the outgoing directed edges of node i
emanate from i ′′.

(2) Add a source node s and connect it to the in-node i ′ of the data node i ∈ Vs , set its capacity
as di , the number of data packets at data node i , and set its cost as zero.

(3) For directed edge (i ′′, j ′), set its capacity as infinity and cost as Eti (j )+E
r
j , the sum of node i’s

transmission energy and node j’s receiving energy. For directed edge (j ′′, i ′), set its capacity
as +∞ and cost as Etj (i ) +E

r
i , the sum of node j’s transmission energy and node i’s receiving

energy.
(4) Add a sink node t and connecting the out-node i ′′ of the storage node j ∈ V − Vs to t , set

the capacity of the edge as mi

a
, the storage capacity of i , and the cost of the edge as Esi , the

energy consumption of storing one data packet at node i .

Similar as G ′′(V ′′,E ′′) in Figure 4(a), now V ′′′ = {s} ∪ {t } ∪ {i ′ : i ∈ V } ∪ {i ′′ : i ∈ V } and
E ′′′ = {(i ′′, j ′) : (i, j ) ∈ E} ∪ {(j ′′, i ′) : (i, j ) ∈ E} ∪ {(i ′, i ′′) : i ∈ V } ∪ {(s, i ′) : i ∈ Vs } ∪ {(j ′′, t ) :
j ∈ V − Vs }. However, G ′′′(V ′′′,E ′′′) is different from G ′′(V ′′,E ′′), as each edge in E ′′ only has a
capacity, whereas each edge in E ′′′ has a capacity as well as a cost. With Transformation III, the
BSN graphG (V ,E) shown in Figure 2 is now converted to the flow networkG ′′′(V ′′′,E ′′′) shown
in Figure 4(b).
Next, we formulate below ILP (B) and apply it upon G ′′′(V ′′′,E ′′′) to solve DPP. Here, xi j and

ci j are the flow and cost on edge (i, j ) ∈ E ′′′, respectively.

(B) minimize
∑

(i, j )∈E′′′
xi j × ci j (10)

s.t. xsi′ = di , i ∈ Vs (11)

xi′′t ≤
mi

a
, i ∈ V −Vs (12)

xsi′ +
∑

j :(i, j )∈E
x j′′i′ =

∑

j :(i, j )∈E
xi′′j′, i ∈ Vs (13)

∑

j :(i, j )∈E
x j′′i′ =

∑

j :(i, j )∈E
xi′′j′ + xi′′t , i ∈ V −Vs (14)

Eri ×
∑

j :(i, j )∈E
x j′′i′ +

∑

j :(i, j )∈E
(Eti (j ) × xi′′j′ ) ≤ Ei , i ∈ Vs (15)

Eri ×
∑

j :(i, j )∈E
x j′′i′ +

∑

j :(i, j )∈E
Eti (j ) × xi′′j′ + Esi × xi′′t ≤ Ei , i ∈ V −Vs (16)

Objective (10) is to minimize
∑

(i, j )∈E′′ xi j × ci j , the total energy cost of all the flows in the flow
network (i.e., total preservation cost). Note that Constraints (11)–(16) are similar to Constraints
(4)–(9) in ILP (A), except that Constraint (11) is now xsi′ = di , as all the di data packets at data
node i can be offloaded in a feasible case. Theorem 2 below shows ILP (B) finds the minimum total
preservation cost for any feasible DPP graph G (V ,E).
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Theorem 2. Given any feasible DPP instance in G (V ,E) and its transformed flow network

G ′′′(V ′′′,E ′′′), applying ILP (B) on G ′′′ gives the minimum total data preservation cost inG (V ,E).

Proof. We need to show that the energy consumptions of sensor nodes in data preservation
are accurately represented in Transformation III, and ILP (B) results in minimum total data preser-
vation cost while satisfying the storage and energy constraints of all sensor nodes.

First, recall that in Transformation III, an edge (i, j ) ∈ E changes to two directed edges (i ′′, j ′)
and (j ′′, i ′) ∈ E ′′′, with their costs being Eti (j ) + E

r
j and E

t
j (i ) + E

r
i , respectively. Consider any data

packet inG offloaded from data node i ∈ Vs , goes through a sequence of intermediate nodes (if any),
and gets stored at a storage node j ∈ V −Vs . It has a corresponding flow inG ′′′ that starts at source
node s , goes to i ′ and i ′′, the in-node and out-node of data node i , and then goes through a sequence
of in-node and out-node of intermediate nodes (if there are any), then goes to j ′ and j ′′, the in-node
and out-node of storage node j, and finally ends at sink node t . Along the way, due to the cost setup
of edges (i ′′, j ′) and (j ′′, i ′), the transmission energy of i , and receiving and transmission energy
of all other intermediate nodes (if there are any), and the receiving and storing energy of storage
node j is all accurately captured in ci j , the cost of edge (i, j ) ∈ E ′′′. Second, because of its Objective
(10), ILP (B) computes the minimum total data preservation cost. Finally, Inequalities (12), (15), and
(16) guarantee the storage constraint of storage nodes, the energy constraint of data nodes, and
the energy constraint of storage nodes are satisfied, respectively. �

The above graph transformation is similar to the one used in Reference [42] that solved a data
resilience maximization problem in the BSN. However, the objectives and the techniques in both
works are different. In Reference [42], the data resilience is defined as the sum of the remaining
energy of the destination nodes of all the preserved data packets. It is formulated as a quadratic
programming problem. For the DPP studied in this article, the goal is to minimize the total en-
ergy consumption in data preservation, formulated as an ILP problem. Note that, so far, we have
introduced two optimal centralized data preservation solutions: ILP (B) for the DPP and PR-MCF
for DPP-W. Although both solutions minimize the total preservation cost in the BSN, they have
different time complexity. PR-MCF is efficient with polynomial time complexity, as discussed in
Section 4.1, while ILP (B) is time-consuming, as the general class of ILP is NP-hard. However, both
solutions assume that all the sensor nodes are fully cooperative and will follow the algorithmic
computation to participate in the data preservation. This assumption is invalid for selfish nodes,
which have zero incentive to participate in data preservation. Or even if they are incentivized to
participate, they tend to lie about their costs to gain more utilities. We thus design suitable data
preservation games to not only incentivize sensor nodes to participate in data preservation but
also to guarantee that reporting their true cost parameters is their dominant strategy. Our games
seamlessly integrate algorithmic mechanism design and its variations with network flow compu-
tations of PR-MCF and ILP (B). In the below two sections, we design data preservation games for
DPP-W and DPP, respectively.

5 DPG-1: DATA PRESERVATION GAME FOR DPP-W

In this section, we design a data preservation game for DPP-W and refer to it as DPG-1: data
preservation game-1. We first present the DPG-1 in Section 5.1 and then prove in Section 5.2 that

truthfulness is achieved in DGP-1. In DPG-1, it is a dominant strategy for every storage node to
truthfully report its private cost type.

5.1 Data Preservation Game DPG-1

We make two assumptions for the DPG-1 and the DPP-W instance it is applied upon. First, the
BSN graph must remain connected, and its represented DPP-W instance must be feasible for data
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preservation even if any one of the sensor nodes is removed from the BSN. This is required by
the payment model used in DPG-1. For example, for the BSN instance shown in Figure 2, after
removing any node, the BSN is still connected, and its data preservation is still feasible. Second,
the data nodes must offload their overflow data packets to other storage nodes and thus need not
be motivated. That is, we assume that data nodes are always truthful and only the storage nodes
are players in DPG-1. How to motivate data nodes has been addressed in Reference [24]. As DPG-1
is based on the classic Vickrey-Clark-Groves (VCG) mechanism [17, 39, 84], we first introduce the
VCG mechanism.

VCG Mechanism. There are n players or agents in the network—player i has some private in-
formation ti , called its private cost type. Each player i has a set of strategies Ai . When i plays
strategy ai ∈ Ai , the mechanism computes an output o = o(a1, . . . ,an ) and a payment vector

p = (p1, . . . ,pn ), where pi = pi (a1, . . . ,an ) is the payment to player i . Player i’s cost is given by
cost function vi (ti ,o), which depends on ti and o. Player i wants to maximize its utility function

πi (a1, ..,an ) = vi (ti ,o) + pi . Classic VGC mechanism provides a truthful solution for utilitarian
problems where the objective function is the sum of all agents’ valuations (i.e., costs) [61]. This
suits our data preservation problem well, wherein the total preservation cost is the sum of each
node’s cost in data preservation. Next, we introduce the corresponding private cost type, cost func-
tion, and strategy set used in DPG-1.

Private Cost Type, Cost Function, and Strategy Set in DPG-1. In DPG-1, storage node i’s
private cost type ti = {ϵei , ϵai , ϵsi } consists of three cost parameters, viz., transmission parameters ϵai ,

receiving parameter ϵei , and storing parameter ϵsi .
4 Node i’s cost function is vi (ti ,o) = −

∑d
j=1 ci, j ,

wherein ci, j is node i’s energy cost in preserving data packetD j and is given by Equation (1). Node i
has three possible actions for each data packet: Either it does not participate in its data preservation,
or when it participates, it may either relay (i.e., receive and then transmit) or store (i.e., receive and
then store) the data packet. The output of the DPG-1 is the data preservation process computed by
the minimum cost flow algorithm PR-MCF [33], which indicates how each data packet should be
relayed or stored by each storage node to achieve the minimum total preservation cost. Therefore,
node i’s strategy set Ai includes its different ways to report ti as well as its actions for each data
packet following the PR-MCF computation.
As both the data node and storage node can relay data packets while only the storage node can

store data packets, following the energy model defined in Section 3, we define the relaying cost of
data node and storage node i and storing cost of storage node i:

• Relaying Cost cri (j ).When a data node or a storage node i receives a data packet from one of
its neighbors and then sends it to another neighbor j, its relaying cost, denoted as cri (j ), is the
sum of its receiving energy cost and transmission energy cost. That is, cri (j ) = Eri + E

t
i (j ) =

2 · a · ϵei + a · ϵai · l2i, j . Here, li, j is the distance between node i and node j.
• Storing Cost csi . When storage node i receives a data packet from one of its neighbors and
then stores it in its local storage, its storing cost, denoted as csi , is the sum of its receiving
energy and its storing energy. That is, csi = a · ϵei + a · ϵsi .

We assume that the amount of data a data node generates during sensing is public knowledge.
As a data node wish to offload its overflow data packets into the BSN for preservation, it has no
incentive to lie about how many data packets it has.

4As the goal of data nodes is to offload their overflow data packets, we assume they do not lie about their cost parameters

and they are public knowledge in the BSN.
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Challenges of Applying VCG. We observe that there are two features of ti = {ϵei , ϵai , ϵsi } that make

directly applying classic VCG to solve DPG-1 challenging.

(1) In contrast to the scalar private cost type defined in classic VCG and used by existing works
(e.g., the channel gain in a wireless channel [90] and the emission signal strength used in Ref-
erence [7]), ti in DPG-1 is a composite type consisting of three cost parameters. Therefore,
there are 23 = 8 different combinations of the cost parameters that a node can lie about
ti . Whether choosing different combinations of the components of a composite private cost
type affects the truthfulness of classic VCG has yet to be explored.

(2) Consequently, many existing works assumed that an agent has a scalar private cost type,
which only induces its binary action of either doing it or not doing it.5 In contrast, in DPG-1,
the relationship between node i’s cost parameters in ti and its incurred costs is more compli-
cated: ϵei is involved in both receiving cost c

r
i (j ) and storing cost c

s
i , while ϵ

a
i is involved only

in cri (j ) and ϵsi is involved only in csi . By lying about different cost parameters to different
extents, a node might manipulate its cost and switch from one action to another.

For (1), we prove rigorously that the truthfulness of classic VCG still holds for composite private
cost types and then validate it by our simulation results. For (2), as there is a need to study which
cost parameters aremore impactful in the truthfulness of DPG-1, we conduct extensive simulations
to investigate and give some insights into how they play a role in the truthfulness of DPG-1.

Payment and Utility Model in DPG-1. Next, we derive the payment and utility functions used

in the DPG-1. Let ci =
∑d

j=1 ci, j be the total data preservation cost of node i computed by the

PR-MCF proposed in Section 4.1, and t−i = {t1, . . . .., ti−1, ti+1, . . . , tn } be the vector of cost types
of all other nodes except node i . We give the below definitions:

Definition 1 (Payment and Utility in DPG-1). Based on Green and Laffont [38], given any cost t̃i
reported by node i , the amount of payment given to node i depends on whether node i is chosen
to participate in data preservation or not according to the PR-MCF computation. Its payment is 0
if it is not chosen; when it is chosen, its payment is:

pi (t̃i , t−i ) = cV−{i } − (c̃V − c̃i ). (17)

Here, c̃V is theminimum total preservation cost of the networkwhen i reports its cost c̃i , and cV−{i }
is the minimum total preservation cost of the network when i is removed. Both can be computed
using the PR-MCF algorithm. i’s utility is 0 when it is not chosen; and when i is chosen, its utility is

πi (t̃i , t−i ) = pi (t̃i , t−i ) − ci = cV−{i } − (c̃V − c̃i ) − ci , (18)

where ci is node i’s true cost (i.e., its energy cost based on the true values of its cost parameters).
Moreover, we define cV as the minimum total preservation cost in the BSN when i truthfully
reports its cost (i.e., t̃i = ti ).

The above payment and utility models are common knowledge to each node. That is, each node
knows that based on their reported cost types, their payment and utility are computed by Equa-
tions (17) and (18), respectively. For example, for the BSN instance in Figure 2, suppose the total
preservation cost when node 3 is removed (i.e., cV−{3}) is 10, and suppose that when node 3 partic-
ipates by truth-telling its private cost type, its cost is 2 and the total preservation cost is 8. Then

5For example, Ad hoc-VCG [7], a VCG-based routing protocol for ad hoc networks, assumed that each ad hoc node has

only one cost parameter called cost-of-energy and has binary action of forwarding the packet or not. In COMMIT [24], a

sender-centric truthful ad hoc routing protocol, the only private information of a sender is its willingness to pay to establish

the connection with the destination, and the sender’s action is to establish this connection or not.
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according to Equations (17) and (18), 3’s payment is 10− 8+ 2 = 4 and its utility is 4− 2 = 2 when
truth-telling.
Discussions. The amount of payment given to a specific node i equals the total preservation cost
when i is removed from the network minus all other participating nodes’ costs when i participates.
That is, i’s payment is the energy cost that node i helps to reduce for the entire network when it
participates in data preservation. i’s utility is its payment minus its true cost, which is i’smarginal

contribution to the network in preserving data packets. As node i is compensated with its share
of contribution in the payment amount, it is thus motivated to participate if its received utility is
greater than 0. The time taken to compute the payment is the time taken for the PR-MCF algorithm.

Data Preservation Game DPG-1. With the above preparations, we present the DPG-1. It has
three stages.

(1) Each storage node reports its private cost type ti .
(2) Based on the reported cost types, the PR-MCF algorithm computes the data preservation

process and its incurred minimum total preservation cost.
(3) Each storage node follows the computed data preservation to either participate or not. If it

participates, then it receives the payment given by Equation (17) and gets the utility given
by Equation (18).

Note that each storage node takes strategic moves in Stages 1 and 3, while Stage 2 is non-
strategic, with only the PR-MCF algorithm being executed. In Stage 1, a storage node reports its
(either truth-telling or lied) private cost type. In Stage 3, it decides whether to participate in data
preservation based on its received utility. It will participate if its utility is greater than zero; oth-
erwise, it will not. Since there is a time sequence between the two decisions in Stage 1 and Stage
3, the solution concept of the game is subgame perfect Nash equilibrium (SPNE). SPNE is a Nash
equilibrium (NE) in which players achieve NE in every subgame of the whole game tree. Next, we
prove the truthfulness of the DPG-1.

5.2 Truthfulness of the DPG-1

The truthfulness is achieved if the resulting equilibrium of DPG-1 satisfies the following two prop-
erties:

(1) Individual-rationality (IR). It is the participation constraint that makes sure that each
node, when truthfully reporting its private cost type and is chosen by the PR-MCF, will
receive positive utility and participate in the data preservation. That is,

πi (ti , t−i ) ≥ 0 ∀t−i and ∀i ∈ V −Vs .

(2) Incentive-compatibility (IC). It requires that truthfully reporting private cost type is the
dominant strategy of each node. Namely, each node gets the highest utility under truth-
telling regardless of reported types of other nodes:

πi (ti , t−i ) ≥ πi (t̃i , t−i ) ∀t−i , ∀t̃i � ti and ∀i ∈ V −Vs .
Note that when IR and IC are satisfied, it is a dominant strategy solution to the DPG-1 that

each node truthfully reports its private type and participates in the game whenever chosen by the
centralized algorithm PR-MCF.6

6Note that we do not argue that truthfulness is the unique equilibrium, since IR and IC only impose weakly dominance

of truthfulness to each node. There could be cases when a node is indifferent between lying and truth-telling. Therefore,

other Nash equilibria involving one or multiple nodes lying could exist. However, the dominant strategy solution is a strong
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Next, we present Lemma 1, which shows that for any node, even if it reports its private cost
type differently, as long as it is assigned the same data preservation tasks, the total preservation
cost of the network does not change.

Lemma 1. For given t−i , consider two different types of node i denoted as t̂i � t̃i . If node i performs

the same tasks following the centralized algorithm PR-MCF under t̂i and t̃i , then it must be that the

real total minimized data preservation costs remain the same under t̂i and t̃i .

Proof. We use contradiction to prove that when node i are performing the same tasks under t̂i
and t̃i , the total data preservation costs for all nodes other than i are the same under t̂i and t̃i . Recall
that the minimized total data preservation cost cV is the sum of ci and c−i . Denote ĉV = ĉi + ĉ−i the
total minimized cost under (t̂i , t−i ) and c̃V = c̃i+c̃−i the total minimized cost under (t̃i , t−i ). By way
of contradiction, suppose ĉ−i � c̃−i . W.L.O.G., let ĉ−i < c̃−i . Since node i takes the same tasks under
t̂i and t̃i , it holds that all nodes other than i can use the data preservation solution under (t̂i , t−i ) to
offload data packets under (t̃i , t−i ). Thus, under (t̃i , t−i ), switching to the same data preservation
solution used under (t̂i , t−i ) gives a total cost ĉi + c̃−i < c̃i + c̃−i = c̃V , a contradiction to cost
minimization of the centralized algorithm under (t̃i , t−i ). �

Theorem 3. In the DPG-1, it is a dominant strategy of every storage node i to truthfully report its
private cost type in stage 1; then to participate in data preservation in stage 3 following PR-MCF. IR

and IC are satisfied under the payment given by Equation (17).

Proof. Node i can either report truthfully or tell a lie about its cost type ti = {ϵai , ϵsi , ϵei }. There
are four cases for the outcome of i under truthfulness and lying. Below, we show that IR and IC
are satisfied in all four cases.
Case I: Node i is not in the preservation path of a data packet when reporting either ti or t̃i . In

this case, πi (ti , t−i ) = πi (t̃i , t−i ) = 0.
Case II: Node i is in the preservation path of a packet when reporting ti , which implies that

cV−{i } ≥ cV ; and it is not in the preservation path of the packet when reporting t̃i , which gives
payoff πi (t̃i , t−i ) = 0. Thus, its payoff under truth-telling is πi (ti , t−i ) = cV−{i } − cV ≥ 0. In this
case, πi (ti , t−i ) ≥ πi (t̃i , t−i ).
Case III: Node i is not in the preservation path of a packet when reporting ti ; however, it is

in the preservation path of the packet when reporting t̃i . Thus, πi (ti , t−i ) = 0. Denote c̃ti
V
as the

true data preservation cost (based on (ti , t−i )) when the data preservation route is determined
under (t̃i , t−i ). We have cV−{i } ≤ c̃ti

V
due to cost minimization under ti . Node i’s payoff under

t̃i is πi (t̃i , t−i ) = cV−{i } − (c̃V − c̃i ) − ci = cV−{i } − (c̃V − c̃i + ci ) = cV−{i } − c̃ti
V
≤ 0. Thus,

πi (ti , t−i ) ≥ πi (t̃i , t−i ).
Case IV: Node i is in the preservation path when reporting either ti or t̃i . There are different

subcases according to the tasks assigned to node i . We discuss each subcase below:
Subcase IVa. Node i is assigned exactly the same tasks when reporting either ti or t̃i . By

Lemma 1, node i is getting the same payoff, since πi (t̃i , t−i ) = cV−{i } − (c̃V − c̃i )−ci = cV−{i } −cV =
πi (ti , t−i ) ≥ 0.

Subcase IVb. The tasks assigned to node i are different under ti and t̃i . Note that all data packets
are preserved in either case, since storage nodes are not energy-constrained. The payment of i
when it reports truthfully is πi (ti , t−i ) = cV−{i } − (cV − ci ) − ci = cV−{i } − cV ≥ 0. Instead, when it
lies by reporting t̃i , its payoff is πi (t̃i , t−i ) = cV−{i } − (c̃V − c̃i ) − ci = cV−{i } − (c̃V − c̃i + ci ). Here,
c̃V − c̃i + ci ≡ c̃tiV , the total preservation cost calculated according to (ti , t−i ) using the route found

solution concept, since, to each node, truthfulness is never worse than lying, no matter what other nodes choose to do. In

some scenarios, truthfulness is strictly better than lying.
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Fig. 5. An example shows the invalidity of standard VCG. Initial energy E2 = E3 = 2. As data nodes are

always truthful, data node 1’s cost parameters are not specified, and we assume E1 is large enough to offload

node 1’s two data packets.

by the centralized algorithm under (t̃i , t−i ). Since there is no data loss, by cost minimization of
the centralized algorithm under (ti , t−i ), c̃

ti
V
≥ cV . Thus, πi (t̃i , t−i ) ≤ cV−{i } − cV = πi (ti , t−i ).

Thus, IC is satisfied in all cases. Note that IR, the participation constraint under truth-telling, is
also satisfied in all cases, since πi (ti , t−i ) ≥ 0 holds everywhere, as indicated in the above proof.
Therefore, each node has truth-telling as the dominant strategy and will willingly participate in
data preservation. �

Discussions. Let us understand the intuition of Theorem 3 and its proof from the economic point
of view. The idea of the VCG mechanism is to give each storage node a net payoff (i.e., utility)
according to its marginal contribution to data preservation. Let us consider the scenario wherein
lying by storage node i leads to data preservation routes different from those found under truth-
telling. We can replace the preservation routes under node i’s truth-telling with those found under
its lying (this is always possible, because nodes are not energy-constrained in DPG-1, thus no data
loss occurs). Now, since such replacement will only increase the total data preservation cost in
the network, it reduces node i’s marginal contribution to the network, implying a lower utility
to node i . As such, the VCG mechanism provides incentives for node i to tell the truth and to
participate in data preservation. However, the above argument will no longer hold when nodes
are energy-constrained, which is studied in the following section.

6 DPG-2: DATA PRESERVATION GAME FOR DPP

In this section, we design a data preservation game called DPG-2 for the general case of DPP,
wherein sensor nodes have limited battery power. DPG-2 is based on our key finding Theorem 4
below. Theorem 4 states that if a storage node has limited energy power, then lying about its pri-
vate cost type can possibly increase the node’s utility compared to truth-telling. This observation
invalidates the truthfulness of the DPG-1.

Theorem 4. When nodes are energy-constrained, the classic VCG mechanism proposed in DPG-1

cannot guarantee that truthfulness is the dominant strategy for each storage node.

Proof. We design an example to demonstrate this. Consider a BSN instance in Figure 5, where
node 1 is the data node with 2 data packets, and node 2 and node 3 are the storage nodes, each
having a storage capacity of 2 and each having a distance of 1 to node 1. Nodes 2 and 3 each have
2 units of initial energy. For ti = {ϵai , ϵsi , ϵei }, suppose ϵai = ϵei = 0 for i = 2, 3, and ϵs2 = 1, ϵs3 = 1.5.
Nodes 2 and 3 have zero relaying cost, but their storing costs for one data packet are 1 and 1.5,
respectively. Therefore, with their energy capacity, node 2 can store two data packets from node
1, and node 3 can store one data packet from node 1.
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First, consider truth-telling by nodes 2 and 3. Following the optimal ILP (B) proposed in Sec-
tion 4.2.2, it will offload node 1’s two data packets to node 2, and node 3 does not store any data
packet. The total data preservation cost is 2 and node 3’s utility is π2 (t2, t3) = 0.

Next, consider that node 3 lies by downsizing its private cost type t̃3 = ϵs3 as 0.8 (as ϵ
a
3 = ϵe3 = 0)

while node 2 is telling the truth. In this case, the ILP (B) will choose node 3 to store node 1’s two
data packets, and the ILP (B) computes the total data preservation cost as 2 ∗ 0.8 = 1.6 according
to node 3’s reported private cost type. With only 2 units of energy, however, node 3 can only store
one data packet and has to drop the other; its true cost is thus c3 = 1.5. Under the VCGmechanism
in DPG-1 and following Equation (18), node 3’s utility is π3 (t2, t̃3) = cV−{3} − c̃V + c̃3 − c3 =
2 − 1.6 + 1.6 − 1.5 = 0.5 > 0. Unlike its truth-telling case, in which node 3’s utility is π2 (t2, t3) = 0,
node 3 is incentivized to lie about its private cost type to gain a positive utility of 0.5. We conclude
that in DPP, the classic VCG mechanism can fail to satisfy IC or/and IR and no longer guarantee
the truthfulness of storage nodes. �

Discussions. Note that a node has no incentive to upsize its private cost type (i.e., by exaggerating
that it takes more energy than needed to participate in the data preservation). With such a claim
and to minimize the total preservation cost, the MCF-based ILP (B) will not assign a heavier data
preservation load to this upsizing node than when it is truth-telling. An extreme case is that if a
node claims infinite cost in any data preservation task, it will then be excluded from data preser-
vation. Consequently, with less load than truth-telling, the upsizing node will never run out of
its energy; therefore, no data loss will occur. In this upsizing case, the argument in Theorem 3
continues to hold that a node cannot strictly improve its utility through exaggeration; i.e., truth-
telling is its dominant strategy. Figure 5 shows two possible consequences when a storage node
i downsizes its private cost type. First, the value of c̃V in Equation (18) decreases. Second, node
i can get assigned more data packets than it can possibly store or relay with its energy capacity.
As such, the node must drop some of the received data packets. As the value of cV−{i } does not
change whether i lies or not, i’s utility πi (t̃i , t−i ) increases following Equation (18).7 Such data loss
uniquely arises in DPP and is not addressed by DPP-W and the classic VCG mechanism in DPG-1.
Therefore, unlike the DPP-W wherein a storage node does not have the incentive to lie about its
private cost type (Theorem 3), in DPP, by following the classic VCGmechanism and downsizing its
private cost type, an energy-constrained storage node has the incentive to lie to gain more utility
at the cost of data loss of the system (Theorem 4).

DPG-2. Next, we present DPG-2, which improves DGP-1 and restores the truthfulness of the VCG.
It consists of a data loss-finding mechanism and a data loss-prohibiting mechanism.

Finding Data Loss. Figure 6 illustrates how the data loss finding mechanism works, which first

finds if a lying storage node i drops packets, and if so, how many packets are dropped. Finding
the number of dropped data packets (i.e., data loss) is made possible by the computation of ILP
(B) proposed in Section 4.2.2. Such network flow-level computation can find out the number of
data packets i receives, relays, and stores at a flow level and thus can find if it drops data packets.
Figure 6 illustrates how this works. We refer to the total number of packets that i is assigned to
receive, relay, and save as assigned load, assigned relay, and assigned save, respectively. Due to flow
conservation in ILP (B), assigned load = assigned relay + assigned save.
Next, using the above information, we calculate how many packets in node i’s assigned load are

actually saved and relayed with its actual energy power available. We denote these two numbers as
actual save and actual relay, respectively, and compute as follows: First, among all the data packets

7We investigate the effect of downsizing of i ’s private cost upon c̃i and ci via simulations in Section 7.
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Fig. 6. Finding data packets dropped by lying storage node i .

it receives (i.e., assigned load), i saves as many packets as its storage capacity allows. If packets
are still left from the assigned load after the storage is full, i then relays those that require the
smallest transmission energy (i.e., packets that are relayed to closest neighbors) until its energy
power is depleted. The number of data packets relayed this way is actual relay. In this case, actual
save equals assigned save, as shown in Figure 6. Otherwise, actual save is less than the assigned
save, and the actual relay is zero. In either case, the sum of actual save and actual relay must equal
the actual load, the number of packets the storage node handles. Finally, we compare the actual
load with the assigned load. If they are equal, then there is no data packet dropped. Otherwise, it
must be that the actual load is less than the assigned load, and their difference is the number of
data packets dropped by i . We refer to this as data loss in Figure 6. Algorithm 1 shows the detailed
execution of how to find the data loss.

ALGORITHM 1: Finding data loss at storage node i .

Data: A BSN graph G (V ,E).
Result: Detect if data loss occurs at storage node i .
TransformG (V ,E) to a flow network G ′′′(V ′′′,E ′′′) following Transformation III in Section 4.2.2;

Apply ILP (B) onG ′′′(V ′′′,E ′′′) to compute the assigned load, assigned relay, and assigned save;

if assigned load > �mi

a 
, where �
mi

a 
 is node i’s storage capacity then

actual save = assigned save = �mi

a 
;
assigned relay = assigned load − �mi

a 
;
actual relay = 0;

Sort the packets in the assigned relay in the non-descending order of their transmission energy;

Let Eicurr be the remaining energy of node i after receiving the assigned load amount of data

packets following ILP (B);

// In the assigned relay, relays those incurring minimum transmission energy until i’s energy
power is depleted;

while Eicurr > 0 do

Eicurr = Eicurr − �
mi

a 
 · a · ϵ
s
i ; //compute the remaining energy after saving data packets;

Relay the packet in the assigned reply with minimum transmission energy;

Update Eicurr ;

actual relay = actual relay + 1;

end

else

actual save = assigned load;

actual relay = 0;

end

actual load = actual save + actual relay;

data loss = assigned load - actual load;

Return data loss;
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Data Loss Inhibiting Mechanism. As the failure of the VCG mechanism in DPG-1 is due to drop-

ping data packets by energy-constrained storage nodes, we now modify the standard VCG model
to inhibit such data loss. Our main idea is to introduce a data loss inhibiting mechanism into the
standard VCG model to punish any node that drops data packets. We first use Algorithm 1 to find
out if a storage node i drops the packets and, if so, howmany are dropped. Note that as Algorithm 1
accommodates the reported private cost types of storage nodes, it is still valid in a game-theoretic
context. In a practical operation, as sensor nodes use wireless communication that is broadcast
in nature, dropping packets of a node can be observed by its neighbors easily. As the number of
received packets minus the number of stored packets is the number of transmitted packets while
each node’s storage capacity is public knowledge, whether a node drops received data packets or
not thus can be easily observed. For any node, we assume at least one of its neighbors can observe
how many data packets it receives and transmits. As the storage capacity of a storage node is pub-
lic knowledge, we thus can infer if the node discards any received data packets. Since data loss
can be easily detected by the network, storage nodes cannot secretly drop data packets and collect
payment for pretended data preservation. Therefore, it is not a concern that a storage node may
drop data packets to gain any benefits from the data preservation game. For ease of exposition, we
simply assume that a node will not drop data packets if it has enough energy to save or transmit
them.
We propose the modified payment model as follows: Given reported type (t̃i , t−i ), whenever

node i is chosen to participate in data preservation, its payment is given by

pxi (t̃i , t−i ) = cV−{i } − (c̃V − c̃i ) − Ii · [cV−{i } − (c̃V − c̃i )]. (19)

Here, Ii = 1 if node i ever drops any data packet; Ii = 0 if not. Different from Equation (17), when
node i drops any data packet, it is now punished by receiving zero payment. The corresponding
utility of node i is thus

πx
i (t̃i , t−i ) = p

x
i (t̃i , t−i ) − ci . (20)

Therefore, if node i drops any data packet, then its utility calculated in Equation (20) becomes −ci .
In contrast, a node’s utility is at most zero when it does not participate. Thus, this prevents storage
nodes from dropping packets.

DPG-2. With above preparations, we present the DPG-2 below.

(1) Each storage node reports its private cost type ti .
(2) Based on the reported cost types, the ILP (B) computes the data preservation process and its

incurred minimum total preservation cost.
(3) It calls Algorithm 1 to find the data loss if there is any.
(4) Each storage node follows the computed data preservation to either participate or not. If it

participates, then it receives the payment given by Equation (19) and gets the utility given
by Equation (20).

Theorem 5. In DPG-2, with the payment given by Equation (19) and ti ∈ {ϵai , ϵsi , ϵei }, both IR

and IC are satisfied. Therefore, DPG-2 guarantees that truthfulness is the dominant strategy for each

storage node.

Proof. When there is no data loss of node i through reporting t̃i , the payment is the same as
in Equation (17) and the proof follows the same as in Theorem 3. We consider the case when node
i drops at least one data packet under t̃i , implying that node i must be in the preservation path
under t̃i . There can be two cases.

Case I: Node i is not in the preservation path when reporting ti and is in the preservation path
when reporting t̃i . Thus, π

x
i (t̃i , t−i ) ≤ 0 = πi (ti , t−i ).
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Fig. 7. A BSN with 50 nodes. Nodes 0–9 are data nodes and 10–49 are storage nodes.

Case II: Node i is in the preservation path when reporting either ti or t̃i . The utility of i when it
reports truthfully is πi (ti , t−i ) = cV−{i } − (cV − ci ) − ci = cV−{i } − cV ≥ 0. Instead, when it lies by
reporting t̃i , its utility is πx

i (t̃i , t−i ) = −ci ≤ 0. Thus, πi (ti , t−i ) ≥ πx
i (t̃i , t−i ).

The results immediately follow. �

7 SIMULATION RESULTS AND ANALYSES

Network Topology. Figure 7 shows the BSN topology used for our simulation experiments. Fifty
sensor nodes are randomly placed in a field of 1,000 meters by 1,000 meters. The transmission
range of each sensor node is 250 meters; that is, two nodes can directly communicate with each
other by sending or receiving data packets when they are in this range. Among the 50 sensors,
nodes 0–9 are data nodes and 10–49 are storage nodes. Each data node has 100 data packets, each
of which has a size of 512 B. The storage capacitymi of storage node i varies from 26 to 50 data
packets (although 25 is the minimum storage capacity to successfully offload all the 1,000 data
packets, as we need to take out one storage node when computing utilities while making the data
preservation still feasible, we set theminimum storage capacity as 26). After all the data packets are
offloaded, the network is almost full withmi = 26 and is exactly half-full withmi = 50. Compared
to a half-full, an almost-full network represents a more stressful network where a storage node
participates in more data preservation tasks (by either relaying or storing).
For the cost parameters ϵei , ϵ

a
i , and ϵ

s
i , we consider both the homogeneous casewherein different

storage nodes have the same values for the same cost parameter (thus simplified as ϵe , ϵa , and ϵs )
and the heterogenous casewherein different nodes have different values for the same cost parameter.
For homogeneous case, the true values of ϵe , ϵa , and ϵs are 100 nJ/bit , 100 pJ/bit/m2, and 100
nJ/bit , respectively; for heterogeneous case, they are random numbers in the range of [100,200]
nJ/bit , [100,200] pJ/bit/m2, and [100, 200] nJ/bit , respectively.

We define the scaling factor, denoted as α , as the ratio between the reported and true values of
a cost parameter for a storage node. That is, when a storage node reports (i.e., lies) about a cost
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Table 3. Scaling Factors of Cost Parameters for Storage Nodes

Node 11 13 15 17 19 21 23 25 27 29 32 33 35 37 39 41 43 45 47 49

ϵai 8.2 5.7 8.6 6.9 9.5 8.4 6.7 8.8 5.9 0.4 2.4 0.1 4.5 3.9 8.6 9.4 7.1 0.4 4.4 6.1

ϵei 4.9 4.2 6.7 4.1 6 7.6 7 6.4 1.9 4 3.8 4.2 7.2 2 3.6 9 1.5 0.4 0.9 8.9

ϵsi 2 1.4 3.3 2.1 8 3.6 0.6 8 2.8 0.5 4.4 0.1 6.7 1.9 8.3 3.7 3.1 4.4 8.4 5.8

parameter of either ϵei , ϵ
a
i , or ϵ

s
i with a scaling factor ofα , the reported values becomeα ·ϵei ,α ·ϵai , or

α ·ϵsi , respectively.When α < 1, we say the node scales down its cost by claiming it costs less energy
than necessary; when α > 1, it scales up its cost by claiming it costs more energy than necessary
(i.e., it exaggerates its cost); when α = 1, it is truth-telling. When a storage node i lies about its
private cost type ti = {ϵai , ϵsi , ϵei }, it can choose to lie any combination of the three cost parameters.

7.1 Evaluating DPP-W and DPG-1

In DPP-W and its data preservation game DPG-1, each node has an infinite amount of energy,
and the total preservation cost is computed using the minimum cost flow algorithm, viz., PR-MCF
in Section 4.1. We start with the general case where each storage node lies all three parameters
simultaneously. Then, we look into the case where the storage node lies one cost parameter at a
time and examine how different cost parameters affect the utility of the storage node.

Lying Three Parameters Simultaneously.We consider the homogeneous cost parameters, and
each storage node lies all three cost parameters by randomly choosing its scaling factor α in the
range of [0.1, 10]. The scaling factors of the storage nodes relevant to our findings are shown in
Table 3.

Figure 8 compares the truth-telling and lying utilities of storage nodes using the utility model
introduced in DPG-1. It shows that for each of the 40 storage nodes, its truth-telling utility is
always greater than or equal to its lying utility. This demonstrates the effectiveness of DPG-1 in
achieving minimum total preservation cost while accommodating the selfishness of storage nodes.
Second, however, there are a few nodes whose lying utilities are significantly lower than their
truth-telling utilities, including both scaling-up nodes (e.g., node 32) and nodes that mainly scale
down (e.g., node 33). This indicates that nodes get different data preservation assignments under
truth-telling and lying. By utility Equation (18), πi (t̃i , t−i ) = pi (t̃i , t−i )−ci = cV−{i } − (c̃V −c̃i )−ci =
cV−{i } − c̃V + c̃i −ci . When scaling up, a node i gets fewer data preservation tasks, thus other nodes
take more tasks, which increases (c̃V − c̃i ) and thus decreases utility πi (t̃i , t−i ). When scaling
down, a node i gets more data preservation tasks, making its true preservation cost ci larger and,
consequently, its utility πi (t̃i , t−i ) becomes less. In an extreme case, a scaling-down node could get
assigned so many preservation tasks that its real cost ci increases to a level that its utility becomes
negative, which is shown for the case of node 45. Finally, we note that node 23’s truth-telling and
lying utilities are both zeros. Figure 7 shows that as node 23 sits near the top edge of the sensor
field and is farthest from all the data nodes, it does not participate in the data preservation process,
incurring zero payment, cost, and utility.

Lying One Parameter at a Time. Figures 9(a), (b), and (c) show nodes lying their ϵs , ϵa , and ϵe

in a half-full network, respectively (we only show nodes with non-zero utilities). We set α as 0.1,
1, and 10. We observe that while lying ϵe and ϵs results in equal truth-telling and lying utilities for
most of the storage nodes, lying about ϵa results in some utilities that are significantly different
from the corresponding truth-telling ones (e.g., nodes 25, 39, and 47). Our energymodel in Section 3
can explain this: ϵe and ϵs are multiplied by data packet size, while ϵa is multiplied by the size of
the packet as well as the square of the distances. As lying ϵa has a more evident effect of changing
a node’s energy cost and thus utility, we focus on ϵa for the rest of the simulations.
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Fig. 8. Lying all three parameters simultaneously in a homogenous and half-full network.
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Fig. 9. Lying one parameter at a time in a heterogenous and half-full network.

Figure 10 considers the completely full case wherein all the storage nodes are more stressed
by data preservation. Compared to Figure 9(b) wherein only one storage node receives a negative
utility, Figure 10(b) shows that in this stressful network scenario, 12 scaling-down nodes are receiv-
ing negative utilities. This is because, with completely full storage, it is more likely that the lying
storage node i is assigned a heavy load, thus increasing ci dramatically, easily making its utility
negative. As a completely full network better demonstrates the dynamism of the VCG behaviors
for storage nodes, we adopt a completely full network for the rest of the simulations.

7.2 Evaluating DPP and DPG-2

In DPP and DPG-2, due to their energy constraints, the sensor nodes could deplete their energy
power, and the total preservation cost is computed using the ILP-basedminimum cost flow, viz., ILP
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Fig. 10. Lying one parameter at a time in a heterogenous and completely full network.

(B) proposed in Section 4.2.We refer to any sensor node that exhausts its battery power as a defunct
node. A data node is defunct if it does not have enough energy to relay (i.e., receive and transmit)
at least one data packet to its closest neighbor. A storage node is defunct if its remaining energy
is less than the smaller one between the energy cost of saving one data packet to its local storage
and the energy cost of relaying one data packet to its closest neighbor. Finding defunct nodes is
possible by calculating each node’s energy consumption on its involved data preservation paths
computed from ILP (B).
As defunct nodes occur and data preservation gets more challenging in DPP and DPG-2, we

investigate progressively. In Section 7.2.1, we focus on truth-telling data preservation (i.e., DPP)
and get a general view of its network characteristics, including fault tolerance and the energy con-
sumption and workload of individual nodes. We then investigate the DPG-2 (i.e., VCG under en-
ergy constraints) in Section 7.2.2 and observe that in contrast to DPG-1, an anomaly arises wherein
some nodes can yield a lying utility that is higher than the truth-telling utility in DPG-2, therefore
invalidating VCG mechanism. In Section 7.2.3, we analyze the data preservation flows computed
by network flow ILP (B) and obtain a “microscopic” view of each node’s workload. As such, in
Section 7.2.4, we can attribute the anomaly’s cause to data loss due to packet dropping by some
storage node. In Section 7.2.5, we implement our DPG-2 with a data loss inhibiting mechanism
and show that it restores the truthfulness of classic VCG.

7.2.1 Network Characteristics in Truth-telling. We set the storage capacity of storage nodesmi

as 26, the minimum storage capacity that allows the DPG-2 to work. We assume that all the sensor
nodes have the same initial energy levels Ei , as the sensor nodes usually have full and the same
battery power when initially deployed (nonetheless, our game works for the case of different Ei as
well). To investigate VCG behaviors, we are interested in findingminimum feasible energy level Em ,
sensor nodes’ minimum energy level at which all the 1,000 data packets in the network can still be
offloaded. When Ei = (Em −1) mJ, at least one data packet cannot be offloaded. Asmi = 26 and Em
provide the minimum storage and energy support for feasible data preservation, such “minimum”
feasible condition can produce stressful data preservation scenarios that do not conform to the
standard VCG, as we will show in Section 7.2.2 and later.

Fault-tolerance. To find Em , we decrease Ei from 1,600 mJ, at which all the data can be offloaded,
and record the total number of data packets offloaded as shown in Figure 11. At each Ei , we first

ACM Transactions on Sensor Networks, Vol. 20, No. 1, Article 5. Publication date: October 2023.



5:28 Y. Yu et al.

Fig. 11. Number of defunct nodes and total data packets offloaded in the network at different node energy

Ei . The numbers in the parentheses are the IDs of defunct nodes.

Fig. 12. Workload (i.e., number of received, transmitted, and saved packets) and energy consumption of

truth-telling storage nodes.

use the maximum flow ILP, viz., ILP (A) proposed in Section 4.2.1, to find out the number of packets
that can be offloaded. Then, we use the ILP (B) proposed in Section 4.2.2 to find out the minimum
total energy consumption (i.e., total preservation cost) in offloading those data packets. Figure 11
shows the number of defunct nodes (and their IDs) at different Ei . It has zero defunct nodes at 1,600
mJ and increases to 4 at 1,312 mJ while the data preservation is still kept feasible, demonstrating
the fault-tolerant capability of ILP (B). Among the four defunct nodes, three are data nodes (i.e.,
nodes 0, 2, and 4), and one is a storage node (i.e., node 32). When we further decrease Ei to 1,311
mJ, only 999 data packets can be offloaded.We thus set Em as 1,312 mJ for the rest of the simulation
experiments unless otherwise mentioned.

Workload and Energy Consumption of Storage Nodes. After getting a global view of the BSN’s

fault tolerance, we take a microscopic look at each storage node’s workload and energy consump-
tion. We define a storage node’s workload as the total number of data packets it receives, which
also equals the sum of the number of data packets it saves and relays (i.e., transmits). A node’s
workload is the node’s “contribution” to the data preservation process. Figure 12 shows that node
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Fig. 13. Two anomaly cases in DPG-2. (a) Node 32’s lying utility is larger that its truth-telling. (b) Total

energy consumption (i.e., total preservation cost) resulted from node 32’s lying is lower than the optimal

total preservation cost when it is truth-telling.

48 has the largest workload, receiving around 200 data packets. Referring back to the BSN topology
in Figure 7, node 48 is close to data nodes 3, 5, and 6, thus serving as the “traffic hub” to offload
their data packets to the storage nodes located at the top-left region of the sensor field. However,
although it is themost loaded, node 48’s energy consumption of 728.4 mJ is not the highest. Instead,
node 32 has the highest energy consumption among storage nodes, already depleting 1,312 mJ of
its battery power. Like node 48, node 32 is close to a few data nodes (i.e., nodes 1 and 8); unlike
node 48, node 32 is relatively distant from neighboring storage nodes, thus costing more transmis-
sion energy to relay data packets. Note that node 23 does not participate in the data process, as it
sits on the very edge of the sensor field, incurring zero workloads and energy consumption.

7.2.2 Anomaly Cases in DPG-2. Now, we vary the scaling factor α of the node’s transmission
parameter ϵa from 0.6, 0.8. 0.9, 1, 1.1, to 1.2 and investigate each storage node’s utility and the
resulting total preservation cost of the network. We have observed two anomaly cases in Figure 13.
First, Figure 13(a) shows that while most of the storage nodes comply with the VCG theory that
their truth-telling utilities at α = 1 are no less than their lying utilities, node 32 has a truth-telling
utility that is less than its lying utilities at α = 0.6, 0.8, and 0.9. Second, Figure 13(b) shows that
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when node 32 lies at α = 0.6 and 0.9, the resultant total preservation cost of the entire network
is smaller than that under its truth-telling at α = 1, contradicting the optimality of ILP (B). Note
that for a few nodes (e.g., nodes 25 and 30 at α = 0.6), the total preservation cost is larger than the
optimal. This is because when some storage nodes claim they are more energy-efficient in data
preservation than they actually are, the ILP (B) assigns them more data packets than it does in the
optimal solution, resulting in much larger non-optimal energy consumption.

7.2.3 Investigating Data Loss. We conjecture that the lower than optimal energy consumption
in Figure 13(b) is because some data packets are dropped in the BSN when node 32 lies with
α = 0.6 and 0.9. We thus implement Algorithm 1 to find if any storage node has dropped data
packets during the data preservation process. Figure 14(a) shows when each storage node lies
with α = 0.6, its assigned (and actual) receive, transmit, and save, as illustrated in Figure 6, as well
as its own individual energy consumption. By comparing the assigned load and actual load of each
storage node following Algorithm 1, we find that nodes 25, 30, 32, 43, and 45 have dropped packets.
This is further sustained by the fact that each has depleted its respective energy power of 1,312 mJ.
Referring to the topology in Figure 7, these nodes are close to one or more data nodes and involve
heavily relaying their data packets, thus consuming lots of energy. Therefore, we conclude that a
storage node drops data packets due to energy depletion, causing data loss.
In particular, Figure 14(b) shows that node 32 has dropped data packets at α = 0.6, 0.8, and 0.9,

which explains why in Figure 13(b) the resultant total preservation cost when node 32 lies is less
than optimal. Referring back to Figure 12, as node 32 already depletes its energywhen truth-telling,
when it scales down, it will be assigned more data packets than it is when truth-telling. Thus, it
must drop any such extra packets assigned due to its energy depletion. As its energy consumption
is still 1,312 mJ while other nodes get fewer data preservation tasks, the total preservation cost of
the entire BSN is thus smaller than that of the optimal.
However, although nodes 25, 30, 43, and 45 atα = 0.6 drop some data packets and cause data loss,

the resultant total preservation costs are still larger than optimal, as shown in Figure 13(b). This
indicates that data loss does not necessarily yield reduced total preservation cost. As each node
is assigned more workloads when it lies, the resulting data preservation solutions could deviate
from the optimal a lot and result in a much higher total preservation cost, although the node has
dropped some packets due to insufficient energy. This shows that data loss is necessary for the
less-than-optimal total preservation cost.
Another observation from Figure 14(b) is that when increasing α towards 1, the occurrences of

data loss decrease. This is because as fewer data preservation tasks are assigned to a lying node,
the less chance it will exhaust its battery power. Data loss does not occur for α = 1, as data
preservation is always feasible in truth-telling. When α > 1, there is no data loss either; as each
lying node claims to cost more than it actually does, it gets assigned fewer tasks than it normally
does and thus has sufficient energy to finish the assigned tasks.

7.2.4 Why Does Only Node 32 Have the Incentive to Lie? Although a few nodes, including node
32, have dropped data packets when lying, why does only node 32 have a lying utility larger than
its truth-telling one? This implies only node 32 has the incentive to lie. We define a storage node’s
incentive to lie as its lying utility minus its truth-telling utility; that is, the more utility it gets, the
larger its incentive to lie.
This is attributed to two unique features of node 32 (among all the 40 storage nodes). First,

node 32’s energy has already been depleted in truth-telling data preservation. Therefore, when
node 32’s lying results in a heavier data preservation load, almost all the additional data load is
discarded. Such additional data load does not increase node 32’s true energy cost. Second, in the
BSN, node 32 is located at a strategically crucial position where not only do multiple data nodes
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Fig. 14. (a) Each storage node’s assigned (and actual) receive, transmit, and save, as well as energy consump-

tion when α = 0.6. (b) Number of dropped data packets by lying storage nodes.

(nodes 1 and 8) need it for data preservation, but also it has relatively long distances to any of
its neighbors. As such, node 32 must carry out these costly data preservation tasks despite their
needed large transmission energy. Meanwhile, when node 32 scales down its cost parameter with
its additional data load assigned increased, the data preservation cost of all nodes other than node
32, which is (c̃V − c̃i ) in utility equation Equation (18), decreases. On the other side, constrained
by its initial energy, node 32’s true cost for data preservation ci is roughly the same lying or not.
Therefore, following Equation (18), node 32 garners a higher utility under lying than truth-telling.

In summary, for a storage node to find lying profitable, it must be on the verge of its energy
depletion when truth-telling; it also must be in a strategically important position such that when
it scales down, it will be assigned a much larger workload. Then a scaling-down node can reduce

the total preservation cost of the entire BSN by being assigned more workload while dropping data

packets and not increasing its own energy cost, as it has already depleted its energy. This, therefore,
results in a larger payment for this strategically crucial lying node. Below, we take a closer look
at node 32’s selfish behavior and quantitatively examine how its incentive to lie changes w.r.t. the
exogenous factors, including initial energy level Ei and storage capacitymi .
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Fig. 15. Utility and incentive to lie of node 32 when varying initial energy level Ei and scaling factor α .

Incentive to Lie when Varying Ei . Figure 15(a) shows the utility of node 32 lying with different

values of α while increasing Ei from 1,312 mJ to 1,550 mJ and fixingmi as 26. When Ei ≤ 1, 450 mJ,
node 32 has a truth-telling utility smaller than at least one of its lying utilities. When Ei ≥ 1, 500
mJ, node 32 follows standard VCG theory in which the truth-telling utility is the dominant strategy.
Such behavior can be explained by Figure 15(b), which shows that when α < 1 (i.e., 0.6 and 0.9),
node 32’s incentive to lie decreases with the increase of Ei . As data loss by node 32 eventually
drops with the increase of Ei , it shrinks the potential benefit accrued to node 32 through its data
loss, reducing its incentive to lie.
Meanwhile, we have two observations of node 32’s incentive to lie at α > 1. First, it is always

negative, giving node 32 no incentive to lie. This is because as no single node is critical to the
data preservation feasibility (i.e., the data preservation is still feasible when any node is removed),
no data loss could occur when α > 1. Second, with the increase of Ei , node 32’s incentive to lie
increases and approaches zero, showing that its utility loss under lying drops when the energy con-
straint is relaxed. Node 32’s lie becomes less harmful to the system performance when the energy
constraint is lifted. The data preservation load assigned to node 32 gets less and less differentiated
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Fig. 16. Utility of node 32 when varying its storage capacitymi and scaling factor α .

Fig. 17. Incentive to lie of node 32 when varying its storage capacitymi and scaling factor α .

from its load under truth-telling. Indeed, if under a certain energy level, node 32 is assigned the
same load under both α = 1.1 and truth-telling, then its incentive to lie becomes zero.

Incentive to Lie when Varyingmi . Next, we fix the energy as 1,312 mJ and compare node 32’s

utilities by varyingmi . Figure 16 shows that when α = 0.6 and 0.9 whilemi = 26 and 27, truth-
telling utilities are less than the lying utilities, which is against the AMD theory. However, when
the storage capacity reaches 28, the truth-telling utility will be larger than the lying utility. This
shows that when mi is small, nodes have more incentive to lie to gain more utilities, which is
further validated by its incentive to lie, shown in Figure 17.
Figure 17 investigates the incentive to lie for node 32 under different storage capacities. When

the scaling factor α < 1 (i.e., 0.6 and 0.9), its intention to lie decreases when increasing the storage
capacity. With a larger storage capacity, as each node does not need much energy to offload data,
lying has less effect in distorting the data preservation route, thus resulting in less data loss and less
intention to lie. We also observe while α = 1.1 and we increase the storage capacity, the difference
between lying utility and truth-telling utility will decrease.

7.2.5 Data Loss InhibitingMechanism in DPG-2. We have shown that under the traditional VCG
mechanism, nodes can lie about their cost parameters, viz., ϵa , ϵe , ϵs to gain more utility. Below,
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Fig. 18. Utilities of nodes 10–31 in DPG-2 with data loss inhibiting mechanism. Ei = 1, 312 mJ andmi = 26.

Fig. 19. Utilities of nodes 32–49 in DPG-2 with data loss inhibiting mechanism. Ei = 1, 312 mJ andmi = 26.

we implement DPG-2 to fix the problem. On top of DPG-1, DPG-2 introduced in Section 6 mainly
contains a data loss inhibiting mechanism that, for any node that drops its received packages,
the system gives it zero payment. Figures 18 and 19 calculate the utility of each node in DPG-2
when it is truth-telling or lies with different α . It can be seen that the truth-telling utility of each
node is always greater than or equal to its lying utilities. This demonstrates that the data loss
inhibiting mechanism in DPG-2 restores the effectiveness of VCG, with truth-telling again being
the dominating strategy. Consequently, all the nodes will truthfully report their cost parameters,
guaranteeing optimal system performance with minimum total data preservation cost.
Finally, we check if the truthfulness is still preserved in DPG-2 when each storage node lies all

of its three parameters simultaneously. We set the initial energy as 1,312 mJ andmi as 26. We first
investigate a homogeneous case wherein each node lies about all its three cost parameters with
the same α = 0.6, as shown in Figure 20. We then investigate a heterogenous case wherein each
node lies about all its three parameters with α a random number in [0.1, 1], as shown in Figure 21.
We compare their truth-telling and lying utility in each case. Both cases show that each storage
node’s lying utility is no more than its truth-telling utility, demonstrating that truth-telling is a
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Fig. 20. Utilities of nodes in DPG-2 with homogeneous α . α = 0.6, Ei = 1, 312 mJ, andmi = 26.

Fig. 21. Utilities of nodes in DPG-2 with heterogenous α . α is a random number in [0.1, 1], Ei = 1, 312 mJ,

andmi = 26.

dominant strategy for the storage nodes in DPG-2. When α is a random number in [0.1, 1], some
lying nodes will report their cost parameters by scales smaller than 0.6. Consequently, these nodes
could be compensated less by the central algorithm although assigned a heavier workload due to
its low reported cost for data preservation. This explains the more frequent occurrence of negative
utilities in Figure 21 with Figure 20.

8 CONCLUSION AND FUTURE WORK

In this work, we study the data preservation problem in base station-less sensor networks
(BSNs) wherein energy- and storage-constrained sensor nodes behave selfishly. BSNs find many
emerging science applications in challenging environments, such as underwater exploration.
Our goal is to minimize the total data preservation cost (i.e., total battery power consumption of
sensor nodes) in the BSN while accommodating the selfish behavior of sensor nodes. We take a
game-theoretic approach and design a suite of data preservation games wherein the individual
sensor nodes, motivated solely by self-interest, achieve a good system-wide data preservation
solution. Our BSN model, with its theoretical roots in network flows and simplicity, may inspire
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new architectures for future network infrastructures and applications. It is indeed a very general
information producer and consumer model that has not been adequately explored in any context.
In particular, we formulate and solve a general data preservation problem called DPP and design

an integer linear program (ILP) to solve DPP optimally. To the extent of our knowledge, the DPP
has not been studied in the existing literature. In a special case of DPPwherein energy constraint is
not considered (i.e., DPP-W), we identify the challenges of applying VCGmechanism into our BSN
model to motivate selfish sensor nodes. We show that with these challenges, our game (i.e., DPG-1)
still achieves a truthful and optimal system-wide data preservation solution with self-interested
sensor nodes. However, in the general case of DPP, wherein nodes have a finite amount of energy,
we observe that DPG-1 can no longer provide truth-telling and optimal data preservation. We thus
design another data preservation game, viz., DPG-2, to fix the flawed VCG model used in DPG-1.
We show via proof and simulations that DPG-2 not only delivers truth-telling as a node’s dominant
strategy but also achieves optimal data preservation in the BSN while accommodating the selfish
behavior of energy-constrained sensor nodes. In contrast to many existing works that applied
game theory and related techniques to solve sensor networking problems, our work takes a net-
work flow approach to facilitate the game design and game-theoretical analysis. Due to the theoret-
ical roots of the game theory and network flows, the designed techniques in our DPG-1 and DPG-2
are applicable to any network environment where game theory and network flows play a role.
Currently, we do not consider the budget imbalance, which is the amount the central authority

needs to finance the data preservation process. We will consider if there exists an upper bound of
such budget imbalance. Second, we will consider that a storage node can also lie about its storage
capacity. Although lying about either energy cost or storage capacity can be treated similarly in
analysis, lying about both simultaneously in the data preservation game is a more challenging
problem. Third, we have assumed that although sensor nodes have limited storage and energy
capacity, data preservation is still feasible; that is, all the data can be offloaded from data nodes
to some storage nodes. In future work, we will consider infeasible data preservation, wherein not
all the data can be offloaded and preserved due to either energy insufficiency or storage insuffi-
ciency, or both, and study the game-theoretic behavior of sensor nodes in these more challenging
scenarios. Finally, we will extend our analysis to a dynamic scenario wherein overflow data are
generated from time to time at different nodes. It is well understood in game theory that an infin-
itely repeated game gives a much larger set of equilibria, and in certain scenarios, full cooperation
can be achieved. In our setting of data preservation among selfish nodes, it is interesting to see
to what extent we need to provide motivation for selfish storage nodes to cooperate to engage in
optimal data preservation.
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