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Abstract. Histopathology whole slide images (WSIs) play a very important role
in clinical studies and serve as the gold standard for many cancer diagnoses.
However, generating automatic tools for processing WSIs is challenging due to
their enormous sizes. Currently, to deal with this issue, conventional methods rely
on a multiple instance learning (MIL) strategy to process a WSI at patch level.
Although effective, such methods are computationally expensive, because tiling
a WSI into patches takes time and does not explore the spatial relations between
these tiles. To tackle these limitations, we propose a locally supervised learn-
ing framework which processes the entire slide by exploring the entire local and
global information that it contains. This framework divides a pre-trained network
into several modules and optimizes each module locally using an auxiliary model.
We also introduce a random feature reconstruction unit (RFR) to preserve distin-
guishing features during training and improve the performance of our method
by 1% to 3%. Extensive experiments on three publicly available WSI datasets:
TCGA-NSCLC, TCGA-RCC and LKS, highlight the superiority of our method
on different classification tasks. Our method outperforms the state-of-the-art MIL
methods by 2% to 5% in accuracy, while being 7 to 10 times faster. Addition-
ally, when dividing it into eight modules, our method requires as little as 20% of
the total gpu memory required by end-to-end training. Our code is available at
https://github.com/cvlab-stonybrook/local learning_wsi.
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1 Introduction

Computational pathology involving observation of tissue slides with a microscope, is
the gold standard for cancer diagnosis. In recent years, digital pathology has emerged
as a powerful technology for digitizing whole slide images (WSIs) for assessment,
sharing and analysis [7]. This provides researchers a good opportunity to develop
computer-aided analysis systems for various levels of applications, such as cell count-
ing, gland segmentation, and WSI classification [6,9, 13]. In particular, WSI-based can-
cer diagnosis faces unique challenges. The most typical characteristics of WSIs are
their extremely large image size and high resolution. A WSI generally can be as large
as 100,000x 100,000 pixels at a 40X magnification, which makes it impractical to train
deep neural networks in an end-to-end (E2E) manner. Consequently, the most popular
methods nowadays follow a patch-based paradigm [4, 12], i.e. each WSI is first tiled into
thousands of small patches. Then a model extracts and aggregates patch-level features
to make the final prediction [14,21,23].

Such methods follow a Multiple Instance Learning (MIL) scheme which is currently
the state-of-the-art for solving histopathology classification tasks [3,10,14,21,25].
Zhang et al. [25] proposed a spatial and magnification based attention sampling strat-
egy to extract informative patches, and directly learned a WSI classification model on
these patches. DSMIL [14] jointly trained a patch and an image classifier, where the
patches are selected softly with instance-level attention. More recently, TransMIL [21]
presented a transformer-based MIL framework to explore both morphological and spa-
tial information among instances. However, such a technical paradigm has some intrin-
sic shortcomings; these methods do not explore the spatial relations of each tile, by
failing to properly combine the local and global information of the tumor’s microen-
vironment. Moreover, these methods rely on pretrained features to represent the tiles
since the current deep learning architecture cannot be trained in an end-to-end manner.

The end-to-end training of deep neural networks requires storing in memory the
entire computational graph as well as the layer activations during the forward pass. Then
the loss backpropagates and updates the weights layer by layer based on the chain rule.
Storage of the graph and the gradients occupy a large amount of GPU memory, limiting
the input image size. Some researchers [20,22] proposed to retain gradient information
and train the model part by part to reduce memory consumption. Nevertheless, they
still tiled images into patches, and trained networks on smaller regions with limited
receptive field sizes.

Due to E2E training’s limited scalability to large input and large architectures, recent
research attempts to seek alternatives to mitigate the memory constraints, among which
locally supervised learning attracts increasing interest [2,24]. Locally supervised learn-
ing aims to train each layer locally with a pre-defined objective function, without back-
propagating the gradients end-to-end. The network training is free from storing all inter-
mediate variables and the memory consumption is thus reduced. Belilovsky et al. [1]
attached an auxiliary convolutional neural network classifier at each local module to
predict the final target and evaluated it on ImageNet [5]. Ngkland et al. [18] proposed
to use both classification loss and contrastive loss to supervise each local module and
showed it was better than using a single loss.

In this paper, we introduce a locally supervised learning paradigm to train a classi-
fication network using the entire WSI. Our method splits a deep network into multiple
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gradient-isolated modules and each part is trained separately with local supervision.
Thus we can use the entire WSI as input and do not have a patch size limited receptive
field. Moreover, we further propose the Random Feature Reconstruction (RFR) model
to boost the performance and optimize the GPU usage. To the best of our knowledge,
we are the first to propose a locally supervised learning scheme coupled with RFR for
the classification of entire WSIs. Our method has been extensively evaluated on three
public WSI datasets, and achieves state-of-the-art performance compared to MIL-based
methods. Moreover, without tiling, our method is significantly faster during inference.

2 Method
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Fig. 1. Overview of the proposed method. (a) Overall structure of our locally supervised learning
method. A network is divided into 4 modules and a classifier. The first 3 modules F;,i = 1,2,3
are optimized using auxiliary models G;,7 = 1,2, 3 respectively. The last module Fy is opti-
mized together with the classifier H (-). We assume zo = x. (b) Structure of the auxiliary model
G;(-). It has an auxiliary classifier A;(-) and a Random Feature Reconstruction (RFR) model
Ui (+). (c) Structure of the RFR model. It reconstructs randomly sampled regions in the previous
feature map.

The key idea of our locally supervised learning is dividing a network layer by layer into
several consecutive modules and optimizing them separately. Formally, let us assume
without loss of generality, a network F'(-) composed by K consecutive modules: F'(-) =
((H o Fkg)o Fg_q10---0F)(-), where F;(-) represents the i-th network module.
H(-) is a gated attention multiple instance learning [11] based classifier and o is the
function composition operation. Such a network is trained using pairs of (z, y) on which
z denotes the entire WSI and y the corresponding label.

A network module contains several network layers of the original network, for
example, the first 6 layers in a ResNet34. The input to a network module F;, ¢ = 1,.., K
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is x;—1 and the output is z;, assuming xo = x. An overview of our approach is pre-
sented in Fig. 1 on which the forward and backward passes are indicated.

In such a setup, each module is trained locally. More specifically, given a network
module F; and its input z;_1, we use an auxiliary model G;, and compute the loss as
L, = Gi(Fz‘(ﬂﬁifﬂ, Qii,hy) = Gi(l‘i, l‘i,hy). We train Fj by mlmmlzmg the £;.
Then, the trained module F; is frozen and in an iterative process, the same technique is
applied to F;;1 by minimizing £;11 = G+1(x;11,%;,y). The same process is applied
to each of the K — 1 modules. Finally, the final module Fk (-) is optimized together
with the classifier H(-) without an additional auxiliary model since the label y serves
as the final supervision.

2.1 Auxiliary Model

The training of each model is performed using an auxiliary model with a greedy strat-
egy [1]. As shown in Fig. 1(b), the auxiliary model has two parts: an auxiliary clas-
sifier A;(-) and an RFR model U;(-). The auxiliary classifier has a similar structure
of classifier H(-) and computes a classification loss L.;s(9;, y) between the prediction
§; = A;(x;) and ground truth y. Such a design enables the training of the module F;(+)
locally. However, as discussed in [24], the shallower layers in a network have limited
ability to extract discriminative features, making the training difficult.

To overcome this problem, the authors proposed to reconstruct the input image x
from the feature map z; and applied a reconstruction loss as a regularization to pre-
serve the discriminative features. However, this strategy cannot be applied to WSIs as
reconstructing an entire WSI is too costly.

To deal with this issue, we propose to use a RFR model instead of the reconstruction
module. More specifically, a RFR model reconstructs randomly sampled regions from
the previous feature map.

As shown in Fig. 1(c), the first step of a RFR model U;(+) is to randomly sam-
ple (S(+)), 10 corresponding spatial locations on the latent representations from the
i-th module x; as well as from the previous module x;_. Feature patches S(z;) and
S(xz;_1) are cropped according to the sampled spatial locations. Then, a reconstruction
network R;(-) is applied to the cropped features from i-th module S(z;), aiming to
reconstruct the target S(z;_1). A reconstruction loss L, is used to minimize the dis-
tance between the reconstructed feature patches R;(S(x;)) and feature patches from its
previous module in the corresponding spatial locations S(x;_1). During training, this
random sampling process eventually iterates over most locations and thus encourages
the network to preserve discriminative features with limited GPU memory cost.

2.2 Optimization

In our framework, the first K — 1 modules are optimized locally with the following
setting:

Li = Les(Ai(Fi(xi-1)),y) + aLrec(Ri(S(Fi(zi-1))), S(xi-1)), (D
i=1,. . K—1, 2)
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where x;_; is the input feature of the i-th module F;(-) and hyperparameter « is a
regularization term. Since the last module Flk (-) is jointly optimized with the classifier
H(-) the training scheme is changed to:

Lrx=Las(HFr(xr-1)),y), 3)

where x 1 is the input feature of the last module. We used L1 loss as the reconstruction
loss L. and cross entropy loss as the classification loss L£.;s. We set « to be 1 after grid
search on the validation dataset. However, our methodological design is independent of
these losses and different reconstruction and classification losses can be applied.

3 Experiments and Discussion

3.1 Datasets

TCGA-NSCLC. The TCGA-NSCLC (The Cancer Genome Atlas-Non-Small Cell
Lung Cancer) dataset includes two sub-types of lung cancer, Lung Adenocarcinoma
(LUAD) and Lung Squamous Cell Carcinoma (LUSC). The dataset contains a total of
1053 diagnostic WSIs. We randomly split them into 663 training slides, 166 validation
slides and 214 testing slides (10 slides without magnification labels are discarded). We
benchmarked the performance of our model on this dataset for the lung cancer sub-type
classification task. The WSIs were on 5X magnification and the size of the slides ranges
from 1581 x 1445 to 23362 x 11345.

TCGA-RCC. The TCGA-RCC (Renal Cell Carcinoma) dataset includes three sub-
types of kidney cancer, Kidney Chromophobe Renal Cell Carcinoma (KICH), Kid-
ney Renal Clear Cell Carcinoma (KIRC) and Kidney Renal Papillary Cell Carcinoma
(KIRP). The dataset contains a total of 939 diagnostic digital slides. We randomly split
them into 603 training slides, 150 validation slides and 186 testing slides. We bench-
marked the performance of our model on this dataset for the classification of these three
different kidney cancer types. The WSIs were on 5X magnification and the size of the
slides ranges from 2610 x 1351 to 23849 x 10257.

LKS. The Liver-Kidney-Stomach(LKS) [17] dataset is a multi-tissue indirect immuno-
fluorescence slides dataset. It includes four classes: Negative, Anti-Mitochondrial Anti-
bodies (AMA), Vessel-Type Anti-Smooth Muscle Antibodies (SMA-V) and Tubule-
Type Anti-Smooth Muscle Antibodies (SMA-T). The dataset contains a total of 684
slides, including 205 testing slides. To perform our experiments, we further split the
rest into 383 training slides and 96 validation slides. Each slide in this dataset has the
original size of 40000 x 40000. We further resized the images to 10000 x 10000 at 5X
magnification.

3.2 Implementation Details

For all our experiments, we used ResNet34 [8] pretrained on ImageNet [5] as our back-
bone network (F'(+)). We froze the first 4 layers of ResNet34 and increased the stride
of the first convolution from 2 to 3 to enlarge the receptive field. We set the batch size
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to be 1, since each WSI has a different size. To mitigate potential instability, we used
the common optimization practice of accumulating the gradients of 8 batches before
updating the parameters. All the batch normalization layers were frozen as well. In the
RFR model, we sampled 10 patches of the size 128 x 128 for the first auxiliary model
G1(+) and the spatial dimensions sampled in the following modules depended on the
size of the feature map. The number and size of patches are determined by the vali-
dation dataset. We used a gated attention multiple instance learning (GABMIL) [11]
based network in the auxiliary classifier A;(-) and classifier H(-).

We used AdamW [15] with weight decay 10~ as the optimizer. For the two TCGA
datasets, the learning rate was initially set to 1 x 1075 for the pre-trained backbone
modules F;(-) and 2 x 10~° for the randomly initialized auxiliary models G;(-) and
classifier H (-). Learning rates were decreased by a factor of 0.1 when the loss and val-
idation accuracy plateaued. For the LKS dataset, the initial learning rates were doubled
to 2 x 107 for pre-trained backbone modules and 4 x 10~5 for randomly initialized
auxiliary models.

We used the PyTorch library [19] and trained our models on a NVIDIA Tesla V100
or a Nvidia Quadro RTX 8000 GPU.

3.3 Results

Evaluation of Overall Performance. We chose overall accuracy and area under
Receiver Operating Characteristic curve (AUROC) as the main metrics to evaluate
our method. Our baselines included ImageNet pre-trained ResNet34 with two differ-
ent pooling methods: average pooling and max pooling. We also included the cur-
rent state-of-the-art deep MIL models: the attention based multiple instance learning
(ABMIL) [11] and its gated variant GABMIL [11], dual stream attention based model

Table 1. Comparison of accuracy and AUROC on three datasets. Our method, of both K = 4
and K = 8, outperforms existing state-of-art MIL models

Dataset TCGA-NSCLC TCGA-RCC LKS

Metric Accuracy | AUROC | Accuracy | AUROC | Accuracy | AUROC
Max-pooling 0.8318 | 0.9036 |0.8495 0.9306 1 0.8049 |0.9366
Avg-pooling 0.7944 1 0.8669 |0.8172 ]0.9309 |0.6000 |0.9086
ABMIL [11] 0.8037 |0.8816 |0.8495 0.9423 1 0.8341 0.9392
GABMIL [11] 0.8364 |0.8762 |0.8602 |0.9535 |0.8146 |0.9399
MIL-RNN [3] 0.8178 | 0.9011 |/ / / /
DSMIL [14] 0.8271 0.8909 0.8710 |0.9590 |0.8390 |0.9328

CLAM-SB [16] 0.8224 109185 |0.8763 |0.9701 |0.8293 |0.9446
CLAM-MB [16] 0.8598 | 0.9131 |0.8763 |0.9716 |0.8439 |0.9448
StreamingCNN [20] | 0.8692 | 0.9260 |0.8817 |0.9660 |0.8927 |0.9652
Ours (K=4) 0.8785 0.9377 |0.9140 |0.9740 |0.8976 | 0.9562
Ours (K=8) 0.8785 09322 |0.9032 |0.9760 |0.8829 |0.9633
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Table 2. Comparison of GPU memory consumption. Our method required around 20%(K = 8)
to 30%(K = 4) GPU memory compared to E2E training. * is measured on CPU because of GPU
memory limitation

Image size | 8698 x 7496 | 12223 x 10057 | 23849 x 10257
E2E 17.89G 33.63G 78.14G*

Ours (K=4)| 5.35G 9.64G 18.32G

Ours (K=8)| 3.71G 6.47G 11.85G

DSMIL [14], single-attention-branch CLAM-SB [16], multi-attention-branch CLAM-
MB [16], and also two-stage recurrent neural network based aggregation MIL-RNN [3],
which considers binary classifications only. All these baselines are trained on 5X res-
olution and using ResNet34 for fair comparision. Our method was able to fine tune
the ImageNet pretrained weights to adapt to the medical image domain, while other
methods directly used the ImageNet pretrained features.

As shown in Table 1, our method (K = 4) outperformed all the compared meth-
ods in the overall accuracy and AUROC metrics. To the best of our knowledge the
SOTA for the TCGA-NSCLC dataset is 96.3% AUROC (95% confidence interval:
93.7%-99.0%) reported by CLAM [16]. For experimental uniformity, we used the exact
same splits on all comparisons and reported accuracy and AUROC, reporting a 91.9%
AUROC for CLAM for the same resolution which is also higher than the rest of the
compared methods. Our method achieved 1.87% higher accuracy than the best com-
pared method CLAM-MB, and 2.46% higher AUROC. On the TCGA-RCC dataset,
our method achieved 3.77% higher accuracy and 0.24% higher AUROC. On the LKS
dataset, our method had 5.37% higher accuracy and 1.14% higher AUROC compared
with the best performing method CLAM-MB. Also, comparing with the SOTA on this
dataset, SOS [17], our method achieved comparable performance to it (90.73% accu-
racy).

Moreover, Table 1 highlights the robustness of our method with respect to the dif-
ferent modules. In particular, our model was divided into 8 modules and each of them
trained locally using the proposed strategy performs as well as the K = 4 and out-
performed the compared methods. Also, we compared our method with a non-MIL
approach StreamingCNN [20], as shown in Table 1, our method (K = 4) outperformed
it on TCGA-NSCLC and TCGA-RCC. On LKS dataset, our method achieved better
accuracy and comparable AUROC.

Evaluation of GPU Memory Consumption. Another major advantage of our method
is that our method significantly reduced the GPU memory required during training and
thus enables training on the entire WSI. We compared the GPU memory consumption
of our method (for K = 4 and K = 8) and that of the end-to-end (E2E) training.
As the sizes of images in a WSI dataset usually vary a lot, instead of evaluating the
memory consumption on three datasets, we evaluated it on three different sized images:
a 23849 x 10257 image, the largest image in the TCGA-RCC dataset, a 12223 x 10057
image, and an 8698 x 7496 image. Note that for the 23848 x 10257 image, we performed
the E2E measurement on the CPU since the GPU memory was not enough to perform
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Table 3. Comparison of inference speed on three different sized inputs. Our method ran 7 to 10
times faster than GABMIL since we do not have the tilling and feature extraction step.

Image size | 8698 x 7496 12223 x 10057 23849 x 10257

Method GABMIL | Ours | Speed gain | GABMIL | Ours | Speed gain | GABMIL | Ours | Speed gain
Tiling 03s / / 0.7s / / 1.8s / /

Features | 2.6s / / 3.7s / / 9.6s / /
Prediction | <0.1s 03s |/ <0.1s 0.6s |/ <0.1s 12s |/

Total 29s 0.3s | 9.7x 445 0.6s | 7.3x 11.4s 1.2s | 9.5x

this task. As shown in Table2, when the input image size was 8698 x 7496, our 4
divided network required only 29.9% of the GPU memory that the E2E training needs.
This number further dropped to 20.7% if we divided the network into K = 8 modules.

The same memory usage held for the other two input image sizes. In general, our 4
divided network required only around 30% memory and our 8 divided network required
only around 20% memory compared to E2E training.

Evaluation of Time Efficiency. Besides the higher accuracy and the lower GPU mem-
ory cost, our method is faster in inference than the standard MIL approaches. We mea-
sured the total time (in seconds) that our method requires to infer an entire WSI and
compared it with GABMIL [11], a high performance MIL model. We timed the whole
inference pipeline including patch tiling, feature extraction, and final prediction. We
reported the total inference time on WSIs in 3 different sizes. Table 3 highlights the
time efficiency of our method. Our method took only 1.2 s to classify a 23849 x 10257
WSI, while GABMIL needed more than 11.4 s due to the time consuming step of fea-
ture extraction on the large amount of patches.

Ablation Study on RFR. We conducted an ablation study on the Random Feature
Reconstruction (RFR) model. Table4 shows the comparison on the accuracy of our
method with and without RFR. On the TCGA-NSCLC dataset, using the RFR model
improved the accuracy by 0.47% for K = 4 and 3.27% for K = 8. On the TCGA-RCC
dataset, using the RFR model improved the accuracy by 2.15% for K = 4 and 3.22%
for K = 8. On the LKS dataset, using the RFR model improved the accuracy by around
1% for both K =4 and K =8.

Table 4. Comparison of accuracy of our method with and without RFR. The RFR model improved
the accuracy of our method by 1% to 3%.

Dataset TCGA-NSCLC | TCGA-RCC | LKS

K =4, w/o RFR | 0.8738 0.8925 0.8829
K=4,w.RFR |0.8785 0.9140 0.8976
K =38, w/o RFR | 0.8458 0.8710 0.8780
K=38,w.RFR |0.8785 0.9032 0.8829
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4 Conclusion

In this paper, we introduced a locally supervised learning framework to train using
entire whole slide images. We evaluated it on three WSI datasets and achieved a 2% to
5% accuracy improvement compared to existing MIL methods. This significant per-
formance gain was achieved by reducing GPU memory consumption and enabling
fine-tuning of the feature extractor. Compared with end-to-end training, our method
required only 20% to 30% of the memory. Moreover, our method did not require tiling
as existing MIL methods do, thus it was 7 to 10 times faster during inference. We also
demonstrated that the proposed random feature reconstruction (RFR) model improved
the performance of our locally supervised learning framework by 1% to 3%. Our pro-
posed approach showed the greater potential of locally supervised learning on classi-
fying whole slide images and we will explore its applications on other tasks including
segmentation.
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