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Abstract. We address the global existence of solutions for the 2D Kuramoto-Sivashinsky equations in a

periodic domain [0, L1]× [0, L2] with initial data satisfying ‖u0‖L2 ≤ C−1L−2

2
, where C is a constant. We

prove that the global solution exists under the condition L2 ≤ 1/CL
3/5
1

, improving earlier results. The

solutions are smooth and decrease energy until they are dominated by CL
3/2
1

L
1/2
2

, implying the existence

of an absorbing ball in L2.

1. Introduction

In this paper, we address the global existence of the 2D periodic Kuramoto-Sivashinsky equation (KSE)

∂tφ+∆φ+∆2φ+
1

2
|∇φ|2 = 0, (1.1)

with the initial data φ(0) = φ0, in two space dimensions on the domain Ω = [0, L1] × [0, L2] under the

condition L2 ≤ Lq
1, where q > 0 is a certain exponent. As it is more common, we shall also consider the

velocity formulation u = (u1, u2) = ∇φ, which reads

∂tu1 +∆2u1 +∆u1 + u1∂xu1 + u2∂xu2 = 0

∂tu2 +∆2u2 +∆u2 + u1∂yu1 + u2∂yu2 = 0

∂yu1 = ∂xu2,

with the initial data u(0) = u0 = ∇φ(0). When u2 = 0, the system reduces to the well-known 1D Kuramoto-

Sivashinsky equation ut + uxxxx + uxx + uux = 0 which is typically studied on a periodic domain [0, L].

The Kuramoto-Sivashinsky equation arises in many important physical contexts [Kur,S,T]. In particular,

it has been a model for instabilities of flame fronts and ion plasma. It also serves as a model for a flow

down an inclined plane in the presence of an electric field. In addition, the KSE also serves as a model for

low-dimensional chaos.

The global existence, dissipativity, and the existence of the global attractor for the one dimensional KSE

has now been well-established, while in two space dimensions, there is a fundamental difficulty with global

existence due to the lack of suitable energy conservation. In one space dimension, the primary problem for

the instability, and thus the global existence, is the backward heat term uxx. The first result establishing

the global existence for the one-dimensional problem is that of Nicolaenko, Scheurer, and Temam [NST]

for odd initial data. In [NST] it was also proven that lim supt→∞
‖u(t)‖L2 ≤ CL5/2, where L denotes the

size of the periodic domain. The oddness assumption was removed by Ilyashenko [I], and subsequently by

Goodman [G] and Collet, Eckmann, Epstein, and Stubbe [CEES]. In particular, in [CEES], the authors

proved that lim supt→∞
‖u(t)‖L2 ≤ CL8/5 for arbitrary initial data. Finally, Giacomelli and Otto proved
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in [GO], that lim supt→∞
‖u(t)‖L2 ≤ CL3/2, which is currently the most precise upper bound for the size

of the absorbing ball for the 1D KSE. More recently, Otto has found in [O] (cf. also [GJO]), estimates

for the space time averages of solutions. For other results on regularity of solutions of the 1D model, see

also [BG,BS,GK,M,RK,SS,T,TP,WH]

Considering the laminar flame front model, the two-dimensional KSE appears more physically interesting.

However, the global existence in 2D is a long-standing open problem. The main issue mathematically is

that the energy dissipation is not available. In addition, the methods treating the KSE as a perturbation of

the Burgers equations [I,G,GJO], do not extend to higher space dimensions. There are however still several

results available on the global existence of solutions. In [AM], Ambrose and Mazzucato obtained the global

existence of solutions for small initial data for L1 and L2 less than 2π along with the decay and analyticity of

solutions. Sell and Taboada proved in [ST] that the global solutions still exist if one of the scales, say L2, is

sufficiently small compared to the other and with initial condition smaller than a function of L1. Note that

the mechanism for the global existence is different here than when both spatial scales are small since the

existence is obtained by using oscillations in the vertical direction rather than by damping. The paper [ST]

used methods inspired by the work on the 3D Navier-Stokes equations by Raugel and Sell [RS1,RS2,RS3]

(cf. also subsequent works [HS,KRZ,KZ,H1,H2]). Further, Molinet [M1,M2] showed local dissipation of the

equation on [0, L1] × [0, L2] under the condition L2 ≤ 1/CL
67/35
1 and obtained a global solution provided

also that the initial data is of a certain size as a function of L1 and L2. The size of the domain was extended

further in the paper [BKRZ] to L2 ≤ 1/CL
22/25
1 . This last paper contains the best results reached at this

point on the two-dimensional domain size relation to global in time solutions. The main result of this paper

establishes the global existence under the condition L2 ≤ 1/CL
3/5
1 , improving earlier results; as in [BKRZ],

the initial data needs to satisfy the condition

‖u0‖L2 ≤ 1

CL2
2

,

which agrees with the condition in [BKRZ]. In addition, we prove that

lim sup
t→∞

‖u(t)‖L2 ≤ CL
3/2
1 L

1/2
2 .

The bound agrees with the one in [GO] if the data is constant in the y direction.

In Sections 2–4, we introduce the approach used in analyzing the two dimensional KSE. In particular, we

introduce the projection operators M and N , representing the average in the y-direction and the deviation

from the average, respectively. The averaging method has been used in work on the Navier-Stokes system

[A,KZ,TZ]. This method is expedient here as much of the inherent difficulties lie with the spatial average,

which parallels the one dimensional problem. In Sections 5 and 6 we prove energy inequalities satisfied by

the functions Mu1, Nu1, and Nu2 = u2 (denoted by M1, M2, and N2, respectively). It is important that

the right-hand sides of these inequalities contain a factor L2
2. Lemma 6.1 in the next section contains a

consequence of these energy inequalities on the increase of these quantities on a given time interval T . Next,

in Lemma 6.3, we provide control of the space-time average of M1 = Mu1. The important aspect of this

inequality is that it contains a higher power (4) of the variable M1 on the left side than is the power of the

quantities on the right. The idea of controlling the space-time average of the solution through its space-time

L4 norm is due to Giacomelli and Otto [GO]. A consequence of these preliminary results is Lemma 7.1,

in which the time averages of the quantity M1 are controlled by the time averages on a preceding interval.
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Finally, in the last section, we present two barrier arguments, which provide control of the solution for all

time. Note that we also obtain the existence of an absorbing ball, which reduces to bounds achieved for the

1D KSE due Giacomelli and Otto when the initial data are independent of y.

2. Notation and the main theorem

Defining u = ∇φ and observing that φxy = φyx, and thus also 1
2∇(|u|2) = u ·∇u, the KSE (1.1) becomes

∂tu+∆2u+∆u+ u · ∇u = 0

curlu = 0
(2.1)

on a periodic domain Ω = [0, L1]× [0, L2], with the initial condition

u(·, 0) = u0. (2.2)

Since the average of u = (u1, u2) over Ω is preserved, we normalize it to zero, i.e., we assume
∫

Ω

u0(x, y) dxdy = 0. (2.3)

This in turn implies
∫

Ω

u(x, y, t) dxdy = 0, t ≥ 0, (2.4)

for as long as the solution exists.

The following is the main result of the paper.

Theorem 2.1. Let L1 ≥ L2 > 0. There exists δ0 ∈ (0, 1] such that if

L2 ≤ δ0

max{L3/5
1 , 1}

(2.5)

and

‖u(0)‖L2 ≤ δ0
L2
2

, (2.6)

then there exists a solution of u of (2.1) which is global in time. If L1 ≥ 1, it satisfies

lim sup
t→∞

‖u(t)‖L2 ≤ CL
3/2
1 L

1/2
2 , (2.7)

while if L1 ≤ 1, then

lim sup
t→∞

‖u(t)‖L2 ≤ CL1L
1/2
2 , (2.8)

where C is a sufficiently large universal constant.

We emphasize that C and all the implicit constants in the symbol . are universal; in particular, they

do not depend on L1 or L2. They may change from line to line. The numbered constant C0, C1, C2, . . . are

also universal, but their value is fixed. We assume that all these constants are greater than 1.

The above theorem, however with a more restrictive assumptions L2 ≤ δ0/L
22/25
1 and L1 ≥ 2π, was

proven in [BKRZ]. Note that when L1 ≤ 1, the above theorem extends [AM] since the initial data do not

need to have a small L2 norm, but only satisfy (2.6).

It is well-known that the KSE system is locally well-posed with the initial data in L2, which applies

here due to the condition (2.6). Also, there exists the maximal time of existence Tmax ∈ (0,∞] such

that the solution is smooth in (x, t) on R
2 × (0, Tmax). In addition, if Tmax < ∞ the solution satisfies
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limt→Tmax
‖u(t)‖L2 = ∞. Thus, from here on, we perform all the estimates on the time interval (0, Tmax).

In order to obtain the global existence, we only need to prove boundedness of the L2 norm on the interval

(0, Tmax).

3. Preliminaries

Expanding (2.1) out, we obtain the component-wise formulation

∂tu1 +∆u1 +∆2u1 + u1∂xu1 + u2∂yu1 = 0

∂tu2 +∆u2 +∆2u2 + u1∂xu2 + u2∂yu2 = 0

∂yu1 = ∂xu2,

(3.1)

with the initial condition u(·, 0) = u0.

Consider the average of a function f ∈ L1(Ω) in the y direction

M(f) =
1

L2

∫ L2

0

f(x, y, t)dy,

and the difference between the function and this average

N(f) = f(x, y, t)−M(f).

Observe that

M(u2) = 0, (3.2)

for all t ≥ 0 such that the solution exists. This property results from applying the operatorM to ∂yu1 = ∂xu2

which shows that M(u2) is constant in x. The constant then vanishes by (2.4).

For simplicity, denote by

M1(x, t) = M(u1) =
1

L2

∫ L2

0

u1(x, y, t)dy (3.3)

the average of u1 in the y direction, and

N1(x, y, t) = u1(x, y, t)−M1(x, t)

its deviation from the average. Clearly, u1 = M1 +N1. Analogously, we denote

N2(x, y, t) = u2(x, y, t), (3.4)

since the average of u2 in the y direction vanishes by (3.2).

4. Properties of the average

First, we recall several projection identities involving the operators M and N .

Lemma 4.1. The operators M and N satisfy the identities

(i) M(M(f)) = M(f),

(ii) M(N(f)) = 0,

(iii) N(M(f)) = 0, and

(iv) N(N(f)) = N(f),

for all f ∈ L1(Ω).
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The identities above imply the product rules

M(fg) = MfMg +M(NfNg) (4.1)

and

N(fg) = MfNg +NfMg +N(NfNg), (4.2)

which hold for all sufficiently regular functions f and g. Both identities are obtained by writing f = Mf+Nf

and g = Mg +Ng and using M(M(f)N(g)) = M(f)M(N(g)) = 0 and M(N(f)M(g)) = M(g)M(N(g)) =

0, as well as N(M(f)M(g)) = 0.

Proof of Lemma 4.1. The part (i) is immediate from the definition. For (ii), we have

M(N(f)) = M(f −M(f)) = M(f)−M(M(f)) = M(f)−M(f) = 0.

Similarly,

N(M(f)) = M(f)−M(M(f)) = M(f)−M(f) = 0

providing (iii), and

N(N(f)) = N(f −M(f)) = f −M(f)− (M(f)−M(M(f))) = f −M(f) = N(f),

establishing (iv). �

Next, we rewrite the first equation in (3.1) in terms of M1 and N1.

Lemma 4.2. The average M1 satisfies

∂tM1 + ∂xxxxM1 + ∂xxM1 +M1∂xM1 +M(N1∂xN1) +M(N2∂xN2) = 0. (4.3)

Observe that the equation for M1 is a perturbation of the 1D KSE.

Proof of Lemma 4.2. Applying an average in y, and recalling that u1 = M1 +N1, we get

M(∂tu1 +∆2u1 +∆u1 + u1∂xu1 + u2∂xu2)

= ∂tM1 + ∂xxxxM1 + ∂xxM1 +M(u1∂xu1) +M(u2∂xu2)

= ∂tM1 + ∂xxxxM1 + ∂xxM1 +M1∂xM1 +M(N1∂xN1) +M(N2∂xN2),

where in the last equality we used (3.4) and the product rule (4.1). �

5. Energy Estimates

Now we turn to the energy estimates. Throughout the paper, we abbreviate ‖ · ‖ = ‖ · ‖L2(Ω).

Lemma 5.1. The energy inequalities for the quantities M1, N1, and N2 read

(i) 1
2

d
dt‖M1‖2 + ‖∂xxM1‖2 − ‖∂xM1‖2 . L2

2(‖∆N1‖2 + ‖∆N2‖2)‖M1‖,
(ii) 1

2
d
dt‖N1‖2 + ‖∆N1‖2 − ‖∇N1‖2 . L2

2(‖M1‖+ ‖N2‖)‖∆N1‖2 + L2
2‖N2‖‖∆N2‖2, and

(iii) 1
2

d
dt‖N2‖2 + ‖∆N2‖2 − ‖∇N2‖2 . L2

2(‖M1‖+ ‖N1‖)‖∆N2‖2,
where all the constants are universal.
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Proof of Lemma 5.1. For the first energy inequality (i), we multiply (4.3) by M1 and integrate over Ω,

obtaining

1

2

d

dt
‖M1‖2 + ‖∂xxM1‖2 − ‖∂xM1‖2 = −

∫

Ω

(

M(N1∂xN1) +M(N2∂xN2)
)

M1

= −
∫

Ω

N1∂xN1M1 −
∫

N2∂xN2M1

≤
∫ L1

0

‖N1‖L2
y
[0,L2]‖∂xN1‖L2

y
[0,L2]|M1| dx+

∫ L1

0

‖N2‖L2
y
[0,L2]‖∂xN2‖L2

y
[0,L2]|M1| dx,

(5.1)

where we applied the Cauchy-Schwarz inequality in the y variable. For the first term, we have

∫ L1

0

‖N1‖L2
y
[0,L2]‖∂xN1‖L2

y
[0,L2]|M1| dx . ‖N1‖‖∂xN1‖L∞

x
L2

y
‖M1‖L2[0,L1]

. ‖N1‖‖∂xN1‖L2
y
L∞

x
‖M1‖L2

x
[0,L1] . ‖N1‖‖∂xN1‖1/2‖∂xxN1‖1/2

1

L
1/2
2

‖M1‖

. L2
2‖∂yyN1‖L1/2

2 ‖∂xyN1‖1/2‖∂xxN1‖1/2
1

L
1/2
2

‖M1‖ . L2
2‖∆N1‖2‖M1‖,

(5.2)

where we applied Hölder’s inequality in y in the first step, Agmon’s inequality in x in the third, and the

Poincaré inequality in y in the fourth. The last inequality in (5.2) follows from ‖vxx‖2+2‖vxy‖2+‖vyy‖2 =

‖∆v‖2, for all periodic v ∈ H2(Ω). We emphasize that all constants in the symbol . are universal, in

particular independent of L1 and L2.

The second term on the far right side of (5.1) is treated analogously.

For (ii), we start by applying N to the first equation in (3.1), then multiply by N1, and integrate over Ω.

This yields

1

2

d

dt

∫

Ω

N2
1 +

∫

Ω

(∆N1)
2 −

∫

Ω

|∇N1|2 = −
∫

Ω

N(u1∂xu1)N1 −
∫

Ω

N(u2∂xu2)N1, (5.3)

since N commutes with ∂x and ∂y. In order to complete the proof of (ii), we only need to estimate the

nonlinear components. Using the product rule (4.2) and Lemma 4.1 (iv), the nonlinear term in (5.3) is

rewritten as

−
∫

Ω

N(u1∂xu1)N1 −
∫

Ω

N(u2∂xu2)N1

= −
∫

Ω

M1∂xN1N1 −
∫

Ω

N1∂xM1N1 −
∫

Ω

N1∂xN1N1 −
∫

Ω

N2∂xN2N1

= −
∫

Ω

M1∂xN1N1 + 2

∫

Ω

M1N1∂xN1 −
∫

N2
1 ∂xN1 −

∫

Ω

N1N2∂xN2

=

∫

Ω

M1N1∂xN1 −
∫

Ω

N1N2∂xN2.

(5.4)

We claim that the last expression is, up to a constant, less than or equal to

L2
2‖M1‖‖∆N1‖2 + L2

2‖N2‖‖∆N1‖‖∆N2‖.
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Note that the first term on the far right side of (5.4) is identical to the term estimated in (5.2). For the

second term in (5.4), we have

−
∫

Ω

N1N2∂xN2 ≤
∫ L1

0

‖N1‖L2
y
[0,L2]‖N2‖L2

y
[0,L2]‖∂xN2‖L∞

y
[0,L2] dx

. ‖N1‖L∞

x
L2

y
‖N2‖‖∂xN2‖L2

x
L∞

y
. ‖N1‖L2

y
L∞

x
‖N2‖‖∂xN2‖L2

x
L∞

y

. ‖N1‖1/2‖∂xN1‖1/2‖N2‖‖∂xN2‖1/2‖∂xxN2‖1/2 . L2
2‖N2‖‖∆N1‖‖∆N2‖,

(5.5)

where we used
∫ L2

0
Nf dy = 0 for every f ∈ L1(Ω) in the fourth inequality, by Lemma 4.1 (ii).

For (iii), we observe that u2 = N2, multiply the second equation in (3.1) by N2 and integrate over Ω. We

obtain

1

2

d

dt

∫

Ω

N2
2 +

∫

Ω

(∆N2)
2 −

∫

Ω

|∇N2|2 = −
∫

Ω

N(u1∂yu1)N2 −
∫

Ω

N(u2∂yu2)N2, (5.6)

where we also used ∂xu2 = ∂yu1. The nonlinear term in (5.6) is rewritten as

−
∫

Ω

u1∂yu1N2 −
∫

Ω

u2∂yu2N2 = −
∫

Ω

u1∂yN1N2 −
∫

Ω

N2∂yN2N2

= −
∫

Ω

u1∂yN1N2 =

∫

Ω

u1∂xN2N2 =

∫

Ω

(M1 +N1)∂xN2N2

. L2
2(‖M1‖+ ‖N1‖)‖∆N2‖2,

where the final inequality is obtained as in (5.2) and (5.5). �

6. Space-time energy estimates

We require control of the L2 norms in space-time of various quantities involving M1, N1, and N2, which

are then used in the barrier arguments in the next section.

Lemma 6.1. For s ≥ 0, denote

η(t) = L2
2(‖M1(t)‖+ ‖N1(t)‖+ ‖N2(t)‖). (6.1)

Let T ∈ [0, 1], and assume that for some t0 ≥ 0

η(t) ≤ 1

C0
, t ∈ [t0, t0 + T ], (6.2)

where C0 ≥ 2 is sufficiently large universal constant. Then the quantity

A(t) = ‖M1(t)‖2 + ‖N1(t)‖2 + ‖N2(t)‖2

satisfies

A′(t) ≤ 2A(t), t ∈ [t0, t0 + T ]. (6.3)

Also, we have

sup
t∈[t0,t0+T ]

‖M1‖2, sup
t∈[t0,t0+T ]

‖N1‖2, sup
t∈[t0,t0+T ]

‖N2‖2,
∫ t0+T

t0

‖∂xxM1‖2,
∫ t0+T

t0

‖∂xM1‖2,
∫ t0+T

t0

‖∆N1‖2,
∫ t0+T

t0

‖∆N2‖2,
∫ t0+T

t0

‖∇N1‖2,
∫ t0+T

t0

‖∇N‖2 . A(t0)

(6.4)
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and
∫ t0+T

t0

∫

Ω

|∂xM1|3 .
1

L
1/2
2

A(t0)
3/2, (6.5)

where the constants in (6.4) and (6.5) depend on T .

Proof of Lemma 6.1. Summing the three inequalities in Lemma 5.1, we obtain

1

2

d

dt
(‖M1‖2 + ‖N1‖2 + ‖N2‖2) + ‖∂xxM1‖2

+
(

1− CL2
2(‖M1‖+ ‖N1‖+ ‖N2‖)

)(

‖∆N1‖2 + ‖∆N2‖2
)

. ‖∂xM1‖2 + ‖∇N1‖2 + ‖∇N2‖2.

(6.6)

Integrating by parts and using Young’s inequality on the first derivatives, we find

‖∂xM1‖2 ≤ 1

2
‖∂xxM1‖2 +

1

2
‖M1‖2

and

‖∇Nj‖2 ≤ 1

2
(1− η)‖∆Nj‖2 +

1

2(1− η)
‖Nj‖2, j = 1, 2,

where η(t) is defined in (6.1). Assuming (6.2) with C ≥ 2 sufficiently large, we obtain from (6.6) that

d

dt
(‖M1‖2 + ‖N1‖2 + ‖N2‖2) + ‖∂xxM1‖2 + ‖∆N1‖2 + ‖∆N2‖2

≤ 2
(

‖M1‖2 + ‖N1‖2 + ‖N2‖2
)

,
(6.7)

and the inequality (6.3) follows. In order to obtain (6.4), we then use (6.3) and (6.7).

It remains to establish (6.5). By the 1D Gagliardo-Nirenberg inequality we have
∫

Ω

|∂xM1|3 .
1

L
1/2
2

‖∂xM1‖5/2‖∂xxM1‖1/2 .
1

L
1/2
2

‖M1‖‖∂xM1‖1/2‖∂xxM1‖3/2,

where the factor L
−1/2
2 results from the integration in the y variable. Therefore, integrating in time and

applying Hölder’s inequality, we obtain

∫ t0+T

t0

∫

Ω

|∂xM1|3 .
1

L
1/2
2

sup
t∈(0,T )

‖M1‖
(

∫ t0+T

t0

‖∂xM1‖2
)1/4(

∫ t0+T

t0

‖∂xxM1‖2
)3/4

,

which by (6.4) implies (6.5). �

Next, inspired by [GO], we express the space-time integral of M4
1 in terms of quantities in Lemma 6.1.

This in turn provides a means to bound ‖M1‖2. We first consider the x-integral of (4.3) and thus denote

h(x, t) =

∫ x

0

M1(x̃, t) dx̃.

By (2.4) and (3.3), we have
∫ L1

0

h dx = 0. (6.8)

Integrating (4.3) in x, we obtain that the function h satisfies the equation

∂th+ ∂xxxxh+ ∂xxh+
1

2
(∂xh)

2 +
1

2
M(N2

1 +N2
2 ) + g(t) = 0, (6.9)
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where

g(t) = − 1

2L1L2

∫

Ω

(M2
1 +N2

1 +N2
2 ). (6.10)

The equation (6.10) follows by integrating (6.9) in x over [0, L1] and then using (6.8) and ∂xh = M1.

Lemma 6.2. Under the assumptions of Lemma 6.1, i.e., assuming (6.2) for some t0 ≥ 0 and T ∈ [0, 1],

the function h(x, t) satisfies

sup
t∈[t0,t0+T ]

sup
x

|h(x, t)| .
(

L1

L2

)1/2

A(t0)
1/2. (6.11)

Proof of Lemma 6.2. For all t ∈ [t0, t0 + T ], we have

|h| ≤
∫ L1

0

|∂xh| =
∫ L1

0

|M1| ≤ L
1/2
1 ‖M1‖L2[0,L1] ≤

(

L1

L2

)1/2

‖M1‖,

which implies (6.11) by (6.4) in Lemma 6.1. �

Next, we obtain the following integral identity for M1.

Lemma 6.3. For the average M1, we have an identity

1

12

∫ t0+T

t0

∫

Ω

M4
1 = −

∫ t0+T

t0

∫

Ω

(∂xM1)
3 +

∫ t0+T

t0

∫

Ω

(

(∂xxM1)
2 − (∂xM1)

2
)

h

+
1

2

∫

Ω

(

M1(t0 + T )2h(t0 + T )−M1(t0)
2h(t0)

)

+
1

2

∫ t0+T

t0

∫

Ω

M2
1 g(t)

+
1

4

∫ t0+T

t0

∫

Ω

M2
1 (N

2
1 +N2

2 ) +

∫ t0+T

t0

∫

Ω

(N1∂xN1 +N2∂xN2)M1h.

(6.12)

Proof of Lemma 6.3. Multiplying (4.3) by M1h and integrating over Ω, we obtain
∫

Ω

M1h∂tM1 +

∫

Ω

M1h∂xxxxM1 +

∫

Ω

M1h∂xxM1

+

∫

Ω

M2
1h∂xM1 +

∫

Ω

M(N1∂xN1 +N2∂xN2)M1h = 0.

(6.13)

For the first term in (6.13), we have
∫

Ω

M1h∂tM1 =
1

2

∫

Ω

∂t(M
2
1h)−

1

2

∫

Ω

M2
1 ∂th

=
1

2

∫

Ω

∂t(M
2
1h) +

1

2

∫

Ω

M2
1 (∂xxxM1 + ∂xM1)

+
1

4

∫

Ω

(M4
1 +M2

1M(N2
1 +N2

2 )) +
1

2

∫

Ω

M2
1 g(t)

=
1

2

∫

Ω

∂t(M
2
1h)−

∫

Ω

M1∂xM1∂xxM1 +
1

4

∫

Ω

M4
1

+
1

4

∫

Ω

M2
1 (N

2
1 +N2

2 ) +
1

2

∫

Ω

M2
1 g(t),

(6.14)
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where we used (6.9), periodicity of M1, and M(M2
1 ) = M2

1 . For the second term in (6.13), we have
∫

Ω

M1h∂xxxxM1 = −
∫

Ω

∂xM1∂xxxM1h−
∫

Ω

M2
1 ∂xxxM1

=

∫

Ω

(∂xxM1)
2h+

∫

Ω

M1∂xM1∂xxM1 + 2

∫

Ω

M1∂xM1∂xxM1

=

∫

Ω

(∂xxM1)
2h− 3

2

∫

Ω

(∂xM1)
2,

while for the third term in (6.13) we write
∫

Ω

M1h∂xxM1 = −
∫

Ω

(∂xM1)
2h−

∫

Ω

M2
1 ∂xM1 = −

∫

Ω

(∂xM1)
2h.

For the fourth term in (6.13), we integrate by parts obtaining
∫

Ω

M2
1 ∂xM1h = −1

3

∫

Ω

M4
1 . (6.15)

Using (6.14)–(6.15), combined with
∫

Ω
M1∂xM1∂xxM1 = − 1

2

∫

Ω
(∂xM1)

3 for the second term in (6.14), yields

1

2

∫

Ω

∂t(M
2
1h) +

(

1

2
− 3

2

)
∫

Ω

(∂xM1)
3 +

(

1

4
− 1

3

)
∫

Ω

M4
1

+
1

4

∫

Ω

M2
1 (N

2
1 +N2

2 ) +
1

2

∫

Ω

M2
1 g(t)

+

∫

Ω

(∂xxM1)
2h−

∫

Ω

(∂xM1)
2h+

∫

Ω

M(N1∂xN1 +N2∂xN2)M1h = 0.

(6.16)

Since M(M1h) = M1h, the last term equals
∫

Ω
(N1∂xN1 +N2∂xN2)M1h. The argument is then completed

by integrating (6.16) in t and combining fractions. �

7. Estimate on M1

Here we apply the energy inequalities in Lemma 6.1 and the integral identity (6.12) to estimate the space-

time integral of M2
1 . Suppose that (6.2) holds for some t0 ≥ 0 and T ∈ [0, 1]. The nonlinear components of

the identity (6.12) are bounded as

∫ t0+T

t0

∫

Ω

(N1∂xN1 +N2∂xN2)M1h . sup
t∈[t0,t0+T ]

sup
x

|h|
∫ t0+T

t0

∫

Ω

|N1∂xN1 +N2∂xN2||M1|

. L2
2

(

sup
t∈[t0,t0+T ]

sup
x

|h|
)

sup
t∈[t0,t0+T ]

‖M1‖
∫ t0+T

t0

(‖∆N1‖2 + ‖∆N2‖2)

. L
1/2
1 L

3/2
2 A(t0)

1/2 sup
t∈[t0,t0+T ]

‖M1‖
∫ t0+T

t0

(‖∆N1‖2 + ‖∆N2‖2),

where the first inequality is obtained as in (5.2), while the last follows from (6.11).

For the fifth term on the right-hand side of (6.12), we use the Cauchy-Schwarz inequality

1

4

∫ t0+T

t0

∫

Ω

M2
1N

2
1 ≤ 1

48

∫ t0+T

t0

∫

Ω

M4
1 + 3

∫ t0+T

t0

∫

Ω

N4
1 ,
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and for the L4 norm of N1, we have
∫ t0+T

t0

∫

Ω

N4
1 .

∫ t0+T

t0

‖N1‖2‖∇N1‖2 ≤ sup
t

‖N1‖2
∫ t0+T

t0

‖∇N1‖2

. L2
2A(t0)

∫ t0+T

t0

‖∆N1‖2 . L2
2A(t0)

2.

In the first inequality, we used

‖N(f)‖Lp(Ω) . p1/2‖N(f)‖2/p‖∇N(f)‖1−2/p, 2 ≤ p < ∞
similarly to [KZ, Lemma 2]. (This is obtained as in [TZ] by the stacking principle and the 2D Gagliardo-

Nirenberg inequality.) The argument for N2 is the same. Thus, for the nonlinear terms in (6.12) we have
∫ t0+T

t0

∫

Ω

(N1∂xN1 +N2∂xN2)M1h . L
1/2
1 L

3/2
2 A(t0)

2 (7.1)

and

1

4

∫ t0+T

t0

∫

Ω

M2
1 (N

2
1 +N2

2 ) ≤ CL2
2A(t0)

2 +
1

24

∫ t0+T

t0

∫

Ω

M4
1 . (7.2)

Using that
∫

Ω
M2

1 g(t) ≤ 0 in (6.12) along with (7.1)–(7.2), we get

1

24

∫ t0+T

t0

∫

Ω

M4
1 .

∫ t0+T

t0

∫

Ω

|∂xM1|3 + sup
t∈[t0,t0+T ]

sup
x

|h(x, t)|
∫ t0+T

t0

∫

Ω

(

(∂xxM1)
2 + (∂xM1)

2
)

+ sup
t∈[t0,t0+T ]

sup
x

|h(x, t)|
∫

Ω

(M2
1 (T ) +M2

1 (0)) + L
1/2
1 L

3/2
2 A(t0)

2 + L2
2A(t0)

2

.
1

L
1/2
2

A(t0)
3/2 +

(

L1

L2

)1/2

A(t0)
3/2 + L

1/2
1 L

3/2
2 A(t0)

2 + L2
2A(t0)

2

.

(

max{1, L1}
L2

)1/2

A(t0)
3/2 + (L

1/2
1 L

3/2
2 + L2

2)A(t0)
2,

where we used (6.11) and Lemma 6.1 in the second inequality. Thus, by the Cauchy-Schwarz inequality, we

obtain an estimate for the time integral of ‖M1‖2, which reads

∫ t0+T

t0

∫

Ω

M2
1 ≤ L

1/2
1 L

1/2
2

(

∫ t0+T

t0

∫

Ω

M4
1

)1/2

. L
1/2
1 L

1/2
2

(

(

max{1, L1}
L2

)1/2

A(t0)
3/2 + (L

1/2
1 L

3/2
2 + L2

2)A(t0)
2

)1/2

. max{L1/2
1 , L

3/4
1 }L1/4

2 A(t0)
3/4 + (L

3/4
1 L

5/4
2 + L

1/2
1 L

3/2
2 )A(t0),

(7.3)

recalling that T ≤ 1.

Now, consider a solution which is defined on a time interval [T0 − 1, T0 + 1], where T0 ≥ 1, and satisfies

η(t) ≤ 1

2C0
, t ∈ [T0 − 1, T0 + 1].

By Lemma 6.1, we have
∫ t+T

t

∫

Ω

(N2
1 +N2

2 ) . L4
2

∫ t+T

t

(‖∆N1‖2 + ‖∆N2‖2) . L4
2A(t), (7.4)
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for t ∈ [T0 − 1, T ] and T ∈ [0, 1] . Summing (7.3) with t0 = t and (7.4), we get
∫ t+T

t

A(s) ds . max{L1/2
1 , L

3/4
1 }L1/4

2 A(t)3/4 + (L
3/4
1 L

5/4
2 + L

1/2
1 L

3/2
2 + L4

2)A(t) (7.5)

for t ∈ [T0 − 1, T0 + 1] and T ∈ [0, 1]. In addition, if t ≥ 1, Lemma 6.1 implies

A(t) .

∫ t

t−1

A(s) ds (7.6)

since A(t) . A(t− s) for s ∈ (0, 1). The inequalities (7.5) and (7.6) then imply for t ≥ 1

∫ t+1

t

A(s) ds ≤ C1 max{L1/2
1 , L

3/4
1 }L1/4

2

(
∫ t

t−1

A(s) ds

)3/4

+ C1(L
3/4
1 L

5/4
2 + L

1/2
1 L

3/2
2 + L4

2)

∫ t

t−1

A(s) ds,

(7.7)

where C1 ≥ 1 is a fixed constant. The inequality (7.7) and the assumption (2.5) lead to the following lemma.

Lemma 7.1. For every δ ∈ (0, 1/2], there exist δ0 ∈ (0, 1] and a sufficiently large constant C ≥ 1 with the

following property: If (6.2) holds for s ∈ [t− 1, t+ 1], where t ≥ 1, and if we have (2.5), then
∫ t+1

t

A(s) ds ≤ Cmax{L2
1, L

3
1}L2 + δ

∫ t

t−1

A(s)ds (7.8)

holds.

Note that at this stage, we are assuming the condition (6.2). The validity of this condition shall be

established in the next section, alongside with the bound on A(t).

Proof of Lemma 7.1. Applying Young’s inequality on the first term in (7.7), we get

C1 max{L1/2
1 , L

3/4
1 }L1/4

2

(
∫ t

t−1

A(s) ds

)3/4

≤ 2C4
1

δ3
max{L2

1, L
3
1}L2 +

δ

2

∫ t

t−1

A(s) ds. (7.9)

Also, by (2.5), we have for the second term in (7.7)

C1(L
3/4
1 L

5/4
2 + L

1/2
1 L

3/2
2 + L4

2)

∫ t

t−1

A(s) ds ≤ C1(δ
5/4
0 + δ

3/2
0 + δ40)

∫ t

t−1

A(s) ds. (7.10)

Now, we restrict δ0 so that

C1(δ
5/4
0 + δ

3/2
0 + δ40) ≤

δ

2
. (7.11)

Replacing the inequalities (7.9) and (7.10) in (7.7), with the help of (7.11), then gives (7.8). �

8. Two barrier arguments

Let u be a solution on an interval [0, Tmax) as at the end of Section 2. Recalling the notation (6.1)

for η and (8.5) for A, note that we need to prove that u satisfies the condition (6.2) in Lemma 6.1. If δ0

is sufficiently small, we shall prove this inductively starting with the interval [0, 2], stated next. The same

lemma also shall be used to proceed from an interval [t0 + 1, t0 + 2] to [t0, t0 + 1], for t0 ∈ N.
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Lemma 8.1. Under the condition (2.5), if we have

A(t0) ≤
ǫ20
L4
2

(8.1)

for some sufficiently small ǫ0 ∈ (0, 1] and some t0 ∈ [0, Tmax), then t0 + 2 ≤ Tmax and

A(t) ≤ C2ǫ
2
0

L4
2

, (8.2)

for t ∈ [t0, t0 + 2], where C2 is a constant.

Observe that, by the discrete Cauchy-Schwarz inequality, we have

A(t) ≤ η(t)2

L4
2

≤ 3A(t), t ∈ [0, Tmax), (8.3)

for all t ∈ [0, Tmax).

Proof of Lemma 8.1. Let ǫ0 ∈ (0, 1] be such that

3e2ǫ20 ≤ 1

2C0
. (8.4)

By (8.1), we have

T = sup

{

t0 ≤ t ≤ min{Tmax, t0 + 2} : A(t) ≤ e4ǫ20
L4
0

}

> t0.

By the definition of T and (8.3), we have

η(t) ≤
√
3A(t)1/2L2

2 ≤ 3e2ǫ0 ≤ 1

2C0
, t ∈ [t0, T ],

where the last inequality holds by (8.4). Therefore, Lemma 4.1 applies on the interval [t0, T ], and using

(6.3) and (8.1), we get

A(t) ≤ ǫ20
L4
0

e2t. (8.5)

Comparing this with the definition of T , we get that T = 2, and (8.2) is proven with C2 = e4. �

Now, we proceed to the second barrier argument, leading to the conclusion of the proof of the main

theorem.

Proof of Theorem 2.1. By the condition (2.6), we have

A(0) ≤ 3δ20
L4
0

,

and thus, if δ0 is sufficiently small, we may use Lemma 8.1 with t0 = 0 and obtain

A(t) ≤ 3C2δ
2
0

L4
2

, t ∈ [0, 2]. (8.6)

We proceed inductively with the inductive assumption

A(t) ≤ 3C2δ
2
0

L4
2

, t ∈ [0, t0 + 1], (8.7)

for some t0 ∈ N. By (8.6), this holds for t0 = 1. Using Lemma 8.1, we get

A(t) ≤ 3C2
2δ

2
0

L4
2

, t ∈ [0, t0 + 2],
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and then, by (8.3),

η(t) ≤ 3C2δ0, t ∈ [0, t0 + 2]. (8.8)

If δ0 > 0 is a sufficiently small constant (in particular, independent of t0), the condition (6.2) is satisfied on

[t0, t0 + 2]. Thus Lemma 7.1 applies and gives
∫ t0+1

t0

A(s) ds ≤ Cmax{L2
1, L

3
1}L2 + δ

3C2
2δ

2
0

L4
2

,

where δ > 0 is a small constant to be determined. By the mean value theorem, there exists s0 ∈ [t0, t0 + 1]

such that

A(s0) =

∫ t0+1

t0

A(s) ds ≤ Cmax{L2
1, L

3
1}L2 + δ

3C2
2δ

2
0

L4
2

≤ Cδ50
L4
2

max{L2
1, L

3
1}

max{L3/5
1 , 1}5

+ δ
3C2

2δ
2
0

L4
2

≤ C
δ50 + δ

L4
2

, t ∈ [t0, t0 + 1].

If δ0 > 0 and δ > 0 are sufficiently small, then the last expression is less than δ20/L
4
2, and the application of

Lemma 6.1 gives (8.7) for t ∈ [s0, s0 + 2], and thus, in particular, for t ∈ [t0 + 1, t0 + 2]. The induction step

is thus complete, providing the global existence and validity of (8.7) for all t ≥ 0.

Finally, we address (2.7) and (2.8). We have established that (8.7) holds for every t ≥ 0, and thus also

(8.8) is true for every t ≥ 0. Therefore, if δ0 > 0 is a sufficiently small constant, Lemma 7.1 applies for

every t ≥ 1, and we get

lim sup
t→∞

∫ t+1

t

A(s) ds ≤ Cmax{L2
1, L

3
1}L2.

Therefore, using (6.3), the assertions (2.7) and (2.8) follow. �
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