ON THE GLOBAL EXISTENCE FOR THE KURAMOTO-SIVASHINSKY EQUATION

IGOR KUKAVICA AND DAVID MASSATT

ABSTRACT. We address the global existence of solutions for the 2D Kuramoto-Sivashinsky equations in a
periodic domain [0, L1] X [0, L2] with initial data satisfying ||uol|;2 < C*1L2_2, where C' is a constant. We
prove that the global solution exists under the condition Lo < 1/C’L:1)’/57 improving earlier results. The

solutions are smooth and decrease energy until they are dominated by C’L?/ZL;m, implying the existence

of an absorbing ball in LZ2.

1. INTRODUCTION

In this paper, we address the global existence of the 2D periodic Kuramoto-Sivashinsky equation (KSE)
1
3t¢+A¢+A2¢+§|V¢|2 =0, (1.1)

with the initial data ¢(0) = ¢p, in two space dimensions on the domain £ = [0, L1] x [0, L2] under the
condition Ly < LY, where ¢ > 0 is a certain exponent. As it is more common, we shall also consider the
velocity formulation u = (u1,u2) = V¢, which reads

Oyuq + AQ’U,l + Aug + u10,u1 + us0,us =0
Orug + AQUQ + Aug + ulayul + UQay’ILQ =0
ayul = 6.%“27

with the initial data u(0) = ug = V¢(0). When uz = 0, the system reduces to the well-known 1D Kuramoto-
Sivashinsky equation w¢ + Ugger + Uge + uu, = 0 which is typically studied on a periodic domain [0, L].

The Kuramoto-Sivashinsky equation arises in many important physical contexts [Kur,S,T]. In particular,
it has been a model for instabilities of flame fronts and ion plasma. It also serves as a model for a flow
down an inclined plane in the presence of an electric field. In addition, the KSE also serves as a model for
low-dimensional chaos.

The global existence, dissipativity, and the existence of the global attractor for the one dimensional KSE
has now been well-established, while in two space dimensions, there is a fundamental difficulty with global
existence due to the lack of suitable energy conservation. In one space dimension, the primary problem for
the instability, and thus the global existence, is the backward heat term w,,. The first result establishing
the global existence for the one-dimensional problem is that of Nicolaenko, Scheurer, and Temam [NST]
for odd initial data. In [NST] it was also proven that limsup, ., ||u(t)||z2 < CL%?, where L denotes the
size of the periodic domain. The oddness assumption was removed by Ilyashenko [I], and subsequently by
Goodman [G] and Collet, Eckmann, Epstein, and Stubbe [CEES]. In particular, in [CEES], the authors
proved that limsup,_, . [|[u(t)||z2 < CL3/5 for arbitrary initial data. Finally, Giacomelli and Otto proved
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2 I. KUKAVICA AND D. MASSATT

in [GOJ, that limsup,_, . [|[u(t)||z> < CL3/?, which is currently the most precise upper bound for the size
of the absorbing ball for the 1D KSE. More recently, Otto has found in [O] (cf. also [GJO]), estimates
for the space time averages of solutions. For other results on regularity of solutions of the 1D model, see
also [BG,BS,GK,M,RK,SS, T, TP, WH]

Considering the laminar flame front model, the two-dimensional KSE appears more physically interesting.
However, the global existence in 2D is a long-standing open problem. The main issue mathematically is
that the energy dissipation is not available. In addition, the methods treating the KSE as a perturbation of
the Burgers equations [I,G,GJO], do not extend to higher space dimensions. There are however still several
results available on the global existence of solutions. In [AM], Ambrose and Mazzucato obtained the global
existence of solutions for small initial data for L; and Ly less than 27 along with the decay and analyticity of
solutions. Sell and Taboada proved in [ST] that the global solutions still exist if one of the scales, say Lo, is
sufficiently small compared to the other and with initial condition smaller than a function of L;. Note that
the mechanism for the global existence is different here than when both spatial scales are small since the
existence is obtained by using oscillations in the vertical direction rather than by damping. The paper [ST]
used methods inspired by the work on the 3D Navier-Stokes equations by Raugel and Sell [RS1,RS2,RS3]
(cf. also subsequent works [HS,KRZ,KZ,H1,H2]). Further, Molinet [M1,M2] showed local dissipation of the
equation on [0, Lq] x [0, Lo] under the condition L, < 1/ C’Liﬁ/ % and obtained a global solution provided
also that the initial data is of a certain size as a function of L; and L. The size of the domain was extended
further in the paper [BKRZ] to Ly < 1/ CL?/ %5 This last paper contains the best results reached at this
point on the two-dimensional domain size relation to global in time solutions. The main result of this paper
establishes the global existence under the condition Ly < 1/ C’Li’/ 5, improving earlier results; as in [BKRZ],
the initial data needs to satisfy the condition

1
[uollre < 071337
which agrees with the condition in [BKRZ]. In addition, we prove that
lim sup [Ju(t)|| 2 < CLY?LY?
t—o0
The bound agrees with the one in [GO] if the data is constant in the y direction.

In Sections 24, we introduce the approach used in analyzing the two dimensional KSE. In particular, we
introduce the projection operators M and N, representing the average in the y-direction and the deviation
from the average, respectively. The averaging method has been used in work on the Navier-Stokes system
[A,KZ, TZ]. This method is expedient here as much of the inherent difficulties lie with the spatial average,
which parallels the one dimensional problem. In Sections 5 and 6 we prove energy inequalities satisfied by
the functions Muy, Nuy, and Nus = us (denoted by My, My, and Na, respectively). It is important that
the right-hand sides of these inequalities contain a factor L3. Lemma 6.1 in the next section contains a
consequence of these energy inequalities on the increase of these quantities on a given time interval T'. Next,
in Lemma 6.3, we provide control of the space-time average of My = Mwuy. The important aspect of this
inequality is that it contains a higher power (4) of the variable M; on the left side than is the power of the
quantities on the right. The idea of controlling the space-time average of the solution through its space-time
L* norm is due to Giacomelli and Otto [GO]. A consequence of these preliminary results is Lemma 7.1,

in which the time averages of the quantity M; are controlled by the time averages on a preceding interval.
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Finally, in the last section, we present two barrier arguments, which provide control of the solution for all
time. Note that we also obtain the existence of an absorbing ball, which reduces to bounds achieved for the
1D KSE due Giacomelli and Otto when the initial data are independent of y.

2. NOTATION AND THE MAIN THEOREM
Defining u = V¢ and observing that ¢, = ¢y, and thus also 3V (|u[?) = u- Vu, the KSE (1.1) becomes
Ou+ A2u+ Au+u-Vu=0

2.1
curlu =0 @1)
on a periodic domain = [0, L1] x [0, Lo], with the initial condition
u(+,0) = uo. (2.2)
Since the average of u = (u1,us) over { is preserved, we normalize it to zero, i.e., we assume
/ uo(z,y) dedy = 0. (2.3)
Q
This in turn implies
/ u(z,y,t) dedy = 0, t>0, (2.4)
Q
for as long as the solution exists.
The following is the main result of the paper.
Theorem 2.1. Let Ly > Ly > 0. There exists oo € (0, 1] such that if
do
Ly<— % (2.5)
max{L‘;’/S, 1}
and
do
lu(0)llz= < 73, (2.6)
2
then there exists a solution of u of (2.1) which is global in time. If L1 > 1, it satisfies
lim sup [[u(t)|| 2 < CLY?LY? (2.7)
t—o0
while if Ly < 1, then
lim sup ||u(?)||L2 < CLlLé/z, (2.8)
t—o0

where C is a sufficiently large universal constant.

We emphasize that C' and all the implicit constants in the symbol < are universal; in particular, they
do not depend on Ly or Ly. They may change from line to line. The numbered constant Cy, Cy,Cs, ... are
also universal, but their value is fixed. We assume that all these constants are greater than 1.

The above theorem, however with a more restrictive assumptions Lo < dg /L?z/ % and Ly > 27, was
proven in [BKRZ]. Note that when L; < 1, the above theorem extends [AM] since the initial data do not
need to have a small L? norm, but only satisfy (2.6).

It is well-known that the KSE system is locally well-posed with the initial data in L?, which applies
here due to the condition (2.6). Also, there exists the maximal time of existence Tiax € (0,00] such

that the solution is smooth in (z,t) on R? x (0, Tax). In addition, if Ti.x < oo the solution satisfies
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limg 7 ||u(t)]|r2 = oo. Thus, from here on, we perform all the estimates on the time interval (0, Tinax)-
In order to obtain the global existence, we only need to prove boundedness of the L? norm on the interval
(07 Tmax)

3. PRELIMINARIES
Expanding (2.1) out, we obtain the component-wise formulation
Oy + Auq + A%uy + uy9puy + us0yu; =0
Oty + Aug + A%us + u10pus + U0yt = 0 (3.1)
Oyu1 = Opug,
with the initial condition u(-,0) = ug.
Consider the average of a function f € L*(£2) in the y direction

1 [t
M(f):E 0 f(xvyvt)dyv

and the difference between the function and this average
N(f) = flz,y,t) = M(f).
Observe that
M(ug) =0, (3.2)

for all £ > 0 such that the solution exists. This property results from applying the operator M to Oyu; = O uz
which shows that M (us) is constant in z. The constant then vanishes by (2.4).
For simplicity, denote by

Lo
Mi(2,1) = M(uy) = L% /0 wr (2,9, )dy (3.3)

the average of u; in the y direction, and
Ni(z,y,t) = wi(z,y,1) — Mi(x,1)
its deviation from the average. Clearly, u; = M1 + Ny. Analogously, we denote
No(z,y,t) = ua(z,y,t), (3.4)
since the average of us in the y direction vanishes by (3.2).
4. PROPERTIES OF THE AVERAGE
First, we recall several projection identities involving the operators M and N.

Lemma 4.1. The operators M and N satisfy the identities

(i) M(M(f)) = M(f),
(i) M(N(f)) = 0,

(iii) N(M(f)) =0, and
(iv) N(N(f)z =N(/f),

for all f € L*(9).
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The identities above imply the product rules
M(fg)=MfMg+ M(NfNg) (4.1)
and
N(fg)=MfNg+ NfMg+ N(NfNg), (4.2)

which hold for all sufficiently regular functions f and g. Both identities are obtained by writing f = M f4+N f
and g = Mg+ Ng and using M(M(f)N(g)) = M(f)M(N(g)) = 0 and M(N(f)M(g)) = M(g)M(N(g)) =
0, as well as N(M(f)M(g)) = 0.

Proof of Lemma 4.1. The part (i) is immediate from the definition. For (ii), we have

M(N(f)) = M(f = M(f)) = M(f) = M(M(f)) = M(f) = M(f) = 0.

Similarly,

providing (iii), and
N(N() = N(f = M(f)) = f = M(f) — (M(f) - M(M(f))) = f — M(f) = N(),
establishing (iv). O
Next, we rewrite the first equation in (3.1) in terms of M; and Nj.
Lemma 4.2. The average My satisfies
Oy My + Oraza My + Ope My + M10p My + M (N10,N1) + M (N20,N2) = 0. (4.3)
Observe that the equation for M is a perturbation of the 1D KSE.

Proof of Lemma 4.2. Applying an average in y, and recalling that w1 = M; + Ny, we get
M (Opuy + A%uy + Auy + ug0puy + u0,us)
= 0iMy + Opguwa M1 + Opa My + M (u10,u1) + M (u20,uz)
= Oy M1 + Opgwa My + Ope My + M10, My + M (N10,N1) + M (N20,No),

where in the last equality we used (3.4) and the product rule (4.1). O

5. ENERGY ESTIMATES

Now we turn to the energy estimates. Throughout the paper, we abbreviate || - [| = || - [| 2 (q)-

Lemma 5.1. The energy inequalities for the quantities My, Ny, and Ny read

(i) 53| M| + (|00 My ||? = 1|02 M |1 S LE(JJANG |1 + [|AN|12) || M ],

(ii) 5 NP + [JANL? = [[VNG? S L3(IMa || + (| N2 ) [AN||? + L3 || No||[|AN:|?, and
(iii) 34| N2|* + [AN2|[* = [VN2[? < L3(| Ma || + [ N1DIIANz]2,

where all the constants are universal.
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Proof of Lemma 5.1. For the first energy inequality (i), we multiply (4.3) by M; and integrate over €,
obtaining

1d

5 g 1M + 1000 My 2 — (00 My |* = — / (M(N10;Ny) + M(N20; N2)) My
Q

= —/ N10, N1 M,y _/N2awN2M1 (5.1)
Q

L

L1 1
S/ ||N1HLg[o,Lz]||5zN1||L§[0,L2]|M1\dIJr/ N2l 210,121 02 N2l 2 [0, ,) | M1 | da,
0 0

where we applied the Cauchy-Schwarz inequality in the y variable. For the first term, we have

Ly
/ [IN1llz2 (0,25 102 N1 [ 120, 1) [ Ma] da S INL (|| 02 N1l oo 2 | M || 2210, 4)
; ; :

1
S N 10Nl e 1M1 ez .0y S INA IO N2 000 N2 75 1041 (5.2)
2
1
1/2
S L3109, Nl Lo 100y Nl /202 N1 2 5 | M | S LBIAN: P M
2

where we applied Holder’s inequality in y in the first step, Agmon’s inequality in x in the third, and the
Poincaré inequality in y in the fourth. The last inequality in (5.2) follows from ||vae||? + 2| vayl|® + [vyyl|* =
|Av]?, for all periodic v € H?(£2). We emphasize that all constants in the symbol < are universal, in
particular independent of L and L.

The second term on the far right side of (5.1) is treated analogously.

For (ii), we start by applying N to the first equation in (3.1), then multiply by N, and integrate over .
This yields

1i/ N12+/(AN1)%/ VN, | = 7/ N (u10u1) Ny f/N(UQ(?muQ)Nl, (5.3)
2dt Jq Q Q Q Q

since N commutes with 9, and d,. In order to complete the proof of (ii), we only need to estimate the
nonlinear components. Using the product rule (4.2) and Lemma 4.1 (iv), the nonlinear term in (5.3) is

rewritten as
—/N(ulaggul)Nl—/N(uzﬁxuz)Nl

Q Q

:—/MlaleNl—/NlaleNl—/Nl(‘)leNl—/N281N2N1
Q Q Q Q

=— [ MyO,N1N1+2 | M{N19,N; —/Nfale — | N1Ny9, N,
Q Q Q

:/MlNlale—/NlNgaxN}

Q Q

We claim that the last expression is, up to a constant, less than or equal to

L3|| My |[[| ANy [|* + L3|| N2 [ [ ANy ||| AN .
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Note that the first term on the far right side of (5.4) is identical to the term estimated in (5.2). For the
second term in (5.4), we have
Ly
o R Y P L PRI R PARE
Q 0
SNz 22 | Nall10: Mol 2 e S NIz oe | N 100 Nell 2 £ (5:5)
<IN 200 Ny Y2 [N 1100 Na | 21105 Na |2 < L3I N[l I|AN: || AN

where we used f0L2 Nfdy =0 for every f € L*() in the fourth inequality, by Lemma 4.1 (ii).
For (iii), we observe that us = Ny, multiply the second equation in (3.1) by Ny and integrate over 2. We

obtain
1d

77/ N§+/(AN2)2—/ |VN,|? = —/ N(ulayu1)N2—/N(UQayUQ)NQ, (5.6)
2dt Jq Q Q Q Q

where we also used d,us = dyus. The nonlinear term in (5.6) is rewritten as

7/ulayulNgf/u28yu2N2:7/u18yN1N27/ NgayNQNQ
Q Q Q Q

= 7/ u15‘yN1N2 = / ’U,laINQNQ = / (Ml -+ Nl)azNQNQ
Q Q Q
< L (M| + [N D AN |,
where the final inequality is obtained as in (5.2) and (5.5). O
6. SPACE-TIME ENERGY ESTIMATES

We require control of the L? norms in space-time of various quantities involving M;, Ny, and N, which

are then used in the barrier arguments in the next section.

Lemma 6.1. For s > 0, denote

n(t) = L3(IMi ()] + [IN: (D] + [ N2 ()]])- (6.1)
Let T € [0,1], and assume that for some tog > 0
1

n(t) < —, t € [to, to + 11, (6.2)
Co

where Cy > 2 is sufficiently large universal constant. Then the quantity
A(t) = M @) + [N @)1 + [[Na2(8)])?
satisfies
A'(t) < 2A(1), t € [to,to + T1. (6.3)

Also, we have

to+T to+T
swp M, sup [N, sup (NP [ onanlP [ o
te(to,to+T] te(to,to+T] tefto,to+T] to to

to+T to+T to+T to+T
[ namE [T janE [ w9 5 At)

to to to to
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and

fot T 3 1 3/2
0: M |° S —75 Alto)™'~, (6.5)
/tg /Q Ly?

where the constants in (6.4) and (6.5) depend on T.

Proof of Lemma 6.1. Summing the three inequalities in Lemma 5.1, we obtain
1d
5 77 (AP + N2 + (| Na][2) + 102 M
+ (1= CL3(IM + N2+ [ N2 ])) (JAN + [ AN %) (6.6)
SN0 M + [V N1 + [V N2 2.

Integrating by parts and using Young’s inequality on the first derivatives, we find
1 1
000 < 3 100a M + 5 [
and
IV < 501 = I AN 45—
T2 2l
where 7(t) is defined in (6.1). Assuming (6.2) with C' > 2 sufficiently large, we obtain from (6.6) that

||Nj||25 J=12,

d
%(HJWlH2 + N1 [ + [ N2)1?) 4 [|0sa M1 ||* + AN ||* 4 || AN, | 6.7)
< 2([[ M) + IV + (| V2]12),
and the inequality (6.3) follows. In order to obtain (6.4), we then use (6.3) and (6.7).
It remains to establish (6.5). By the 1D Gagliardo-Nirenberg inequality we have

1 1
10D S 0 00 MM £ 2. M2 M
2 2

where the factor L, /2 tesults from the integration in the y variable. Therefore, integrating in time and
applying Hoélder’s inequality, we obtain

to+T 1 to+T 1/4 to+T 3/4
[ [eanl s =z sw a7 janl?) ([T o)
to Q Ly " te(o,T) to to

which by (6.4) implies (6.5). O

Next, inspired by [GO], we express the space-time integral of M; in terms of quantities in Lemma 6.1.
This in turn provides a means to bound ||M;[|?. We first consider the z-integral of (4.3) and thus denote

h(z,t) = /O "M (3, 1) di.

By (2.4) and (3.3), we have
Ly
hdx = 0. (6.8)
0
Integrating (4.3) in x, we obtain that the function h satisfies the equation

1 1
Oh + Opyyuh + Opuh + 5(83,h)2 + §M(N12 + N2)+g(t) =0, (6.9)
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where
1
1) =— M? + N2 + N2). 6.10
g(t) 2L1L2/Q(1+ i+ N3 ( )

The equation (6.10) follows by integrating (6.9) in = over [0, L1] and then using (6.8) and 0zh = M;.

Lemma 6.2. Under the assumptions of Lemma 6.1, i.e., assuming (6.2) for some tg > 0 and T € [0,1],
the function h(zx,t) satisfies

Lo\ /2
sup suph(x,t)§<1> Alto)'/2. (6.11)
telto,to+T] Lo

Proof of Lemma 6.2. For all t € [to, to + T, we have

Ly Ly Ll 1/2
WS/ @m:/ M| < ZY2M e < 1],
0 0 Ly

which implies (6.11) by (6.4) in Lemma 6.1. O
Next, we obtain the following integral identity for Mj.

Lemma 6.3. For the average M7, we have an identity

to+T to+T to+T
/Ml_ / /aM1 / / (Daa M) — (0,01))
to tO

to+T
+2A@Mm+ﬂh%+ﬂ My (to)?h(to) /' /Mw) (6.12)

1 to+T to+T
—q/’ /M%ﬁ+WH/1 /W@M+M@MWM.
to Q t Q

Proof of Lemma 6.3. Multiplying (4.3) by Mih and integrating over 2, we obtain

/MM%+/M@MM+/M@Mi
Q Q Q

(6.13)
+/ M?hd, M, +/ M (N10; Ny + No0yNo)Mh = 0.
Q Q
For the first term in (6.13), we have
1 1
/MlhatMl = 7/ at(th)ff/ M3Ed;h
Q 2 Ja
1
/at Ml 5/ Mlz(ammch +azM1)
1
+ 4/(M1 + MPM(N} + N3)) + 5/ Mg(t) (6.14)
Q

:1/8t(M1h)—/M18xM18MM1+1/ M}

/Ml (N? + N3) + /M19
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where we used (6.9), periodicity of My, and M (M%) = M?. For the second term in (6.13), we have
/ Mlha:rx:szl = _/ alearxleh - / Mlzazzle
Q Q Q

:/(ali)Qth/MlaIMlaliw/ M9, M, 0y, M,
Q Q Q

:/Q(ali)Zh—g/Q(ale)Q,

while for the third term in (6.13) we write

/Mlhali = /(a M;)? /Mla M, = /(ale)%
Q

For the fourth term in (6.13), we integrate by parts obtaining

1
/Mfaleh:”/Mf. (6.15)
Q 3 Ja
Using (6.14)—(6.15), combined with [, M19, M9, M; = —3 [,(9,M7)? for the second term in (6.14), yields
1 1 3 1 1
— [ 9,(M?h - — = 0, M;)3 - —= Mt
2 Ja . 1)+<2 2>/Q( 1)+(4 3) Q
1
+1/ ME(N12+N§)+—/ Mig(t) (6.16)
4 Jo 2 Ja
+/(6li)2h—/(8zM1)2h+/ M(N10; N1 + NoOy No)Mih = 0.
Q Q Q

Since M (Myh) = Mih, the last term equals fQ (N10:N1 + N20, No)Mih. The argument is then completed
by integrating (6.16) in ¢ and combining fractions. O

7. ESTIMATE ON M;

Here we apply the energy inequalities in Lemma 6.1 and the integral identity (6.12) to estimate the space-
time integral of M?. Suppose that (6.2) holds for some to > 0 and T € [0,1]. The nonlinear components of
the identity (6.12) are bounded as

to+T

to+T
/ /(Nl(’)le + NQ&INQ)Mlh S sup sup |h| / |N18 N1 + N26 N2||M1|
Q te(to,to+T] =

to+T
si3(_sw swlnl) sw al [ (AN AN
telto,to+T] = t€lto,to+T] to

to+T
SLYPLYPA@)Y? sup ||My / (JAN % + |AN2[?),
te(to,to+T] to

where the first inequality is obtained as in (5.2), while the last follows from (6.11).
For the fifth term on the right-hand side of (6.12), we use the Cauchy-Schwarz inequality

1 to+T to+T to+T
1/ /M1N1_48/ /M1+3/ /Nl,
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and for the L* norm of N, we have

to+T to+T to+T
[ v [ mPemiE < sl [ em?
to

to tO

to+T
< L2 A(to) / IAN|? < L2A(to)?.
to

In the first inequality, we used
INU) o) S PEINHIPPIVNAITP, 2<p <oo

similarly to [KZ, Lemma 2]. (This is obtained as in [TZ] by the stacking principle and the 2D Gagliardo-
Nirenberg inequality.) The argument for Ns is the same. Thus, for the nonlinear terms in (6.12) we have

to+T
/ /Q(Nlale + Ny No)Mih < LYPLY? A(ty)? (7.1)
to
and
1 to+T 1 to+T
- M} (N} + N3) < CL3A(to)” + 7/ / M. (7.2)
4 to Q 24 to Q

Using that [, M?g(t) <0 in (6.12) along with (7.1)-(7.2), we get

1 to+T to+T to+T
51 /M4§/ /|81M1|3—|- sup suplh(x,t)|/ /((8MM1)2+(6$M1)2)
24 to Q to Q to Q

t€lto,to+T]

+ sup sup|h(z,t)] / (ME(T) + MZ(0)) + Li/ZLg/QA(to)2 + L2A(t)?
telto,to+T] @ Q

I 1/2
Atg)¥? + (;) A(to)3? + LY L3 A(to)? + L2 A(t0)?

~ L§/2 9

max{1, L 1/2
. <{Ll}) A(to)*? + (115" + L) A(to)?,
2
where we used (6.11) and Lemma 6.1 in the second inequality. Thus, by the Cauchy-Schwarz inequality, we
[

obtain an estimate for the time integral of || M7]|*, which reads

1/2
to+T to+T
/ / M2 < LIPLY? (/ / Mf)
to Q to Q

1/2
1L\ "2 , (7.3)
S0 ((mX{L}> A(to)/2 + (LVL3? + L%)Auo)?)

2
Smax{LY/? LY} LY A(te)3/* + (L3 LY + LY LY Aty),
recalling that 7' < 1.

Now, consider a solution which is defined on a time interval [Ty — 1, Ty + 1], where T > 1, and satisfies

1
0

By Lemma 6.1, we have

t+T t+T
[ [orensit [ (ANIE +1ANIP) S L3A) (7.4
t t
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fort € [To — 1,T) and T € [0,1] . Summing (7.3) with ¢t =t and (7.4), we get
t+T P
/ A(s)ds < max{Ly/?, LYV LA A4 + (L3 LY + L2 L3% + LA) A1) (7.5)
t

fort e [To — 1,75+ 1] and T € [0,1]. In addition, if ¢ > 1, Lemma 6.1 implies

A(t) < t A(s)ds (7.6)

~J
t—1

since A(t) < A(t — s) for s € (0,1). The inequalities (7.5) and (7.6) then imply for ¢ > 1

t+1 t 3/4
/ A(s)ds < Cy max{Li/Q, L:f/él}Lé/4 </ A(s) ds>
t t—1 . (77)

+ O (LY + 0P 4 1Y) / A(s) ds,
t—1

where C > 1 is a fixed constant. The inequality (7.7) and the assumption (2.5) lead to the following lemma.

Lemma 7.1. For every ¢ € (0,1/2], there exist 6o € (0,1] and a sufficiently large constant C > 1 with the
following property: If (6.2) holds for s € [t — 1,t+ 1], where t > 1, and if we have (2.5), then

t41 t
/ A(s)ds < Cmax{L? L3} Lo + 5/ A(s)ds (7.8)
t t—1

holds.

Note that at this stage, we are assuming the condition (6.2). The validity of this condition shall be
established in the next section, alongside with the bound on A(t).

Proof of Lemma 7.1. Applying Young’s inequality on the first term in (7.7), we get

1/2 73/4y 71/4 ¢ 3 207 5 [t
Cymax{Ly"", Ly }L, (/tl A(s) ds) < 5 max{L3, L3} Ly + B /ti1 A(s) ds. (7.9)
Also, by (2.5), we have for the second term in (7.7)
¢ ¢
Cy (L LY* + L2324 LY / A(s)ds < Cy (65" + 632 + 68 / A(s) ds. (7.10)
t—1 t—1
Now, we restrict g so that
)
Ch(65/* + 637 + 54 < 5 (7.11)
Replacing the inequalities (7.9) and (7.10) in (7.7), with the help of (7.11), then gives (7.8). O

8. T'wWO BARRIER ARGUMENTS

Let u be a solution on an interval [0, Ti,.x) as at the end of Section 2. Recalling the notation (6.1)
for n and (8.5) for A, note that we need to prove that u satisfies the condition (6.2) in Lemma 6.1. If g
is sufficiently small, we shall prove this inductively starting with the interval [0, 2], stated next. The same
lemma also shall be used to proceed from an interval [tg + 1, + 2] to [tg, to + 1], for ¢ € N.
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Lemma 8.1. Under the condition (2.5), if we have
2

€
Alty) < B (8.1)
2
for some sufficiently small eg € (0,1] and some tg € [0, Trnax), then to 4+ 2 < Tnax and
026(2)
A(t) < =20, (8.2)
L;

for t € [to, to + 2], where Cs is a constant.

Observe that, by the discrete Cauchy-Schwarz inequality, we have

A0 < W <5400, 1 e 0. T (5.3)

for all ¢t € [0, Trax)-

Proof of Lemma 8.1. Let ¢ € (0, 1] be such that

3% < TR (8.4)
By (8.1), we have
T = sup {to <t <min{Tax, to + 2} : A(t) < iig} > 1.
By the definition of T" and (8.3), we have ’
n(t) < VBA(W)'2LE < 3P < = te [to,T],

2Cy’
where the last inequality holds by (8.4). Therefore, Lemma 4.1 applies on the interval [to,T], and using
(6.3) and (8.1), we get

2
€
At) < L—‘ﬂle%. (8.5)
0
Comparing this with the definition of 7', we get that T = 2, and (8.2) is proven with Cy = e*. O

Now, we proceed to the second barrier argument, leading to the conclusion of the proof of the main
theorem.

Proof of Theorem 2.1. By the condition (2.6), we have
A(0) < —
0 <7
and thus, if Jy is sufficiently small, we may use Lemma 8.1 with tg = 0 and obtain
< 30258,
We proceed inductively with the inductive assumption
2
< 36’2460’
Ly
for some tg € N. By (8.6), this holds for ¢y = 1. Using Lemma 8.1, we get

252
A(t) < 3%450 7
2

A(t) te[0,2]. (8.6)

A(t) te 0,0+ 1], (8.7)

t €10,t0 + 2],
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and then, by (8.3),

n(t) < 3C%, te[0,t0+ 2]. (8.8)
If 69 > 0 is a sufficiently small constant (in particular, independent of ¢y), the condition (6.2) is satisfied on
[to, to 4+ 2]. Thus Lemma 7.1 applies and gives

to+1 30252
/ A(s)ds < Cmax{L? L3}Ly + 6 L24 9,
¢ 2

where § > 0 is a small constant to be determined. By the mean value theorem, there exists sg € [to,to + 1]
such that

0

o 30362
A(so) = /t A(s)ds < Cmax{L},L}} Ly + & L24 0
0 2
5 2 3 2 ¢2 5
< C(io maX{gl/,sLﬁ 5302450 < 050 JZ(S, A ——
Ly max{L}"° 1}5 L; L}

If 6o > 0 and § > 0 are sufficiently small, then the last expression is less than §2/L3, and the application of
Lemma 6.1 gives (8.7) for t € [so, sp + 2], and thus, in particular, for ¢t € [tg + 1,to + 2]. The induction step
is thus complete, providing the global existence and validity of (8.7) for all ¢ > 0.

Finally, we address (2.7) and (2.8). We have established that (8.7) holds for every t > 0, and thus also
(8.8) is true for every t > 0. Therefore, if 0y > 0 is a sufficiently small constant, Lemma 7.1 applies for
every t > 1, and we get

t+1
lim sup/ A(s)ds < Cmax{L? L3} L.
t

t—o0

Therefore, using (6.3), the assertions (2.7) and (2.8) follow. O
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