On quantitative uniqueness for parabolic equations

Igor Kukavica and Quinn Le

ABSTRACT. We consider the quantitative uniqueness properties for a parabolic type equation uz — Au = w(z,t) - Vu +
v(z,t)u, whenv € LY2LE! and w € L2 LI, with a suitable range for exponents p1, p2, g1, and g2. We prove a strong
unique continuation property and provide a pointwise in time observability estimate.
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1. Introduction

We address quantitative uniqueness properties of solutions to the parabolic equation
up — Au = w(x,t) - Vu + v(x, t)u, (x,t) € Q x [Ty, To + T,

where v and w satisfy v € LY* L2 (Q x I) and w € L{ L3 (Q x I), respectively, @ C R™, and I = [Ty, Ty + 7. (In
this paper, we consider ) = T"™ and 2 = R™.) In particular, we obtain bounds on the order of vanishing which are
algebraic in the corresponding norms of v and w; recall that « has an order of vanishing d at a point (g, to) if d is the
largest integer such that
u(z, )] S (J& = wol* + [t — to])*/*

in a neighborhood of (z,ty). Additionally, we obtain pointwise in time observability estimates, i.e., inequalities of
the form

lu(-, )2 < Ms|lu(-, )|l 2(Bs(20))
for an arbitrary § > 0 under the Lebesgue conditions on v and w.

The unique continuation for PDEs has a rich history (see the review papers by Kenig [K1, K2] and Vessella [V]),
so we only mention several results pertaining to this paper. In [JK], Jerison and Kenig proved that the second order
elliptic equation has the strong unique continuation property (i.e., is identically zero if it vanishes to an infinite order at

1
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apoint) if w = 0 and v € L"/2, with a sufficiently small L™/2 norm, which is a sharp result. The parabolic counterpart
was obtained by Escauriaza and Vega [EV] (see also [E] for a previous unique continuation result when v € Lg° L2
with p > n/2). The difficult case when w is nonzero was addressed by Koch and Tataru for the elliptic case in [KT1]
and the parabolic case in [KT2]. In particular, they obtained the strong unique continuation for v € L} L + L$® Lg/ 2
with the norm sufficiently small and w € L”+2 All the mentioned works rely on suitable Carleman type estimates
and lead to observability type estimates on the space-time rectangles. For other works on the frequency approach to
the unique continuation, see [A, AN, Ch, Kul, Ku2], for the works related to Dirichlet quotients, see [A, CFNT, FS]
and for some other related works, see [AE, AEWZ, ApE, AMRYV, An, AV, BC, B, BK, CRV, D, DF1, DF2, DZ1,
DZ2, EF, EFV, EVe, F, H1, H2, K3, KSW, L, M, Z, Zh].

In this paper (see Theorems 2.1, 2.3, and 2.5 below), we obtain explicit algebraic observability estimates for a fixed
time (i.e., not only on space-time rectangles) under the assumptions on the coefficients v € L°L? and w € L{°LY,
where p > 2n/3 and ¢ > 2n. More general conditions v € L? L' and w € L{* L' under certain assumptions on
D1, P2, q1, and go are addressed in Theorems 6.1. While the results cited in the second paragraph use the Carleman
estimates, we rely on the frequency function approach, developed in [Al, GL] for the elliptic and [Kur, P] for the par-
abolic equations. The main idea of this approach for parabolic equations is the logarithmic convexity of the frequency

function
It [en [Vu(z, 1)]?G(z, t) dx
Jgn w(z, )G (2, t) dx

for the heat equation. In (1.1), G is the (47)™/2-multiple of the backward Gaussian kernel, i.e.,

Qt) =

(1.1)

1 z|? /4t
G(J? t) ‘t|”/2€| 1</ .
Another reformulation of the idea is to use the similarity variables (see (3.11) and (3.12) below) and obtain a logarith-
mic convexity of the unweighted norm [C, Ku3]. In [CK], the approach was used to obtain an estimate for an order
of vanishing C(||w||% o+ ||v\|2/ 3 ) which is, at least for complex valued coefficients, sharp [CKW1, CKW2] Poon
and Kurata showed that the frequency approach leads to the unique continuation property for p > n and ¢ =
In this paper, we deduce the quantitative unique continuation statement and the observability estimate for p >
2n/3 and g > 2n. The improved range is obtained by three main devices. The first is to find the point in space where
the frequency function is the smallest and translate the equation so it starts at that point (see Lemma 3.1 below); this
idea has been introduced in [Kud4, CK]. The second device is to use the embedding theorems with Laplacian and
use (3.40) below to bound the parts containing v and w. The third is to use the finiteness of the integral in (3.69)
below, which then allows us to show the convergence of the quantity under the integral. Note that we obtain an explicit
algebraic bound on the order of vanishing, which is a constant multiple of
ol el 7™ + 1.
When setting p = ¢ = oo, the estimate reduces to the sharp bound from [CK]. We also provide a pointwise estimate
in time for a better understanding of the behavior of solution u. In particular, for all dy € (0, 1], we have

(D)2 ey S € llul Ollz2s, o)) (1.2)

forall t € [Ty + T//2,Tp + T, where P is a polynomial depending only on n, g, p, do, [[v[|e e, and [Jwl|pepa.
The explicit formula for P can be found in Lemma 4.1 below. Note that the estimates of the type (1.2) are an essential
ingredient when considering qualitative properties of solutions of evolutionary parabolic PDE. For instance, they are
needed when considering the size of the zero set of solution at time ¢ or, more generally, complexity of a graph of
a function at a time ¢ ([Ku3, Ku4]). Note finally that compared to [CK], we reduce the necessary regularity for the
solution u to a simple boundedness, so we do not require differentiability.

We conclude the introduction by several general comments about the presented results. We believe that the
restrictions p > 2n/3 and ¢ > 2n are sharp from the perspective of the frequency approach (see however Theorem 2.4
and Sections 6.2-6.3 for extensions); it would be interesting to know if they are optimal for obtaining the inequality
of the type (2.7) pointwise in time. The restriction on p and ¢ results from the Gronwall-type argument applied to
(3.54) below. It is not clear if the approaches related to the Carleman estimates (as those in [KT2]) can be adapted to
obtain pointwise in time observability estimates with the low regularity of v and w. It seems that approaches using the
frequency require all Lebesgue exponents to be greater than or equal to 2 (cf. [DZ1, DZ2] where the exponents lower
than two were obtained in the elliptic case when n = 2).
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The paper is structured as follows. In Section 2, we provide the setup of the problem and state the two main
results, Theorems 2.1 and 2.3, on the order of vanishing and pointwise-in-time observability with periodic boundary
conditions, respectively. The case of R™ under a natural non-growth condition on the solution (see (2.11) below) is
considered in Theorem 2.5. The three theorems are proven in Sections 3, 4, and 5, respectively. In Section 6, we
address several extensions. First, in Section 6.1 (Theorem 6.1), we consider the situation when the time exponent is
finite, i.e., we consider v € LY?LPt and w € L{*LI* when ps; < oo or g3 < oc. In Sections 6.2 and 6.3 we show
that the exponents p € (n/2,3n/2) and ¢ € (n,2n) can be considered. Namely, Theorem 6.2 extends the results by
assuming that the L? norm of v or L? norm of w vanish at an algebraic rate as ¢ — Ty + 1. Finally, in Theorem 2.4
stated in Section 2 and proven in Section 6.3, we extend the results to the case when p > n/2 or ¢ > n and the norm
of v or w, respectively, is sufficiently small compared to the Dirichlet quotient.

2. The main results

We address the quantitative uniqueness of a nontrivial solution v € L° (I, L2(T")) N L?(I, H'(T")) of the
problem
up — Au = w(z,t) - Vu +v(z, t)u
2.1)
u(+, To) = uo,
with the first equation defined for (x,t) € R™ x I where I = [Ty, To + T is a given time interval, assuming 7, Ty > 0
and n > 2. The results are also valid for n = 1 with minor changes; see Remark 2.6 below. We assume that u, v, and
w are 1-periodic (in all n directions) and that they satisfy

v(- )| LTy < Mo (2.2)
and

lw(-,t)||Lacrny < M, 2.3)
for all t € I. When we consider the periodic boundary conditions, we use the notation €2 for the set [—1/2,1/2],

while T™ means R™/Z", i.e., T™ is the set of equivalence classes of points which are identified if the difference belongs
to Z™. Let Oy, +,)(u) be the vanishing order of u at (2, to), which is defined as the largest integer d such that

Hu||L2(Qr(zo,to)) = O(Td+(n+2)/2) asr — 07
where
Qr(z0,t0) = {(z,t) ER" xR : |z — x| <7, —1% <t —tg <0} 2.4)
stands for the parabolic cylinder centered at (xq,to) with the radius . Note that, by the parabolic regularity and

Holder’s inequality, this definition of vanishing order is equivalent to the one stated in the introduction. For ¢ € I,
denote by

iy < T Dl

o) = Tl O
the Dirichlet quotient of v at the time ¢ € 1. We assume that ||u(-, )|/ 2 () is nonzero for all ¢ € I. We also suppose
that

2.5)

qo = sup qp(t) < 0. (2.6)
tel

The following is the main result of this paper; see also Theorems 6.1, and 6.2 (as well as Remark 6.3) for extensions.
Here and in the sequel, we denote Lj L2 (T™ x I) = L9(I, LP(T")) and L%, , = LY L%, for p, q € [1,00].

THEOREM 2.1. Let u € L% (T™ x I) be a solution of (2.1) withv € L°LE(T" x I) and w € L LEL(T™ x I)
such that (2.2) and (2.3) hold where

< 2n
P=3
and
q > 2n.
Then, for all (zo,t0) € T x [To + T/2,To + T, the vanishing order of u at (xo,to) satisfies
Oaoto) (W) S Mg + MY +1, @.7)
where 0 )
6=-—— and b= ——— (2.8)

3—2n/p 1-2n/q’



ON QUANTITATIVE UNIQUENESS FOR PARABOLIC EQUATIONS 4

with the implicit constant in (2.7) depending on qy and T.
Note that the dimension n is considered fixed, so all constants and polynomials may depend on n without mention.

REMARK 2.2. The assumption (2.6) is necessary as the Dirichlet quotient controls oscillations of solutions. For
instance, let ¢,, be an A, -eigenfunction of —A with periodic boundary conditions, which vanishes of order n at 0.
Then the solution u = ¢, e~ of the heat equation does not satisfy (2.7) for n sufficiently large as v = w = 0. Note
that the Dirichlet quotient for this solution equals \,,. The eigenfunctions with an arbitrarily high order of vanishing
can easily be constructed in bounded domains with Dirichlet boundary conditions; however we expect that it holds
for periodic boundary conditions as well; cf. also [CKW1, CKW2] for constructions of solutions of elliptic equations
with a high order of vanishing, including the periodic boundary conditions.

In the next statement, we provide a pointwise in time observability property of solutions.
THEOREM 2.3. Under the conditions of Theorem 2.1, there exists a polynomial P such that
- Dl any < MM (1) 250,50, 2.9)
forallt € [To +T/2,To + T) and &y € (0, 1/2), where the coefficients depend on p, q, T, and qo.

Here and in the sequel, P denotes a generic nonnegative polynomial. Although in the proof we do not follow the
dependence on qq and 7, it is easy to check that the dependence on these quantities is also polynomial.

Theorems 2.1 and 2.3 allow extensions, some of which are stated in Section 6. Here we point out one, which
allows the exponents p and ¢ to belong to extended ranges p > n/2 and ¢ > n, considered critical for unique
continuation.

THEOREM 2.4. Letu € L% (T" x I) be a solution of (2.1) withv € Ly°LE(T" x I) and w € L LL(T" x I)
such that (2.2) and (2.3) hold where
n
P> 5
and
q > 2n.
If My is less than a constant depending on qq, then for all (xq, tg) € T™ X [To + T/2,To + T, the vanishing order of
w at (xo,to) satisfies

Oag o) (W) S MY + 1, (2.10)
where b is as in (2.8). Similarly, if
o
=73
and
q>n,

and if My is less than a constant depending on qo, then for all (xg,tg) € T™ x [Ty + T/2,To + T, the vanishing
order of u at (xg, to) satisfies

O(azo,to)(u) S/ Mél + 1a
where a is as in (2.8). If p > n/2 and q > n, and if My and M, are less than a constant depending on qo, then the
same conclusion holds with (2.10) replaced by O (5, +,)(u) S 1, with all the implicit constants depending on qo and T.

Now, consider u, v, and w defined on R" instead of T™. Suppose that u satisfies a doubling type (or mild-growth)
condition

/ u(z,t)?de <K | u(z,t)*dr, te [Ty, To + T, (2.11)
n Bl
for some constant . In this case, we obtain the following analogue of Theorems 2.1 and 2.3.

THEOREM 2.5. Letu € L;‘jt(]R” x I), where I = [Ty, To + T and Ty, T > 0, be a solution of (2.1) satisfy-
ing (2.11), with the coefficients verifying v € L{° L2 (R™ x I) and w € L{° LL(R™ x I) with

lo(-, )l Lr@ny < Mo

and
lw(, )l La@ny < Mi,



ON QUANTITATIVE UNIQUENESS FOR PARABOLIC EQUATIONS 5

fort € I. Assume additionally that

2n
> — 2.12
P> (2.12)
and
q > 2n. (2.13)

Then, for all (xo,to) € Br X [To + T/2,To + T, where R > 0, the vanishing order of u at (xg, to) satisfies
Oworte) (W) S Mg + M +1, (2.14)

where a = 2/(3 — 2n/p) and b = 2/(1 — 2n/q), with the implicit constant in (2.14) depending on qo, K, T, and R.
Moreover, for &y € (0,1/2], we have

(-, )|z qony < ePEOMOMD (- 6)] 25,4
SJorallt € [Ty + T/2, Ty + T, where P is a polynomial with coefficients depending on qy.
The theorem is proven in Section 5 below.

REMARK 2.6. In the theorems above, we assumed n > 2. For the case n = 1, we suppose additionally that p > 2
and ¢ > 4. The reason for the restriction p > 2 is that the methods are L2-based requiring the exponents to be at
least 2. The reason for ¢ > 4 is technical; see the comment below (3.48).

3. Proof of the statement on quantitative uniqueness

This section is devoted to the proof of Theorem 2.1. We first start with the case when v, w, and ug are smooth and
then use an approximation argument to prove the theorem under the general conditions of Theorem 2.1. Thus assume
for now that v, w, and uq are smooth.

3.1. Frequency smallness lemma. By a translation and rescaling, we may restrict ourselves, throughout the
section, to I = [—1,0] and (¢, tg) = (0,0). The following lemma allows us to find a point —x. where the frequency

] g [Vulz, 6) PG (2, t) da
Q) = ﬁ; u(z, t)2G(z,t)dx

after being translated so it is centered at —z, is small, at a small time ¢ = —e, where € € (0, 1].

LEMMA 3.1. Let u € Lg%, (2 x I) be smooth and 1-periodic in x, for t € I = [~1,0]. For any € € (0,1] such
that u(-, —¢€) is not identically zero, there exists x. € ) such that

€ Jan [Vu(ze +y, —€)|*G(y, —€) dy
fR 2 S qu(7€)7
fRn 'LL(:L'E + Y, 76) G(y7 76) dy

where

1
G(z,t) = We‘“”‘“, z€R", t<O. 3.1)

The lemma is proven in [CK, Kud4]; we provide a short proof for the sake of completeness.

PROOF OF LEMMA 3.1. Assume, contrary to the assertion, that we have

4o (—¢) / w4y, — Gy, —e) dy < / Vulz +y,—)2Gly, —) dy, (3.2)

n

for all z € €2, which by a simple change of variable reads

1
/ u(y, —€)’Gly —x,—e)dy < ) / |Vu(y, —€)|*G(y — x,—€)dy,  z €
n D - n
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We shall integrate both sides in = over €2, obtaining a contradiction. The integral of the left-hand side over 2 equals

/Q/n u(y, —€)*G(y — x, —€) dy da = / /HQ ,—€)2G(y — x, —€) dy dx

JEL™
/Z/ Gly+j—x,—e€)dydx
JEL™
3.3)
:/ ,—€)? Z/Gy—&—]—x—@dx dy
Q2 JEL™

- / aly,—e? [ Gly—,—€) dedy = (4m)"2 / w(y, —€) dy,
Q ]Rn

Q

y — , —€) dz = (47)™? in the last equality. Similarly, we have

[ [ wuts. -6ty - v.—e)dyds = 472 [ [9u(y. ~0) dy. G4
Combining (3.3) and (3?4), we obtain !

(=) [ uly~dy < [ [Vt~ dy,

which is a contradiction with the definition (2.5) of the Dirichlet quotient. Therefore, (3.2) cannot hold for all = € €2,
and the lemma follows. O

where we used [, G

Note that the argument above does not require w to solve (2.1).

3.2. Setting and notation. Let € € (0, 1/2] be a fixed parameter, to be chosen in the proof of Lemma 3.2 below;
see (3.24). We proceed with a change of variables

u(x,t) =u (a: - &t,t) , (3.5)
€
where z. is as in Lemma 3.1, so that
a(z, —€) = u(x + xc, —€) (3.6)
and
a(z,0) = u(z,0), 3.7)

for all x € T™. By Lemma 3.1, we have
ef]Rn |Vfb Y, _E)PG(ya _6) dy

S €40,
fRn y7 _6 G(y7 _6) dy
i.e., the frequency of u at t = —e is small. It is not difficult to check that @ solves the equation
0 — At = =25 . Vi +w - Vi + v, (3.8)
€
Since % and u have the same order of vanishing at (0, 0), we write u instead of @ until the end of Section 3. Denoting
r=_2 (3.9)
€
throughout, the equation (3.8) becomes
O — Au=r-Vu+w-Vu+ vu. (3.10)
We now proceed with a change of variable
Uy, 7) = e_|y|2/8u(ye_7/2, —e™ "), (y,7) € R"™ X [19,00), (3.11)
that is,
u(x,t = el /80y L,flo —t) ], x,t) € R" x [—¢,0), 3.12
(z,1) W g(=1) (z,1) [—€,0) (3.12)

withy = z/+/—t and 7 = — log(—t), where
1
T0 = log —. (3.13)
€
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Also, let

V(y,7) =v(ye ™ —e7),  (y,7) €R" X [19,00)
and

W(y,7) =w(ye /2 —e7), (y,7) € R™ X [r9, 00).

Then (3.10) becomes

1 1
0,.U+ HU = 677—/2 <47’jij+7’jajU) +677/2 (4ijjU+ W]8JU> +€7TVU,

where

ly> n
HU = —-A Wt _n
U U+(16 1)U

with the initial data
Uly,m0) =U (y,log 1) = "W By /e, —e).
A short computation shows that
UC Ny = [ ulantPGla.t)do.

where T = — log(—t) throughout, and

(HU,U) 2y = |t|/ Ve, £)2G(x, ) da.
RTL

Thus also
Q(r) = (HU,U) 2(rn) _ It] [gn [Vu(z, 1)]*G(, 1) dx’
1U1® Jon w2, 1)2G (2, t) da
where we write
1= 1 e ey

also, if the domain of integration is not indicated, it is assumed to be R™. Denoting

1 —7/2 |y|2 n 1 —7/2
A(T)U:HU—Ze ’I”jij:—AU-i- E—Z U—Ze ’I“jij
and
2y = AU D)2y e Jwv?
Q(T) ||U||2 Q(T) 4||UH2 y] Y,

we may rewrite (3.16) as
0.U+ A(m)U = F(U),
where

1
F(U)=e TPr;oU +e7/? (4ijjU + W@-U) +e VU

For simplicity, denote

- U
U=——,
Ul

so that | U = 1.

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)
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3.3. The main frequency lemma. We now show that the modified frequency function () is bounded with an
expression on the right-hand side of (2.7) for a suitable choice of e.

LEMMA 3.2. Let
1
€= , 3.24
C(M§ + Mp+1) (324
where a and b are given in (2.8), and C' is a sufficiently large constant depending on qy. Under the assumptions of
Theorem 2.1, and assuming that u, v, and w are smooth, the modified frequency function satisfies

Q) SMyg+My+1, 7>, (3.25)

where Ty is given in (3.13), with the implicit constant in (3.25) depending on qq.
Note that € € (0,1/2] by (3.24).
PROOF OF LEMMA 3.2. Lete € (0, 1/2] first be arbitrary, with the choice (3.24) made before (3.58) below. Also,
we use the notation from Section 3.2. With Z denoting the identity matrix, we claim that
FU)
(e
To establish (3.26), we first divide (3.23) by ||U|| and take the inner product of the resulting equation with (A(7) —

Q(T)I)U/||U|| to obtain
1

5+ - QDO = 3 (0)7.0)+ (T (am - eond ). 620

0.V, (A7) ~ QD)D) + || (A ~ @) + Q(T)W

1
_ F(U) _ .
= @) + (g (4 - QD ).
where (-,-) = (-,-)2(rn). By (3.22), the last term on the left-hand side cancels with the first term on the right-hand
side of (3.27), so the equation (3.27) becomes
o,U ~ - _ 112
o A0 = QEIDT ) + (A - QD[ =
On the other hand, by differentiating (3.22), we have

Lo AU | @UADY)  @UUADUDY)
2= T o o

(3.27)

FU)

o (A(T) — Q(T)I)U) . (3.28)

and thus
Lor = Loarma. ) 4+ 00 (A0 — QD)
50 (1) = 5(A(T)U,U) + e

The identity (3.26) then follows by adding (3.28) and (3.29). Since A’(T)U = %6*7/27"]-3/]- U, we obtain

(3.29)

2@ () +I(A() = QDTN = e~ (0,0, 0) + /2y (0,0, (A(r) - Q)T)O)
+ (e72(y; WU + W,;0;0) + e VU, (A7) — Q(r)T)U).
For the second term on the right-hand side of (3.30), we have
e ™21 (0;U, (A(1) — Q(m)I)U)

(3.30)

N 2. L -~ 1 -~

= —e_T/QTj/AUajU—i—e_T/zrj %U@»U— Ze_T/2rj/U8jU— Ze_Trjrk/kaajU

1 -~ 1 L (3.31)
Ee_T/QTj/\yFU@jU— Ze_Trjrk/kaajU

1 1
T /2rj/ij2+§e Ir|?,

where we used f Ué‘jU = 0 and f AU@U = 0 in the second equality (since v, w, and ug are assumed smooth, U
and its derivatives are smooth and decaying fast in the spatial variable) and ||| = 1 in the last. Recall that all the
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integrals with the domain not indicated are understood to be over R™. Note that the first term in the last line of (3.31)
cancels with the first term on the right-hand side of (3.30). Therefore,

1_ _ -
5@'(7) + I(A(7) = Q(m)T)U |
1 ~ R ~ ~ ~ (3.32)
= ge_TMQ +e77/? /(ijjU +W,;0,U + e TPVU)(A(1) — Q(r)D)U dy = I + L.
In order to estimate I, we first claim
ID*U|| S IHU| + |[U]. (3.33)

To prove (3.33), we expand || HU ||? as

2
o [(_ ly? n
|HU| _/< AU+(16 4>U> dy
:/ (AU)? + P _n 2U2 dyf2/ [y n UAU dy
16 4 16 4
A y? n 1
:/ (AU) + E_Z U dy+2/8JU83U E—Z dy+1/y]U8JUdy

Since the last term equals (—n/8) [ U? dy, we get
IIHUH2>/ (AU)? + bt _n 2U2 dy—E/IVUIQdy—E/UQdy
o 16 4 2 8 ’

IAUI? S IHU|? + [U]* + VU

from where

By Sobolev’s and the Cauchy-Schwarz inequalities, we get

|U|I? + ||AU|?
o2 < joav) < PR IAUE

and then using
ID*U| < AU (3.34)

we obtain (3.33); note that the inequality (3.34) follows by [AUAU = [ 8,;U9;;U = [ 8;;U8;;U, due to fast decay
of U and its spatial derivatives (note that u is smooth and periodic).

To treat I5 in (3.32), we first estimate ||V U||. Observe that we cannot apply the Gagliardo-Nirenberg inequalities
directly since ||V (-, 7)||» is infinite whenever v is not identically zero, due to periodicity of v. Noting that V' is
e™/2-periodic, we tile R™ as

R"= |J -, (3.35)
JEL"
where Q; , = je™/? + ¢7/2Q). Then we have
VUIP = > VU2, S D IVIEn, 1T 2020, .- (336
jezn jezn
Note that
IVize(,,) < Moe®, jezr,
where
a=_, (3.37)
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by periodicity and using a substitution. Hence, using the Gagliardo-Nirenberg inequality, we obtain

IVUIP S Y Mg U508, S IDUlle2qo,.) + 1Ul2200,0)
jezn
l—o [}
S Mge™eT Z HUHQL?(QJ,T) Z ||D2UH%2(QJ-,) + Z ||U||2L2(Qj,)
jEZ" jeZn jeZn
= Mge**T||[U|***(ID*U|| + |U])*,

(3.38)

where we used the discrete Holder inequality in the second step. Therefore, taking the square root of (3.38) and
dividing by ||U ||, we get

VU] S Moe® (| D*U| + 1), (3.39)
where we used ||| = 1. By (3.33), we have

1D < |HU|| +1 5 |HU = AU + [(A(T) = QDU || + |Q(7)U | + 1

. _ . _ (3.40)
S e rllyUl + (AT = QDU +1Q(r)] + 1,
applying (3.21) in the last step. Since
IV + 01 < Q)M + =/ + 1, (3.41)
([Ku4, p. 780]), as one may readily check, we get
ID2 0| < e 2Ir|(1Q()1Y2 + e~ 72l +1) + [[(A(7) = QDU + |Q(7)] + 1. (3.42)

Using (3.39) and (3.42), we obtain
VOIS Moe (=[x (1Q()I™/2 + e 2r|* +1) + | (A7) = QDT * +1Q(D)|* +1).  (3:43)

Next, we proceed to estimate ||y; W,;U + W,;;U|| by first bounding ||W;8;U || and then ||y;W;U||. Analogously to
(3.36)—(3.38), we have

[W;0;U|| S Mye®=27 U | =F (| DU || + |U )P (3.44)
with
n 1
= — 4 = 4
B 2% + 5’ (3.45)

where we also used
WllLa, ) S Mye™™/21 = N eB—1/2)7, jezn,

J}T) ~

Note that the exponents a and b in (2.8) satisfy

and

b= .
3— 48
Dividing (3.44) by ||U]||, we obtain, similarly to (3.43), that
IW50,01 S Mye =127 (| HO|P +1)

S Myl (PR P(Q(r) P2 4 A2 4 1) 4 [(A(T) = QUNT)TIP + 1Q(D)I +1).
(3.46)
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Next,
ly; WiUI? = > Iy, WiUll720,.) S W10, 19U 2200200,
JEZ™ JEL™
S Z M12€(25_1)T||9|U|1/2H%AL(QJ-,)|||U|1/2||2L4q/<q—4>(9j,)
jezr
=Y MEPIT YU 2, ) U 20ra-0 (e, )
jezn

—1)r 1—-n/2 n
< Y Mpeh |||y\2U||L2(Qj,T)||U||qu/{q34>(gjw,)(||D2U||L2(Q,,T)+||U||L2(9j,7)) /2,
jezn

(3.47)

Applying the discrete Holder inequality, taking a square root, and dividing by ||U]|| leads to
ly WUl < Mye =27 [y PO |2 (AT /27 + 1). (3.48)

Observe that in (3.47) we need ¢ > 4. (Note that for n = 1 we have ¢ > 4, needed in (3.47), by Remark 2.6.) Recall
that HU = —AU + (|y|?/16 — n/4)U, from where

Ul S 1HU| + AU + U1 < [HU| + U], (3.49)
by using (3.33) in the last inequality. Applying (3.49) in (3.48), we get
ly; W3Ol S MyeP= V2T (|AT |2 4 1) (| HU |V + 1)
< My BT (TR0 4 1) (| HO|M2 + 1)
S M PRI HU )P + 1),
where we used (3.45). With (3.42), we then obtain

lys W01 S Myl /27 (72 B(IQ(IP/2 + e 21rl? 4+ 1) + (A(7) — QDT +1Q() P +1))

(3.50)
By (3.43), (3.46), and (3.50), we get an estimate for I from (3.32) which reads
2 S (A7) = Q)T (e~ 7 My (e /2[s1P (1Q(r) P12 + e~ /2r P + 1)
+I(C) - QDO + QP +D)
(AT = QDT (417 Mo (e 2|r| (Q(r) /2 + €= 2|+ 1) |
+(A@) = QDT + QI +1)).
Using (3.51) in (3.32), we obtain
2@ D)+ (AW ~ QTP
< T2 + ePITM(AG) — QEIT)T | (e P PIQUIIP2 + ¢ 87w R + e TR
FI(AD - QDI + Q)P +1) (52

+ UM (A(T) = QDT (e 2r QI + e[ 4 €=
+(AF) = QDT +1Q()|* +1).

We now apply Young’s inequality to the terms involving ||(A(7) — Q(7)Z)U|| on the right-hand side so that we can
take advantage of the second term in the left hand side; namely, we use

NI[(A(r) = QDT < ll(A(r) = QDT + Co( NG,
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where ¢y € (0, 1] is arbitrarily small, with vy = 1, 4+ 1, 5 + 1 and corresponding expressions for N. Thus, we get
Q'(m) + (A(r) - Q(n)D)U|?
S e TP+ MPeTrPP|Q(r) )7 + MO mATIQ(r)
+ M2e~27|p |48 4 M12€(,@—2)T|T|2,3 + Mf/(l—ﬁ)e—% +M126(26—2)T (3.53)
+ Mgel* DT P Q(r)| + Mg eI Q(r)
+M02672¢|7,|4a +M026(0¢72)T|T|2a + Mg/(l—a)efw +Mge(2a72)'r.

The second term on the right-hand side of (3.53) may be absorbed into the third and the fourth by the Cauchy-Schwarz
inequality. Similarly, the eighth term is absorbed by the ninth and tenth. Using also |r| < 1/e, the last inequality
implies

Q’(T) 5 e Te 2 +M12€(2ﬁ72)'r|@(7_)|2ﬁ + M12672T€74B _|_M126(ﬁ72)76725 —|—M12/(1_'6)€72T +M12€(2572)T

+M§6(2a72)T|Q(T)|2a —|—M§672T674a + Mge(a72)'r€72a _|_Mg/(1—a)6727 + Mge(2o¢72)'r'
(3.54)

To estimate Q(79), we now compare Q(7) and Q(7) for any 7 > 7. Using (3.41), we have
g0 < lylU 12 S 1QNIM + e T4 e/ 4+ 1, (3.55)
where we used the Cauchy-Schwarz inequality in the first step. By (3.22) and (3.55), we get

Q(r)<Q(r)+e 72 Tj/yjﬁ2 dy

S Qr) + e TP (IQM)V2 + e r| + 1),
from where, after absorbing the second term on the far right side,
QIT)SQ(r) +e T|r>+ 1. (3.56)
Note, in passing, that a similar derivation also leads to
Q(r) S Q)4 +e T + 1.

< Q) +e T2y 20

Using Lemma 3.1 and (3.56), we have
_ C
Q(70) < Cy (qu(—e) +e 4 1) < ?1, (3.57)
where C; = Cy(go + 2) and Cjy > 1 is the constant in the inequality (3.56). Denote by Cy > 1 the implicit constant
in the inequality (3.54).
Up to this point, all the estimates hold for any fixed € € (0, 1/2]. Now, fix € € (0,1/2] as in (3.24), denoting the
constant in (3.24) by C'. We claim that (3.54) and (3.57) imply
~ Ci1+C
Q(T) < 2&7
Assume, contrary to the assertion, that there exists 71 > 7 such that Q(71) = 2(C; + Cs)/e, and assume that 7y is
the first such time. Also, let

T > 1719 = —loge. (3.58)
€

T = sup {7’ € [r0, 1] : Q(7) = C:} (3.59)
so that
Q1) € [%W) T € [19,71). (3.60)

(The purpose of introducing 7 is to remedy the fact that () may be negative with a possibly large absolute value.)
Integrating (3.54) between 7 and 7 and using (3.60), we arrive at

Q(11) < Q(7h) + Coe ™ + 20, M22%8(Cy 4 Cy) P24 4 Oy M2 4P
+ CoM2e2730 4 Cy MY T2 4 20, M2e220 4 20, M22%%(C) + Cy)2%e2 4 (3.61)
+ C’gMgeQ*‘m + 02M362730‘ + 02M02/(1_a)€2 + 2CQM02€272Q,
where we used 0 < o, 8 < 3/4.
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Suppose first that (2.12) and (2.13) hold. The third term on the right-hand side of (3.61) satisfies
20, M7P2* (Cy + Co)* %P = 20, M7 2% (Cy + Cp) P ¥4
205228(Cy + C9)?P _ Cy + Oy
< _ < ,
- C3—48¢ —  20e

where in the second step we used M. 23748 < 1/C3~48, and this results from (3.24), while the last inequality holds
if C is sufficiently large. We proceed similarly for the rest of the terms in (3.61) and obtain
~ ~ Ci+C C Ci+C Ci +C
Q) Q) + ——— < — + 2 <22

This is a contradiction with a choice of 7y, and thus we conclude that (3.58) holds for all 7 > 7. Finally, by (3.24)
and (3.58), we get

€ € €

Q1) S Mg + My +1,
as desired. O

3.4. The order of vanishing. Now, we show that the modified frequency function @ controls the vanishing
order of u. We first prove the following lemma, which shows the convergence of Q(7) as 7 — oo and provides the
connection between the order of vanishing of « and the quantity [ u(z,t)?G(x,t) dz, where G is defined in (3.1).

LEMMA 3.3. Under thg assumptions of Theorem 2.1, and assuming that u, v, and w are smooth, the modified
frequency function satisfies Q(1) — m/2 as T — oo for some m € N such that m < M§ + M? + 1, where a and b
are as in (2.8). Also, with € as in (3.24), for all § > 0, there exist t; € (—log(1/¢€),0) and A1(5), A2(6) > 0 such that

A < [ (e 02Glat) do < A", (3.62)

n

forallt € [t1,0).
We emphasize that the constants A; () and A3 (J) are allowed to depend on u, but not on ¢.

PROOF OF LEMMA 3.3. We start the proof by establishing the connection between @ and the behavior of ||U (7)||2.
By Lemma 3.2, we have (3.25). Also, let x. be as in Lemma 3.1 and r as in (3.9). Taking the inner product of (3.23)
with U, we obtain

1d 9 B
37 1017+ (A(MU, U) = f(7), (3.63)
where we denoted

1
f(r)=eT(VU,U) + ie*f/“’(ijjU, U) + e 72(W,;0,U,U); (3.64)

note that we used (e~7/ 2r;0;U,U) = 0. Now, we bound the terms as in the proof of Lemma 3.2. For the first term,
we have, as in (3.36),

TV S S V@ 102 emso(a,
jEZN

a—1)1 2—n n n
S eCTTMy YU (VU0 ) + U )
JEZ™
S TV M (US| U R).
Similarly, for the second term in (3.64)

1. B
2 TPy WU U) S e W e, o U | pasa-na,

4 . E
jezn
S ePITM Y Uz, ) 10l 202,
Jje
—1)7 1=
< PM Y U s, o 10! (VU IR, ) + 101, )
Jjezr

S PTITM U U (VUM O,

~
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while for the third term in (3.64), we have

—r —1)r 1-n n n
eTR(W0;U,U0) S P ITMy Y VUl pago, o 10N (e (IVUE, )+ 10174, )
jGZ"
S I VU U (VT e+ o),

where a and (5 are as in (3.37) and (3.45). Therefore, by (3.41), we may bound

||[]|{( ))'”2 < CITM(QM)] + ¢TI + 1) 4+ eI (IQ()] + T 1), (3.65)

and thus, allowing all constants in this proof to depend on M, and M; (and thus also on € and r), we obtain

/ |f($)| ds s e—'r/47 T>7,

UG 911
where 71 > 0 is arbitrary. Integrating the equation
1 f(r)
Liwz+ae) = 7
2|U]? dr o1
from 77 to 7, we get
1 1 TS
3 log |U(-,7)||> — 3 log |U(-,m)||* = / Q(s)ds +/T i@ )”2 T > Ty (3.66)

Note that (3.66) shows that ) controls the exponential decay of ||U||%.

In order to prove the first assertion in the statement of the lemma, it is sufficient to prove that () converges to a
number in 2~ !'N. Thus, for the rest of the proof, we allow all the constants to depend on M and M; (and thus also on
e and r). Using Q(T) < 1in (3.53) and integrating between 71 and 7, where 0 < 71 < 7, we obtain

Q(T) —Q(m) + /T I (A(s) — Q(S)I)ﬁ”? ds < e /4 4 6—7/4,

1

from where, by Q(71) < 1,

/ [(A(s) — Q(S)I)U||2 ds <14e /4 47T/, T > (3.67)

1

We also have
_ - 1 _ - -
I(A(r) = Q(T)DU|]* > I~ QMI)U|? - Ce Tl |ylU]1?

: i ] (3.68)
> S| = QDT - Ce,

where we used (3.22) and [ |y|?U? < Q + C|r|>¢=" + C, which in turn follows from (3.17). Therefore, applying
(3.68) in (3.67),

/ ||(H—Q(S)I)U||2ds,§/ (A(s) — QD) TP ds+ e S 1™/ 4o <oo, 727, (369

where we used the boundedness of @ in the first inequality. Combining (3.69) with
dist(Q(7),sp(H)) < [I(H — Q(r)T)U], (3.70)
recalling that ||U|| = 1, we get
/000 dist(Q(s),sp(H))? ds < oo;

note that the inequality (3.70) follows since H is a self-adjoint positive operator whose inverse is a bounded compact
operator. It is well-known that

m
sp(H) = {E:meNo}, 3.71)
(see [CK, p. 664]), whence

/Oo dist(Q(s),27'Np)? ds < oc. (3.72)
0
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An elementary argument shows that (3.72) combined with Q’(7) < 1 for 7 > 7y yields dist(Q(7),27'Ng) — 0 as
T — 00, 1.€.,
lim Q(7) —

T—00

m
e (3.73)

for some m € Ny as in the statement.

It remains to prove the last assertion in the statement of the lemma. From (3.66) and (3.73), we deduce that for
every § > 0 there exists 7; > 0, depending on 4, such that

57 =) < log|[U(T)|* —log [U(r)|[* +m(r =) < 6(r —m), 72 m,
from where )
—6(1—m1) < eTmHU(T)” < 65(777'1).
—enm||U(m)|* T
Therefore, there exist A1(0), A>(d) > 0 such that
AL (8)e™T < ™| U(T)]]? < Aa(8)edT.

Finally, recalling (3.18), we obtain (3.62). O

e

The following lemma provides a control on [ Br P(z,t)G(x,t) dx, with P a homogeneous polynomial of de-
gree d. We use this lemma in the proof of Theorem 2.1.

LEMMA 3.4. Let P(x,t) = Zm|+zl:dC’M7laz“tl be a homogeneous polynomial of degree d € N. Then,

Pz, t)G(x,t)dz < [t|1¥2, t <0, (3.74)
R’n
where the constant in (3.74) depends on the polynomial only. Moreover, if all the coordinates of 1 = (11, 12, - - -y fin)
are even, then for all R > 0,

/ MG, t) do < JE|HH2 0t <0,
Br
ast — 07. If p; is an odd integer for some i € {1,... ,n}, then
/ "' G(z,t) dx = 0,
Br
fort <.

For the proof of Lemma 3.4, see [CK, p. 670].

PROOF OF THEOREM 2.1. Without loss of generality, let I = [—1,0] and (zg,t9) = (0,0). First, we assume
that u, v, and w are smooth. Let € be as in (3.24), and let m be as in the statement of Lemma 3.3. Denote by d the
vanishing order of u at (0,0). We claim that d < m. Since the degree of vanishing of u at (0, 0) is d, we have

u(z, t)| < (Jzf* + [¢))/2, (3.75)

for all (z,t) € @1(0,0) with Q1(0,0) defined in (2.4); from (3.75) to (3.80) below, the constants are allowed to
depend on u. Let § € (0, 1] be arbitrary. By Lemma 3.3, there exist t; € (—log(1/¢€),0) and A;(d), A2(d) > 0 such
that

A (8)|t™ 0 < /u(x,t)QG(x,t) dr < Ao (O)[t|™°,  t € [t1,0). (3.76)
Let R = 1/4. Note that we have
o0 o—p?/4]t]
[ e Glatyde S fulny [ S de
R™\Br r o It"

0o ,—p2/8lt] 00 o—p?/8]t] (3.77)
2 —R?/8]¢| e P 2 —R?/8|t| e ona :
< Nl ot /R g0 e S ooy e

_p2
< ||u||2L°°(T")e /I

Using (3.77) in (3.76), we may increase t; < 0 to obtain

%A1(5)|t\m+5 g/ w(z, 02w, t) dz < 245(5)|{™ 0, t € [t1,0). (3.78)
Br
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Moreover, by (3.75) and Lemma 3.4,

/ w(z, )2G (@, 1) dx§/ (2 + )G, ) da < Jt]°. (3.79)
Br

Br
Combining (3.78) with (3.79), we get

A O S € [t,0),
which yields
d<m+39.
Letting § — 0, we conclude that
d<m, (3.80)

as desired. Thus we have proven Theorem 2.1 under the additional assumption that v, w, and u( are smooth.

Now, consider the general case. Recall that u (which still represents u from (3.5)) satisfies the equation (3.10),
and it is defined for all ¢ € [—1, 0], even though its frequency was studied only for ¢ > log €. Note that by the parabolic
regularity u is locally Holder continuous and u € L H! N L7?H?2 on (—1 + 6,0) x T". Therefore, we may assume,
without loss of generality, that ug € C(T™) N H'(T™), just by adjusting the initial time, and that u € L{°H! N LZ H?
on (—1,0) x T™. Recall that n > 2; cf. Remark 2.6 for n = 1.

We approximate v, w, and ug by smooth functions v", w", and ug, where n € (0, 1], so that v, w", and ug
converge in L;LP, L{ L4, and LS°(T?) N H1(T?) to v, w, and o, respectively, for any s € [1,00) as n — 0. In other
words, we have

i (0 = 0" llng + 0 = w7z + o — w@llngeny + o = ey =0, s € [1L,00). (38D
In the rest of the proof, the space-time Lebesgue spaces are understood to be over T™ x (—1,0); also, we may assume
that [|v"[| Leo 1, [w"|| Lo L, ||[ug || oo (Tn), and [|ug]| 71 (7ny are uniformly bounded by constant multiples of [[v]| e 2,
lwll zeo s [[woll Lo (rny» and [[uo|| 2 (rn), respectively. For convenience, we allow all constants until (3.96) below to
depend on these four quantities, as well as on [|ul[ e g1 and [ul[ 22

For n € (0, 1], let u” be a solution of the equation

ou — Au" =7 -Vu'l +w" - Vu' + 0"
W 1) = ull. (3.82)
Subtracting (3.82) from (2.1), we get

ou—Au=r-Va+w"-Va+w-Vu+v"a+ vu
(3.83)

a(-,—1) = ud — uo,

where @ = u" — u, & = v" — v, and @ = w" — w. First, we have u, i € L°L2 N L2H!. Using v € L°LY"/? and
w € LPL2", we also get
D?u, D*u € L7L2. (3.84)
Taking the inner product of (3.83) with 4, we obtain
1d, . . A - . o - o
§%||u||%2(qrn) + ||Vu||2Lz(Tn) = /Tn r;jud;jt + /n w!ud;t + /Tn w;udju + /n V" 4 /Tn dut

S Irlllall e oey IVl L2 (rny + lw || Larny

a||L2’1/(Q*2)(’H‘n) ||Vﬂ||L2(T")

+ [ Lacen) 1ll L2as a2 (o) IVl 2 ony + 10" 2o o) 1801 20 019 ()

+ 18] Lo rey 1ull L2001 (7o) |8l 20/ 0= (705

whence
1d,. -
5@”““%2(@”) + ||VU||%2(11‘7L)
S il 2 emy [Vl pzerny + 18l L2a/a-2) (on) [Vl L2 rmy + 10| Lacrmy [|8]] 20/ a2 (70

F @l 220/ -0 pmy + 191 o crmy el 20/ -1 (o) ll L20/ 013 -



ON QUANTITATIVE UNIQUENESS FOR PARABOLIC EQUATIONS 17

. ~ 1-n n ~ ~ n/2 n/2
Using [[ill zorca-neny S ] g IVl Aty + 1l 2 ey and (1] ponsomneny S ]2 IV a5t +
|| 2 (Tn), we get

D)2 oy < Nl ; G 3.85
gplelzacrny S l@lzeqeny + @llzacem) + [0llzocon). (3.85)

Let €y € (0, 1]. Then, for n sufficiently small, we have
(-, =D pnys @l pizes 101z < €o, (3.86)

where, recall, the mixed space-time norms are taken over T” x (—1,0). Applying (3.86) and the Gronwall inequality
to (3.85) leads to

”ﬂH%%T“) 5 €0, te [_170]'

Since € € (0, 1] was arbitrary, we get
lim sup ||a(-,t)||2¢rey = 0. (3.87)
tim sup [0z e

In order to obtain the analog of (3.87) for the H'-norm, we test the first equation in (3.83) with —A%, which we
may by (3.84), and obtain

S IV ey + AT Do
:—/ TjajﬂAﬂ—/ w;’(')ﬂ]Aa—/ ﬂ)j@juAﬂ—/ ’l}nﬂAﬂ—/ VUAT.
By Holder’s inequality, we get

1d -
B dtHVU( O72erny + 1AG(C B[22 0ny
S rllIVall e eony |AG] L2 (rny + |07 | Lacrn) V@l L20/-2) (0ny [[AG]| L2 (1) (3.88)

+|‘@||L4(T'rL) VU”LZq/(q—z)(Tn) A’&/HLQ(T"L)J’_||/UnHLp('En) ’[L”sz/(p—z)(']rn) Aﬂ||L2(T’!L)

+ H’Z}HLP(TT‘) HUHsz/(p—Q)(Tn)‘ A’ELHL2(T”)~

For the second term on the right-hand side, we have, using the agreement on constants from above (3.82),

|w" || La ey V]| L20/a-2) (pn) | ATl L2 (Tm) < [V L20/(0-2) (7m0 | AT L2 (77
S 1Vl gl (D2 L2y + ||u||Lz>”/quAu||Lz<m
S IVl AT ooy + (1] 22)™ )| Al e

S €oll At 72 pny + Coo (I V|72 (pn) + HUHLQ(’]I‘H)),

(3.89)

where €y € (0, 1] is arbitrary. An analogous estimate also holds for the fourth term on the right-hand side of (3.88).
For the third term, we have similarly to (3.89)

Al gaceny S 18] gaceny IVl G (1Dl gz omy + ]z o)) At 2oy

@] La TMHVUHL%/@ 2) (Tn)
S ]| pagrny (1A 2erey + Null z2eny)™ U AG] L2y S 0] Lo rn) (| Aul 2oy + 1)™ 1| Adil| L2 (pa)
S €oll A2 my + €ol| AullF2pmy + Ceg 0117 5™,
while for the last term in (3.88), we estimate similarly
1511 o v el 20702 () | AT 2y S 18] o 1l Ea i P (1Dl 2 + Null2)™/ || Al 2
S0l eenyl[Al| L2y S E()|‘Aa“%2(1r“) + CmH@H%p(Tny

Using all the bounds on the terms on the right hand side of (3.88) and absorbing the terms involving ||A’L~LH%2(T,L), we
obtain

d . - _ - -
@IIVU(‘,t)II%z(Tn) S eollAull7epny + Ceo (lall72(pny + IV @ Z2(ny + 8]0 (pmy + 101170 ¢ny) -
Now, applying the Gronwall inequality, along with (3.81) and (3.87), we get

limsup sup [|Va(-,t)|lz2rmy S 60/ ||Au|\2L2(Tn) < €. (3.90)
n—0 te[—1,0] T
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Denote by Q"(7) and Q(7) the modified frequency functions corresponding to u” and u, respectively. Recalling that

- (HU,U) e ™/?r; / )
= — U“d 3.91

and similarly

~ (HU", U e T/2r;
@)= T~ o S e (3.9

we now claim that Q7(7) — Q(7) as — 0 for all 7 € [0,00); here, U is given in (3.11), while U"(y,7) =
e~ II*/Sun(ye=7/2, —e~7) for (y,7) € R" x [y, 00). Note that

/ )2 —u?)G(x,t) d

@I ~ 10| = S s [ 07 = o
1

S m”ﬂ('vt)HLz(’H‘")(”un(‘at)||L2(’]I‘") +|ul, )l z2(rey),

and thus
lim [[U7(7) |2 = U2 =0, (393)
by (3.87). Also, we have
(HU,0") — (HU)| < 1] [ |V = [FuP |Gt do
1 (3.94)
< et IVl [ V687 42 e,

from where
lin%(HU”,U”) = (HU,U), T >0, (3.95)
n—

by (3.90). Lastly, we examine the convergence of f y; (U )2 dy. For this purpose, we estimate, for every 7 > 0,

\ [y - / 5, U dy\ < [ W@ 0?1 < o - ol + 0]

<(HEU ~0)2 4 |lun vl v + U
(3.96)
= (|t| \Via(z,t)|?G(x,t) dz + ||U — U||) |[U"+U|
< (1t IHVUHIIWGII)”2 +UT=u)Ivn +Ull,
where we used ||yU||? < (HU,U) + ||U||? in the third inequality, which in turn follows from the identity
_ 2+ 2 N 2,
(HU,U) = [VUI + w011 ~ F101%
also, in the fourth step of (3.96), we applied (3.19). By (3.93), (3.94), and (3.96), we get
lim [ y(U)?dy = / yU? dy. (3.97)
n—0

Using (3.93), (3.95), and (3.97) in (3.91) and (3.92), we obtain that Q" (1) — Q(7) asn — 0 for all 7 € [0, c0). Note
that we have

Q(r) <1, (3.98)
uniformly in 7 and 7 € (0, 1], where the constant depends only on ¢g. Passing to the limit, we get
Q)<L T>0 (3.99)

Next, by (3.69) and (3.70), we obtain, for all € (0, 1],

/ dist(Q"(7),sp(H)? <1+e /4474 7>7 >0, (3.100)

T1
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allowing the constants to depend on M, and M as above. Observe that by (3.98) we have Q"(7) € [0, C], where the
constant is independent of 7 and 7. Thus letting 7 — 0 in (3.100) yields

/ dist(Q(7),sp(H))2 <1+e /4 4e ™4 7>1>0. (3.101)
T1

Combining (3.71), (3.99), and (3.101), we may use the same argument as in the proof of Lemma 3.3, to obtain
Q(7) — m/2 for some m € Ny. The rest of the proof is similar to the case when v, w, and ug are smooth. O

4. Pointwise in time observability

In this section, we use the notation from Section 3.2. We fix € as in (3.24), where a and b are given in (2.8). Since
we are interested in observability, it is advantageous to slightly generalize the function 4 from (3.5) as follows. Let
t; € [—€/2,0] be arbitrary but fixed, and let 7y = — log ¢;. Then, define

_ _ _ Le _
u(x,t)—u(x t1+€(t t1),t>> “.1)

where x. is as in Lemma 3.1, so that, instead of (3.6) and (3.7), we have
w(x, —€) = u(x 4+ x., —€)
and
a(x,t1) = u(z, t1),
for all x € T™. The equation (3.10) continues to hold with (3.9) replaced by

Le

r=—- .
7t1+€

Since |r| < €71, dueto t; € [—¢/2,0], all the estimates from Section 3 continue to hold for % in (4.1).
The following lemma provides a comparison between the unweighted and weighted L? norms of .

LEMMA 4.1. Under the assumptions of Theorem 2.1, with u defined in (4.1), and € in (3.24), we have
_ 2 < el _ 2
Ja(, Ol 22y < TS u(z,t)°G(z,t) dz, 4.2)

forallt € [—¢,0), where K = C(M? + My + My M?P~1 + MqgM?*~Y) and M = M§ + M? + 1 with a and b as
in (2.8).

PROOF OF LEMMA 4.1. In this proof, we use the convention from the proof of Lemma 3.2 by writing u instead
of u. We start with the identity (3.63), where f is defined in (3.64). From (3.65), we get

T -1)r A -7 a—1)T A -7 @
T S VML Q]+ ¢TI 1) 4 e M Q)+ eI+ 1)

where o and [ are as in (3.37) and (3.45). Therefore, as in the first equality in (3.66), we have

1 1 T = O
BBV = Jlog U )P =~ [ Qs+ [ s rzm
2 2 7o o IUC, )|
from where we obtain, using Q(7) < M = M§& + M{ + 1 for 7 > 79, that
U(- 2
g UL
[eACESl!

S (7= 70)M + eBIOM (M + e |2 4+ 1)P + @O NMo(M + e[+ 1)° (4-3)

S(r—70)M + elfﬂMl(M + e|7“\2 + 1)ﬂ + elfO‘MO(M + e|7“|2 + 1) T > 79,

where we used € = e~ from (3.13).
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We now derive a similar estimate for ||u(-, )| T2/ llu(s — )||? 72(n)- Taking the inner product of (3.10) with u

and using [|Vul|Zz2pny = ¢p(t)[|ul[72(pn) Where gy, is defined in (2.5), we obtain
1d
2.dt

S Hw”Lq(T" ||UHL2‘1/<‘1—2)(’H‘")

—lullZe ey + ap () [u - )1|72¢ny
1/2

|UHL2(’JI‘")QD(t) +”UHLP(T")”UH%%/@—I)(TW) (4.4)
2-2 28—1
S My[ull 2o e |Vl s el 2oy ap ()2 + M [[ul| 2y g (£) 2

+ Mollull 72,

VUHL2(’H‘") JrMOHu”QL?(’]I‘")v
since [1,, r;udjudx = 0, where the quantities are evaluated at ¢. Dividing both sides of (4.4) by [|u||? 72(Tn) We get

1
Nwl22 s dt ||u||%2(T”) + agp(t) < Mg ()? 4+ Migp ()2 + Mogn (1)® + My < My + Mo, 45)
L2(T")
allowing the last implicit constant to depend on ¢q. Integrating (4.5) from —e to ¢ leads to
||u(, _5)”%2(1%)

By the definition of U in (3.11), we have

S (My + Mp)e, t € (—¢,0). (4.6)

||U('370)H2 fRn €T, _6 7‘:6'2/46 dx 67”'/46 a7
[Ju(, _E)HQLz(Tn) en/2 an u(x,—€)?2de ~ en/2 :
since |x| < y/n for z € Q. We then take the logarithm of (4.7) to get
[Ju(, —E)H%mrn) n 1 n 1
log ————— _fflongr— -. 4.8)
10 70) 12 2 de ™ e
Adding (4.3), (4.6), and (4.8), we obtain
(Ol 2pn 1
log —————— < (M + M = —loge )M
BUC P M M)er i —lose)
+ e TPMU(M el +1)° 4+ 7 Mo(M + efr? + 1)
My + M
S % + M 4 7M + (Mg + M;)M?*P~1,
where we used € < 1/M and |r| < ¢! < M, and thus
[u( )12z
long;ﬁg) S MF + My + Mr + MM o MM,
whence
2 28—1 20-1yy_ L 2
[u(- ) 72(mny S exp(C(MF + Mo + My M + MoM**™)) — o / u(z,t)*G(x,t) dz,

as claimed. g

Lemma 4.1 is combined below with the next statement from [Ku4].

LEMMA 4.2. Let K > 0 and tg € [—1/4,0). If a I-periodic function f satisfies

1122y < € | F@)*Cla.t)de
with t € [to,0) such that
1 C 1 C(K+1)
T 2 ol + ——,
[t [l [ [tol
for a sufficiently large constant C' > 0, then

Cel
2 2
||fHL2(’]I‘n) < WHJCHLQ(BW)
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For the proof, see [Kud4, p. 775].

PROOF OF THEOREM 2.3. We first assume that ug, v, and w are smooth as in the proof of Theorem 2.1. By
Lemma 4.1, we have (4.2), where K and M are given in the statement. In order to apply Lemma 4.2, we need
t € [—€/2,0), along with

1 > 9 log 1 + 7C(K i 1)Mlog l 4.9
it~ e € I
One may readily check that the sufficient condition for (4.9) is
€

C(K +1)M(log(1/€))*(log((K +2)(M +1)))**

Lett; € [—¢/2,0] be such that |¢1| equals the right-hand side of (4.10). Using this ¢; in (4.1) and applying Lemma 4.2
leads to

It] <

(4.10)

(-, t)]| L2 (rmy < €P(Jw)||u(‘,t1)||L2(Bm)7

where P is a polynomial, and we obtain the conclusion of the theorem for the time ¢;. For other times, we simply
translate in time. (Note that it sufficient to obtain the observability estimate (2.9) for a sufficiently small dg, as it is
then automatic for larger values.)

For the general case, we approximate u, v, and w by smooth functions ug, v", and w" respectively. We then
have [[u” (1) |2y = [0 )12 gy and [[u (1) 205, ) = (- 8)[2as,. ) a5 1 — 0 by (B87). 0

5. The case R™

In this section, we prove the theorem concerning the case of R™.

PROOF OF THEOREM 2.5. Note that we now assume the growth condition (2.11) instead of periodicity. Again,
without loss of generality, we may consider I = [—1,0] and (20, o) = (0, 0). The proof is similar to the periodic case
with small modifications. With € € [0, 1/2], we have

€ Jgu IVu(zc +y, —€)PG(y, —€) dy
Jon u(ze +y,—€)2G(y, —€) dy
for some x, € Bs. This was proven in [CK], but since the argument is short, we present it here. Assume that

< Keqgp(—e), (5.1

A ulz+y,—€)’G(y, —€) dy </ Vu(z +y,—€¢)’G(y, —€)dy,  x € By, (5.2)
be n

where A = CoKqp(—¢) and Cy > 1 is sufficiently large constant, to be determined. Integrating (5.2) over B, we
have

1
Gy, —€) dy / ety —e?de <+ [ Gy —e)dy / Vule +y,—0) da

Rn B> R Bs (5 3)
1 2 (2m)"/2 2 .
< S Ivu -0l [ a =gy < B0 v, -,

where we continue using the convention (3.20). On the other hand, we have a lower bound for the far-left side of (5.3),
which reads

Gy, —e) dy / wa+y,—ede = [ Gly,—e)dy / u(, —e)? de

By R™ Bz (y)

> / Gy, —¢) dy/ u(z, —€)? dz > / G(y, fe)dy/ u(z, —€)? dx
Bi/2 Ba(y) By/2 B,

1 1
> G y,—)dy/ um,—edeE—Qﬂ'"/Q/ u(z, —e)? du,
/Bm (53 [ oo g n [ ute—o

fixing Cy ! = (2m)™"/2 [ Bi)s G(y, —e)dy, where the last inequality holds by the doubling type condition (2.11). Thus
we obtain

R™

1
ap(—e€)

CoK
lu(z, —e)1* < OTHVU(-, —o)|I* < [Vu(, =),
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which contradicts g, (—€) = ||Vu(-, —€)||?/|lu(-, —€)||?. Therefore, (5.2) cannot hold for all x € Bs, i.e., there exists
z. € By such that (5.1) holds. Theorem 2.5 then follows as in the proofs of Theorems 2.1 and 2.3. O

6. Extensions

In this section, we extend Theorems 2.1 and 2.3 to two settings. In the first (Theorem 6.1 below), we allow v
and w to have a lower integrability in time, while in the second, the space exponents for v and w are lowered below
2n/3 and 2n requiring a degree of vanishing of the norms. Here we adopt the notation from Section 2; in particular,
1= [T(),T + TO]

6.1. The case L]LP. The methods in this paper allow us to consider the case v € LY2LP1(T"™ x I) and w €
L L3 (T™ x T) with py and go finite. For simplicity, we restrict ourselves to the case of periodic boundary conditions;
however, the same holds for the case of R™ using the approach from the previous section. When limiting po — co and
q2 — 00, the next theorem reduces to the results in Section 2.

THEOREM 6.1. Letn > 2 and I = [Ty, To + T|]. Assume that uw € L5 (T"™ x I) is a solution of (2.1) where
v € LYP?LPY(T™ x I) and w € L LI (T™ X I) such that py > 2n/3 and q1 > 2n with

2 2
B 6.1
p2>max{1a’34a} ©1)

and

2 2
g2 > maX{l_ﬁ, 3—4ﬁ}
where o = n/2py and $ = 1/2 4+ n/2qy. Then, for all (zg,tg) € T™ x [Ty + T/2,To + T, the vanishing order of u
at (xg, to) satisfies
Oaot0) (W) S VI 722 o1 (pn ey + Hw”if%gl (xn T

where 5
= - 6.2
T3 da_ 2/pa ©.2)
and 5
. S—
3—48—-2/q
PROOF OF THEOREM 6.1. Without loss of generality, we may assume I = [—1,0] and (x¢,ty) = (0,0). For

simplicity, we only consider the case w = 0 and v € L¥? LP*(T™ x I), as for a nonzero w the proof is similar. Here
we define

Mo(7) = [lv(-s D)l Ler (),
where 7 = — log(—t). As in (3.54), we have
QI(T) SJ e—T€—2 + MO(T)Qe(Qa—2)T|Q_(T)|2a + Mo(T)26_2T6_4a + MO(T)Ze(a—2)~r€—2a
(6.3)
+ MO(T)Q/(lfa)ef%' + ]\40(7_)26(2a72)‘r7
where o = n/2py, i.e., (3.54) holds with M, replaced by M (7) and M, set to zero as we assumed that w = 0. Let
B 1
C(”v”(zf2L£1 (Tn ><I) + 1)
with @ as in (6.2) and C sufficiently large determined in the Gronwall argument below. Denote by C, > 1 the implicit
constant in (6.3), and we have (3.57). Under the condition (3.57), we claim that

O(r) < 2847

where C1 = Co(qo + 2) and Cp > 1 is the constant in (3.56) and where 79 is given in (3.13). Assume, contrary to
the assertion, that there exists 71 > 7 such that Q(71) = 2(C} + C3)/e, and suppose that 7; is the first time with this
property. Also let 7, be as in (3.59) so that, in particular, (3.60) holds. Then we have

Q'(1) < Cae e 2 + CoaMy(1)222%e(22=27(C) + Cp)2e 2
+ CoMo(1)%e 24 4 CoMy(1)2e D722 4 Oy My (7)Y (A= e™2" 4 Cy My (1)%e2 27,

, 6.4)

T > 70, (6.5)
€

(6.6)
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for 7 € [1(), 71]. We integrate (6.6) in 7 from 7(, to 71 and obtain

T1 T1
Q(11) < Q7)) + Coe™ + 0222%(C + Cy)**e 2 / MQ(T)2€(2Q_2)TdT + 026_4“/ Mo(T)%e ™" dr
T0 To

™ 1 ™
+ Che 2 / MO(T)2e(a_2)T dr 4+ Cy / MO(T)Q/(l_a)e_QT dr 4+ Cs / MO(T)Qe(Qa_Q)T dr,
0 0 0

6.7)

since 79 < 7). By Holder’s inequality, the third term on the right-hand side satisfies

T1
0222a(01 +C«2)2a672a/ MO(T)Ze(QOL*Q)T dr
70
< 0922%(C1 + Co)* €| Mo (7)€ %772 || a2 7 o) 1€ 22227 | o 102 (7 )

oo 2/p2 (6.8)

< Cnga(Cl + 02)20(6720( (/ My(T)P2e™7 dT) €2—202/p2

70
o o 3—da— G+

< Co2 (O + G @ P ol s ey < T

in the last step, we used po > 2/(3 — 4a) from (6.1) in addition to €3~4@=2/P2||y||2 < 1/C3~4a=2/p:

. LP2LEY(TnxI) =
which is due to (6.4) with C' sufficiently large. Other terms in (6.7) are estimated similarly, except for the sixth one,
for which we write

T1
Cg/ MQ(T)2/(17Q)672T dr
To

< Cy|| My () =2/ A= 0P2 || a2 00y €72 AmOPT|| L1 =iz =2) (7,00

< Cpe?~2/(A=a)p2 HMO(T)G_T/pz ||2/(1*0‘)

LP2(7(,00)
3-2/(1-a 2/(1-a) 1 Ci+Cy
< G2 )p2‘|v||Li’2L§1(1rnx1) = T50e
In order to use Holder’s inequality, we need po (1 —«)/2 > 1, which is guaranteed by (6.1). Also, the last step requires
32/ (1—c)p2 ||v||2L/p(21L_pOf)(TnX1) < 1/C3-2/(0=)p2 see (6.4), in addition to py > 2/3(1 — «), which is satisfied due
to (6.1). We proceed similarly estimating all the terms in (6.7) from the far right side of (6.8), obtaining
= = Ci+Cy 3C+C
< ] <= ,
Q(m) < Q(rg) + % =5 p
This is a contradiction since Q(71) = 2(Cy + C2) /e, showing that (6.5) indeed holds for all 7 > 7. The general case,
when both v € LY L2 (T" x I) and w € L{> L% (T™ x I) are present, is obtained analogously. O

6.2. The cases L;’OLZ/2 and L{°L7. In this section, we assume t~“v € L®°LP(T" x I) and t~Pow €
L>*L9(T™ x I) in the interval n/2 < p < 2n/3 and n < ¢ < 2n with ap and §y indicated in the statement.
We assume that n > 2 throughout this section and that M, and M; are constants such that

[(t = (T +To)) " v(-,t)|| Lo (rny < Mo (6.9)
and

1(t = (T +To)) Pow(-, )| Lagrny < M, (6.10)
fort e I.

THEOREM 6.2. Letn/2 < p < 2n/3 and n < q < 2n. Assume that w € L L°(T™ x I) is a solution of (2.1)
with t=@0y € L LP(T" x I) and t—Pow € L LL(T™ x I) satisfying (6.9) and (6.10) for t € I such that

m/p—3
ap > % 6.11)

and ) )
B > ”/%. (6.12)

Then, for all (xo,t0) € T" x [Ty + T/2, Ty + T), the vanishing order of u at (xg, to) satisfies
Olao o) (w) S Mg + M} +1, (6.13)
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where a = 2/(3 + 209 — 2n/p) and b = 2/(1 + 2 — 2n/q), with the implicit constant in (6.13) depending on qq
and T.

PROOF OF THEOREM 6.2. Without loss of generality, ] = [—1,0] and (xo,tp) = (0,0). Using the notation
(3.37) and (3.45), the conditions (6.11) and (6.12) read

4o — 3

Qg >
0 2

and
45 -3
5
We also have a = 2/(3 + 2a¢ — 4a), and b = 2/(3 + 28y — 403). It suffices to show that Q(7) < Mg + M} + 1,

where @) and 7 are defined in the proof of Theorem 2.1. Let V and W be as in (3.14) and (3.15), and note that V' and
W are eT/Q-periodic. As in (3.35), we write

Bo >

R"= | Q-

Jjezr
where () ; = j e™/?2 + e7/2Q). After a simple change of variable, we then have
IVlzr(e,.,) < Moe®Te™ 7 = Moel®= )7 (6.14)
and
||W||Lq(Qj,) < Mle(ﬁ—l/Q)Te—Tﬁo < Mle(ﬁ—ﬁo—l/z)f’

from where, similarly to (3.38) (but with U = U/||U|| instead of U),

VOIP= > VU0, S D IVIZe@, )T 2so-20,.,)

jezn jezn
S Mge* e |[U |22 (| DU + 1),

where we used (6.14) in the last inequality. Similarly, we have the modified version of (3.47), which is

Ly Wi T2 = S W0, ) S S0 W B, 190 Baniamo,

J

jEZ” jeZ"
—9280—1)r S l—n/2 - - n
< 3 MECH 2R Y ROT 2 o, (102Dl z2qey 0+ (011220002,
JELZ™

and then, applying Holder’s inequality,

ly; WU | < Me®= P27 [y PO (| AT|*/20 + 1).
Other estimates are the same as in the proof of Lemma 3.2, leading to a bound for Q’(7), which reads
Q'(r) +II(A(r) = QDU

Se TP +II(A(r) - QDU (e(ﬂ‘ﬁo‘”rM (e 2P (1Q(T)1P2 + e P2 | 4 1)

DN | =

(A — QDTN + Q1) +1)) (6.15)
+(A(m) = QDT (=77 Mo (e~ Ir|*(Q(r)|*/2 + &=/ [r] + 1)

+1I(A(T) = QEDUI” + Q(r)* +1) );
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see (3.52). Using Young’s inequality, we absorb the terms involving ||(A(7) — Q(7)I)U|| on the right-hand side of
(6.15) into ||(A(7) — Q(7)Z)U||? on the left-hand side to obtain
Q'(1) S e TIr* + PR TITAR P Q(r) |7 4 P2 TITME|Q(7) [P
+ M2e(=200=2)7|p 48 4 pp2e(B=2B0=2)7 |28 Mf/(l—ﬁ)62(ﬁ76071)7/(17ﬁ)
+ M12€(2ﬁ—260—2)7' + Mge(a—2a0—2)r|T‘2a|Q(T)|a + Mg€(2a_2a0_2)T|Q(T)‘2a (6.16)
+ Mge(—an—Q)T‘T.rla + Mge(a—2ag—2)r|r‘2a +Mg/(l—a)ez(a_a0—1)7/(1—a)

+ Mge(Za—an—Q)‘r.
Using |r| < e ! and absorbing the second and eighth terms, the inequality (6.16) implies

Q/(T) S €_T€_2 + 6(26—2,80—2)7—M12|Q(7_)|26 + M126(—2ﬁ0—2)7—6—4[3

+ M2e(B-280-2)m =28 g2/ (1=F) 2B=B0-1)7/(1-B) | 12,(28-2B0-2)7 .
+Mge(2a72a072)‘r‘Q(7)|2a + Mge(72a072)7674a +Mg€(a72a072)7-672a (6.17)

+Mg/(l—a)62((1704071)7'/(1701) + Mge(%‘*?"‘“*z)f

Let C5 be the implicit constant in (6.17) and C' be defined as in (3.57). We can now use the barrier argument to prove
that

T > 7o = —loge,

where
1
€ = —= 5
C(M§ + M{ +1)

with C sufficiently large. The concluding Gronwall argument is identical to that in the proof of Lemma 3.2, and thus
we omit the details. ]

REMARK 6.3. A minor modification in the proof allows us to consider also L LP* (R™ x I') and L{* L4* (R" x I
where n/2 < p; <2n/3 and n < ¢; < 2n. To avoid repetition, we only state the result, which is as follows. Let o =
n/2py and 8 = 1/2 + n/2q;. Assume that u € L7 L°(T™ x I) is a solution of (2.1) with t~*v € L? LP1(T" x I)
and t~Pow € LI LL(T™ x I) where pa > 2/(1 — ) and g2 > 2/(1 — B3) are such that

2 _ —
0 > max /D2 + 4o 372/p2—|—2a 2
2 2
and
2 48 -3 2 28 -2
By > maxd He2 403 2/a +28 '
2 2
Then, for all (xg,tp) € T™ x I, the vanishing order of u at (g, to) satisfies
O(mo,to)(u) 5 ||tiaov||zf2[‘£1 (TnxI) + ”tiﬁOle},gQLgl (T xI) +1 (618)
where
2
a =
34200 —2/p2 — 4o
and

b 2
3+280 —2/q2a — 48’

with the implicit constant in (6.18) depending only on gg and 7T'.
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6.3. The cases Lg°LP and Lg° L2 where 2n/3 > p > n/2 and ¢ > 2n. In this section, we prove Theorem 2.4.

PROOF OF THEOREM 2.4. To avoid repetition, we only provide the estimate (2.10) under the smallness assump-
tion on M. Note that the proof in Section 3 holds until (3.58), but we use

1
€ = —

C(Mb+1)’
for C sufficiently large. We use the barrier argument to obtain
~ Ci1+C
Q(T) S an
€
Assume that there exists 7 > 7 such that (6.19) does not hold and let 7; be the first such time. Define 7, by (3.59),

and observe that (3.60) holds. Integrating (3.54) in 7 between 7, and 71 yields
Co

Q(11) < Q1) + Coe™t + CuM?2P(Cy 4 Cy)Pe* =48 + mMffﬁ(c1 + Cy)?P 248

T 2 To. (6.19)

_ C.
+ 02M12€274B + 02M12€273ﬁ + 02M12/(1 6)62 + 5 225 Mlzezfzﬁ
Cy

4 C2M32a(cl 4 C2)a€2—4oc + 52 Mg220¢(01 4 02)20462—4(1

(6.20)

—a C.
+ CQM362_4Q + CQM362_3Q + CgMg/(l )62 —+ 72 _ZaM(?€2_2a,

where we use 0 < a, 8 < 1. We now claim that each term on the right-hand side of (6.20) is bounded by (C; +
C3)/20e. We only estimate the terms involving M, since others are estimated same as (3.61) and since the condition
on q is the same as in Theorem 2.5. Starting with the ninth term, we have
C1+ Cy

20e
where we use (' is sufficiently large in the first inequality and M, is sufficiently small in the last inequality. Note that
—1 <3 —4a < 0sincen/2 < p < 2n/3. Similarly,

Co 2524 20 2—4a &) Ci+ 0

e < .
g 2 (G G < o 20

given M is sufficiently small. Proceeding similarly with the other terms, we conclude that Q(7) < 2(C + C3)/e,

which is a contradiction. Therefore, (6.19) holds for all 7 > 7, i.e., Q(T) < M{’ + 1, forall 7 > 7.

CoME2%(Cy + Co)*e® 4% < (O 4 Co)ME4 < (O + Co)MECH™3(1 + MP)* o371 <

M0222a(01 +02)2a04a—3(1+M{))4a—36—1 <
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