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ABSTRACT. We consider the quantitative uniqueness properties for a parabolic type equation ut −∆u = w(x, t) · ∇u+
v(x, t)u, when v ∈ L

p2
t L

p1
x and w ∈ L

q2
t L

q1
x , with a suitable range for exponents p1, p2, q1, and q2. We prove a strong

unique continuation property and provide a pointwise in time observability estimate.
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1. Introduction

We address quantitative uniqueness properties of solutions to the parabolic equation

ut −∆u = w(x, t) · ∇u+ v(x, t)u, (x, t) ∈ Ω× [T0, T0 + T ],

where v and w satisfy v ∈ Lp2

t Lp1
x (Ω× I) and w ∈ Lq2

t Lq1
x (Ω× I), respectively, Ω ⊆ R

n, and I = [T0, T0 + T ]. (In

this paper, we consider Ω = T
n and Ω = R

n.) In particular, we obtain bounds on the order of vanishing which are

algebraic in the corresponding norms of v and w; recall that u has an order of vanishing d at a point (x0, t0) if d is the

largest integer such that

|u(x, t)| . (|x− x0|2 + |t− t0|)d/2
in a neighborhood of (x0, t0). Additionally, we obtain pointwise in time observability estimates, i.e., inequalities of

the form

‖u(·, t)‖L2(Ω) ≤ Mδ‖u(·, t)‖L2(Bδ(x0)),

for an arbitrary δ > 0 under the Lebesgue conditions on v and w.

The unique continuation for PDEs has a rich history (see the review papers by Kenig [K1, K2] and Vessella [V]),

so we only mention several results pertaining to this paper. In [JK], Jerison and Kenig proved that the second order

elliptic equation has the strong unique continuation property (i.e., is identically zero if it vanishes to an infinite order at

1
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a point) if w = 0 and v ∈ Ln/2, with a sufficiently small Ln/2 norm, which is a sharp result. The parabolic counterpart

was obtained by Escauriaza and Vega [EV] (see also [E] for a previous unique continuation result when v ∈ L∞
t Lp

x

with p > n/2). The difficult case when w is nonzero was addressed by Koch and Tataru for the elliptic case in [KT1]

and the parabolic case in [KT2]. In particular, they obtained the strong unique continuation for v ∈ L1
tL

∞
x +L∞

t L
n/2
x

with the norm sufficiently small and w ∈ Ln+2
x,t . All the mentioned works rely on suitable Carleman type estimates

and lead to observability type estimates on the space-time rectangles. For other works on the frequency approach to

the unique continuation, see [A, AN, Ch, Ku1, Ku2], for the works related to Dirichlet quotients, see [A, CFNT, FS]

and for some other related works, see [AE, AEWZ, ApE, AMRV, An, AV, BC, B, BK, CRV, D, DF1, DF2, DZ1,

DZ2, EF, EFV, EVe, F, H1, H2, K3, KSW, L, M, Z, Zh].

In this paper (see Theorems 2.1, 2.3, and 2.5 below), we obtain explicit algebraic observability estimates for a fixed

time (i.e., not only on space-time rectangles) under the assumptions on the coefficients v ∈ L∞
t Lp

x and w ∈ L∞
t Lq

x,

where p > 2n/3 and q > 2n. More general conditions v ∈ Lp2

t Lp1
x and w ∈ Lq2

t Lq1
x under certain assumptions on

p1, p2, q1, and q2 are addressed in Theorems 6.1. While the results cited in the second paragraph use the Carleman

estimates, we rely on the frequency function approach, developed in [Al, GL] for the elliptic and [Kur, P] for the par-

abolic equations. The main idea of this approach for parabolic equations is the logarithmic convexity of the frequency

function

Q(t) =
|t|
∫

Rn |∇u(x, t)|2G(x, t) dx
∫

Rn u(x, t)2G(x, t) dx
(1.1)

for the heat equation. In (1.1), G is the (4π)n/2-multiple of the backward Gaussian kernel, i.e.,

G(x, t) =
1

|t|n/2 e
|x|2/4t.

Another reformulation of the idea is to use the similarity variables (see (3.11) and (3.12) below) and obtain a logarith-

mic convexity of the unweighted norm [C, Ku3]. In [CK], the approach was used to obtain an estimate for an order

of vanishing C(‖w‖2L∞
x,t

+ ‖v‖2/3L∞
x,t

), which is, at least for complex valued coefficients, sharp [CKW1, CKW2]. Poon

and Kurata showed that the frequency approach leads to the unique continuation property for p > n and q = ∞.

In this paper, we deduce the quantitative unique continuation statement and the observability estimate for p >
2n/3 and q > 2n. The improved range is obtained by three main devices. The first is to find the point in space where

the frequency function is the smallest and translate the equation so it starts at that point (see Lemma 3.1 below); this

idea has been introduced in [Ku4, CK]. The second device is to use the embedding theorems with Laplacian and

use (3.40) below to bound the parts containing v and w. The third is to use the finiteness of the integral in (3.69)

below, which then allows us to show the convergence of the quantity under the integral. Note that we obtain an explicit

algebraic bound on the order of vanishing, which is a constant multiple of

‖v‖2/(3−2n/p)

L∞
t Lp

x
+ ‖w‖2/(1−2n/q)

L∞
t Lq

x
+ 1.

When setting p = q = ∞, the estimate reduces to the sharp bound from [CK]. We also provide a pointwise estimate

in time for a better understanding of the behavior of solution u. In particular, for all δ0 ∈ (0, 1], we have

‖u(·, t)‖L2(Rn) . eP ‖u(·, t)‖L2(Bδ0
(0)), (1.2)

for all t ∈ [T0 + T/2, T0 + T ], where P is a polynomial depending only on n, q, p, δ0, ‖v‖L∞
t Lp

x
, and ‖w‖L∞

t Lq
x
.

The explicit formula for P can be found in Lemma 4.1 below. Note that the estimates of the type (1.2) are an essential

ingredient when considering qualitative properties of solutions of evolutionary parabolic PDE. For instance, they are

needed when considering the size of the zero set of solution at time t or, more generally, complexity of a graph of

a function at a time t ([Ku3, Ku4]). Note finally that compared to [CK], we reduce the necessary regularity for the

solution u to a simple boundedness, so we do not require differentiability.

We conclude the introduction by several general comments about the presented results. We believe that the

restrictions p > 2n/3 and q > 2n are sharp from the perspective of the frequency approach (see however Theorem 2.4

and Sections 6.2–6.3 for extensions); it would be interesting to know if they are optimal for obtaining the inequality

of the type (2.7) pointwise in time. The restriction on p and q results from the Gronwall-type argument applied to

(3.54) below. It is not clear if the approaches related to the Carleman estimates (as those in [KT2]) can be adapted to

obtain pointwise in time observability estimates with the low regularity of v and w. It seems that approaches using the

frequency require all Lebesgue exponents to be greater than or equal to 2 (cf. [DZ1, DZ2] where the exponents lower

than two were obtained in the elliptic case when n = 2).
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The paper is structured as follows. In Section 2, we provide the setup of the problem and state the two main

results, Theorems 2.1 and 2.3, on the order of vanishing and pointwise-in-time observability with periodic boundary

conditions, respectively. The case of Rn under a natural non-growth condition on the solution (see (2.11) below) is

considered in Theorem 2.5. The three theorems are proven in Sections 3, 4, and 5, respectively. In Section 6, we

address several extensions. First, in Section 6.1 (Theorem 6.1), we consider the situation when the time exponent is

finite, i.e., we consider v ∈ Lp2

t Lp1
x and w ∈ Lq2

t Lq1
x when p2 < ∞ or q2 < ∞. In Sections 6.2 and 6.3 we show

that the exponents p ∈ (n/2, 3n/2) and q ∈ (n, 2n) can be considered. Namely, Theorem 6.2 extends the results by

assuming that the Lp norm of v or Lq norm of w vanish at an algebraic rate as t → T0 + T . Finally, in Theorem 2.4

stated in Section 2 and proven in Section 6.3, we extend the results to the case when p > n/2 or q > n and the norm

of v or w, respectively, is sufficiently small compared to the Dirichlet quotient.

2. The main results

We address the quantitative uniqueness of a nontrivial solution u ∈ L∞(I, L2(Tn)) ∩ L2(I,H1(Tn)) of the

problem

ut −∆u = w(x, t) · ∇u+ v(x, t)u

u(·, T0) = u0,
(2.1)

with the first equation defined for (x, t) ∈ R
n× I where I = [T0, T0+T ] is a given time interval, assuming T, T0 > 0

and n ≥ 2. The results are also valid for n = 1 with minor changes; see Remark 2.6 below. We assume that u, v, and

w are 1-periodic (in all n directions) and that they satisfy

‖v(·, t)‖Lp(Tn) ≤ M0 (2.2)

and

‖w(·, t)‖Lq(Tn) ≤ M1, (2.3)

for all t ∈ I . When we consider the periodic boundary conditions, we use the notation Ω for the set [−1/2, 1/2]n,

while Tn means Rn/Zn, i.e., Tn is the set of equivalence classes of points which are identified if the difference belongs

to Z
n. Let O(x0,t0)(u) be the vanishing order of u at (x0, t0), which is defined as the largest integer d such that

‖u‖L2(Qr(x0,t0)) = O(rd+(n+2)/2) as r → 0,

where

Qr(x0, t0) = {(x, t) ∈ R
n × R : |x− x0| < r,−r2 < t− t0 < 0} (2.4)

stands for the parabolic cylinder centered at (x0, t0) with the radius r. Note that, by the parabolic regularity and

Hölder’s inequality, this definition of vanishing order is equivalent to the one stated in the introduction. For t ∈ I ,

denote by

qD(t) =
‖∇u(·, t)‖2L2(Tn)

‖u(·, t)‖2L2(Tn)

(2.5)

the Dirichlet quotient of u at the time t ∈ I . We assume that ‖u(·, t)‖L2(Tn) is nonzero for all t ∈ I . We also suppose

that

q0 = sup
t∈I

qD(t) < ∞. (2.6)

The following is the main result of this paper; see also Theorems 6.1, and 6.2 (as well as Remark 6.3) for extensions.

Here and in the sequel, we denote Lq
tL

p
x(T

n × I) = Lq(I, Lp(Tn)) and Lp
x,t = Lp

tL
p
x, for p, q ∈ [1,∞].

THEOREM 2.1. Let u ∈ L∞
x,t(T

n × I) be a solution of (2.1) with v ∈ L∞
t Lp

x(T
n × I) and w ∈ L∞

t Lq
x(T

n × I)
such that (2.2) and (2.3) hold where

p >
2n

3
and

q > 2n.

Then, for all (x0, t0) ∈ T
n × [T0 + T/2, T0 + T ], the vanishing order of u at (x0, t0) satisfies

O(x0,t0)(u) . Ma
0 +M b

1 + 1, (2.7)

where

a =
2

3− 2n/p
and b =

2

1− 2n/q
, (2.8)
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with the implicit constant in (2.7) depending on q0 and T .

Note that the dimension n is considered fixed, so all constants and polynomials may depend on n without mention.

REMARK 2.2. The assumption (2.6) is necessary as the Dirichlet quotient controls oscillations of solutions. For

instance, let φn be an λn-eigenfunction of −∆ with periodic boundary conditions, which vanishes of order n at 0.

Then the solution u = φne
−λnt of the heat equation does not satisfy (2.7) for n sufficiently large as v = w = 0. Note

that the Dirichlet quotient for this solution equals λn. The eigenfunctions with an arbitrarily high order of vanishing

can easily be constructed in bounded domains with Dirichlet boundary conditions; however we expect that it holds

for periodic boundary conditions as well; cf. also [CKW1, CKW2] for constructions of solutions of elliptic equations

with a high order of vanishing, including the periodic boundary conditions.

In the next statement, we provide a pointwise in time observability property of solutions.

THEOREM 2.3. Under the conditions of Theorem 2.1, there exists a polynomial P such that

‖u(·, t)‖L2(Tn) ≤ eP (δ0,M0,M1)‖u(·, t)‖L2(B(0,δ0)), (2.9)

for all t ∈ [T0 + T/2, T0 + T ] and δ0 ∈ (0, 1/2], where the coefficients depend on p, q, T , and q0.

Here and in the sequel, P denotes a generic nonnegative polynomial. Although in the proof we do not follow the

dependence on q0 and T , it is easy to check that the dependence on these quantities is also polynomial.

Theorems 2.1 and 2.3 allow extensions, some of which are stated in Section 6. Here we point out one, which

allows the exponents p and q to belong to extended ranges p > n/2 and q > n, considered critical for unique

continuation.

THEOREM 2.4. Let u ∈ L∞
x,t(T

n × I) be a solution of (2.1) with v ∈ L∞
t Lp

x(T
n × I) and w ∈ L∞

t Lq
x(T

n × I)
such that (2.2) and (2.3) hold where

p >
n

2
and

q > 2n.

If M0 is less than a constant depending on q0, then for all (x0, t0) ∈ T
n × [T0 + T/2, T0 + T ], the vanishing order of

u at (x0, t0) satisfies

O(x0,t0)(u) . M b
1 + 1, (2.10)

where b is as in (2.8). Similarly, if

p >
2n

3
and

q > n,

and if M1 is less than a constant depending on q0, then for all (x0, t0) ∈ T
n × [T0 + T/2, T0 + T ], the vanishing

order of u at (x0, t0) satisfies

O(x0,t0)(u) . Ma
0 + 1,

where a is as in (2.8). If p > n/2 and q > n, and if M0 and M1 are less than a constant depending on q0, then the

same conclusion holds with (2.10) replaced by O(x0,t0)(u) . 1, with all the implicit constants depending on q0 and T .

Now, consider u, v, and w defined on R
n instead of Tn. Suppose that u satisfies a doubling type (or mild-growth)

condition
∫

Rn

u(x, t)2 dx ≤ K

∫

B1

u(x, t)2 dx, t ∈ [T0, T0 + T ], (2.11)

for some constant K. In this case, we obtain the following analogue of Theorems 2.1 and 2.3.

THEOREM 2.5. Let u ∈ L∞
x,t(R

n × I), where I = [T0, T0 + T ] and T0, T > 0, be a solution of (2.1) satisfy-

ing (2.11), with the coefficients verifying v ∈ L∞
t Lp

x(R
n × I) and w ∈ L∞

t Lq
x(R

n × I) with

‖v(·, t)‖Lp(Rn) ≤ M0

and

‖w(·, t)‖Lq(Rn) ≤ M1,
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for t ∈ I . Assume additionally that

p >
2n

3
(2.12)

and

q > 2n. (2.13)

Then, for all (x0, t0) ∈ BR × [T0 + T/2, T0 + T ], where R > 0, the vanishing order of u at (x0, t0) satisfies

O(x0,t0)(u) . Ma
0 +M b

1 + 1, (2.14)

where a = 2/(3 − 2n/p) and b = 2/(1 − 2n/q), with the implicit constant in (2.14) depending on q0, K, T , and R.

Moreover, for δ0 ∈ (0, 1/2], we have

‖u(·, t)‖L2(Tn) ≤ eP (K,δ0,M0,M1)‖u(·, t)‖L2(Bδ0
),

for all t ∈ [T0 + T/2, T0 + T ], where P is a polynomial with coefficients depending on q0.

The theorem is proven in Section 5 below.

REMARK 2.6. In the theorems above, we assumed n ≥ 2. For the case n = 1, we suppose additionally that p ≥ 2
and q ≥ 4. The reason for the restriction p ≥ 2 is that the methods are L2-based requiring the exponents to be at

least 2. The reason for q ≥ 4 is technical; see the comment below (3.48).

3. Proof of the statement on quantitative uniqueness

This section is devoted to the proof of Theorem 2.1. We first start with the case when v, w, and u0 are smooth and

then use an approximation argument to prove the theorem under the general conditions of Theorem 2.1. Thus assume

for now that v, w, and u0 are smooth.

3.1. Frequency smallness lemma. By a translation and rescaling, we may restrict ourselves, throughout the

section, to I = [−1, 0] and (x0, t0) = (0, 0). The following lemma allows us to find a point −xǫ where the frequency

Q(t) =
|t|
∫

Rn |∇u(x, t)|2G(x, t) dx
∫

Rn u(x, t)2G(x, t) dx
,

after being translated so it is centered at −xǫ, is small, at a small time t = −ǫ, where ǫ ∈ (0, 1].

LEMMA 3.1. Let u ∈ L∞
x,t(Ω × I) be smooth and 1-periodic in x, for t ∈ I = [−1, 0]. For any ǫ ∈ (0, 1] such

that u(·,−ǫ) is not identically zero, there exists xǫ ∈ Ω such that

ǫ
∫

Rn |∇u(xǫ + y,−ǫ)|2G(y,−ǫ) dy
∫

Rn u(xǫ + y,−ǫ)2G(y,−ǫ) dy
≤ ǫqD(−ǫ),

where

G(x, t) =
1

|t|n/2 e
|x|2/4t, x ∈ R

n, t < 0. (3.1)

The lemma is proven in [CK, Ku4]; we provide a short proof for the sake of completeness.

PROOF OF LEMMA 3.1. Assume, contrary to the assertion, that we have

qD(−ǫ)

∫

Rn

u(x+ y,−ǫ)2G(y,−ǫ) dy <

∫

Rn

|∇u(x+ y,−ǫ)|2G(y,−ǫ) dy, (3.2)

for all x ∈ Ω, which by a simple change of variable reads

∫

Rn

u(y,−ǫ)2G(y − x,−ǫ) dy <
1

qD(−ǫ)

∫

Rn

|∇u(y,−ǫ)|2G(y − x,−ǫ) dy, x ∈ Ω.
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We shall integrate both sides in x over Ω, obtaining a contradiction. The integral of the left-hand side over Ω equals
∫

Ω

∫

Rn

u(y,−ǫ)2G(y − x,−ǫ) dy dx =

∫

Ω

∑

j∈Zn

∫

j+Ω

u(y,−ǫ)2G(y − x,−ǫ) dy dx

=

∫

Ω

∑

j∈Zn

∫

Ω

u(y,−ǫ)2G(y + j − x,−ǫ) dy dx

=

∫

Ω

u(y,−ǫ)2





∑

j∈Zn

∫

Ω

G(y + j − x,−ǫ) dx



 dy

=

∫

Ω

u(y,−ǫ)2
∫

Rn

G(y − x,−ǫ) dx dy = (4π)n/2
∫

Ω

u(y,−ǫ)2 dy,

(3.3)

where we used
∫

Rn G(y − x,−ǫ) dx = (4π)n/2 in the last equality. Similarly, we have
∫

Ω

∫

Rn

|∇u(y,−ǫ)|2G(y − x,−ǫ) dy dx = (4π)n/2
∫

Ω

|∇u(y,−ǫ)|2 dy. (3.4)

Combining (3.3) and (3.4), we obtain

qD(−ǫ)

∫

Ω

u(y,−ǫ)2 dy <

∫

Ω

|∇u(y,−ǫ)|2 dy,

which is a contradiction with the definition (2.5) of the Dirichlet quotient. Therefore, (3.2) cannot hold for all x ∈ Ω,

and the lemma follows. �

Note that the argument above does not require u to solve (2.1).

3.2. Setting and notation. Let ǫ ∈ (0, 1/2] be a fixed parameter, to be chosen in the proof of Lemma 3.2 below;

see (3.24). We proceed with a change of variables

ū(x, t) = u
(

x− xǫ

ǫ
t, t
)

, (3.5)

where xǫ is as in Lemma 3.1, so that

ū(x,−ǫ) = u(x+ xǫ,−ǫ) (3.6)

and

ū(x, 0) = u(x, 0), (3.7)

for all x ∈ T
n. By Lemma 3.1, we have

ǫ
∫

Rn |∇ū(y,−ǫ)|2G(y,−ǫ) dy
∫

Rn ū(y,−ǫ)2G(y,−ǫ) dy
≤ ǫq0,

i.e., the frequency of ū at t = −ǫ is small. It is not difficult to check that ū solves the equation

∂tū−∆ū = −xǫ

ǫ
· ∇ū+ w · ∇ū+ vū. (3.8)

Since ū and u have the same order of vanishing at (0, 0), we write u instead of ū until the end of Section 3. Denoting

r = −xǫ

ǫ
(3.9)

throughout, the equation (3.8) becomes

∂tu−∆u = r · ∇u+ w · ∇u+ vu. (3.10)

We now proceed with a change of variable

U(y, τ) = e−|y|2/8u(ye−τ/2,−e−τ ), (y, τ) ∈ R
n × [τ0,∞), (3.11)

that is,

u(x, t) = e|x|
2/8(−t)U

(

x√
−t

,− log(−t)

)

, (x, t) ∈ R
n × [−ǫ, 0), (3.12)

with y = x/
√
−t and τ = − log(−t), where

τ0 = log
1

ǫ
. (3.13)
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Also, let

V (y, τ) = v(ye−τ/2,−e−τ ), (y, τ) ∈ R
n × [τ0,∞) (3.14)

and

W (y, τ) = w(ye−τ/2,−e−τ ), (y, τ) ∈ R
n × [τ0,∞). (3.15)

Then (3.10) becomes

∂τU +HU = e−τ/2

(

1

4
rjyjU + rj∂jU

)

+ e−τ/2

(

1

4
yjWjU +Wj∂jU

)

+ e−τV U, (3.16)

where

HU = −∆U +

( |y|2
16

− n

4

)

U, (3.17)

with the initial data

U(y, τ0) = U

(

y, log
1

ǫ

)

= e−|y|2/8u(y
√
ǫ,−ǫ).

A short computation shows that

‖U(·, τ)‖2L2(Rn) =

∫

Rn

u(x, t)2G(x, t) dx, (3.18)

where τ = − log(−t) throughout, and

(HU,U)L2(Rn) = |t|
∫

Rn

|∇u(x, t)|2G(x, t) dx. (3.19)

Thus also

Q(τ) =
(HU,U)L2(Rn)

‖U‖2 =
|t|
∫

Rn |∇u(x, t)|2G(x, t) dx
∫

Rn u(x, t)2G(x, t) dx
,

where we write

‖ · ‖ = ‖ · ‖L2(Rn); (3.20)

also, if the domain of integration is not indicated, it is assumed to be R
n. Denoting

A(τ)U = HU − 1

4
e−τ/2rjyjU = −∆U +

( |y|2
16

− n

4

)

U − 1

4
e−τ/2rjyjU (3.21)

and

Q̄(τ) =
(A(τ)U,U)L2(Rn)

‖U‖2 = Q(τ)− e−τ/2rj
4‖U‖2

∫

yjU
2 dy, (3.22)

we may rewrite (3.16) as

∂τU +A(τ)U = F (U), (3.23)

where

F (U) = e−τ/2rj∂jU + e−τ/2

(

1

4
yjWjU +Wj∂jU

)

+ e−τV U.

For simplicity, denote

Ũ =
U

‖U‖ ,

so that ‖Ũ‖ = 1.
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3.3. The main frequency lemma. We now show that the modified frequency function Q̄ is bounded with an

expression on the right-hand side of (2.7) for a suitable choice of ǫ.

LEMMA 3.2. Let

ǫ =
1

C(Ma
0 +M b

1 + 1)
, (3.24)

where a and b are given in (2.8), and C is a sufficiently large constant depending on q0. Under the assumptions of

Theorem 2.1, and assuming that u, v, and w are smooth, the modified frequency function satisfies

Q̄(τ) . Ma
0 +M b

1 + 1, τ ≥ τ0, (3.25)

where τ0 is given in (3.13), with the implicit constant in (3.25) depending on q0.

Note that ǫ ∈ (0, 1/2] by (3.24).

PROOF OF LEMMA 3.2. Let ǫ ∈ (0, 1/2] first be arbitrary, with the choice (3.24) made before (3.58) below. Also,

we use the notation from Section 3.2. With I denoting the identity matrix, we claim that

1

2
Q̄′(τ) + ‖(A(τ)− Q̄(τ)I)Ũ‖2 =

1

2
(A′(τ)Ũ , Ũ) +

(

F (U)

‖U‖ , (A(τ)− Q̄(τ)I)Ũ
)

. (3.26)

To establish (3.26), we first divide (3.23) by ‖U‖ and take the inner product of the resulting equation with (A(τ) −
Q̄(τ)I)U/‖U‖ to obtain

1

‖U‖2 (∂τU, (A(τ)− Q̄(τ)I)Ũ) +
∥

∥

∥(A(τ)− Q̄(τ)I)Ũ
∥

∥

∥

2

+ Q̄(τ)
(U,A(τ)U)

‖U‖2

= Q̄2(τ) +

(

F (U)

‖U‖ , (A(τ)− Q̄(τ)I)Ũ
)

,

(3.27)

where (·, ·) = (·, ·)L2(Rn). By (3.22), the last term on the left-hand side cancels with the first term on the right-hand

side of (3.27), so the equation (3.27) becomes
(

∂τU

‖U‖ , (A(τ)− Q̄(τ)I)Ũ
)

+
∥

∥

∥(A(τ)− Q̄(τ)I)Ũ
∥

∥

∥

2

=

(

F (U)

‖U‖ , (A(τ)− Q̄(τ)I)Ũ
)

. (3.28)

On the other hand, by differentiating (3.22), we have

1

2
Q̄′(τ) =

(A′(τ)U,U)

2‖U‖2 +
(∂τU,A(τ)U)

‖U‖2 − (∂τU,U)(A(τ)U,U)

‖U‖4 ,

and thus

1

2
Q̄′(τ) =

1

2
(A′(τ)Ũ , Ũ) +

(∂τU, (A(τ)− Q̄(τ)I)U)

‖U‖2 . (3.29)

The identity (3.26) then follows by adding (3.28) and (3.29). Since A′(τ)Ũ = 1
8e

−τ/2rjyjŨ , we obtain

1

2
Q̄′(τ) + ‖(A(τ)− Q̄(τ)I)Ũ‖2 =

1

16
e−τ/2(rjyjŨ , Ũ) + e−τ/2rj

(

∂jŨ , (A(τ)− Q̄(τ)I)Ũ
)

+
(

e−τ/2(yjWjŨ +Wj∂jŨ) + e−τV Ũ, (A(τ)− Q̄(τ)I)Ũ
)

.
(3.30)

For the second term on the right-hand side of (3.30), we have

e−τ/2rj
(

∂jŨ , (A(τ)− Q̄(τ)I)Ũ
)

= −e−τ/2rj

∫

∆Ũ∂jŨ + e−τ/2rj

∫ |y|2
16

Ũ∂jŨ − n

4
e−τ/2rj

∫

Ũ∂jŨ − 1

4
e−τrjrk

∫

ykŨ∂jŨ

=
1

16
e−τ/2rj

∫

|y|2Ũ∂jŨ − 1

4
e−τrjrk

∫

ykŨ∂jŨ

= − 1

16
e−τ/2rj

∫

yjŨ
2 +

1

8
e−τ |r|2,

(3.31)

where we used
∫

Ũ∂jŨ = 0 and
∫

∆Ũ∂jŨ = 0 in the second equality (since v, w, and u0 are assumed smooth, Ũ

and its derivatives are smooth and decaying fast in the spatial variable) and ‖Ũ‖ = 1 in the last. Recall that all the
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integrals with the domain not indicated are understood to be over Rn. Note that the first term in the last line of (3.31)

cancels with the first term on the right-hand side of (3.30). Therefore,

1

2
Q̄′(τ) + ‖(A(τ)− Q̄(τ)I)Ũ‖2

=
1

8
e−τ |r|2 + e−τ/2

∫

(yjWjŨ +Wj∂jŨ + e−τ/2V Ũ)(A(τ)− Q̄(τ)I)Ũ dy = I1 + I2.
(3.32)

In order to estimate I2, we first claim

‖D2U‖ . ‖HU‖+ ‖U‖. (3.33)

To prove (3.33), we expand ‖HU‖2 as

‖HU‖2 =

∫ (

−∆U +

( |y|2
16

− n

4

)

U

)2

dy

=

∫

(

(∆U)2 +

( |y|2
16

− n

4

)2

U2

)

dy − 2

∫ ( |y|2
16

− n

4

)

U∆U dy

=

∫

(

(∆U)2 +

( |y|2
16

− n

4

)2

U2

)

dy + 2

∫

∂jU∂jU

( |y|2
16

− n

4

)

dy +
1

4

∫

yjU∂jU dy.

Since the last term equals (−n/8)
∫

U2 dy, we get

‖HU‖2 ≥
∫

(

(∆U)2 +

( |y|2
16

− n

4

)2

U2

)

dy − n

2

∫

|∇U |2 dy − n

8

∫

U2 dy,

from where

‖∆U‖2 . ‖HU‖2 + ‖U‖2 + ‖∇U‖2.

By Sobolev’s and the Cauchy-Schwarz inequalities, we get

‖∇U‖2 ≤ ‖U‖‖∆U‖ ≤ ‖U‖2 + ‖∆U‖2
2

,

and then using

‖D2U‖ . ‖∆U‖ (3.34)

we obtain (3.33); note that the inequality (3.34) follows by
∫

∆U∆U =
∫

∂iiU∂jjU =
∫

∂ijU∂ijU , due to fast decay

of U and its spatial derivatives (note that u is smooth and periodic).

To treat I2 in (3.32), we first estimate ‖V Ũ‖. Observe that we cannot apply the Gagliardo-Nirenberg inequalities

directly since ‖V (·, τ)‖Lp is infinite whenever v is not identically zero, due to periodicity of v. Noting that V is

eτ/2-periodic, we tile R
n as

R
n =

⋃

j∈Zn

Ωj,τ , (3.35)

where Ωj,τ = jeτ/2 + eτ/2Ω. Then we have

‖V U‖2 =
∑

j∈Zn

‖V U‖2L2(Ωj,τ )
.
∑

j∈Zn

‖V ‖2Lp(Ωj,τ )
‖U‖2L2p/(p−2)(Ωj,τ )

. (3.36)

Note that

‖V ‖Lp(Ωj,τ ) ≤ M0e
ατ , j ∈ Z

n,

where

α =
n

2p
, (3.37)
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by periodicity and using a substitution. Hence, using the Gagliardo-Nirenberg inequality, we obtain

‖V U‖2 .
∑

j∈Zn

M2
0 e

2ατ‖U‖2−2α
L2(Ωj,τ )

(‖D2U‖L2(Ωj,τ ) + ‖U‖L2(Ωj,τ ))
2α

. M2
0 e

2ατ





∑

j∈Zn

‖U‖2L2(Ωj,τ )





1−α



∑

j∈Zn

‖D2U‖2L2(Ωj,τ )
+
∑

j∈Zn

‖U‖2L2(Ωj,τ )





α

= M2
0 e

2ατ‖U‖2−2α(‖D2U‖+ ‖U‖)2α,

(3.38)

where we used the discrete Hölder inequality in the second step. Therefore, taking the square root of (3.38) and

dividing by ‖U‖, we get

‖V Ũ‖ . M0e
ατ (‖D2Ũ‖+ 1)α, (3.39)

where we used ‖Ũ‖ = 1. By (3.33), we have

‖D2Ũ‖ . ‖HŨ‖+ 1 . ‖HŨ −A(τ)Ũ‖+ ‖(A(τ)− Q̄(τ)I)Ũ‖+ ‖Q̄(τ)Ũ‖+ 1

. e−τ/2|r|‖yŨ‖+ ‖(A(τ)− Q̄(τ)I)Ũ‖+ |Q̄(τ)|+ 1,
(3.40)

applying (3.21) in the last step. Since

‖∇Ũ‖+ ‖yŨ‖ . |Q̄(τ)|1/2 + e−τ/2|r|+ 1, (3.41)

([Ku4, p. 780]), as one may readily check, we get

‖D2Ũ‖ . e−τ/2|r|
(

|Q̄(τ)|1/2 + e−τ/2|r|+ 1
)

+ ‖(A(τ)− Q̄(τ)I)Ũ‖+ |Q̄(τ)|+ 1. (3.42)

Using (3.39) and (3.42), we obtain

‖V Ũ‖ . M0e
ατ
(

e−ατ/2|r|α
(

|Q̄(τ)|α/2 + e−ατ/2|r|α + 1
)

+ ‖(A(τ)− Q̄(τ)I)Ũ‖α + |Q̄(τ)|α + 1
)

. (3.43)

Next, we proceed to estimate ‖yjWjŨ +Wj∂jŨ‖ by first bounding ‖Wj∂jŨ‖ and then ‖yjWjŨ‖. Analogously to

(3.36)–(3.38), we have

‖Wj∂jU‖ . M1e
(β−1/2)τ‖U‖1−β(‖D2U‖+ ‖U‖)β (3.44)

with

β =
n

2q
+

1

2
, (3.45)

where we also used

‖W‖Lq(Ωj,τ ) . M1e
nτ/2q = M1e

(β−1/2)τ , j ∈ Z
n.

Note that the exponents a and b in (2.8) satisfy

a =
2

3− 4α

and

b =
2

3− 4β
.

Dividing (3.44) by ‖U‖, we obtain, similarly to (3.43), that

‖Wj∂jŨ‖ . M1e
(β−1/2)τ

(

‖HŨ‖β + 1
)

. M1e
(β−1/2)τ

(

e−βτ/2|r|β(|Q̄(τ)|β/2 + e−βτ/2|r|β + 1) + ‖(A(τ)− Q̄(τ)I)Ũ‖β + |Q̄(τ)|β + 1
)

.

(3.46)
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Next,

‖yjWjU‖2 =
∑

j∈Zn

‖yjWjU‖2L2(Ωj,τ )
.
∑

j∈Zn

‖W‖2Lq(Ωj,τ )
‖yU‖2L2q/(q−2)(Ωj,τ )

.
∑

j∈Zn

M2
1 e

(2β−1)τ‖y|U |1/2‖2L4(Ωj,τ )
‖|U |1/2‖2L4q/(q−4)(Ωj,τ )

=
∑

j∈Zn

M2
1 e

(2β−1)τ‖|y|2U‖L2(Ωj,τ )‖U‖L2q/(q−4)(Ωj,τ )

.
∑

j∈Zn

M2
1 e

(2β−1)τ‖|y|2U‖L2(Ωj,τ )‖U‖1−n/2q

L2q/(q−4)(Ωj,τ )
(‖D2U‖L2(Ωj,τ ) + ‖U‖L2(Ωj,τ ))

n/2q.

(3.47)

Applying the discrete Hölder inequality, taking a square root, and dividing by ‖U‖ leads to

‖yjWjŨ‖ . M1e
(β−1/2)τ‖|y|2Ũ‖1/2(‖∆Ũ‖n/2q + 1). (3.48)

Observe that in (3.47) we need q ≥ 4. (Note that for n = 1 we have q ≥ 4, needed in (3.47), by Remark 2.6.) Recall

that HU = −∆U + (|y|2/16− n/4)U , from where

‖|y|2U‖ . ‖HU‖+ ‖∆U‖+ ‖U‖ . ‖HU‖+ ‖U‖, (3.49)

by using (3.33) in the last inequality. Applying (3.49) in (3.48), we get

‖yjWjŨ‖ . M1e
(β−1/2)τ (‖∆Ũ‖n/2q + 1)

(

‖HŨ‖1/2 + 1
)

. M1e
(β−1/2)τ

(

‖HŨ‖n/2q + 1
)(

‖HŨ‖1/2 + 1
)

. M1e
(β−1/2)τ (‖HŨ‖β + 1),

where we used (3.45). With (3.42), we then obtain

‖yjWjŨ‖ . M1e
(β−1/2)τ

(

e−βτ/2|r|β(|Q̄(τ)|β/2 + e−βτ/2|r|β + 1) + ‖(A(τ)− Q̄(τ)I)Ũ‖β + |Q̄(τ)|β + 1
)

.

(3.50)

By (3.43), (3.46), and (3.50), we get an estimate for I2 from (3.32) which reads

I2 . ‖(A(τ)− Q̄(τ)I)Ũ‖
(

e(β−1)τM1

(

e−βτ/2|r|β(|Q̄(τ)|β/2 + e−βτ/2|r|β + 1)

+ ‖(A(τ)− Q̄(τ)I)Ũ‖β + |Q̄(τ)|β + 1
)

)

+ ‖(A(τ)− Q̄(τ)I)Ũ‖
(

e(α−1)τM0

(

e−ατ/2|r|α(|Q̄(τ)|α/2 + e−ατ/2|r|α + 1)

+ ‖(A(τ)− Q̄(τ)I)Ũ‖α + |Q̄(τ)|α + 1
)

)

.

(3.51)

Using (3.51) in (3.32), we obtain

1

2
Q̄′(τ) + ‖(A(τ)− Q̄(τ)I)Ũ‖2

. e−τ |r|2 + e(β−1)τM1‖(A(τ)− Q̄(τ)I)Ũ‖
(

e−βτ/2|r|β |Q̄(τ)|β/2 + e−βτ |r|2β + e−βτ/2|r|β

+ ‖(A(τ)− Q̄(τ)I)Ũ‖β + |Q̄(τ)|β + 1
)

+ e(α−1)τM0‖(A(τ)− Q̄(τ)I)Ũ‖
(

e−ατ/2|r|α|Q̄(τ)|α/2 + e−ατ |r|2α + e−ατ/2|r|α

+ ‖(A(τ)− Q̄(τ)I)Ũ‖α + |Q̄(τ)|α + 1
)

.

(3.52)

We now apply Young’s inequality to the terms involving ‖(A(τ) − Q̄(τ)I)Ũ‖ on the right-hand side so that we can

take advantage of the second term in the left hand side; namely, we use

N‖(A(τ)− Q̄(τ)I)Ũ‖γ ≤ ǫ0‖(A(τ)− Q̄(τ)I)Ũ‖2 + Cǫ0N
2/(2−γ),
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where ǫ0 ∈ (0, 1] is arbitrarily small, with γ = 1, α+ 1, β + 1 and corresponding expressions for N . Thus, we get

Q̄′(τ) + ‖(A(τ)− Q̄(τ)I)Ũ‖2

. e−τ |r|2 +M2
1 e

(β−2)τ |r|2β |Q̄(τ)|β +M2
1 e

(2β−2)τ |Q̄(τ)|2β

+M2
1 e

−2τ |r|4β +M2
1 e

(β−2)τ |r|2β +M
2/(1−β)
1 e−2τ +M2

1 e
(2β−2)τ

+M2
0 e

(α−2)τ |r|2α|Q̄(τ)|α +M2
0 e

(2α−2)τ |Q̄(τ)|2α

+M2
0 e

−2τ |r|4α +M2
0 e

(α−2)τ |r|2α +M
2/(1−α)
0 e−2τ +M2

0 e
(2α−2)τ .

(3.53)

The second term on the right-hand side of (3.53) may be absorbed into the third and the fourth by the Cauchy-Schwarz

inequality. Similarly, the eighth term is absorbed by the ninth and tenth. Using also |r| . 1/ǫ, the last inequality

implies

Q̄′(τ) . e−τ ǫ−2 +M2
1 e

(2β−2)τ |Q̄(τ)|2β +M2
1 e

−2τ ǫ−4β +M2
1 e

(β−2)τ ǫ−2β +M
2/(1−β)
1 e−2τ +M2

1 e
(2β−2)τ

+M2
0 e

(2α−2)τ |Q̄(τ)|2α +M2
0 e

−2τ ǫ−4α +M2
0 e

(α−2)τ ǫ−2α +M
2/(1−α)
0 e−2τ +M2

0 e
(2α−2)τ .

(3.54)

To estimate Q̄(τ0), we now compare Q̄(τ) and Q(τ) for any τ ≥ τ0. Using (3.41), we have

‖|y|1/2Ũ‖ ≤ ‖|y|Ũ‖1/2 . |Q̄(τ)|1/4 + e−τ/4|r|1/2 + 1, (3.55)

where we used the Cauchy-Schwarz inequality in the first step. By (3.22) and (3.55), we get

Q̄(τ) ≤ Q(τ) + e−τ/2

∣

∣

∣

∣

rj

∫

yjŨ
2 dy

∣

∣

∣

∣

. Q(τ) + e−τ/2|r|‖|y|1/2Ũ‖2

. Q(τ) + e−τ/2|r|
(

|Q̄(τ)|1/2 + e−τ/2|r|+ 1
)

,

from where, after absorbing the second term on the far right side,

Q̄(τ) . Q(τ) + e−τ |r|2 + 1. (3.56)

Note, in passing, that a similar derivation also leads to

Q(τ) . Q̄(τ)+ + e−τ |r|2 + 1.

Using Lemma 3.1 and (3.56), we have

Q̄(τ0) ≤ C0

(

ǫqD(−ǫ) + ǫ−1 + 1
)

≤ C1

ǫ
, (3.57)

where C1 = C0(q0 + 2) and C0 ≥ 1 is the constant in the inequality (3.56). Denote by C2 ≥ 1 the implicit constant

in the inequality (3.54).

Up to this point, all the estimates hold for any fixed ǫ ∈ (0, 1/2]. Now, fix ǫ ∈ (0, 1/2] as in (3.24), denoting the

constant in (3.24) by C̄. We claim that (3.54) and (3.57) imply

Q̄(τ) < 2
C1 + C2

ǫ
, τ ≥ τ0 = − log ǫ. (3.58)

Assume, contrary to the assertion, that there exists τ1 ≥ τ0 such that Q̄(τ1) = 2(C1 + C2)/ǫ, and assume that τ1 is

the first such time. Also, let

τ ′0 = sup

{

τ ∈ [τ0, τ1] : Q̄(τ) =
C1

ǫ

}

(3.59)

so that

Q̄(τ) ∈
[

C1

ǫ
,
2(C1 + C2)

ǫ

)

, τ ∈ [τ ′0, τ1). (3.60)

(The purpose of introducing τ ′0 is to remedy the fact that Q̄ may be negative with a possibly large absolute value.)

Integrating (3.54) between τ ′0 and τ1 and using (3.60), we arrive at

Q̄(τ1) ≤ Q̄(τ ′0) + C2ǫ
−1 + 2C2M

2
1 2

2β(C1 + C2)
2βǫ2−4β + C2M

2
1 ǫ

2−4β

+ C2M
2
1 ǫ

2−3β + C2M
2/(1−β)
1 ǫ2 + 2C2M

2
1 ǫ

2−2β + 2C2M
2
0 2

2α(C1 + C2)
2αǫ2−4α

+ C2M
2
0 ǫ

2−4α + C2M
2
0 ǫ

2−3α + C2M
2/(1−α)
0 ǫ2 + 2C2M

2
0 ǫ

2−2α,

(3.61)

where we used 0 ≤ α, β ≤ 3/4.
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Suppose first that (2.12) and (2.13) hold. The third term on the right-hand side of (3.61) satisfies

2C2M
2
1 2

2β(C1 + C2)
2βǫ2−4β = 2C2M

2
1 2

2β(C1 + C2)
2βǫ3−4βǫ−1

≤ 2C22
2β(C1 + C2)

2β

C̄3−4βǫ
≤ C1 + C2

20ǫ
,

where in the second step we used M2
1 ǫ

3−4β ≤ 1/C̄3−4β , and this results from (3.24), while the last inequality holds

if C̄ is sufficiently large. We proceed similarly for the rest of the terms in (3.61) and obtain

Q̄(τ1) ≤ Q̄(τ ′0) +
C1 + C2

ǫ
≤ C1

ǫ
+

C1 + C2

ǫ
< 2

C1 + C2

ǫ
.

This is a contradiction with a choice of τ1, and thus we conclude that (3.58) holds for all τ ≥ τ0. Finally, by (3.24)

and (3.58), we get

Q̄(τ) . Ma
0 +M b

1 + 1,

as desired. �

3.4. The order of vanishing. Now, we show that the modified frequency function Q̄ controls the vanishing

order of u. We first prove the following lemma, which shows the convergence of Q̄(τ) as τ → ∞ and provides the

connection between the order of vanishing of u and the quantity
∫

u(x, t)2G(x, t) dx, where G is defined in (3.1).

LEMMA 3.3. Under the assumptions of Theorem 2.1, and assuming that u, v, and w are smooth, the modified

frequency function satisfies Q̄(τ) → m/2 as τ → ∞ for some m ∈ N such that m . Ma
0 +M b

1 + 1, where a and b
are as in (2.8). Also, with ǫ as in (3.24), for all δ > 0, there exist t1 ∈ (− log(1/ǫ), 0) and A1(δ), A2(δ) > 0 such that

A1(δ)|t|m+δ ≤
∫

Rn

u(x, t)2G(x, t) dx ≤ A2(δ)|t|m−δ, (3.62)

for all t ∈ [t1, 0).

We emphasize that the constants A1(δ) and A2(δ) are allowed to depend on u, but not on t.

PROOF OF LEMMA 3.3. We start the proof by establishing the connection between Q̄ and the behavior of ‖U(τ)‖2.

By Lemma 3.2, we have (3.25). Also, let xǫ be as in Lemma 3.1 and r as in (3.9). Taking the inner product of (3.23)

with U , we obtain
1

2

d

dτ
‖U‖2 + (A(τ)U,U) = f(τ), (3.63)

where we denoted

f(τ) = e−τ (V U,U) +
1

4
e−τ/2(yjWjU,U) + e−τ/2(Wj∂jU,U); (3.64)

note that we used (e−τ/2rj∂jU,U) = 0. Now, we bound the terms as in the proof of Lemma 3.2. For the first term,

we have, as in (3.36),

e−τ (V U,U) . e−τ
∑

j∈Zn

‖V ‖Lp(Ωj,τ )‖U‖2L2p/(p−1)(Ωj,τ )

. e(α−1)τM0

∑

j∈Zn

‖U‖2−n/p
L2(Ωj,τ )

(‖∇U‖n/pL2(Ωj,τ )
+ ‖U‖n/pL2(Ωj,τ )

)

. e(α−1)τM0(‖U‖2−n/p‖∇U‖n/p + ‖U‖2).
Similarly, for the second term in (3.64)

1

4
e−τ/2(yjWjU,U) . e−τ/2

∑

j∈Zn

‖W‖Lq(Ωj,τ )‖yU2‖Lq/(q−1)(Ωj,τ )

. e(β−1)τM1

∑

j∈Zn

‖yU‖L2(Ωj,τ )‖U‖L2q/(q−2)(Ωj,τ )

. e(β−1)τM1

∑

j∈Zn

‖yU‖L2(Ωj,τ )‖U‖1−n/q
L2(Ωj,τ )

(‖∇U‖n/qL2(Ωj,τ )
+ ‖U‖n/qL2(Ωj,τ )

)

. e(β−1)τM1‖yU‖‖U‖1−n/q(‖∇U‖n/q + ‖U‖n/q),
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while for the third term in (3.64), we have

e−τ/2(Wj∂jU,U) . e(β−1)τM1

∑

j∈Zn

‖∇U‖L2(Ωj,τ )‖U‖1−n/q
L2(Ωj,τ )

(‖∇U‖n/qL2(Ωj,τ )
+ ‖U‖n/qL2(Ωj,τ )

)

. e(β−1)τM1‖∇U‖‖U‖1−n/q(‖∇U‖n/q + ‖U‖n/q),
where α and β are as in (3.37) and (3.45). Therefore, by (3.41), we may bound

|f(τ)|
‖U(·, τ)‖2 . e(β−1)τM1

(

|Q̄(τ)|+ e−τ |r|2 + 1
)β

+ e(α−1)τM0

(

|Q̄(τ)|+ e−τ |r|2 + 1
)α

, (3.65)

and thus, allowing all constants in this proof to depend on M0 and M1 (and thus also on ǫ and r), we obtain
∫ τ

τ1

|f(s)|
‖U(·, s)‖2 ds . e−τ/4, τ ≥ τ1,

where τ1 ≥ 0 is arbitrary. Integrating the equation

1

2‖U‖2
d

dτ
‖U‖2 + Q̄(τ) =

f(τ)

‖U‖2 ,

from τ1 to τ , we get

1

2
log ‖U(·, τ)‖2 − 1

2
log ‖U(·, τ1)‖2 = −

∫ τ

τ1

Q̄(s) ds+

∫ τ

τ1

f(s)

‖U(·, s)‖2 ds, τ ≥ τ1. (3.66)

Note that (3.66) shows that Q̄ controls the exponential decay of ‖U‖2.

In order to prove the first assertion in the statement of the lemma, it is sufficient to prove that Q̄ converges to a

number in 2−1
N. Thus, for the rest of the proof, we allow all the constants to depend on M0 and M1 (and thus also on

ǫ and r). Using Q̄(τ) . 1 in (3.53) and integrating between τ1 and τ , where 0 ≤ τ1 ≤ τ , we obtain

Q̄(τ)− Q̄(τ1) +

∫ τ

τ1

‖
(

A(s)− Q̄(s)I
)

Ũ‖2 ds . e−τ1/4 + e−τ/4,

from where, by Q̄(τ1) . 1,
∫ τ

τ1

‖
(

A(s)− Q̄(s)I
)

Ũ‖2 ds . 1 + e−τ1/4 + e−τ/4, τ ≥ τ1. (3.67)

We also have

‖(A(τ)− Q̄(τ)I)Ũ‖2 ≥ 1

2
‖(H − Q̄(τ)I)Ũ‖2 − Ce−τ |r|2‖|y|Ũ‖2

≥ 1

2
‖(H − Q̄(τ)I)Ũ‖2 − Ce−τ ,

(3.68)

where we used (3.22) and
∫

|y|2Ũ2 ≤ Q̄ + C|r|2e−τ + C, which in turn follows from (3.17). Therefore, applying

(3.68) in (3.67),
∫ τ

τ1

‖(H − Q̄(s)I)Ũ‖2 ds .
∫ τ

τ1

‖
(

A(s)− Q̄(s)I
)

Ũ‖2 ds+ e−τ1 . 1+ e−τ1/4 + e−τ/4 < ∞, τ ≥ τ1, (3.69)

where we used the boundedness of Q̄ in the first inequality. Combining (3.69) with

dist(Q̄(τ), sp(H)) . ‖(H − Q̄(τ)I)Ũ‖, (3.70)

recalling that ‖Ũ‖ = 1, we get
∫ ∞

0

dist(Q̄(s), sp(H))2 ds < ∞;

note that the inequality (3.70) follows since H is a self-adjoint positive operator whose inverse is a bounded compact

operator. It is well-known that

sp(H) =
{m

2
: m ∈ N0

}

, (3.71)

(see [CK, p. 664]), whence
∫ ∞

0

dist(Q̄(s), 2−1
N0)

2 ds < ∞. (3.72)
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An elementary argument shows that (3.72) combined with Q̄′(τ) . 1 for τ ≥ τ1 yields dist(Q̄(τ), 2−1
N0) → 0 as

τ → ∞, i.e.,

lim
τ→∞

Q̄(τ) → m

2
, (3.73)

for some m ∈ N0 as in the statement.

It remains to prove the last assertion in the statement of the lemma. From (3.66) and (3.73), we deduce that for

every δ > 0 there exists τ1 > 0, depending on δ, such that

−δ(τ − τ1) ≤ log ‖U(τ)‖2 − log ‖U(τ1)‖2 +m(τ − τ1) ≤ δ(τ − τ1), τ ≥ τ1,

from where

e−δ(τ−τ1) ≤ eτm‖U(τ)‖2
eτ1m‖U(τ1)‖2

≤ eδ(τ−τ1).

Therefore, there exist A1(δ), A2(δ) > 0 such that

A1(δ)e
−δτ ≤ eτm‖U(τ)‖2 ≤ A2(δ)e

δτ .

Finally, recalling (3.18), we obtain (3.62). �

The following lemma provides a control on
∫

BR
P (x, t)G(x, t) dx, with P a homogeneous polynomial of de-

gree d. We use this lemma in the proof of Theorem 2.1.

LEMMA 3.4. Let P (x, t) = Σ|µ|+2l=dCµ,lx
µtl be a homogeneous polynomial of degree d ∈ N. Then,

∫

Rn

P (x, t)G(x, t) dx . |t|d/2, t < 0, (3.74)

where the constant in (3.74) depends on the polynomial only. Moreover, if all the coordinates of µ = (µ1, µ2, . . . , µn)
are even, then for all R > 0,

∫

BR

xµtlG(x, t) dx . |t|l+|µ|/2, t < 0,

as t → 0−. If µi is an odd integer for some i ∈ {1, . . . , n}, then
∫

BR

xµtlG(x, t) dx = 0,

for t < 0.

For the proof of Lemma 3.4, see [CK, p. 670].

PROOF OF THEOREM 2.1. Without loss of generality, let I = [−1, 0] and (x0, t0) = (0, 0). First, we assume

that u, v, and w are smooth. Let ǫ be as in (3.24), and let m be as in the statement of Lemma 3.3. Denote by d the

vanishing order of u at (0, 0). We claim that d ≤ m. Since the degree of vanishing of u at (0, 0) is d, we have

|u(x, t)| . (|x|2 + |t|)d/2, (3.75)

for all (x, t) ∈ Q1(0, 0) with Q1(0, 0) defined in (2.4); from (3.75) to (3.80) below, the constants are allowed to

depend on u. Let δ ∈ (0, 1] be arbitrary. By Lemma 3.3, there exist t1 ∈ (− log(1/ǫ), 0) and A1(δ), A2(δ) > 0 such

that

A1(δ)|t|m+δ ≤
∫

u(x, t)2G(x, t) dx ≤ A2(δ)|t|m−δ, t ∈ [t1, 0). (3.76)

Let R = 1/4. Note that we have
∫

Rn\BR

u(x, t)2G(x, t) dx . ‖u‖2L∞(Tn)

∫ ∞

R

e−ρ2/4|t|

|t|n/2 ρn−1 dρ

≤ ‖u‖2L∞(Tn)e
−R2/8|t|

∫ ∞

R

e−ρ2/8|t|

|t|n/2 ρn−1 dρ . ‖u‖2L∞(Tn)e
−R2/8|t|

∫ ∞

0

e−ρ2/8|t|

|t|n/2 ρn−1 dρ

. ‖u‖2L∞(Tn)e
−R2/8|t|.

(3.77)

Using (3.77) in (3.76), we may increase t1 < 0 to obtain

1

2
A1(δ)|t|m+δ ≤

∫

BR

u(x, t)2G(x, t) dx ≤ 2A2(δ)|t|m−δ, t ∈ [t1, 0). (3.78)
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Moreover, by (3.75) and Lemma 3.4,
∫

BR

u(x, t)2G(x, t) dx .

∫

BR

(|x|2 + |t|)dG(x, t) dx . |t|d. (3.79)

Combining (3.78) with (3.79), we get

A1(δ)|t|m+δ . |t|d, t ∈ [t1, 0),

which yields

d ≤ m+ δ.

Letting δ → 0, we conclude that

d ≤ m, (3.80)

as desired. Thus we have proven Theorem 2.1 under the additional assumption that v, w, and u0 are smooth.

Now, consider the general case. Recall that u (which still represents ū from (3.5)) satisfies the equation (3.10),

and it is defined for all t ∈ [−1, 0], even though its frequency was studied only for t ≥ log ǫ. Note that by the parabolic

regularity u is locally Hölder continuous and u ∈ L∞
t H1

x ∩ L2
tH

2
x on (−1 + δ, 0) × T

n. Therefore, we may assume,

without loss of generality, that u0 ∈ C(Tn)∩H1(Tn), just by adjusting the initial time, and that u ∈ L∞
t H1

x ∩L2
tH

2
x

on (−1, 0)× T
n. Recall that n ≥ 2; cf. Remark 2.6 for n = 1.

We approximate v, w, and u0 by smooth functions vη , wη , and uη
0 , where η ∈ (0, 1], so that vη , wη , and uη

0

converge in Ls
tL

p
x, Ls

tL
q
x, and L∞

x (T2) ∩H1
x(T

2) to v, w, and u0, respectively, for any s ∈ [1,∞) as η → 0. In other

words, we have

lim
η→0

(‖v − vη‖Ls
tL

p
x
+ ‖w − wη‖Ls

tL
q
x
+ ‖u0 − uη

0‖H1(Tn) + ‖u0 − uη
0‖L∞(Tn)) = 0, s ∈ [1,∞). (3.81)

In the rest of the proof, the space-time Lebesgue spaces are understood to be over Tn × (−1, 0); also, we may assume

that ‖vη‖L∞
t Lp

x
, ‖wη‖L∞

t Lq
x
, ‖uη

0‖L∞(Tn), and ‖uη
0‖H1(Tn) are uniformly bounded by constant multiples of ‖v‖L∞

t Lp
x
,

‖w‖L∞
t Lq

x
, ‖u0‖L∞(Tn), and ‖u0‖H1(Tn), respectively. For convenience, we allow all constants until (3.96) below to

depend on these four quantities, as well as on ‖u‖L∞
t H1

x
and ‖u‖L2

tL
2
x
.

For η ∈ (0, 1], let uη be a solution of the equation

∂tu
η −∆uη = r · ∇uη + wη · ∇uη + vηuη

uη(·,−1) = uη
0 .

(3.82)

Subtracting (3.82) from (2.1), we get

∂tũ−∆ũ = r · ∇ũ+ wη · ∇ũ+ w̃ · ∇u+ vηũ+ ṽu

ũ(·,−1) = uη
0 − u0,

(3.83)

where ũ = uη − u, ṽ = vη − v, and w̃ = wη − w. First, we have u, ũ ∈ L∞
t L2

x ∩ L2
tH

1
x . Using v ∈ L∞

t L
3n/2
x and

w ∈ L∞
t L2n

x , we also get

D2u,D2ũ ∈ L2
tL

2
x. (3.84)

Taking the inner product of (3.83) with ũ, we obtain

1

2

d

dt
‖ũ‖2L2(Tn) + ‖∇ũ‖2L2(Tn) =

∫

Tn

rj ũ∂j ũ+

∫

Tn

wη
j ũ∂j ũ+

∫

Tn

w̃j ũ∂ju+

∫

Tn

vηũ2 +

∫

Tn

ṽuũ

. |r|‖ũ‖L2(Tn)‖∇ũ‖L2(Tn) + ‖wη‖Lq(Tn)‖ũ‖L2q/(q−2)(Tn)‖∇ũ‖L2(Tn)

+ ‖w̃‖Lq(Tn)‖ũ‖L2q/(q−2)(Tn)‖∇u‖L2(Tn) + ‖vη‖Lp(Tn)‖ũ‖2L2p/(p−1)(Tn)

+ ‖ṽ‖Lp(Tn)‖u‖L2p/(p−1)(Tn)‖ũ‖L2p/(p−1)(Tn),

whence

1

2

d

dt
‖ũ‖2L2(Tn) + ‖∇ũ‖2L2(Tn)

. ‖ũ‖L2(Tn)‖∇ũ‖L2(Tn) + ‖ũ‖L2q/(q−2)(Tn)‖∇ũ‖L2(Tn) + ‖w̃‖Lq(Tn)‖ũ‖L2q/(q−2)(Tn)

+ ‖ũ‖2L2p/(p−1)(Tn) + ‖ṽ‖Lp(Tn)‖u‖L2p/(p−1)(Tn)‖ũ‖L2p/(p−1)(Tn).
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Using ‖ũ‖L2q/(q−2)(Tn) . ‖ũ‖1−n/q
L2(Tn)‖∇ũ‖n/qL2(Tn) + ‖ũ‖L2(Tn) and ‖ũ‖L2p/(p−1)(Tn) . ‖ũ‖1−n/2p

L2(Tn) ‖∇ũ‖n/2pL2(Tn) +

‖ũ‖L2(Tn), we get

d

dt
‖ũ‖2L2(Tn) . ‖ũ‖2L2(Tn) + ‖w̃‖Lq(Tn) + ‖ṽ‖Lp(Tn). (3.85)

Let ǫ0 ∈ (0, 1]. Then, for η sufficiently small, we have

‖ũ(·,−1)‖2H1(Tn), ‖w̃‖L1
tL

q
x
, ‖ṽ‖L1

tL
p
x
≤ ǫ0, (3.86)

where, recall, the mixed space-time norms are taken over Tn × (−1, 0). Applying (3.86) and the Gronwall inequality

to (3.85) leads to

‖ũ‖2L2(Tn) . ǫ0, t ∈ [−1, 0].

Since ǫ0 ∈ (0, 1] was arbitrary, we get

lim
η→0

sup
t∈[−1,0]

‖ũ(·, t)‖L2(Tn) = 0. (3.87)

In order to obtain the analog of (3.87) for the H1-norm, we test the first equation in (3.83) with −∆ũ, which we

may by (3.84), and obtain

1

2

d

dt
‖∇ũ(·, t)‖2L2(Tn) + ‖∆ũ(·, t)‖2L2(Tn)

= −
∫

Tn

rj∂j ũ∆ũ−
∫

Tn

wη
j ∂j ũ∆ũ−

∫

Tn

w̃j∂ju∆ũ−
∫

Tn

vηũ∆ũ−
∫

Tn

ṽu∆ũ.

By Hölder’s inequality, we get

1

2

d

dt
‖∇ũ(·, t)‖2L2(Tn) + ‖∆ũ(·, t)‖2L2(Tn)

. |r|‖∇ũ‖L2(Tn)‖∆ũ‖L2(Tn) + ‖wη‖Lq(Tn)‖∇ũ‖L2q/(q−2)(Tn)‖∆ũ‖L2(Tn)

+ ‖w̃‖Lq(Tn)‖∇u‖L2q/(q−2)(Tn)‖∆ũ‖L2(Tn) + ‖vη‖Lp(Tn)‖ũ‖L2p/(p−2)(Tn)‖∆ũ‖L2(Tn)

+ ‖ṽ‖Lp(Tn)‖u‖L2p/(p−2)(Tn)‖∆ũ‖L2(Tn).

(3.88)

For the second term on the right-hand side, we have, using the agreement on constants from above (3.82),

‖wη‖Lq(Tn)‖∇ũ‖L2q/(q−2)(Tn)‖∆ũ‖L2(Tn) ≤ ‖∇ũ‖L2q/(q−2)(Tn)‖∆ũ‖L2(Tn)

. ‖∇ũ‖(q−n)/q
L2(Tn) (‖D2ũ‖L2(Tn) + ‖ũ‖L2)n/q‖∆ũ‖L2(Tn)

. ‖∇ũ‖(q−n)/q
L2(Tn) (‖∆ũ‖L2(Tn) + ‖ũ‖L2)n/q‖∆ũ‖L2(Tn)

. ǫ0‖∆ũ‖2L2(Tn) + Cǫ0(‖∇ũ‖2L2(Tn) + ‖ũ‖2L2(Tn)),

(3.89)

where ǫ0 ∈ (0, 1] is arbitrary. An analogous estimate also holds for the fourth term on the right-hand side of (3.88).

For the third term, we have similarly to (3.89)

‖w̃‖Lq(Tn)‖∇u‖L2q/(q−2)(Tn)‖∆ũ‖L2(Tn) . ‖w̃‖Lq(Tn)‖∇u‖(q−n)/q
L2(Tn) (‖D2u‖L2(Tn) + ‖u‖L2(Tn))

n/q‖∆ũ‖L2(Tn)

. ‖w̃‖Lq(Tn)(‖∆u‖L2(Tn) + ‖u‖L2(Tn))
n/q‖∆ũ‖L2(Tn) . ‖w̃‖Lq(Tn)(‖∆u‖L2(Tn) + 1)n/q‖∆ũ‖L2(Tn)

. ǫ0‖∆ũ‖2L2(Tn) + ǫ0‖∆u‖2L2(Tn) + Cǫ0‖w̃‖
2q/(q−n)
Lq(Tn) ,

while for the last term in (3.88), we estimate similarly

‖ṽ‖Lp(Tn)‖u‖L2p/(p−2)(Tn)‖∆ũ‖L2(Tn) . ‖ṽ‖Lp(Tn)‖u‖(p−n)/p
L2(Tn) (‖Du‖L2 + ‖u‖L2)n/p‖∆ũ‖L2(Tn)

. ‖ṽ‖Lp(Tn)‖∆ũ‖L2(Tn) . ǫ0‖∆ũ‖2L2(Tn) + Cǫ0‖ṽ‖2Lp(Tn).

Using all the bounds on the terms on the right hand side of (3.88) and absorbing the terms involving ‖∆ũ‖2L2(Tn), we

obtain

d

dt
‖∇ũ(·, t)‖2L2(Tn) . ǫ0‖∆u‖2L2(Tn) + Cǫ0

(

‖ũ‖2L2(Tn) + ‖∇ũ‖2L2(Tn) + ‖ṽ‖2Lq(Tn) + ‖w̃‖2Lq(Tn)

)

.

Now, applying the Gronwall inequality, along with (3.81) and (3.87), we get

lim sup
η→0

sup
t∈[−1,0]

‖∇ũ(·, t)‖L2(Tn) . ǫ0

∫

Tn

‖∆u‖2L2(Tn) . ǫ0. (3.90)
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Denote by Q̄η(τ) and Q̄(τ) the modified frequency functions corresponding to uη and u, respectively. Recalling that

Q̄(τ) =
(HU,U)

‖U‖2 − e−τ/2rj
‖U‖2

∫

yjU
2 dy, (3.91)

and similarly

Q̄η(τ) =
(HUη, Uη)

‖Uη‖2 − e−τ/2rj
‖Uη‖2

∫

yj(U
η)2 dy, (3.92)

we now claim that Q̄η(τ) → Q̄(τ) as η → 0 for all τ ∈ [0,∞); here, U is given in (3.11), while Uη(y, τ) =

e−|y|2/8uη(ye−τ/2,−e−τ ) for (y, τ) ∈ R
n × [τ0,∞). Note that

∣

∣‖Uη(τ)‖2 − ‖U(τ)‖2
∣

∣ =

∣

∣

∣

∣

∫

((uη)2 − u2)G(x, t) dx

∣

∣

∣

∣

.
1

tn/2

∫

|(uη)2 − u2| dx

.
1

tn/2
‖ũ(·, t)‖L2(Tn)(‖uη(·, t)‖L2(Tn) + ‖u(·, t)‖L2(Tn)),

and thus

lim
η→0

‖Uη(τ)‖2 = ‖U(τ)‖2, τ ≥ 0, (3.93)

by (3.87). Also, we have

|(HUη, Uη)− (HU,U)| ≤ |t|
∫

∣

∣|∇uη|2 − |∇u|2
∣

∣G(x, t) dx

≤ 1

|t|n/2−1
‖∇ũ‖L2(Tn)‖∇(uη + u)‖L2(Tn),

(3.94)

from where

lim
η→0

(HUη, Uη) = (HU,U), τ ≥ 0, (3.95)

by (3.90). Lastly, we examine the convergence of
∫

yj(U
η)2 dy. For this purpose, we estimate, for every τ ≥ 0,

∣

∣

∣

∣

∫

yj(U
η)2 dy −

∫

yjU
2 dy

∣

∣

∣

∣

≤
∫

|y||(Uη)2 − U2| . ‖y(Uη − U)‖‖Uη + U‖

.
(

(H(Uη − U), Uη − U)1/2 + ‖Uη − U‖
)

‖Uη + U‖

=

(

|t|
∫

Rn

|∇ũ(x, t)|2G(x, t) dx+ ‖Uη − U‖
)

‖Uη + U‖

.
(

(|t|‖∇ũ‖‖∇ũG‖)1/2 + ‖Uη − U‖
)

‖Uη + U‖,

(3.96)

where we used ‖yU‖2 . (HU,U) + ‖U‖2 in the third inequality, which in turn follows from the identity

(HU,U) = ‖∇U‖2 + 1

16
‖yU‖2 − n

4
‖U‖2;

also, in the fourth step of (3.96), we applied (3.19). By (3.93), (3.94), and (3.96), we get

lim
η→0

∫

y(Uη)2 dy =

∫

yU2 dy. (3.97)

Using (3.93), (3.95), and (3.97) in (3.91) and (3.92), we obtain that Q̄η(τ) → Q̄(τ) as η → 0 for all τ ∈ [0,∞). Note

that we have

Q̄η(τ) . 1, (3.98)

uniformly in τ and η ∈ (0, 1], where the constant depends only on q0. Passing to the limit, we get

Q̄(τ) . 1, τ ≥ 0. (3.99)

Next, by (3.69) and (3.70), we obtain, for all η ∈ (0, 1],
∫ τ

τ1

dist(Q̄η(τ), sp(H))2 . 1 + e−τ1/4 + e−τ/4, τ ≥ τ1 ≥ 0, (3.100)



ON QUANTITATIVE UNIQUENESS FOR PARABOLIC EQUATIONS 19

allowing the constants to depend on M0 and M1 as above. Observe that by (3.98) we have Q̄η(τ) ∈ [0, C], where the

constant is independent of η and τ . Thus letting η → 0 in (3.100) yields
∫ τ

τ1

dist(Q̄(τ), sp(H))2 . 1 + e−τ1/4 + e−τ/4, τ ≥ τ1 ≥ 0. (3.101)

Combining (3.71), (3.99), and (3.101), we may use the same argument as in the proof of Lemma 3.3, to obtain

Q̄(τ) → m/2 for some m ∈ N0. The rest of the proof is similar to the case when v, w, and u0 are smooth. �

4. Pointwise in time observability

In this section, we use the notation from Section 3.2. We fix ǫ as in (3.24), where a and b are given in (2.8). Since

we are interested in observability, it is advantageous to slightly generalize the function ū from (3.5) as follows. Let

t1 ∈ [−ǫ/2, 0] be arbitrary but fixed, and let τ1 = − log t1. Then, define

ū(x, t) = u

(

x− xǫ

t1 + ǫ
(t− t1), t

)

, (4.1)

where xǫ is as in Lemma 3.1, so that, instead of (3.6) and (3.7), we have

ū(x,−ǫ) = u(x+ xǫ,−ǫ)

and

ū(x, t1) = u(x, t1),

for all x ∈ T
n. The equation (3.10) continues to hold with (3.9) replaced by

r = − xǫ

−t1 + ǫ
.

Since |r| . ǫ−1, due to t1 ∈ [−ǫ/2, 0], all the estimates from Section 3 continue to hold for ū in (4.1).

The following lemma provides a comparison between the unweighted and weighted L2 norms of ū.

LEMMA 4.1. Under the assumptions of Theorem 2.1, with ū defined in (4.1), and ǫ in (3.24), we have

‖ū(·, t)‖2L2(Tn) .
eK

|t|M
∫

Rn

ū(x, t)2G(x, t) dx, (4.2)

for all t ∈ [−ǫ, 0), where K = C(M2
1 +M0 +M1M

2β−1 +M0M
2α−1) and M = Ma

0 +M b
1 + 1 with a and b as

in (2.8).

PROOF OF LEMMA 4.1. In this proof, we use the convention from the proof of Lemma 3.2 by writing u instead

of ū. We start with the identity (3.63), where f is defined in (3.64). From (3.65), we get

|f(τ)|
‖U‖2 . e(β−1)τM1

(

|Q̄(τ)|+ e−τ |r|2 + 1
)β

+ e(α−1)τM0

(

|Q̄(τ)|+ e−τ |r|2 + 1
)α

,

where α and β are as in (3.37) and (3.45). Therefore, as in the first equality in (3.66), we have

1

2
log ‖U(·, τ)‖2 − 1

2
log ‖U(·, τ0)‖2 = −

∫ τ

τ0

Q̄(s) ds+

∫ τ

τ0

f(s)

‖U(·, s)‖2 ds, τ ≥ τ0,

from where we obtain, using Q̄(τ) . M = Ma
0 +M b

1 + 1 for τ ≥ τ0, that

log
‖U(·, τ0)‖2
‖U(·, τ)‖2

. (τ − τ0)M + e(β−1)τ0M1(M + e−τ0 |r|2 + 1)β + e(α−1)τ0M0(M + e−τ0 |r|2 + 1)α

. (τ − τ0)M + ǫ1−βM1(M + ǫ|r|2 + 1)β + ǫ1−αM0(M + ǫ|r|2 + 1)α, τ ≥ τ0,

(4.3)

where we used ǫ = e−τ0 from (3.13).
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We now derive a similar estimate for ‖u(·, t)‖2L2(Tn)/‖u(·,−ǫ)‖2L2(Tn). Taking the inner product of (3.10) with u

and using ‖∇u‖2L2(Tn) = qD(t)‖u‖2L2(Tn), where qD is defined in (2.5), we obtain

1

2

d

dt
‖u‖2L2(Tn) + qD(t)‖u(·, t)‖2L2(Tn)

. ‖w‖Lq(Tn)‖u‖L2q/(q−2)(Tn)‖u‖L2(Tn)qD(t)
1/2 + ‖v‖Lp(Tn)‖u‖2L2p/(p−1)(Tn)

. M1‖u‖2−2β
L2(Tn)‖∇u‖2β−1

L2(Tn)‖u‖L2(Tn)qD(t)
1/2 +M1‖u‖2L2(Tn)qD(t)

1/2

+M0‖u‖2−2α
L2(Tn)‖∇u‖2αL2(Tn) +M0‖u‖2L2(Tn),

(4.4)

since
∫

Tn rju∂ju dx = 0, where the quantities are evaluated at t. Dividing both sides of (4.4) by ‖u‖2L2(Tn), we get

1

‖u‖2L2(Tn)

d

dt
‖u‖2L2(Tn) + qD(t) . M1qD(t)

β +M1qD(t)
1/2 +M0qD(t)

α +M0 . M1 +M0, (4.5)

allowing the last implicit constant to depend on q0. Integrating (4.5) from −ǫ to t leads to

log
‖u(·, t)‖2L2(Tn)

‖u(·,−ǫ)‖2L2(Tn)

. (M1 +M0)ǫ, t ∈ (−ǫ, 0). (4.6)

By the definition of U in (3.11), we have

‖U(·, τ0)‖2
‖u(·,−ǫ)‖2L2(Tn)

=

∫

Rn u(x,−ǫ)2e−|x|2/4ǫ dx

ǫn/2
∫

Tn u(x,−ǫ)2 dx
≥ e−n/4ǫ

ǫn/2
, (4.7)

since |x| ≤ √
n for x ∈ Ω. We then take the logarithm of (4.7) to get

log
‖u(·,−ǫ)‖2L2(Tn)

‖U(·, τ0)‖2
≤ −n

2
log

1

ǫ
+

n

4ǫ
.

1

ǫ
. (4.8)

Adding (4.3), (4.6), and (4.8), we obtain

log
‖u(·, t)‖2L2(Tn)

‖U(·, τ)‖2 . (M1 +M0)ǫ+
1

ǫ
+ (τ − log ǫ−1)M

+ ǫ1−βM1(M + ǫ|r|2 + 1)β + ǫ1−αM0(M + ǫ|r|2 + 1)α

.
M0 +M1

M
+M + τM + (M0 +M1)M

2β−1,

where we used ǫ . 1/M and |r| . ǫ−1 . M , and thus

log
‖u(·, t)‖2L2(Tn)

‖U(·, τ)‖2 . M2
1 +M0 +Mτ +M1M

2β−1 +M0M
2α−1,

whence

‖u(·, t)‖2L2(Tn) . exp(C(M2
1 +M0 +M1M

2β−1 +M0M
2α−1))

1

|t|M
∫

Rn

u(x, t)2G(x, t) dx,

as claimed. �

Lemma 4.1 is combined below with the next statement from [Ku4].

LEMMA 4.2. Let K ≥ 0 and t0 ∈ [−1/4, 0). If a 1-periodic function f satisfies

‖f‖2L2(Tn) ≤ eK
∫

Rn

f(x)2G(x, t) dx

with t ∈ [t0, 0) such that

1

|t| ≥
C

|t0|
log

1

|t| +
C(K + 1)

|t0|
,

for a sufficiently large constant C > 0, then

‖f‖2L2(Tn) ≤
CeK

|t|n/2 ‖f‖
2
L2(B√

|t0|
).
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For the proof, see [Ku4, p. 775].

PROOF OF THEOREM 2.3. We first assume that u0, v, and w are smooth as in the proof of Theorem 2.1. By

Lemma 4.1, we have (4.2), where K and M are given in the statement. In order to apply Lemma 4.2, we need

t ∈ [−ǫ/2, 0), along with

1

|t| ≥
C

ǫ
log

1

|t| +
C(K + 1)

ǫ
M log

1

|t| . (4.9)

One may readily check that the sufficient condition for (4.9) is

|t| ≤ ǫ

C(K + 1)M(log(1/ǫ))2(log((K + 2)(M + 1)))2
. (4.10)

Let t1 ∈ [−ǫ/2, 0] be such that |t1| equals the right-hand side of (4.10). Using this t1 in (4.1) and applying Lemma 4.2

leads to

‖u(·, t1)‖L2(Tn) ≤ eP (M)‖u(·, t1)‖L2(B√
|t1|

),

where P is a polynomial, and we obtain the conclusion of the theorem for the time t1. For other times, we simply

translate in time. (Note that it sufficient to obtain the observability estimate (2.9) for a sufficiently small δ0, as it is

then automatic for larger values.)

For the general case, we approximate u0, v, and w by smooth functions uη
0 , vη , and wη respectively. We then

have ‖uη(·, t)‖2L2(Tn) → ‖u(·, t)‖2L2(Tn) and ‖uη(·, t)‖2L2(Bδ0
) → ‖u(·, t)‖2L2(Bδ0

) as η → 0 by (3.87). �

5. The case R
n

In this section, we prove the theorem concerning the case of Rn.

PROOF OF THEOREM 2.5. Note that we now assume the growth condition (2.11) instead of periodicity. Again,

without loss of generality, we may consider I = [−1, 0] and (x0, t0) = (0, 0). The proof is similar to the periodic case

with small modifications. With ǫ ∈ [0, 1/2], we have

ǫ
∫

Rn |∇u(xǫ + y,−ǫ)|2G(y,−ǫ) dy
∫

Rn u(xǫ + y,−ǫ)2G(y,−ǫ) dy
≤ KǫqD(−ǫ), (5.1)

for some xǫ ∈ B2. This was proven in [CK], but since the argument is short, we present it here. Assume that

λ

∫

Rn

u(x+ y,−ǫ)2G(y,−ǫ) dy <

∫

Rn

|∇u(x+ y,−ǫ)|2G(y,−ǫ) dy, x ∈ B2, (5.2)

where λ = C0KqD(−ǫ) and C0 ≥ 1 is sufficiently large constant, to be determined. Integrating (5.2) over B2, we

have
∫

Rn

G(y,−ǫ) dy

∫

B2

u(x+ y,−ǫ)2 dx <
1

λ

∫

Rn

G(y,−ǫ) dy

∫

B2

|∇u(x+ y,−ǫ)|2 dx

≤ 1

λ
‖∇u(·,−ǫ)‖2

∫

Rn

G(y,−ǫ) dy ≤ (2π)n/2

λ
‖∇u(·,−ǫ)‖2,

(5.3)

where we continue using the convention (3.20). On the other hand, we have a lower bound for the far-left side of (5.3),

which reads
∫

Rn

G(y,−ǫ) dy

∫

B2

u(x+ y,−ǫ)2 dx =

∫

Rn

G(y,−ǫ) dy

∫

B2(y)

u(x,−ǫ)2 dx

≥
∫

B1/2

G(y,−ǫ) dy

∫

B2(y)

u(x,−ǫ)2 dx ≥
∫

B1/2

G(y,−ǫ)dy

∫

B1

u(x,−ǫ)2 dx

≥
∫

B1/2

G

(

y,−1

2

)

dy

∫

B1

u(x,−ǫ)2 dx ≥ 1

C0K
(2π)n/2

∫

Rn

u(x,−ǫ)2 dx,

fixing C−1
0 = (2π)−n/2

∫

B1/2
G(y,−ǫ)dy, where the last inequality holds by the doubling type condition (2.11). Thus

we obtain

‖u(x,−ǫ)‖2 <
C0K

λ
‖∇u(·,−ǫ)‖2 ≤ 1

qD(−ǫ)
‖∇u(·,−ǫ)‖2,
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which contradicts qD(−ǫ) = ‖∇u(·,−ǫ)‖2/‖u(·,−ǫ)‖2. Therefore, (5.2) cannot hold for all x ∈ B2, i.e., there exists

xǫ ∈ B2 such that (5.1) holds. Theorem 2.5 then follows as in the proofs of Theorems 2.1 and 2.3. �

6. Extensions

In this section, we extend Theorems 2.1 and 2.3 to two settings. In the first (Theorem 6.1 below), we allow v
and w to have a lower integrability in time, while in the second, the space exponents for v and w are lowered below

2n/3 and 2n requiring a degree of vanishing of the norms. Here we adopt the notation from Section 2; in particular,

I = [T0, T + T0].

6.1. The case Lq
tL

p
x. The methods in this paper allow us to consider the case v ∈ Lp2

t Lp1
x (Tn × I) and w ∈

Lq2
t Lq1

x (Tn×I) with p2 and q2 finite. For simplicity, we restrict ourselves to the case of periodic boundary conditions;

however, the same holds for the case of Rn using the approach from the previous section. When limiting p2 → ∞ and

q2 → ∞, the next theorem reduces to the results in Section 2.

THEOREM 6.1. Let n ≥ 2 and I = [T0, T0 + T ]. Assume that u ∈ L∞
x,t(T

n × I) is a solution of (2.1) where

v ∈ Lp2

t Lp1
x (Tn × I) and w ∈ Lq2

t Lq1
x (Tn × I) such that p1 > 2n/3 and q1 > 2n with

p2 > max

{

2

1− α
,

2

3− 4α

}

(6.1)

and

q2 > max

{

2

1− β
,

2

3− 4β

}

where α = n/2p1 and β = 1/2 + n/2q1. Then, for all (x0, t0) ∈ T
n × [T0 + T/2, T0 + T ], the vanishing order of u

at (x0, t0) satisfies

O(x0,t0)(u) . ‖v‖a
L

p2
t L

p1
x (Tn×I)

+ ‖w‖b
L

q2
t L

q1
x (Tn×I)

+ 1,

where

a =
2

3− 4α− 2/p2
(6.2)

and

b =
2

3− 4β − 2/q2
.

PROOF OF THEOREM 6.1. Without loss of generality, we may assume I = [−1, 0] and (x0, t0) = (0, 0). For

simplicity, we only consider the case w = 0 and v ∈ Lp2

t Lp1
x (Tn × I), as for a nonzero w the proof is similar. Here

we define

M0(τ) = ‖v(·, t)‖Lp1 (Tn),

where τ = − log(−t). As in (3.54), we have

Q̄′(τ) . e−τ ǫ−2 +M0(τ)
2e(2α−2)τ |Q̄(τ)|2α +M0(τ)

2e−2τ ǫ−4α +M0(τ)
2e(α−2)τ ǫ−2α

+M0(τ)
2/(1−α)e−2τ +M0(τ)

2e(2α−2)τ ,
(6.3)

where α = n/2p1, i.e., (3.54) holds with M0 replaced by M0(τ) and M1 set to zero as we assumed that w = 0. Let

ǫ =
1

C̄(‖v‖a
L

p2
t L

p1
x (Tn×I)

+ 1)
, (6.4)

with a as in (6.2) and C̄ sufficiently large determined in the Gronwall argument below. Denote by C2 ≥ 1 the implicit

constant in (6.3), and we have (3.57). Under the condition (3.57), we claim that

Q̄(τ) < 2
C1 + C2

ǫ
, τ ≥ τ0, (6.5)

where C1 = C0(q0 + 2) and C0 ≥ 1 is the constant in (3.56) and where τ0 is given in (3.13). Assume, contrary to

the assertion, that there exists τ1 ≥ τ0 such that Q̄(τ1) = 2(C1 + C2)/ǫ, and suppose that τ1 is the first time with this

property. Also let τ ′0 be as in (3.59) so that, in particular, (3.60) holds. Then we have

Q̄′(τ) ≤ C2e
−τ ǫ−2 + C2M0(τ)

222αe(2α−2)τ (C1 + C2)
2αǫ−2α

+ C2M0(τ)
2e−2τ ǫ−4α + C2M0(τ)

2e(α−2)τ ǫ−2α + C2M0(τ)
2/(1−α)e−2τ + C2M0(τ)

2e(2α−2)τ ,
(6.6)
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for τ ∈ [τ ′0, τ1]. We integrate (6.6) in τ from τ ′0 to τ1 and obtain

Q̄(τ1) ≤ Q̄(τ ′0) + C2ǫ
−1 + C22

2α(C1 + C2)
2αǫ−2α

∫ τ1

τ0

M0(τ)
2e(2α−2)τdτ + C2ǫ

−4α

∫ τ1

τ0

M0(τ)
2e−2τ dτ

+ C2ǫ
−2α

∫ τ1

τ0

M0(τ)
2e(α−2)τ dτ + C2

∫ τ1

τ0

M0(τ)
2/(1−α)e−2τ dτ + C2

∫ τ1

τ0

M0(τ)
2e(2α−2)τ dτ,

(6.7)

since τ0 ≤ τ ′0. By Hölder’s inequality, the third term on the right-hand side satisfies

C22
2α(C1 + C2)

2αǫ−2α

∫ τ1

τ0

M0(τ)
2e(2α−2)τ dτ

≤ C22
2α(C1 + C2)

2αǫ−2α‖M0(τ)
2e−2τ/p2‖Lp2/2(τ0,∞)‖e(2α−2+2/p2)τ‖Lp2/(p2−2)(τ0,∞)

≤ C22
2α(C1 + C2)

2αǫ−2α

(∫ ∞

τ0

M0(τ)
p2e−τ dτ

)2/p2

ǫ2−2α−2/p2

≤ C22
2α(C1 + C2)

2αǫ3−4α−2/p2‖v‖2
L

p2
t L

p1
x (Tn×I)

ǫ−1 ≤ C1 + C2

20ǫ
;

(6.8)

in the last step, we used p2 > 2/(3 − 4α) from (6.1) in addition to ǫ3−4α−2/p2‖v‖2
L

p2
t L

p1
x (Tn×I)

≤ 1/C̄3−4α−2/p2

which is due to (6.4) with C̄ sufficiently large. Other terms in (6.7) are estimated similarly, except for the sixth one,

for which we write

C2

∫ τ1

τ0

M0(τ)
2/(1−α)e−2τ dτ

≤ C2‖M0(τ)
2/(1−α)e−2τ/(1−α)p2‖Lp2(1−α)/2(τ0,∞)‖e(−2+2/(1−α)p2)τ‖Lp2(1−α)/((1−α)p2−2)(τ0,∞)

≤ C2ǫ
2−2/(1−α)p2‖M0(τ)e

−τ/p2‖2/(1−α)
Lp2 (τ0,∞)

≤ C2ǫ
3−2/(1−α)p2‖v‖2/(1−α)

L
p2
t L

p1
x (Tn×I)

ǫ−1 ≤ C1 + C2

20ǫ
.

In order to use Hölder’s inequality, we need p2(1−α)/2 ≥ 1, which is guaranteed by (6.1). Also, the last step requires

ǫ3−2/(1−α)p2‖v‖2/(1−α)

L
p2
t L

p1
x (Tn×I)

≤ 1/C̄3−2/(1−α)p2 , see (6.4), in addition to p2 > 2/3(1 − α), which is satisfied due

to (6.1). We proceed similarly estimating all the terms in (6.7) from the far right side of (6.8), obtaining

Q̄(τ1) ≤ Q̄(τ ′0) +
C1 + C2

2ǫ
≤ 3

2

C1 + C2

ǫ
.

This is a contradiction since Q̄(τ1) = 2(C1 +C2)/ǫ, showing that (6.5) indeed holds for all τ ≥ τ0. The general case,

when both v ∈ Lp2

t Lp1
x (Tn × I) and w ∈ Lq2

t Lq1
x (Tn × I) are present, is obtained analogously. �

6.2. The cases L∞
t L

n/2
x and L∞

t Ln
x . In this section, we assume t−α0v ∈ L∞Lp(Tn × I) and t−β0w ∈

L∞Lq(Tn × I) in the interval n/2 ≤ p ≤ 2n/3 and n ≤ q ≤ 2n with α0 and β0 indicated in the statement.

We assume that n ≥ 2 throughout this section and that M0 and M1 are constants such that

‖(t− (T + T0))
−α0v(·, t)‖Lp(Tn) ≤ M0 (6.9)

and

‖(t− (T + T0))
−β0w(·, t)‖Lq(Tn) ≤ M1, (6.10)

for t ∈ I .

THEOREM 6.2. Let n/2 ≤ p ≤ 2n/3 and n ≤ q ≤ 2n. Assume that u ∈ L∞
t L∞

x (Tn × I) is a solution of (2.1)

with t−α0v ∈ L∞
t Lp

x(T
n × I) and t−β0w ∈ L∞

t Lq
x(T

n × I) satisfying (6.9) and (6.10) for t ∈ I such that

α0 >
2n/p− 3

2
(6.11)

and

β0 >
2n/q − 1

2
. (6.12)

Then, for all (x0, t0) ∈ T
n × [T0 + T/2, T0 + T ], the vanishing order of u at (x0, t0) satisfies

O(x0,t0)(u) . Ma
0 +M b

1 + 1, (6.13)
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where a = 2/(3 + 2α0 − 2n/p) and b = 2/(1 + 2β0 − 2n/q), with the implicit constant in (6.13) depending on q0
and T .

PROOF OF THEOREM 6.2. Without loss of generality, I = [−1, 0] and (x0, t0) = (0, 0). Using the notation

(3.37) and (3.45), the conditions (6.11) and (6.12) read

α0 >
4α− 3

2

and

β0 >
4β − 3

2
.

We also have a = 2/(3 + 2α0 − 4α), and b = 2/(3 + 2β0 − 4β). It suffices to show that Q̄(τ) . Ma
0 + M b

1 + 1,

where Q̄ and τ are defined in the proof of Theorem 2.1. Let V and W be as in (3.14) and (3.15), and note that V and

W are eτ/2-periodic. As in (3.35), we write

R
n =

⋃

j∈Zn

Ωj,τ ,

where Ωj,τ = jeτ/2 + eτ/2Ω. After a simple change of variable, we then have

‖V ‖Lp(Ωj,τ ) ≤ M0e
ατe−τα0 = M0e

(α−α0)τ (6.14)

and

‖W‖Lq(Ωj,τ ) ≤ M1e
(β−1/2)τe−τβ0 ≤ M1e

(β−β0−1/2)τ ,

from where, similarly to (3.38) (but with Ũ = U/‖U‖ instead of U ),

‖V Ũ‖2 =
∑

j∈Zn

‖V Ũ‖2L2(Ωj,r)
.
∑

j∈Zn

‖V ‖2Lp(Ωj,r)
‖Ũ‖L2p/(p−2)(Ωj,r)

. M2
0 e

2(α−α0)τ‖U‖2−2α(‖D2Ũ‖+ 1)2α,

where we used (6.14) in the last inequality. Similarly, we have the modified version of (3.47), which is

‖yjWjŨ‖2 =
∑

j∈Zn

‖yjWjŨ‖2L2(Ωj,r)
.
∑

j∈Zn

‖W‖2Lq(Ωj,r)
‖yŨ‖2L2q/(q−2)(Ωj,r)

.
∑

j∈Zn

M2
1 e

(2β−2β0−1)τ‖|y|2Ũ‖‖Ũ‖1−n/2q

L2q/(q−4)(Ωj,r)
(‖D2Ũ‖L2(Ωj,r) + ‖Ũ‖L2(Ωj,r))

n/2q,

and then, applying Hölder’s inequality,

‖yjWjŨ‖ . M1e
(β−β0−1/2)τ‖|y|2Ũ‖1/2(‖∆Ũ‖n/2q + 1).

Other estimates are the same as in the proof of Lemma 3.2, leading to a bound for Q̄′(τ), which reads

1

2
Q̄′(τ) + ‖(A(τ)− Q̄(τ)I)Ũ‖2

. e−τ |r|2 + ‖(A(τ)− Q̄(τ)I)Ũ‖
(

e(β−β0−1)τM1

(

e−βτ/2|r|β(|Q̄(τ)|β/2 + e−βτ/2|r|β + 1)

+ ‖(A(τ)− Q̄(τ)I)Ũ‖β + Q̄(τ)β + 1
)

)

+ ‖(A(τ)− Q̄(τ)I)Ũ‖
(

e(α−α0−1)τM0

(

e−ατ/2|r|α(|Q̄(τ)|α/2 + e−ατ/2|r|α + 1)

+ ‖(A(τ)− Q̄(τ)I)Ũ‖α + Q̄(τ)α + 1
)

)

;

(6.15)
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see (3.52). Using Young’s inequality, we absorb the terms involving ‖(A(τ) − Q̄(τ)I)Ũ‖ on the right-hand side of

(6.15) into ‖(A(τ)− Q̄(τ)I)Ũ‖2 on the left-hand side to obtain

Q̄′(τ) . e−τ |r|2 + e(β−2β0−2)τM2
1 |r|2β |Q̄(τ)|β + e(2β−2β0−2)τM2

1 |Q̄(τ)|2β

+M2
1 e

(−2β0−2)τ |r|4β +M2
1 e

(β−2β0−2)τ |r|2β +M
2/(1−β)
1 e2(β−β0−1)τ/(1−β)

+M2
1 e

(2β−2β0−2)τ +M2
0 e

(α−2α0−2)τ |r|2α|Q̄(τ)|α +M2
0 e

(2α−2α0−2)τ |Q̄(τ)|2α

+M2
0 e

(−2α0−2)τ |r|4α +M2
0 e

(α−2α0−2)τ |r|2α +M
2/(1−α)
0 e2(α−α0−1)τ/(1−α)

+M2
0 e

(2α−2α0−2)τ .

(6.16)

Using |r| . ǫ−1 and absorbing the second and eighth terms, the inequality (6.16) implies

Q̄′(τ) . e−τ ǫ−2 + e(2β−2β0−2)τM2
1 |Q̄(τ)|2β +M2

1 e
(−2β0−2)τ ǫ−4β

+M2
1 e

(β−2β0−2)τ ǫ−2β +M
2/(1−β)
1 e2(β−β0−1)τ/(1−β) +M2

1 e
(2β−2β0−2)τ

+M2
0 e

(2α−2α0−2)τ |Q̄(τ)|2α +M2
0 e

(−2α0−2)τ ǫ−4α +M2
0 e

(α−2α0−2)τ ǫ−2α

+M
2/(1−α)
0 e2(α−α0−1)τ/(1−α) +M2

0 e
(2α−2α0−2)τ .

(6.17)

Let C2 be the implicit constant in (6.17) and C1 be defined as in (3.57). We can now use the barrier argument to prove

that

Q̄(τ) ≤ 2
C1 + C2

ǫ
, τ ≥ τ0 = − log ǫ,

where

ǫ =
1

C̄(Ma
0 +M b

1 + 1)
,

with C̄ sufficiently large. The concluding Gronwall argument is identical to that in the proof of Lemma 3.2, and thus

we omit the details. �

REMARK 6.3. A minor modification in the proof allows us to consider also Lp2

t Lp1
x (Rn×I) and Lq2

t Lq1
x (Rn×I)

where n/2 ≤ p1 ≤ 2n/3 and n ≤ q1 ≤ 2n. To avoid repetition, we only state the result, which is as follows. Let α =
n/2p1 and β = 1/2 + n/2q1. Assume that u ∈ L∞

t L∞
x (Tn × I) is a solution of (2.1) with t−α0v ∈ Lp2

t Lp1
x (Tn × I)

and t−β0w ∈ Lq2
t Lq1

x (Tn × I) where p2 > 2/(1− α) and q2 > 2/(1− β) are such that

α0 > max

{

2/p2 + 4α− 3

2
,
2/p2 + 2α− 2

2

}

and

β0 > max

{

2/q2 + 4β − 3

2
,
2/q2 + 2β − 2

2

}

.

Then, for all (x0, t0) ∈ T
n × I , the vanishing order of u at (x0, t0) satisfies

O(x0,t0)(u) . ‖t−α0v‖a
L

p2
t L

p1
x (Tn×I)

+ ‖t−β0w‖b
L

q2
t L

q1
x (Tn×I)

+ 1 (6.18)

where

a =
2

3 + 2α0 − 2/p2 − 4α

and

b =
2

3 + 2β0 − 2/q2 − 4β
,

with the implicit constant in (6.18) depending only on q0 and T .
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6.3. The cases L∞
t Lp

x and L∞
t Lq

x where 2n/3 > p > n/2 and q > 2n. In this section, we prove Theorem 2.4.

PROOF OF THEOREM 2.4. To avoid repetition, we only provide the estimate (2.10) under the smallness assump-

tion on M0. Note that the proof in Section 3 holds until (3.58), but we use

ǫ =
1

C̄(M b
1 + 1)

,

for C̄ sufficiently large. We use the barrier argument to obtain

Q̄(τ) ≤ 2
C1 + C2

ǫ
, τ ≥ τ0. (6.19)

Assume that there exists τ ≥ τ0 such that (6.19) does not hold and let τ1 be the first such time. Define τ ′0 by (3.59),

and observe that (3.60) holds. Integrating (3.54) in τ between τ ′0 and τ1 yields

Q̄(τ1) ≤ Q̄(τ ′0) + C2ǫ
−1 + C2M

2
1 2

β(C1 + C2)
βǫ2−4β +

C2

2− 2β
M2

1 2
2β(C1 + C2)

2βǫ2−4β

+ C2M
2
1 ǫ

2−4β + C2M
2
1 ǫ

2−3β + C2M
2/(1−β)
1 ǫ2 +

C2

2− 2β
M2

1 ǫ
2−2β

+ C2M
2
0 2

α(C1 + C2)
αǫ2−4α +

C2

2− 2α
M2

0 2
2α(C1 + C2)

2αǫ2−4α

+ C2M
2
0 ǫ

2−4α + C2M
2
0 ǫ

2−3α + C2M
2/(1−α)
0 ǫ2 +

C2

2− 2α
M2

0 ǫ
2−2α,

(6.20)

where we use 0 ≤ α, β ≤ 1. We now claim that each term on the right-hand side of (6.20) is bounded by (C1 +
C2)/20ǫ. We only estimate the terms involving M0 since others are estimated same as (3.61) and since the condition

on q is the same as in Theorem 2.5. Starting with the ninth term, we have

C2M
2
0 2

α(C1 + C2)
αǫ2−4α ≤ (C1 + C2)M

2
0 ǫ

2−4α ≤ (C1 + C2)M
2
0C

4α−3(1 +M b
1)

4α−3ǫ−1 ≤ C1 + C2

20ǫ
,

where we use C1 is sufficiently large in the first inequality and M0 is sufficiently small in the last inequality. Note that

−1 < 3− 4α < 0 since n/2 < p < 2n/3. Similarly,

C2

2− 2α
M2

0 2
2α(C1 + C2)

2αǫ2−4α ≤ C2

2− 2α
M2

0 2
2α(C1 + C2)

2αC4α−3(1 +M b
1)

4α−3ǫ−1 ≤ C1 + C2

20ǫ
,

given M0 is sufficiently small. Proceeding similarly with the other terms, we conclude that Q̄(τ) ≤ 2(C1 + C2)/ǫ,
which is a contradiction. Therefore, (6.19) holds for all τ ≥ τ0, i.e., Q̄(τ) . M b

1 + 1, for all τ ≥ τ0. �
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[AN] S. Agmon and L. Nirenberg, Lower bounds and uniqueness theorems for solutions of differential equations in a Hilbert

space, Comm. Pure Appl. Math. 20 (1967), 207–229.

[AE] G. Alessandrini and L. Escauriaza, Null-controllability of one-dimensional parabolic equations, ESAIM Control Optim.

Calc. Var. 14 (2008), no. 2, 284–293.

[AEWZ] J. Apraiz, L. Escauriaza, G. Wang, and C. Zhang, Observability inequalities and measurable sets, J. Eur. Math. Soc.

(JEMS) 16 (2014), no. 11, 2433–2475.

[ApE] J. Apraiz and L. Escauriaza, Null-control and measurable sets, ESAIM Control Optim. Calc. Var. 19 (2013), no. 1,

239–254.

[AMRV] G. Alessandrini, A. Morassi, E. Rosset, and S. Vessella, On doubling inequalities for elliptic systems, J. Math. Anal.

Appl. 357 (2009), no. 2, 349–355.

[Al] F.J. Almgren, Jr., Dirichlet’s problem for multiple valued functions and the regularity of mass minimizing integral cur-

rents, Minimal submanifolds and geodesics (Proc. Japan-United States Sem., Tokyo, 1977), North-Holland, Amsterdam-

New York, 1979, pp. 1–6.



ON QUANTITATIVE UNIQUENESS FOR PARABOLIC EQUATIONS 27

[An] S. Angenent, The zero set of a solution of a parabolic equation, J. Reine Angew. Math. 390 (1988), 79–96.

[AV] G. Alessandrini and S. Vessella, Local behaviour of solutions to parabolic equations, Comm. Partial Differential Equa-

tions 13 (1988), no. 9, 1041–1058.

[BC] L. Bakri and J.-B. Casteras, Quantitative uniqueness for Schrödinger operator with regular potentials, Math. Methods

Appl. Sci. 37 (2014), no. 13, 1992–2008.

[B] L. Bakri, Carleman estimates for the Schrödinger operator. Applications to quantitative uniqueness, Comm. Partial

Differential Equations 38 (2013), no. 1, 69–91.

[BK] J. Bourgain and C.E. Kenig, On localization in the continuous Anderson-Bernoulli model in higher dimension, Invent.

Math. 161 (2005), no. 2, 389–426.

[CRV] B. Canuto, E. Rosset, and S. Vessella, Quantitative estimates of unique continuation for parabolic equations and inverse

initial-boundary value problems with unknown boundaries, Trans. Amer. Math. Soc. 354 (2002), no. 2, 491–535.
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