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Abstract

We consider the three-dimensional Euler equations in a domain with a free boundary with
no surface tension. We assume that u0 ∈ H2.5+δ is such that curl u0 ∈ H2+δ in an arbitrarily
small neighborhood of the free boundary, and we use Lagrangian approach to derive an a priori
estimate that can be used to prove local-in-time existence and uniqueness of solutions under the
Rayleigh-Taylor stability condition.

1 Introduction

In this note we address the local existence of solutions to the free-surface Euler equations

∂tu+ (u · ∇)u+∇p = 0,

div u = 0
(1.1)

in Ω(t), where Ω(t) is the region that is periodic in x1, x2, and x3 lies between Γ0 := {x3 = 0}
and a free surface Γ1(t) such that Γ1(0) := {x3 = 1}. The Euler equations (1.1) are supplemented
with an initial condition u(0) = u0. We consider the impermeable boundary condition on the fixed
bottom boundary Γ0 and no surface tension on the free boundary, that is

u3 = 0 on Γ0,

p = 0 on Γ1.
(1.2)

Furthermore the initial pressure is assumed to satisfy the Rayleigh-Taylor condition

∂x3
p(x, 0) ≤ −b < 0 for x ∈ Γ1(0), (1.3)

where b > 0 is a constant.
The problem of local existence of solutions to the free boundary Euler equations has been

initially considered in [Sh, Shn, N, Y1, Y2] under the assumption of irrotationality of the initial
data, i.e., with curl u0 = 0. The local existence of solutions in such case with u0 from a Sobolev
space was established by Wu in [W1, W2]. Ebin showed in [E] that for general data in a Sobolev
space, the problem is unstable without assuming the Rayleigh-Taylor sign condition (1.3), which in
essence requires that next to the free boundary the pressure in the fluid is higher than the pressure
of air.

With the Rayleigh-Taylor condition, the a priori bounds for the existence of solutions for initial
data in a Sobolev space were provided in [ChL]. New energy estimates in the Lagrangian coordinates
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along with the construction of solutions were provided in [CS1] (see also [CS2]). We refer the
reader to [ABZ1, B, CL, DE1, DE2, DK, KT1, KT2, KT3, S, T, ZZ] for other works concerned
with local or global existence results of the Euler equations with or without surface tension, and
to [ABZ2, AD, AM1, AM2, EL, GMS, HIT, I, IT, IK, IP, KT3, L, Lin1, Lin2, MR, OT, P, W3]
for other related works on the Euler equations with a free-evolving boundary.

In this paper, we are concerned with the problem of local existence of solutions, and we aim to
impose minimal regularity assumptions on the initial data u0 that gives local-in-time existence of
solutions in the Lagrangian setting of the problem. It is well-known that the threshold of regularity
for the Euler equations in R

n ([KP]) or a fixed domain is u0 ∈ H2.5+δ, where δ > 0 is arbitrarily
small. In the case of the domain with a free boundary, this has recently been proven in [WZZZ] in
the Eulerian candidates (cf. [SZ1, SZ2] for the local existence in H3). However, the same result in
the Lagrangian coordinates is not known. One of the main difficulties is that it is not clear whether
an assumption that f, g ∈ H2.5+δ implies that the same is true of f ◦ g (the composition of f and
g) when δ is not an integer. The main result of this paper is to obtain a priori estimates for the
local existence in H2.5+δ with an additional regularity assumption on initial vorticity ω0 := curlu0
in an arbitrarily small neighborhood of the free boundary.

We note that a related result was obtained in [KTVW] in the 2D case, but the coordinates used
in [KTVW] are not Lagrangian; they are in a sense a concatenation of Eulerian and Lagrangian
variables. Moreover, the proof in [KTVW] uses in an essential way the preservation of Lagrangian
vorticity, which is a property that does not hold in the 3D case. Another paper [KT4] considers the
problem in ALE coordinates (cf. [MC] for the ALE coordinates in the fluid-structure interaction
problem), but the proof requires an additional assumption on the initial data, due to additional
regularity required by the Lagrangian variable on the boundary; for instance, the present paper
shows that the conditions of Theorem 1 (see below) suffice.

The main feature of the present paper is that the particle map preserves additional (H3+δ)
regularity for a short time in a small neighborhood of the boundary, a feature not available in
the Eulerian approach. The proof of our main result, which we state in Theorem 1 below, after a
brief introduction of the Lagrangian coordinates, is direct and short. It is inspired by earlier works
[KT2, KTV] and previously by [ChL, CS1, CS2]. Another new idea of our approach is a localization
of the tangential estimates (i.e., estimates concerned with differential operators with respect to x1,
x2 only) which, due to the additional regularity of the particle map, can be performed in a domain
close to the boundary. Moreover, we formulate our a priori estimates in terms of three quantities
(see (3.1)) that control the system, and we make use of the fact that all our estimates, except for
the tangential estimates, are not of evolution type. Namely, they are static.

We note that all the results in the paper also hold in the 2D case with all the Sobolev exponents
reduced by 1/2.

In the next section we introduce our notation regarding the Euler equations in the Lagrangian
coordinates, state the main result, and recall some known facts and inequalities. The proof of The-
orem 1 is presented in Section 3, where we first give a heuristic argument about our strategy. The
proof is then divided into several parts: The div-curl-type estimates are presented in Section 3.1,
the pressure estimates are discussed in Sections 3.2–3.3, and the tangential estimates are presented
in Section 3.4. The proof of the theorem is concluded with the final estimates in Section 3.5.

2 Preliminaries

2.1 Lagrangian setting of the Euler equations and the main theorem

We use the summation convention of repeated indices. We denote the time derivative by ∂t, and
a derivative with respect to xj by ∂j . We denote by v(x, t) = (v1, v2, v3) the velocity field in the
Lagrangian coordinates and by q(x, t) the Lagrangian pressure function. The Euler equations then
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become

∂tvi = −aki∂kq, i = 1, 2, 3,

aik∂ivk = 0
(2.1)

in Ω × (0, T ), where Ω := Ω(0) = T
2 × (0, 1), and aij denotes the (i, j)-th entry of the matrix

a = (∇η)−1. Here, η stands for the particle map, i.e., the solution of the system

∂tη(x, t) = v(x, t)

η(x, 0) = x
(2.2)

in Ω × [0, T ). (Note that the Lagrangian variable is denoted by x.) Due to the incompressibility
condition in (2.1), we have det∇η = 1 for all times, which shows that a is the corresponding
cofactor matrix. Therefore,

aij =
1

2
ǫimnǫjkl∂mηk∂nηl, (2.3)

where ǫijk denotes the permutation symbol. As for the boundary conditions (1.2), in the Lagrangian
coordinates the impermeable condition for u at the stationary bottom boundary Γ0 becomes

v3 = 0 on Γ0, (2.4)

while the zero surface tension condition at the top boundary Γ1 := Γ1(0) = {x3 = 1} reads

q = 0 on Γ1 × (0, T ). (2.5)

Note that the initial conditions for v is the same as for u, i.e., v(0) = v0 := u0. Moreover, observe
that, in the Lagrangian coordinates, both Γ0 and Γ1 do not depend on time.

Now, consider a localization of u0 given by χu0, where χ ≡ χ(x3) ∈ C∞(R; [0, 1]) is such that
χ(x3) = 1 in a neighborhood of Γ1(0) and χ(x3) = 0 outside of a larger neighborhood. The
following is our main result establishing a priori estimates for the local existence of solutions of the
free boundary Euler equations in the Lagrangian formulation.

Theorem 1. Let δ > 0. Assume that (v, q, a, η) is a C∞ solution of the Euler system in the

Lagrangian setting (2.1)–(2.5), and assume that v0 satisfies the Rayleigh-Taylor condition (1.3).
Then there exists a time T > 0 depending on ‖v0‖2.5+δ and ‖χ(curl v0)‖2+δ such that the norms

supt ‖v‖2.5+δ, supt ‖q‖2.5+δ, supt ‖qχ‖3+δ, and supt ‖χη‖3+δ on [0, T ] are bounded from above by a

constant depending only on ‖v0‖2.5+δ and ‖χ(curl v0)‖2+δ.

The rest of the paper is devoted to the proof of this theorem.

2.2 Product and commutator estimates

We use the standard notions of Lebesgue spaces, Lp, and Sobolev spaces, W k,p, Hs, and we reserve
the notation ‖ · ‖s := ‖ · ‖Hs(Ω) for the H

s norm. We recall the multiplicative Sobolev inequality

‖fg‖σ . ‖f‖a‖g‖b, (2.6)

for any a, b ≥ σ ≥ 0 such that either a+ b > σ + 1.5 or a+ b = σ + 1.5 and a, b > σ. In particular,

‖fg‖s . ‖f‖s‖g‖1.5+δ, s ∈ [0, 1.5 + δ]. (2.7)

We shall also use the commutator estimates

‖J(fg)− fJg‖L2 . ‖f‖W s,p1‖g‖Lp2 + ‖f‖W 1,q1‖g‖W s−1,q2 (2.8)
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for s ≥ 1 and 1
p1

+ 1
p2

= 1
q1

+ 1
q2

= 1
2 , and

‖J(fg)− fJg − gJf‖Lp . ‖f‖W 1,p1‖g‖W s−1,p2 + ‖f‖W s−1,q1‖g‖W 1,q2 (2.9)

for s ≥ 1, 1
p1

+ 1
p2

= 1
q1

+ 1
q2

= 1
p , p ∈ (1, p1), and p2, q1, q2 < ∞, where J is a nonhomogeneous

differential operator in (x1, x2) of order s ≥ 0. We refer the reader to [KP, Li] for the proofs. We
set

Λ := (1−∆2)
1

2

and
S := Λ

5

2
+δ, (2.10)

where ∆2 denotes the Laplacian in (x1, x2).

2.3 Properties of the particle map η and the cofactor matrix a

Note that applying the product estimate (2.7) to the representation formula (2.3) for a, we get

‖a‖1.5+δ . ‖η‖22.5+δ. (2.11)

Moreover, by writing χ∇η = ∇(χη)− η∇χ, where χ is as above, we obtain

‖χ2a‖2+δ . ‖χη‖23+δ + ‖η‖22.5+δ. (2.12)

Finally, we recall the Brezis-Bourgonion inequality

‖f‖s . ‖f‖L2 + ‖curl f‖s−1 + ‖div f‖s−1 + ‖∇2f3‖Hs−1.5(∂Ω), s ≥ 1 (2.13)

cf. [BB].

3 Proof of the main result

The main idea of the proof of Theorem 1 is to simplify the estimates introduced in [KT2] and [KTV]
by localizing the analysis to an arbitrarily small region near the free boundary Γ1 and showing that
all the important quantities can be controlled by

‖χη‖3+δ, ‖v‖2.5+δ. (3.1)

First, we employ the div-curl estimates to bound both key quantities (3.1) at the time t using a
time integral from 0 until t of a polynomial expression involving the same quantities, as well as
terms concerned with initial data and two other terms. The two terms involve derivatives of η and
v only in the variables x1, x2, and only very close to the free boundary Γ1, namely ‖Sη3‖L2(Γ1)

and ‖S(ψv)‖L2 , where ψ is a cutoff supported in a neighborhood of Γ1 with suppψ ⊂ {χ = 1}; see
(3.9),(3.10) below for details. The cutoff ψ is introduced at the beginning of Section 3.1. These two
terms, however, can also be controlled by a time integral of a polynomial expression involving (3.1)
only, which we show in Section 3.4, after a brief discussion of some estimates, at each fixed time, of
the pressure function and its time derivative in Sections 3.2–3.3. Finally, Section 3.5 combines the
div-curl estimates with the tangential estimates to give an a priori bound that enables local-in-time
existence and uniqueness.

Before proceeding to the proof, we note that, by (2.2), the particle map η satisfies

∇η − I =

ˆ t

0
∇v ds, (3.2)
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where, for brevity, we have omitted the time argument t on the left-hand side. We continue this
convention throughout. Moreover, observing that a(0) = I, where I denotes the three-dimensional
identity matrix, we see from (2.3) that

a− I =

ˆ t

0
∂ta ds =

ˆ t

0
∇η∇v ds. (3.3)

Here and in the sequel, we use the convention of omitting writing various indices when only the
product structure matters; for instance, the expression on the far right side of (3.3) stands for
ǫimnǫjkl

´ t
0 ∂mvk∂nηl. The equations (3.2) and (3.3) demonstrate an important property that, as

long as the key quantities (3.1) stay bounded, both a and ∇η remain close to I in the H1.5+δ norm
for sufficiently small times. In other words we obtain the following lemma.

Lemma 2 (Stability of a and η at initial time). Let M,T0 > 0, and suppose that ‖v‖2.5+δ, ‖η‖2.5+δ,

‖χη‖3+δ ≤M for t ∈ [0, T0]. Given ε > 0, there exists T = T (M, ε) ∈ (0, T0) such that

‖I − a‖1.5+δ, ‖I − aaT ‖1.5+δ, ‖I −∇η‖1.5+δ ≤ ǫ (3.4)

and

‖η‖2.5+δ . 1, (3.5)

for t ∈ [0, T ]. In particular, we also have ‖a‖1.5+δ . 1.

Proof. By (3.2) and (3.3), we have ‖I − a‖1.5+δ . M2t and ‖∇η − I‖1.5+δ . Mt. Moreover, the
triangle inequality and (2.11) give ‖I−aaT ‖1.5+δ ≤ ‖I−a‖1.5+δ(1+ ‖a‖1.5+δ) .M2(1+M2)t, and
the claim follows by taking T sufficiently small. For (3.5), we write ‖η‖2.5+δ . 1 +Mt, and the
same T works as well.

Corollary 3 below provides a similar estimate for the pressure function, enabling us to extend
the Rayleigh-Taylor condition (1.3) for small t > 0.

Moreover we can use (3.5) to obtain further estimates of cofactor map a, introduced in Sec-
tion 2.3. For example

‖∂ta‖r . ‖∇v‖r, r ∈ [0, 1.5 + δ] (3.6)

and ‖∂tta‖r . ‖∇v‖1.5+δ‖∇v‖r + ‖∇∂tv‖r, from where

‖∂tta‖r . ‖∇v‖1.5+δ‖∇v‖r + ‖a‖1.5+δ‖q‖2+r, r ∈ [0, 1.5 + δ]. (3.7)

We shall use this inequality in the range r ∈ [0, 0.5 + δ].

3.1 Div-curl estimates

Let ψ(x3) ∈ C∞(R; [0, 1]) be such that supp ψ ⋐ {χ = 1} and ψ = 1 in a neighborhood of Γ1.
Note that both χ and ψ commute with any differential operator in the variables x1, x2, and that,
provided ψ is present in any given expression involving classical derivatives or Λ, we can insert χ
in at any other place. For example

∇fTg∇(ψw) = ∇fT (χg)∇(ψw), (3.8)

for all functions f , g, w and differential operators T in x1, x2.
In this section, we provide estimates that allow us to control the key quantities ‖v‖2.5+δ and

‖χη‖3+δ from (3.1). Namely, denoting by P any polynomial depending on these two quantities, we
show that

‖χη‖3+δ . t‖χ∇ω0‖1+δ + 1 + ‖Λ2.5+δη3‖L2(Γ1) +

ˆ t

0
P ds (3.9)
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and
‖v‖2.5+δ . ‖v‖L2 + ‖S(ψv)‖L2 + ‖ω0‖1.5+δ. (3.10)

As pointed out above, we simplify the notation by omitting any indices in the cases where the exact
value of the index becomes irrelevant. In those cases we only keep track of the power of the term
and the order of any derivatives, as such terms are estimated using a Hölder, Sobolev, interpolation,
or commutator inequality.

We start with the proof of (3.9). We use (2.13) to get

‖χη‖3+δ . ‖χη‖L2 + ‖curl (χη)‖2+δ + ‖div (χη)‖2+δ + ‖Λ2.5+δη3‖L2(Γ1). (3.11)

For the term involving curl, we first recall the Cauchy invariance

ǫijk∂jvm∂kηm = (ω0)i, (3.12)

cf. Appendix of [KTV] for a proof. For i = 1, 2, 3, we have

∇((curl (χη))i) = ǫijk∂j∇(χηk)

= ǫijkδkm∂j∇(χηm)

= ǫijk(δkm − ∂kηm)∂j∇(χηm) + 2χ

ˆ t

0
ǫijk∂kvm∂j∇ηm ds+ tχ∇ωi

0

+∇η(D2χη + 2∇χ∇η)
︸ ︷︷ ︸

=:LOT1

= ǫijk(δkm − ∂kηm)∂j∇(χηm) + 2

ˆ t

0
ǫijk∂kvm∂j∇(χηm) ds+ tχ∇ωi

0 + LOT1

+ 2

ˆ t

0
∇v(D2χη + 2∇χ∇η) ds,

︸ ︷︷ ︸

=:LOT2

where we used

0 = −ǫijk∂kηm∂j∇ηm + 2

ˆ t

0
ǫijk∂kvm∂j∇ηm ds+ t∇(ω0)i

in the third equality, which in turn is a consequence of the Cauchy invariance (3.12). Thus

‖∇(curl (χη))‖1+δ . ‖χη‖3+δ‖I −∇η‖1.5+δ + 2

ˆ t

0
‖v‖2.5+δ‖χη‖3+δ
︸ ︷︷ ︸

≤P

ds

+ t‖χ∇ω0‖1+δ + ‖LOT1 + LOT2‖1+δ,

(3.13)

applying (2.7). Note that

‖LOT1‖1+δ, ‖LOT2‖1+δ . 1 +

ˆ t

0
‖v‖2.5+δ‖η‖2+δ ds . 1 +

ˆ t

0
P ds,

where we used η(x) = x+
´ t
0 v(x, s) ds and T ≤ 1/CM with ‖v‖2.5+δ ≤M to estimate LOT1.

As for the divergence, we use ∂tη = v to write

div ∂l(χη) = δkj∂l∂k(χηj) = (δkj − akj)∂l∂k(χηj) + akj∂l∂k(χηj)

= (δkj − akj)∂l∂k(χηj) +

ˆ t

0

(
∂takj∂l∂k(χηj) + akj∂l∂k(χvj)

)
ds+ δl3(∂3∂3χx2 + 2∂3χ)

= (δkj − akj)∂l∂k(χηj)

+

ˆ t

0

(
∂takj∂l∂k(χηj) + akj(∂l∂kχvj + ∂lχ∂kvj + ∂kχ∂lvj)

︸ ︷︷ ︸

=:LOT3

−χ∂lakj∂kvj
)
ds

+ δl3(∂3∂3χx2 + 2∂3χ),
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where in the last step we used akj∂l∂kvj = −∂lakj∂kvj , a consequence of the divergence-free condi-
tion akj∂kvj = 0. Therefore,

‖∇ div (χη)‖1+δ . ‖I − a‖1.5+δ‖χη‖3+δ + 1

+

ˆ t

0

(
‖∂ta‖1.5+δ/2‖χη‖3+δ
︸ ︷︷ ︸

≤P

+‖LOT3‖1+δ + ‖χ∂la‖1+δ‖v‖2.5+δ

)
ds. (3.14)

Since ∂la consists of sums of the terms of the form ∂aηm∂l∂bηn, for m,n, a, b = 1, 2, 3, we have

‖χ∂la‖1+δ . ‖η‖2.5+δ(‖χη‖3+δ + ‖η‖2+δ).

Moreover,
‖LOT3‖1+δ . ‖a‖1.5+δ‖v‖2+δ . P,

and thus, from (3.14)

‖∇ div (χη)‖1+δ . ‖I − a‖1.5+δ‖χη‖3+δ + 1 +

ˆ t

0
P ds.

Applying this inequality and (3.13) into (3.11) gives

‖χη‖3+δ . ‖χη‖L2 + ‖curl (χη)‖1+δ + ‖div (χη)‖1+δ + ‖χη‖3+δ (‖I − a‖1.5+δ + ‖I −∇η‖1.5+δ)

+

ˆ t

0
P ds+ t‖χ∇ω0‖1+δ + ‖Λ2.5+δη3‖L2(Γ1) + 1.

Recalling (3.4), we may estimate the fourth term on the right-hand side by ε‖χη‖3+δ, and so we
may absorb it on the left-hand side. Furthermore, using (3.5), the first three terms are bounded
by a constant, concluding the proof of (3.9).

As for the estimate (3.10) on v, we note that the Cauchy invariance (3.12) implies

(curl v)i = ǫijk∂jvk = ǫijk(δkm − ∂kηm)∂jvm + (ω0)i,

while the divergence-free condition, aji∂jvi = 0, gives

div v = δji∂jvi = (δji − aji)∂jvi.

Thus, using (2.13), we obtain

‖v‖2.5+δ . ‖v‖L2 + ‖ǫijk(δkm − ∂kηm)∂jvm‖1.5+δ

+ ‖(δji − aji)∂jvi‖1.5+δ + ‖∇2v3‖H1+δ(Γ1) + ‖ω0‖1.5+δ.
(3.15)

For the boundary term, applying the Sobolev interpolation and trace estimates gives

‖∇2v3‖H1+δ(Γ1) . ‖v‖L2 + ‖Λ1.5+δv3‖H0.5(Γ1) . ‖v‖L2 + ‖Λ1.5+δ∇(ψv3)‖L2 .

As for the last term, since

∂3(ψv3) = ψ div v − ψ∂1v1 − ψ∂2v2 + v3∂3ψ

= ψ(δji − aji)∂jvi − ∂1(ψv1)− ∂2(ψv2) + v3∂3ψ,

we have

‖Λ1.5+δ∇(ψv3)‖L2 . ‖ψ(I − a)∇v‖1.5+δ + ‖S(ψv)‖L2 + ‖v3∂3ψ‖1.5+δ

. ǫ‖v‖2.5+δ + Cǫ‖v‖L2 + ‖S(ψv)‖L2 ,

for any ǫ > 0, where we used (3.4) and Sobolev interpolation of between L2 and H2.5 for the last
term. Applying this in (3.15) and using (3.4) again we obtain

‖v‖2.5+δ . ǫ‖v‖2.5+δ + Cǫ‖v‖L2 + ‖S(ψv)‖L2 + ‖ω0‖1.5+δ,

which, after absorbing the first term on the right-hand side, gives (3.10), as required.
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3.2 The pressure estimate

In this section we show that if ‖q‖2.5+δ and ‖ψq‖3+δ are finite, then

‖q‖2.5+δ . ‖v‖22+δ (3.16)

and
‖ψq‖3+δ ≤ P (‖χη‖3+δ, ‖v‖2.5+δ). (3.17)

In the remainder of this section we denote any polynomial of the form of the right-hand side by P ,
for simplicity. We also continue the convention of omitting the irrelevant indices.

We first prove (3.17) assuming that (3.16) holds. Multiplying the Euler equation, ∂tvi = −aki∂kq
by ψ we obtain ∂t(ψvi) = −aki∂k(ψq)+aki∂kψ q. Now applying aji∂j , summing over i, j, and using
the Piola identity ∂jaji = 0 we get

− ∂j(ajiaki∂k(ψq)) + ∂j(ajiaki∂kψ q) = aji∂j∂t(ψvi)

= ψaji∂j∂tvi + aji∂jψ∂tvi = −ψ∂taji∂jvi − aji∂jψaki∂kq,

where we have applied the product rule for ∂j in the second equality, and, in the third equality, we
used ∂t(aji∂jvi) = 0 for the first term. Thus

∆(ψq) = ∂j
(
(δjk − ajiaki)∂k(ψq)

)
+ ∂j(ajiaki∂k(ψq))

= ∂j
(
(δjk − ajiaki)∂k(ψq)

)
+ ∂j(ajiaki∂kψq) + ψ∂taji∂jvi + aji∂jψaki∂kq,

(3.18)

from where, by the elliptic regularity, noting that ψq = 0 on Γ0 ∪ Γ1,

‖ψq‖3+δ . ‖(I − aaT )∇(ψq)‖2+δ + ‖a2∇ψq‖2+δ + ‖ψ∂ta∇v‖1+δ + ‖a∇ψa∇q‖1+δ

. ‖I − aaT ‖L∞‖ψq‖3+δ + ‖χ4(I − aaT )‖2+δ‖ψq‖2.5+δ

+ ‖χ2a‖22+δ‖q‖2+δ + ‖∂ta‖1.2+δ‖v‖2.3+δ + ‖a‖21.5+δ‖q‖2+δ

. ε‖ψq‖3+δ + (1 + ‖χη‖43+δ)‖ψq‖2.5+δ + P,

(3.19)

where we used (3.8), the estimate ‖fg‖2+δ . ‖f‖L∞‖g‖2+δ+‖f‖2+δ‖g‖L∞ , as well as the embedding
‖g‖L∞ . ‖g‖1.5+δ and (2.7) in the second inequality. In the third inequality we used (3.6), (3.4),
and (3.5). In the second term on the far right side of (3.19), we use (3.16), proven below, to show
that it is dominated by P . Thus we have obtained (3.17), given (3.16).

In order to estimate q in H2.5+δ, we note that, as in (3.18), q satisfies the Poisson equation

∂kkq = ∂taji∂jvi + ∂j((δjk − ajiaki)∂kq)

in Ω, together with homogeneous boundary condition q = 0 on Γ1 (by (2.5)), and nonhomogeneous
Neumann boundary condition ∂3q = (δk3−ak3)∂kq on Γ0, since taking ∂t of the boundary condition
v3 = 0 on Γ0 gives ak3∂kq = 0. Thus, the elliptic estimates imply

‖q‖2.5+δ . ‖∂ta∇v‖0.5+δ + ‖(I − aaT )∇q‖1.5+δ + ‖(I − a)∇q‖H1+δ(Γ0)

. ‖∂ta‖1+δ‖v‖2+δ + ‖I − aaT ‖1.5+δ‖q‖2.5+δ + ‖I − a‖1.5+δ‖q‖2.5+δ

. ‖v‖22+δ + ε‖q‖2.5+δ,

where we used (3.6) and (3.4) in the last step. Taking a sufficiently small ε > 0 proves (3.16), as
required.
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3.3 Time derivative of q

In this section, we supplement the pressure estimates (3.16) and (3.17) from the previous section
with

‖∂tq‖2+δ ≤ P (3.20)

and
‖∂t(ψq)‖2.5+δ ≤ P, (3.21)

where P denotes a polynomial in terms of ‖χη‖3+δ and ‖v‖2.5+δ. We note that (3.21) implies that
the Rayleigh-Taylor condition (1.3) holds for sufficiently small t provided our key quantities (3.1)
remain bounded.

Corollary 3 (Rayleigh-Taylor condition for small times). LetM,T0 > 0, and suppose that ‖v‖2.5+δ,

‖η‖2.5+δ, ‖χη‖3+δ ≤M for t ∈ [0, T0]. There exists T = T (M, b) ∈ (0, T0) such that

∂3q(x, t) ≤ −
b

2
, (3.22)

for x ∈ Γ1 and t ∈ [0, T ].

Proof. The proof is analogous to the proof of Lemma 2, by noting that for x ∈ Γ1

∂3q(x, t)− ∂3q(x, 0) =

ˆ t

0
∂t∂3q ds ≤

ˆ t

0
‖∂t∇q‖L∞(Γ1) ds ≤

ˆ t

0
‖∂t(qψ)‖2.5+δ ds ≤ P (M)t,

which is bounded by b/2 for sufficiently small t.

We prove (3.21) first. Applying ∂t to (3.18) we obtain

∆∂t(ψq) = ∂j
(
(δjk − ajiaki)∂k∂t(ψq)

)
− 2∇(a∂taψ∇q) +∇(2a∂ta∇ψq + a2∇ψ∂tq)

+ ψ∂tta∇v + ψ∂ta∇∂tv + 2a∂ta∇ψ∇q + a2∇ψ∇∂tq.

Noting that ∂t(ψq) satisfies the homogeneous Dirichlet boundary conditions at both Γ1 and Γ0 and
is periodic in x1 and x2, the elliptic regularity with σ = 0.5 + δ gives

‖∂t(ψq)‖2+σ . ‖(I − aaT )∇∂t(ψq)‖1+σ + ‖a∂taψ∇q‖1+σ + ‖a∂ta∇ψq‖1+σ

+ ‖a2∇ψ∂tq‖1+σ + ‖∂tta∇v‖σ + ‖∂ta∇(a∇q)‖σ + ‖a∂ta∇q‖σ + ‖a2∇∂tq‖σ

. ε‖∂t(ψq)‖2+σ + ‖a‖1.5+δ‖∂ta‖1.5+δ‖q‖2+σ + ‖a‖21.5+δ‖∇ψ∂tq‖1+σ

+ ‖∂tta‖σ‖v‖2.5+δ + ‖∂ta‖1.5+δ‖a‖1.5+δ‖q‖2+σ

+ ‖a‖1.5+δ‖∂ta‖1.5+δ‖q‖1+σ + ‖a‖21.5+δ‖∇∂tq‖σ,

(3.23)

where we used (2.1) in the first and (3.4) in the second inequality. Taking ε > 0 sufficiently small,
and absorbing the first term on the left-hand side, and using (3.16), (3.6), and (3.7), we obtain

‖∂t(ψq)‖2+σ . (1 + ‖∂tq‖1+σ)P. (3.24)

Thus, given (3.20), we have obtained (3.21).
It remains to show (3.20). Although it might seem that taking ψ := 1 and σ := δ in (3.24) is

equivalent to (3.20), we must note that in such case ∂tq does not satisfy the homogeneous Dirichlet
boundary condition at Γ0. Instead, we have the Neumann condition

∂3∂tq = (δk3 − ak3)∂k∂tq − ∂tak3∂kq,
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by applying ∂t to ak3∂kq = 0 on Γ1. Hence, in the case ψ = 1 and σ := δ, the estimate (3.24) does
include the last two terms inside the parentheses, as ∇ψ = ∇1 = 0, but instead (3.23) needs to be
amended by the boundary term

‖(I − a)∇∂tq − ∂ta∇q‖H0.5+δ(Γ0) . ‖I − a‖1.5+δ‖∂tq‖2+δ + ‖∂ta‖1.5+δ‖q‖2+δ . ε‖∂tq‖2+δ + P,

(just avoid Γ0); that’s all we need for (3.21) where we used (3.4) again and (3.6), (3.16). Thus
choosing a sufficiently small ε > 0 and absorbing the first term on the right-hand side we obtain
(3.20), as required.

3.4 Tangential estimates

In this section we show that

‖S(ψv)‖2L2 + ‖a3lSηl‖
2
L2(Γ1)

. ‖ψv0‖
2
2.5+δ + ‖v0‖

2
2+δ +

ˆ t

0
P ds, (3.25)

where, as above, P denotes a polynomial in ‖v(s)‖2.5+δ and ‖χη(s)‖3+δ.
Our estimate follows a similar scheme as [KT2, Lemma 6.1], except that the argument is shorter

and sharper in the sense that we eliminate the dependence on ∂tv, q and ∂tq. Another essential
change results from the appearance of the cutoff ψ. This localizes the estimate and causes minor
changes to the scheme. Note that the appearance of ψ is essential for localizing the highest order
dependence on η. Namely, it allows us to use the H3+δ norm of merely χη, rather than η itself,
which we only need to control in the H2.5+δ norm.

In the remainder of Section 3.4, we prove (3.25). Note that S∂t(ψvi) = −S(akiψ∂kq), which
gives

1

2

d

dt
‖S(ψv)‖2L2 = −

ˆ

S(akiψ∂kq)S(ψvi). (3.26)

In what follows, we estimate the right-hand side by P + I113, where I113 is defined in (3.28) below
and is such that

ˆ t

0
I113 ds . −‖a3lSηl(t)‖

2
L2(Γ) + ‖∂3q(0)‖1.5+δ +

ˆ t

0
P ds. (3.27)

The inequality (3.25) then follows by integrating (3.26) in time on (0, t) and recalling (3.16).
First we write

−

ˆ

S(akiψ∂kq)S(ψvi) = −

ˆ

Sakiψ∂kq S(ψvi)−

ˆ

aki∂kS(ψq)S(ψvi) +

ˆ

aS(∇ψq)S(ψv)

−

ˆ

(
S(aψ∇q)− Saψ∇q − aS(ψ∇q)

)
S(ψv)

=: I1 + I2 + I3 + I4,

where we used ψ∂kq= ∂k(ψq)− ∂kψq to obtain the second and third terms. By (3.16), we obtain

I3 . ‖a‖L∞‖q‖2.5+δ‖ψv‖2.5+δ ≤ P.

For I2, we integrate by parts in xk and use the Piola identity ∂kaki = 0 to get

I2 =

ˆ

akiS(ψq)∂kS(ψvi) =

ˆ

akiS(ψq)S(ψ∂kvi) +

ˆ

aS(ψq)S(∇ψv)

︸ ︷︷ ︸

.‖a‖L∞‖q‖2.5+δ‖v‖2.5+δ

.
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Note that the boundary terms in the first step vanish, as q = 0 on Γ1 and ψ vanishes in a neigh-
borhood of Γ0. Moving S away from ψ∂kv in the first term above, and recalling the divergence-free
condition aki∂kvi = 0, we obtain

akiS(ψ∂kvi) = −Sakiψ∂kvi − (S(akiψ∂kvi)− akiS(ψ∂kvi)− Sakiψ∂kvi),

and thus

I2 . −

ˆ

SaS(ψq)ψ∇v + ‖S(ψq)‖L3‖S(aψ∇v)− aS(ψ∇v)− Saψ∇v‖
L

3
2
+ P

. −

ˆ

Λ2+δaΛ
1

2 (S(ψq)ψ∇v) + ‖ψq‖3+δ(‖χ
2a‖W 1,6‖v‖2.5+δ + ‖χ2a‖W 1.5+δ,3‖v‖W 2,3) + P

. ‖χ2a‖2+δ(‖S(ψq)ψ∇v‖0.5 + P ) . ‖χη‖23+δ(‖ψq‖3+δ‖v‖2.5+δ + P ) . P,

where we used the embeddings H0.5 ⊂ L3 and H1 ⊂ L6 as well as the commutator estimate (2.9);
we also applied (3.17) and (2.12) in the fourth and fifth inequalities respectively. As for I4 we have

I4 . ‖ψv‖2.5+δ‖S(aψ∇q)− Saψ∇q − aS(ψ∇q)‖L2

. P‖S(aψ∇q)− Saψ∇q − aS(ψ∇q)‖L2

. P (‖χ2a‖W 1,6‖ψ∇q‖W 1.5+δ,3 + ‖χ2a‖W 1.5+δ,3‖ψ∇q‖W 1,6) . P,

where we have applied (2.9), (2.12), (3.8), (3.16), and (3.17) in the last line.
For I1, we write

S =
∑

m=1,2

Sm∂m + S0,

where Sm := −Λ
1

2
+δ∂m and S0 := Λ

1

2
+δ. Furthermore, differentiating the identity a∇η = I with

respect to xm, where m = 1, 2, we get ∂ma∇η = −a∂m∇η, and then multiplying this matrix
equation by a on the right-side gives ∂ma = −a∂m∇ηa, which reads component-wise

∂maki = −akj∂m∂lηjali.

Thus we may write

Saki = S0aki −
∑

m=1,2

Sm(akj∂m∂lηjali),

and consequently

I1 =
∑

m=1,2

ˆ

Sm(akj∂m∂lηjali)ψ∂kq S(ψvi)−

ˆ

S0aψ∇qS(ψv)

=
∑

m=1,2

ˆ

akjSm∂m∂lηjaliψ∂kqS(ψvi) +
∑

m=1,2

ˆ

(
Sm(aD2ηa)− aSmD

2ηa
)
ψ∇qS(ψv)

−

ˆ

S0aψ∇qS(ψv)

=: I11 + I12 + I13.

We have

I13 . ‖S0a‖L2‖∇q‖L∞‖S(ψv)‖L2 . ‖a‖0.5+δ‖q‖2.5+δ‖v‖2.5+δ ≤ P,

and

I12 . ‖∇q‖L∞‖ψv‖2.5+δ‖Sm((χ2a)2D2(χη))− (χ2a)2SmD
2(χη)‖L2

.
(
‖(χ2a)2‖W 1.5+δ,3‖χη‖W 2,6 + ‖(χ2a)2‖W 1,6‖χη‖W 2.5+δ,3

)
P ≤ P,
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as claimed, where we used (3.8) in the first inequality, and (2.8), (2.12) in the second.
For I11 we write

∑

m=1,2 Sm∂m = −S0 + S, integrate by parts in xl and use the Piola identity
∂lali = 0 to get

I11 = −

ˆ

aS0∇ηaψ∇qS(ψv)−

ˆ

∇aSηaψ∇qS(ψv)−

ˆ

aSηa∇ψ∇qS(ψv)

−

ˆ

aSηaψD2qS(ψv)

︸ ︷︷ ︸

=:I111

−

ˆ

akjSηjaliψ∂kq∂lS(ψvi)

︸ ︷︷ ︸

=:I112

+

ˆ

Γ1

akjSηja3i∂kqS(ψvi) dσ

︸ ︷︷ ︸

=:I113

. ‖a‖2L∞‖q‖W 1,∞‖η‖2.5+δ‖v‖2.5+δ

+ ‖∇(χ2a)‖L6‖S(χη)‖L3‖a‖L∞‖q‖W 1,∞‖v‖2.5+δ + I111 + I112 + I113

. P + I111 + I112 + I113,

(3.28)

where we used (3.8) in the first inequality, and inequalities ‖f‖L∞ . ‖f‖1.5+δ, and (2.12) to obtain
‖∇(χ2a)‖L6 . ‖χ2a‖2 . ‖χη‖3+δ in the second inequality. Note that there is no boundary term at
Γ0 as ψ = 0 on Γ0.

For I111 we write ψD2q = D2(ψq)− 2∇ψ∇q −D2ψq to obtain

I111 = −

ˆ

aSηaD2(ψq)S(ψv) +

ˆ

aSηa(2∇ψ∇q +D2ψq)S(ψv)

. ‖a‖2L∞‖S(χη)‖L3‖v‖2.5+δ(‖ψq‖W 2,6 + ‖q‖W 1,6) . P,

where we used (2.12), (3.17), and the embedding H0.5 ⊂ L3 in the last inequality. As for I112, we
note that the divergence-free condition, ali∂lvi = 0, gives

S(ali∂l(ψvi)) = S(ali∂lψvi).

In order to use this fact, we put ali inside the second S in I112 and extract the resulting commutator.
Namely, we denote f := −akjSηjψ∂kq for brevity, and write

I112 =

ˆ

aliS∂l(ψvi)f

= −

ˆ

(S(ali∂l(ψvi))− Sali∂l(ψvi)− aliS∂l(ψvi)) f

+

ˆ

Λ2+δ(χ2ali∂lψvi)Λ
0.5f −

ˆ

Λ2+δ(χ2ali)Λ
0.5(∂l(ψvi)f)

.
∥
∥
∥S(χ2ali∂l(ψvi))− S(χ2ali)∂l(ψvi)− χ2aliS∂l(ψvi)

∥
∥
∥
L2
‖f‖L2

+ ‖χ2a∇ψv‖2+δ‖f‖0.5 + ‖χ2a‖2+δ‖∇(ψv)f‖0.5 . P,

where, in the second equality, we recalled the fact that S = Λ2+δΛ0.5 (recall (2.10)) and (3.8). We
also used (3.8) in the first inequality and (2.12) in the last; we have also noted that (3.4) and (3.16)
give ‖f‖0.5 . ‖a‖1.5+δ‖χη‖3+δ‖q‖2.5+δ . P , and we estimated the commutator term by

‖χ2a‖W 1,3‖v‖W 1.5+δ,6 + ‖v‖W 1,6‖χ2a‖W 1.5+δ,3 ≤ ‖χ2a‖2+δ‖v‖2.5+δ ≤ P,

using (2.12) and the Kato-Ponce inequality (2.9).
It remains to estimate the boundary term I113, as claimed in (3.27). We note that ∂kq = 0, for
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k = 1, 2, on Γ1, and vi = ∂tηi, which gives a3iSvi = ∂t(a3iSηi)− ∂ta3iSηi. Thus

I113 =
1

2

d

dt

ˆ

Γ1

|a3iSηi|
2∂3q dσ −

ˆ

Γ1

a3jSηj∂3q∂ta3iSηi dσ −
1

2

ˆ

Γ1

|a3iSηi|
2∂3∂tq dσ

≤
1

2

d

dt

ˆ

Γ1

|a3iSηi|
2∂3q dσ + ‖a‖L∞‖∂ta‖L∞‖q‖W 1,∞‖S(χη)‖2L2(Γ1)

+ ‖a‖2L∞‖S(χη)‖2L2(Γ1)
‖∂t(ψq)‖W 1,∞

≤
1

2

d

dt

ˆ

Γ1

|a3iSηi|
2∂3q dσ + P,

where we used (2.11), (3.6), the facts ‖S(χη)‖L2(Γ1) . ‖χη‖3+δ ≤ P , and ‖q‖W 1,∞ . ‖q‖2.5+δ ≤ P ,
as well as the pressure estimate (3.21) to get ‖∂t(ψq)‖W 1,∞ . ‖∂t(ψq)‖2.5+δ ≤ P .

Consequently, the Rayleigh-Taylor condition for small times (3.22) and the fact that aki = δki
at time 0 give

ˆ t

0
I113 ds ≤

1

2

ˆ

Γ1

|a3iSηi|
2∂3q dσ

∣
∣
∣
∣
t

−
1

2

ˆ

Γ1

|Sη3|
2∂3q dσ

∣
∣
∣
∣
0

+

ˆ t

0
P ds

≤ −
b

C
‖a3iSηi‖

2
L2 + C‖∂3q(0)‖L∞ +

ˆ t

0
P ds,

where we used η(x, 0) = x in the last step. This concludes the proof of (3.25).

3.5 Final estimates

In this section, we collect the estimates, thus completing the proof of the main theorem.

Proof of Theorem 1. From the inequalities (3.9) and (3.10), combined with the tangential estimate
(3.25), we obtain the inequality

‖v‖2.5+δ, ‖χη‖3+δ .

ˆ t

0
P ds+ ‖ψv0‖

2
2.5+δ + ‖v0‖

2
2+δ + t‖χω0‖2+δ + ‖ω0‖1.5+δ +1+ ‖v0‖L2 , (3.29)

where P is a polynomial in ‖v‖2.5+δ and ‖χη‖3+δ. Note that, in order to estimate the boundary
terms on the right hand side in (3.9), we have used

‖Sη3‖L2(Γ1) ≤ ‖a3lSηl‖L2(Γ1) + ‖(δ3l − a3l)Sηl‖L2(Γ1) ≤ ‖a3lSηl‖L2(Γ1) + ε‖χη‖3+δ,

where we applied (3.4) and a trace estimate in the second step, and we absorbed the last term by
the left hand side above. Moreover, in order to obtain the initial kinetic energy ‖v0‖L2 in (3.29),
instead of ‖v‖L2 from (3.10), we note that

‖v‖L2 ≤ ‖v0‖L2 +

ˆ t

0
‖∂tv‖L2 ds ≤ ‖v0‖L2 +

ˆ t

0
‖a‖1.5+δ‖q‖1 ds . ‖v0‖L2 +

ˆ t

0
P ds,

where we used ∂tv = −a∇q, in the second inequality and (2.11), (3.16) in the last.
The a priori estimate (3.29) allows us to apply a standard Gronwall argument, concluding the

proof.
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