Local-in-time existence of free-surface 3D Euler flow with H?t9
initial vorticity in a neighborhood of the free boundary

I. Kukavica, W. S. Ozanski

Abstract

We consider the three-dimensional Euler equations in a domain with a free boundary with
no surface tension. We assume that uy € H2°19 is such that curlug € H*19 in an arbitrarily
small neighborhood of the free boundary, and we use Lagrangian approach to derive an a priori
estimate that can be used to prove local-in-time existence and uniqueness of solutions under the
Rayleigh-Taylor stability condition.

1 Introduction

In this note we address the local existence of solutions to the free-surface Euler equations

Ou~+ (u-V)u+ Vp =0,

1.1
divu =0 (1.1)

in Q(t), where Q(¢) is the region that is periodic in 1, x2, and x3 lies between I'g := {x3 = 0}
and a free surface I'1 (¢) such that I'1(0) := {z3 = 1}. The Euler equations (1.1) are supplemented
with an initial condition u(0) = ug. We consider the impermeable boundary condition on the fixed
bottom boundary I'g and no surface tension on the free boundary, that is

us =0 on Fg,

1.2
p=20 on I';. (12)

Furthermore the initial pressure is assumed to satisfy the Rayleigh-Taylor condition
Osp(2,0) < =b < 0 for x € T'1(0), (1.3)

where b > 0 is a constant.

The problem of local existence of solutions to the free boundary Euler equations has been
initially considered in [Sh, Shn, N, Y1, Y2| under the assumption of irrotationality of the initial
data, i.e., with curlug = 0. The local existence of solutions in such case with ug from a Sobolev
space was established by Wu in [W1, W2]. Ebin showed in [E] that for general data in a Sobolev
space, the problem is unstable without assuming the Rayleigh-Taylor sign condition (1.3), which in
essence requires that next to the free boundary the pressure in the fluid is higher than the pressure
of air.

With the Rayleigh-Taylor condition, the a priori bounds for the existence of solutions for initial
data in a Sobolev space were provided in [ChL]. New energy estimates in the Lagrangian coordinates
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along with the construction of solutions were provided in [CS1] (see also [CS2]). We refer the
reader to [ABZ1, B, CL, DE1, DE2, DK, KT1, KT2, KT3, S, T, ZZ] for other works concerned
with local or global existence results of the Euler equations with or without surface tension, and
to [ABZ2, AD, AM1, AM2, EL, GMS, HIT, I, IT, IK, IP, KT3, L, Linl, Lin2, MR, OT, P, W3]
for other related works on the Euler equations with a free-evolving boundary.

In this paper, we are concerned with the problem of local existence of solutions, and we aim to
impose minimal regularity assumptions on the initial data ug that gives local-in-time existence of
solutions in the Lagrangian setting of the problem. It is well-known that the threshold of regularity
for the Euler equations in R™ ([KP]) or a fixed domain is ug € H?>®"° where § > 0 is arbitrarily
small. In the case of the domain with a free boundary, this has recently been proven in [WZZZ] in
the Eulerian candidates (cf. [SZ1, SZ2] for the local existence in H?). However, the same result in
the Lagrangian coordinates is not known. One of the main difficulties is that it is not clear whether
an assumption that f,g € H*° implies that the same is true of f o g (the composition of f and
g) when ¢ is not an integer. The main result of this paper is to obtain a priori estimates for the
local existence in H2°+9 with an additional regularity assumption on initial vorticity wp := curlug
in an arbitrarily small neighborhood of the free boundary.

We note that a related result was obtained in [KTVW] in the 2D case, but the coordinates used
in [KTVW] are not Lagrangian; they are in a sense a concatenation of Eulerian and Lagrangian
variables. Moreover, the proof in [KTVW] uses in an essential way the preservation of Lagrangian
vorticity, which is a property that does not hold in the 3D case. Another paper [KT4] considers the
problem in ALE coordinates (cf. [MC] for the ALE coordinates in the fluid-structure interaction
problem), but the proof requires an additional assumption on the initial data, due to additional
regularity required by the Lagrangian variable on the boundary; for instance, the present paper
shows that the conditions of Theorem 1 (see below) suffice.

The main feature of the present paper is that the particle map preserves additional (H 3+5)
regularity for a short time in a small neighborhood of the boundary, a feature not available in
the Eulerian approach. The proof of our main result, which we state in Theorem 1 below, after a
brief introduction of the Lagrangian coordinates, is direct and short. It is inspired by earlier works
[KT2, KTV] and previously by [ChL, CS1, CS2]. Another new idea of our approach is a localization
of the tangential estimates (i.e., estimates concerned with differential operators with respect to z1,
x2 only) which, due to the additional regularity of the particle map, can be performed in a domain
close to the boundary. Moreover, we formulate our a priori estimates in terms of three quantities
(see (3.1)) that control the system, and we make use of the fact that all our estimates, except for
the tangential estimates, are not of evolution type. Namely, they are static.

We note that all the results in the paper also hold in the 2D case with all the Sobolev exponents
reduced by 1/2.

In the next section we introduce our notation regarding the Euler equations in the Lagrangian
coordinates, state the main result, and recall some known facts and inequalities. The proof of The-
orem 1 is presented in Section 3, where we first give a heuristic argument about our strategy. The
proof is then divided into several parts: The div-curl-type estimates are presented in Section 3.1,
the pressure estimates are discussed in Sections 3.2-3.3, and the tangential estimates are presented
in Section 3.4. The proof of the theorem is concluded with the final estimates in Section 3.5.

2 Preliminaries

2.1 Lagrangian setting of the Euler equations and the main theorem

We use the summation convention of repeated indices. We denote the time derivative by 0, and
a derivative with respect to x; by 9;. We denote by v(z,t) = (vi,v2,v3) the velocity field in the
Lagrangian coordinates and by ¢(z,t) the Lagrangian pressure function. The Euler equations then



become

atvi = _akiakq) 1= 17 27 3) (21)
aiké)ivk =0

in Q x (0,T), where Q := Q(0) = T? x (0,1), and a;; denotes the (i, j)-th entry of the matrix
a = (Vn)~!. Here, n stands for the particle map, i.e., the solution of the system
31577(% t) = ’U(Qj‘, t)

n(2,0) = 2 (2.2)

in Q x [0,7). (Note that the Lagrangian variable is denoted by x.) Due to the incompressibility
condition in (2.1), we have det Vp = 1 for all times, which shows that a is the corresponding
cofactor matrix. Therefore,
1
a;j = §6imn€jklam77k8nnlv (2.3)

where ;1 denotes the permutation symbol. As for the boundary conditions (1.2), in the Lagrangian
coordinates the impermeable condition for w at the stationary bottom boundary I'g becomes

v3 =0 on Iy, (2.4)
while the zero surface tension condition at the top boundary I'; :=I';1(0) = {z3 = 1} reads
q=0 onI'y x (0,7). (2.5)

Note that the initial conditions for v is the same as for u, i.e., v(0) = vy := ug. Moreover, observe
that, in the Lagrangian coordinates, both I'y and I'; do not depend on time.

Now, consider a localization of uy given by yug, where x = x(z3) € C*°(R; [0, 1]) is such that
X(z3) = 1 in a neighborhood of I';(0) and x(x3) = 0 outside of a larger neighborhood. The
following is our main result establishing a priori estimates for the local existence of solutions of the
free boundary Euler equations in the Lagrangian formulation.

Theorem 1. Let 6 > 0. Assume that (v,q,a,n) is a C* solution of the Euler system in the
Lagrangian setting (2.1)—(2.5), and assume that vy satisfies the Rayleigh-Taylor condition (1.3).
Then there exists a time T > 0 depending on ||vol|2.5+5 and ||x(curlvy)||oys such that the norms
supy ||v||2.5+5, sups ||gll2.5+8, sup; ||gx|ls+s, and sup, [|[xn|ls+s on [0, T] are bounded from above by a
constant depending only on ||vo||2.5+5 and ||x(curlvg)|lo4s.

The rest of the paper is devoted to the proof of this theorem.

2.2 Product and commutator estimates

We use the standard notions of Lebesgue spaces, LP, and Sobolev spaces, WP, H® and we reserve
the notation || - [|s := || - || zs(q) for the H® norm. We recall the multiplicative Sobolev inequality

1£glle < I f1lallgllo, (2.6)

for any a,b > o > 0 such that either a+b >0+ 1.50ra+b=0+ 1.5 and a,b > o. In particular,

Ifglls S Wflsllgllises, s €[0,1.544]. (2.7)

We shall also use the commutator estimates

17(fg) = fIgllLz S 1 fllwsorllgllzez + [|.fllwra llgllws-1.0: (2.8)



1,1 1,1 _1
fors>1and -+ - = -+ - =3, and
19(£9) = £79 — 97w S I lwrmn llgllwsron + 1F lwe-ran lgllwr (2.9)

P
differential olperator in (x1,z2) of order s > 0. We refer the reader to [KP, Li] for the proofs. We

set

for s > 1, - + % = q% + q% = %, p € (1,p1), and p2,q1,q2 < oo, where J is a nonhomogeneous

A= (1-Ay)2

and .
S = A219, (2.10)

where Ay denotes the Laplacian in (z1,x2).

2.3 Properties of the particle map 7 and the cofactor matrix «

Note that applying the product estimate (2.7) to the representation formula (2.3) for a, we get

lallis+s S I0113.54s- (2.11)

Moreover, by writing xVn = V(xn) — nVx, where x is as above, we obtain

Ixalla+s S Ixnllzes + 110113.545- (2.12)

Finally, we recall the Brezis-Bourgonion inequality

If1ls S WF ez + leard flls—y + |div flls—1 + [V fsllms-1590), 521 (2.13)

cf. [BB].

3 Proof of the main result

The main idea of the proof of Theorem 1 is to simplify the estimates introduced in [KT2] and [KTV]
by localizing the analysis to an arbitrarily small region near the free boundary I'; and showing that
all the important quantities can be controlled by

Ixnll3+6, 10ll2.5+5- (3.1)

First, we employ the div-curl estimates to bound both key quantities (3.1) at the time ¢ using a
time integral from 0 until ¢ of a polynomial expression involving the same quantities, as well as
terms concerned with initial data and two other terms. The two terms involve derivatives of n and
v only in the variables x1, z9, and only very close to the free boundary I'1, namely |Sns3||z2(r))
and ||S(¢v)||12, where # is a cutoff supported in a neighborhood of I'y with supp ¢ C {x = 1}; see
(3.9),(3.10) below for details. The cutoff 9 is introduced at the beginning of Section 3.1. These two
terms, however, can also be controlled by a time integral of a polynomial expression involving (3.1)
only, which we show in Section 3.4, after a brief discussion of some estimates, at each fixed time, of
the pressure function and its time derivative in Sections 3.2-3.3. Finally, Section 3.5 combines the
div-curl estimates with the tangential estimates to give an a priori bound that enables local-in-time
existence and uniqueness.
Before proceeding to the proof, we note that, by (2.2), the particle map 7 satisfies

t
Vn—1 :/ Vuds, (3.2)
0



where, for brevity, we have omitted the time argument ¢ on the left-hand side. We continue this
convention throughout. Moreover, observing that a(0) = I, where I denotes the three-dimensional
identity matrix, we see from (2.3) that

t t
a—1I= / Oads = / VnVuds. (3.3)
0 0

Here and in the sequel, we use the convention of omitting writing various indices when only the
product structure matters; for instance, the expression on the far right side of (3.3) stands for
€imn€jkl fot OmvpOnm. The equations (3.2) and (3.3) demonstrate an important property that, as
long as the key quantities (3.1) stay bounded, both a and V7 remain close to I in the H>% norm
for sufficiently small times. In other words we obtain the following lemma.

Lemma 2 (Stability of a and 7 at initial time). Let M, Ty > 0, and suppose that ||v||2.545, [|7]|2.5+5,
Ix1ll3+s < M fort € [0,Tp]. Given € > 0, there exists T = T(M,e) € (0,Tp) such that

I —alli546, |1 — GGT|’1.5+57 11— Vnllisis <€ (3.4)

and
[nll25+5 < 1, (3.5)

fort € [0,T]. In particular, we also have ||a||15+5 S 1.

Proof. By (3.2) and (3.3), we have ||I — all1515 < M2t and ||V — I||1505 < Mt. Moreover, the
triangle inequality and (2.11) give ||I —aa”||1.515 < [T —all1.506(1+ ||lall1.516) S M2(1+ M?)t, and
the claim follows by taking 7T sufficiently small. For (3.5), we write ||n|25+5 < 14+ Mt, and the
same 1" works as well. O

Corollary 3 below provides a similar estimate for the pressure function, enabling us to extend
the Rayleigh-Taylor condition (1.3) for small ¢ > 0.

Moreover we can use (3.5) to obtain further estimates of cofactor map a, introduced in Sec-
tion 2.3. For example
|Oallr < ||IVYllr, r €1[0,1.5+ 9] (3.6)

and ||0xally S ||Voll1s+slIVllr + || VO], from where
10wallr S IVUlliseslVolle + llallisisllallzer, € [0,1.5+4]. (3.7)

We shall use this inequality in the range r € [0,0.5 + J].

3.1 Div-curl estimates

Let ¢(z3) € C*(R;[0,1]) be such that supp v» € {x = 1} and ¢y = 1 in a neighborhood of I';.
Note that both y and 1 commute with any differential operator in the variables x1, x2, and that,
provided 1 is present in any given expression involving classical derivatives or A, we can insert y
in at any other place. For example

VTgV(dvw) = VfT(xg)V(Yw), (3-8)

for all functions f, g, w and differential operators T in x1, xo.
In this section, we provide estimates that allow us to control the key quantities ||v||2.54+5 and
IIxn|l34s from (3.1). Namely, denoting by P any polynomial depending on these two quantities, we

show that .

Ixll3+s S tixVeollies + 1+ A ns]| 2r,) + / Pds (3.9)
0

5



and
[vll25+5 S lvllze + (S0l 22 + [lwoll1.5+6- (3.10)

As pointed out above, we simplify the notation by omitting any indices in the cases where the exact
value of the index becomes irrelevant. In those cases we only keep track of the power of the term
and the order of any derivatives, as such terms are estimated using a Holder, Sobolev, interpolation,
or commutator inequality.

We start with the proof of (3.9). We use (2.13) to get

A2.5+(5

Ixnlls+s < lxnllzz + llewrl Oen)llz4s + lIdiv Oen)llz4s + | 3l L2(ry)- (3.11)

For the term involving curl, we first recall the Cauchy invariance
€ijk0jVmOkNm = (wo)s, (3.12)
cf. Appendix of [KTV] for a proof. For i = 1,2, 3, we have
V((curl (xn)):) = €i£0;V (x7k)
= €jk0kmO; V (X1m)
= €k (Okm — Opim)0;V (XNim) + 2x /Ot €ijkOkUm0; Vi, ds + tx V)

+ Vn(szn +2VxVn)
—.LOT;

t
= €jk(Okm — Okm) 05V (X1m) + 2/0 €ijkOkVmO;V (XNm) ds + txVwy + LOT

t
+2 / Vu(D?*xn + 2VxVn) ds,
0

=:LOTy
where we used

t
0= —eijkﬁknmﬁjvnm + 2/ Eijkakvmajvnm ds + tV(wo)i
0

in the third equality, which in turn is a consequence of the Cauchy invariance (3.12). Thus

t
IV (curl n))llivs < lIxnlls+sll = Vnllises + 2/0 [0ll2.5+5lx7l315 ds

o (3.13)

+ tl[xVwol|145 + [ILOT1 + LOT2 145,
applying (2.7). Note that

t t
ILOT 1145, [LOT2[[145 S 1 +/ [oll2.5+sl1mll245ds S 1 +/ P ds,
0 0

where we used n(x) =z + fgv(m, s)ds and T' < 1/CM with ||v]j2.545 < M to estimate LOT;.
As for the divergence, we use 0;n = v to write

div 9y(xn) = 6rj010k(xN;) = (Orj — ar;)010k(XN;) + ar;010k(XN;)
t
= (Okj — akj)010k(xn;) + / (Ovan; 010k (x1j) + ar;010k(xv;)) ds + 013(0303xx2 + 203X)
0
= (Okj — ar;j)010k(xn;)

t
+ / (8takj818k(xnj) + akj(alakxvj + 81X8kvj + akxal’l}j) —Xalakjakvj) ds
0
=:LOTg

+ 613(0303xx2 + 203X),



where in the last step we used ay;0,0rv; = —0,a1;0,v;, a consequence of the divergence-free condi-
tion ay;0xv; = 0. Therefore,
IV div (xn)ll1+s S 1 — allvs4sllxnllz4s + 1

t
+ /0 (1eally 5462l X755 +ILOT3 115 + [ xOrallissllvllzsrs) ds.  (3-14)

<P

Since Jja consists of sums of the terms of the form 9,7,,0,0ym,, for m,n,a,b =1,2,3, we have

Ix0iallivs < lInllz.ss(Ixnll346 + 17]l245)-

Moreover,
ILOT3|l14s < llallissslvlees S P

and thus, from (3.14)

t
IV div (en)lies S 1 = allsrollnlass + 1+ | P s
0
Applying this inequality and (3.13) into (3.11) gives
Ixnlls+a < Ixnllzz + [lewrl (xn)ll146 + [[div xn) 46 + Ixnlls+s (1 = all1.545 + ([T = Vnllis4s)

t
+/ P ds +t|xVwoll14s + 1A% 03 2y + 1.
0

Recalling (3.4), we may estimate the fourth term on the right-hand side by ¢||x7]|3+s, and so we
may absorb it on the left-hand side. Furthermore, using (3.5), the first three terms are bounded
by a constant, concluding the proof of (3.9).

As for the estimate (3.10) on v, we note that the Cauchy invariance (3.12) implies

(curlv); = €;k05v = €ijk(Okm — Okim)O0jVm + (wo)i,
while the divergence-free condition, a;;0;v; = 0, gives
dive = 6;;0;v; = (85; — a;i)0jv;.
Thus, using (2.13), we obtain

vll2.5+5 S Nlvllne + ll€ijr (Okm — Okim)05vm||1.5+5

(3.15)
+ (851 — aji)Ovill1.546 + IVavs| gvs(r,) + llwollrs+-

For the boundary term, applying the Sobolev interpolation and trace estimates gives
IV2vsllgresryy S ol + 1A 03] gosryy S llollzz + ATV () |l 2.

As for the last term, since

03(¢vg) = 1 div v — PO1v1 — YOav2 + v303¢
= V(050 — aji)05v; — O1(Yv1) — Da(Yv2) + v3039,
we have

1AV (us) 22 S 0T — @) Vollises + [1S(¥0) | 12 + 03031154
S ellvllzsts + Celloll2 + 1S (4v)l] 2,

for any € > 0, where we used (3.4) and Sobolev interpolation of between L? and H?® for the last
term. Applying this in (3.15) and using (3.4) again we obtain

[vll25+6 S €llvllasts + Cellvll L2 + [1S(4v)ll L2 + llwollLs+s,

which, after absorbing the first term on the right-hand side, gives (3.10), as required.



3.2 The pressure estimate

In this section we show that if ||g||2.51 and [[1)q||3+s are finite, then

lgll2.545 < 1ol345 (3.16)

and
1qll3+s < P(lIxnlls+s, vll2.5+5)- (3.17)

In the remainder of this section we denote any polynomial of the form of the right-hand side by P,
for simplicity. We also continue the convention of omitting the irrelevant indices.

We first prove (3.17) assuming that (3.16) holds. Multiplying the Euler equation, d;v; = —ax;0xq
by 1 we obtain 0;(¥v;) = —akiOk(¢q) + ariOk q. Now applying a;;0;, summing over i, j, and using
the Piola identity d;a;; = 0 we get

— 0j(ajia1i0(1q)) + 0j(aj;ar; 0kt q) = aji0;0:(Yv;)
= @Z)aﬂaj@tvi + aji(?jw&gvi = —watajiajvi - ajiaj"vbakiak%

where we have applied the product rule for 9; in the second equality, and, in the third equality, we
used 0y(a;;0;v;) = 0 for the first term. Thus

A(q) = 0;((8;k — ajiar:) Ok (¥q)) + 0j(ajiar Ok (1¥q))

(3.18)
= 0;((8;k — ajiar:)Ok(¥q)) + 0j(ajiar;Ocbq) + VOraji0jv; + a;;0j1ar;Okq,
from where, by the elliptic regularity, noting that ¥g =0 on I'o U Ty,
[Valls+s S I = aa”)V(@a)ll2+s + 16> Veall2is + [[001aV0|145 + [laVaVa|14s
S M = aa” || [balla+s + X' (T = aa”)ll24sllvall2.5+45 (3.19)

2 112 2
+ IX"all3ysllall2ts + 0all24slvll2545 + llalli 51sllall2+s
S ellvallss + (1 + Ixll346) ¥dll254+5 + P,
where we used (3.8), the estimate || fgll2+s < || fllzellgll2ws+]fll2+sllg]| Lo, as well as the embedding
llgllzee < |lglli54+6 and (2.7) in the second inequality. In the third inequality we used (3.6), (3.4),
and (3.5). In the second term on the far right side of (3.19), we use (3.16), proven below, to show

that it is dominated by P. Thus we have obtained (3.17), given (3.16).
In order to estimate g in H>5%9, we note that, as in (3.18), g satisfies the Poisson equation

akkq = atajiajvi + 8]((5]k — ajiaki)(*)kq)

in €, together with homogeneous boundary condition ¢ = 0 on I'; (by (2.5)), and nonhomogeneous
Neumann boundary condition d3q = (dx3 —ax3)Ikq on 'y, since taking 9; of the boundary condition
vg = 0 on [y gives ag30drq = 0. Thus, the elliptic estimates imply

lall25+6 < 10:aVvllosts + 11 — aa”)Vall1ss + 11 — a)Vall grass )
S 10wall1ssllvlla4s + 1 — aa” [ s1sllqll2s40 + 1 = allustsllallzses

N HUH%M + ¢llqll2.5+6,

where we used (3.6) and (3.4) in the last step. Taking a sufficiently small € > 0 proves (3.16), as
required.



3.3 Time derivative of ¢

In this section, we supplement the pressure estimates (3.16) and (3.17) from the previous section
with
10qlo+s < P (3.20)

and
10:(¥q)[|2.5+5 < P, (3.21)

where P denotes a polynomial in terms of ||x7||s+s and ||v||2.5+5. We note that (3.21) implies that
the Rayleigh-Taylor condition (1.3) holds for sufficiently small ¢ provided our key quantities (3.1)
remain bounded.

Corollary 3 (Rayleigh-Taylor condition for small times). Let M, Ty > 0, and suppose that ||v|2.5.+5,
Inll2.5+8, lIxnlls+s < M fort € [0,To]. There exists T =T(M,b) € (0,Ty) such that

A3q(z,t) < —g, (3.22)

forxz €Ty and t € [0,T].

Proof. The proof is analogous to the proof of Lemma 2, by noting that for x € I'y

t t t
Dsa(a, ) — Dya(x, 0) = / D1d3q ds < / 10 g ey ds < / 100 l|a.55 ds < P(M)L,
0 0 0

which is bounded by b/2 for sufficiently small ¢. O]

We prove (3.21) first. Applying 9, to (3.18) we obtain

Ay (¥q) = 9; (36 — ajiar:) Ok (¥q)) — 2V (adiatVq) + V(2a0,aVhq + a*V1pdyq)
+ YOuaVu + 00,aV o + 2a0,aV YV q + a’>VpV .

Noting that 0;(1q) satisfies the homogeneous Dirichlet boundary conditions at both Iy and I'y and
is periodic in x1 and x9, the elliptic regularity with ¢ = 0.5 4+ § gives

10:(00) 240 S 1T = aa”) VO (¥q) 1110 + ladtayyValli1o + 00:aVig] 140
+ a*VYdigll11o + 10aVullo +110:aV (aVQ)|lo + [|adaVlls + la* Vgl
S elldi(Wa)llato + llallisisllOwallisisllallero + llallf 55l Vediglhiie (3.23)
+ 0ualls|vll25+5 + [|0wall1 545l all15+5llal 240
+ llallsislldallisislalliee + lallf 5151 Vallo,

where we used (2.1) in the first and (3.4) in the second inequality. Taking ¢ > 0 sufficiently small,
and absorbing the first term on the left-hand side, and using (3.16), (3.6), and (3.7), we obtain

10:(¥q) 240 S (1 + [101qll145) P. (3.24)

Thus, given (3.20), we have obtained (3.21).

It remains to show (3.20). Although it might seem that taking ¢) := 1 and o := § in (3.24) is
equivalent to (3.20), we must note that in such case 0,q does not satisfy the homogeneous Dirichlet
boundary condition at I'y. Instead, we have the Neumann condition

030rq = (0k3 — ak3)0kOrq — Orak30kq,



by applying 0; to ax30rqg = 0 on I'y. Hence, in the case ¢y = 1 and o := 4, the estimate (3.24) does
include the last two terms inside the parentheses, as Vi) = V1 = 0, but instead (3.23) needs to be
amended by the boundary term

”(I — a)Vatq — 3tqu||H0A5+6(FO) 5 ||I - a||1.5+5||atQH2+6 + ||3taH1.5+5HQH2+5 S/ 5||atQH2+5 + P,

(just avoid T'g); that’s all we need for (3.21) where we used (3.4) again and (3.6), (3.16). Thus
choosing a sufficiently small € > 0 and absorbing the first term on the right-hand side we obtain
(3.20), as required.

3.4 Tangential estimates

In this section we show that
t
IS@e0)I22 + lagSmil 2y S l0voll3es + loll3es + /0 P ds, (3.25)

where, as above, P denotes a polynomial in ||v(s)|2.5+s and [|[xn(s)]|3+s-

Our estimate follows a similar scheme as [KT2, Lemma 6.1], except that the argument is shorter
and sharper in the sense that we eliminate the dependence on J,v, ¢ and J;q. Another essential
change results from the appearance of the cutoff . This localizes the estimate and causes minor
changes to the scheme. Note that the appearance of v is essential for localizing the highest order
dependence on 7. Namely, it allows us to use the H3*® norm of merely yn, rather than 7 itself,
which we only need to control in the H2*+% norm.

In the remainder of Section 3.4, we prove (3.25). Note that SO (¢¥v;) = —S(ak;¥0kq), which
gives

3 5iISWIR: = - [ S@vana st (3.26)

In what follows, we estimate the right-hand side by P + I3, where I;;3 is defined in (3.28) below
and is such that

t t
| 1a ds S ~lauSaO1aq) + 1sa(O) 155+ [ P ds. (3.27)
0 0

The inequality (3.25) then follows by integrating (3.26) in time on (0,t¢) and recalling (3.16).
First we write

/ Sk da)S (Yvs) = / Sariveq S(pui) — / akiOS (q) S (bv) + / aS(Vpq)S (o)
- [ (s(@ve) ~ S0wvq - as(@vg) s(wv)

=L+ o+ I3+ 1y,
where we used 10rq= Ok (1q) — Oxtbq to obtain the second and third terms. By (3.16), we obtain
I3 < llall<llgllzs+sllYvll2.548 < P

For I, we integrate by parts in xp and use the Piola identity Opar; = 0 to get

I = / ki S (10) 00 (1) = / 1S (1) S (YOyu7) + / a5 () S(Vihv)

Sllallzee llgll2.54-51lvll2.545
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Note that the boundary terms in the first step vanish, as ¢ = 0 on I'; and % vanishes in a neigh-
borhood of I'y. Moving S away from ¢Jv in the first term above, and recalling the divergence-free
condition ay;0v; = 0, we obtain

ariS(YOoRvi) = —SakiYorv; — (S(akiYOkvi) — ariS(YORVi) — Sakivokv;),

and thus
— [ SaStawTo+ 8@l S@Ve) - aSWT0) - SVl 4 + P

1
s / A2H0aA® (S(qV) + [9allass(Calwrsllvlzses + [xPallwrsrssllollwas) + P
< ICalless(1S@a)¥Vellos + P) S Ixnl3ss(lvallssslollzsrs + P) S P,

where we used the embeddings H%5 C L? and H' C L% as well as the commutator estimate (2.9);
we also applied (3.17) and (2.12) in the fourth and fifth inequalities respectively. As for I4 we have

Iy S |vll2.5+6]1S(ayVa) — SapVq — aS(¥Va)| 12
< P|S(apVq) — SaypVg — aS(¢Vq) || 2
5 P(||X2CL||W1,6||¢Vq||w1.5+5,3 + ||X2a”W1.5+6,3||1/JVC]”W1,6) S P,

where we have applied (2.9), (2.12), (3.8), (3.16), and (3.17) in the last line.
For I, we write

S= " Smdm + So,

m=1,2
where S,, := —A%+68m and Sy = A3, Furthermore, differentiating the identity aVn = I with
respect to x,,, where m = 1,2, we get 9,aVn = —ad,,Vn, and then multiplying this matrix
equation by a on the right-side gives 9,,a = —a0,, Vna, which reads component-wise
OmGri = —ak;OmOin;ag;.

Thus we may write

Sap; = Soa; — Z S (ariOmOm;ar;),
m=1,2

and consequently

b= Y [ Sulaxdndmon)ionaSw) ~ [ Swav¥as(wr)

m=1,2

= Z /akjS OmOim;aokgS(Yv;) + Z / aD277a —aS;,, D na)@bVqS(q/)v)

m=1,2 m=1,2
- [ Swavvas(o)
=: I11 + I12 + L3.
We have
Iis S 1Soall 21Vl IS (Wv)ll 2 S llallos+sllallzsvsllvllzsrs < P,
and

Ly S [IVallz= [$oll25+5] Sm((x*a)2D? (xn)) — (x*a)* S D* (xn) | 2
< (106G lwrsssslixnllwzs + 1) lwrsxllwzs+ss) P < P,

11



as claimed, where we used (3.8) in the first inequality, and (2.8), (2.12) in the second.
For I11 we write Zm:m SmOm = =Sy + 5, integrate by parts in z; and use the Piola identity
Oja;; = 0 to get

I = —/aSOVnm/JVqS(v,Zm) — /VaSnaquS(v,Zw) — /CLS??(IV’QZJV(]S(?,ZJU)

—/aSnad;DQqS(lbv)—/akanjalilbakqalS(dwi)—i-/ ar;SN;a3;0,9S (Yv;) do

Iy

(3.28)

=111 =:};12 =:I113
S lallzlgllwroelnllzseslvllzsss
+IVOCa) | s 1S e | s llall o< gl wr.oe [0ll2.515 + Tian + Tiaz + Tas
S P+ I+ T + s,

where we used (3.8) in the first inequality, and inequalities ||f||zee < || f]l1.5+5, and (2.12) to obtain
IVOxZa)lze < lIx?allz < |lxnllz+s in the second inequality. Note that there is no boundary term at
T'pas ¥ =0 on I'y.
For I111 we write 1D?q = D?(¢pq) — 2V)Vq — D*y)q to obtain
Iy == [ aSnaD*Wa)S(we) + [ aSna(2VeVa+ D*ug)S(wv)
< llallZelISOenllzs lvll2.546 (1 allwze + llallwre) S P,

where we used (2.12), (3.17), and the embedding H%% C L3 in the last inequality. As for I 1o, we
note that the divergence-free condition, a;0jv; = 0, gives

S(a01(Yvi)) = S(aOibv;).

In order to use this fact, we put a;; inside the second S in 112 and extract the resulting commutator.
Namely, we denote f := —ay;Sn;10kq for brevity, and write

Lo = /alisal(¢vi)f
= — / (S(a01(Pvi)) — Sa0y(Yvi) — SO (Yui)) f
+/A2+5(x2ali65wvi)/\0'5f—/A2+5(X2azz‘)/\0'5(3z(@sz')f)

S [seGaianwe) - seanawe) - xPansawe)
+ IxCaVelarsl fllos + Ixallz+s IV (w0) flos S P

where, in the second equality, we recalled the fact that S = A?T9A%5 (recall (2.10)) and (3.8). We
also used (3.8) in the first inequality and (2.12) in the last; we have also noted that (3.4) and (3.16)
give || fllos < llallis+slxnlls+sllglles+s S P, and we estimated the commutator term by

Il

Ix*allwsllvllwrsess + lollwesxallwrsess < IxPallarsllvlzsrs < P,

using (2.12) and the Kato-Ponce inequality (2.9).
It remains to estimate the boundary term I3, as claimed in (3.27). We note that dxqg = 0, for

12



k=1,2, on I'y, and v; = On;, which gives a3;Sv; = 0;(a3;Sn;) — Orasz;Sn;. Thus

1d 1
1113: th/ |a31'S77@-\283qda—/ angnjﬁgqé?tagiSmda— 2/ |a3iS77i]2633tqda
I'y I'y I
1
S5 |asiSmil*93q do + ||al L |9rall Lo allwr< 1S Oem) | 72 ry
1
+llalZ< SO I oy 10 () .o
1d )
< s SN do + P,
<odt ) |aziSm;|“03q do +

where we used (2.11), (3.6), the facts [[S(xn)llz2ry) S [Ix7lls+6 < P, and [|gllwre S llall2.5+5 < P,
as well as the pressure estimate (3.21) to get ||0:(¥q)||w1. S 1|0t (¥q)||2.545 < P.
Consequently, the Rayleigh-Taylor condition for small times (3.22) and the fact that ag; = dg;

t
+/Pds
0 0

at time 0 give

t
1
/ I113ds < = \agiSm|283q do
0 2 Jr,

1
—2/ \Sn3|283qd0
t Iy

b t
< — glassSml: + ClongO)= + [ P s
0
where we used 7(x,0) = x in the last step. This concludes the proof of (3.25).

3.5 Final estimates

In this section, we collect the estimates, thus completing the proof of the main theorem.
Proof of Theorem 1. From the inequalities (3.9) and (3.10), combined with the tangential estimate
(3.25), we obtain the inequality

t
!v||2.5+5,HX77H3+55/ P ds + [[¢vol|3 515 + llvoll34s + tllxwollots + lwoll 1545 + 1+ [lvoll 22, (3.29)
0

where P is a polynomial in ||v|2.54+5 and ||x7||s+s. Note that, in order to estimate the boundary
terms on the right hand side in (3.9), we have used

1SmallL2ry) < llaseSmull ey + 11030 — az) Smill 2y < llasiSmill L2,y + €llxnllz+s,

where we applied (3.4) and a trace estimate in the second step, and we absorbed the last term by
the left hand side above. Moreover, in order to obtain the initial kinetic energy |lvg||z2 in (3.29),
instead of ||v]|z2 from (3.10), we note that

t t t
|MWSWMB+/W@WH®§WMH+/HmeWM®§WMB+/Pd&
0 0 0

where we used 0,v = —aVyg, in the second inequality and (2.11), (3.16) in the last.
The a priori estimate (3.29) allows us to apply a standard Gronwall argument, concluding the
proof. O
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