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Abstract: Obtaining solutions to optimal transportation (OT) problems is typically intractable when
marginal spaces are continuous. Recent research has focused on approximating continuous solutions
with discretization methods based on i.i.d. sampling, and this has shown convergence as the sample
size increases. However, obtaining OT solutions with large sample sizes requires intensive computa-
tion effort, which can be prohibitive in practice. In this paper, we propose an algorithm for calculating
discretizations with a given number of weighted points for marginal distributions by minimizing the
(entropy-regularized) Wasserstein distance and providing bounds on the performance. The results
suggest that our plans are comparable to those obtained with much larger numbers of i.i.d. samples
and are more efficient than existing alternatives. Moreover, we propose a local, parallelizable version
of such discretizations for applications, which we demonstrate by approximating adorable images.

Keywords: optimal transport; entropy regularization; discretization; gradient descent

1. Introduction

Optimal transport is the problem of finding a coupling of probability distributions that
minimizes cost [1], and it is a technique applied across various fields and literatures [2,3].
Although many methods exist for obtaining optimal transference plans for distributions
on discrete spaces, computing the plans is not generally possible for continuous spaces [4].
Given the prevalence of continuous spaces in machine learning, this is a significant limita-
tion for theoretical and practical applications.

One strategy for approximating continuous OT plans is based on discrete approxima-
tion via sample points. Recent research has provided guarantees on the fidelity of discrete,
sample-location-based approximations for continuous OT as the sample size N → ∞ [5].
Specifically, by sampling large numbers of points Si from each marginal, one may compute
a discrete optimal transference plan on S1 × S2, with the cost matrix being derived from
the pointwise evaluation of the cost function on S1 × S2.

Even in the discrete case, obtaining minimal cost plans is computationally challenging.
For example, Sinkhorn scaling, which computes an entropy-regularized approximation
for OT plans, has a complexity that scales with |S1 × S2| [6]. Although many comparable
methods exist [7], all of them have a complexity that scales with the product of sample
sizes, and they require the construction of a cost matrix that also scales with |S1 × S2|.

We have developed methods for optimizing both sampling locations and weights
for small N approximations of OT plans (see Figure 1). In Section 2, we formulate the
problem of fixed size approximation and reduce it to discretization problems on marginals
with theoretical guarantees. In Section 3, the gradient of entropy-regularized Wasserstein
distance between a continuous distribution and its discretization is derived. In Section 4,
we present a stochastic gradient descent algorithm that is based on the optimization of the
locations and weights of the points with empirical demonstrations. Section 5 introduces
a parellelizable algorithm via decompositions of the marginal spaces, which reduce the
computational complexity by exploiting intrinsic geometry. In Section 6, we analyze time
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and space complexity. In Section 7, we illustrate the advantage of including weights for
sample points by providing a comparison with an existing location that is only based on
discretization.

Figure 1. Discretization of “Girl with a Pearl Earring” and “Starry Night” using EDOT with 2000 dis-
cretization points for each RGB channel. k = 2, ζ = 0.01× diam2.

2. Efficient Discretizations

Optimal transport (OT): Let (X, dX), (Y, dY) be compact Polish spaces (complete
separable metric spaces), µ ∈ P(X), ν ∈ P(Y) be probability distributions on their Borel-
algebras, and c : X × Y → R be a cost function. Denote the set of all joint probability
measures (couplings) on X × Y with marginals µ and ν by Π(µ, ν). For the cost func-
tion c, the optimal transference plan between µ and ν is defined as in [1]: γ(µ, ν) :=
argmin π∈Π(µ,ν)〈c, π〉, where 〈c, π〉 :=

∫
X×Y c(x, y)dπ(x, y).

When X = Y, the cost c(x, y) = dk
X(x, y), Wk(µ, ν) = 〈c, γ(µ, ν)〉1/k defines the k-

Wasserstein distance between µ and ν for k ≥ 1. Here, dk
X(x, y) is the k-th power of the

metric dX on X.
Entropy regularized optimal transport (EOT) [5,8] was introduced to estimate OT

couplings with reduced computational complexity: γλ(µ, ν) := argmin π∈Π(µ,ν)〈c, π〉 +
λKL(π||µ⊗ ν), where λ > 0 is a regularization parameter, and the regularization term
KL(π||µ⊗ ν) :=

∫
log( dπ

dµ⊗dν )dπ is the Kullback–Leibler divergence. The EOT objective is
smooth and convex, and its unique solution with a given discrete (µ, ν, c) can be obtained
using a Sinkhorn iteration (SK) [9].

However, for large-scale discrete spaces, the computational cost of SK can still be
unfeasible [6]. Even worse, to even apply the Sinkhorn iteration, one must know the entire
cost matrix over the large-scale spaces, which itself can be a non-trivial computational
burden to obtain; in some cases, for example, where the cost is derived from a probability
model [10], it may require intractable computations [11,12].

The Framework: We propose the optimization of the location and weights of a fixed
size discretization to estimate the continuous OT. The discretization on X×Y is completely
determined by those on X and Y to respect the marginal structure in the OT. Let m, n ∈
Z∗, µm ∈ P(X), νn ∈ P(Y) be a discrete approximation of µ and ν, respectively, with
µm = ∑m

i=1 wiδxi , νn = ∑n
j=1 ujδyj , xi ∈ X, yj ∈ Y, and wi, uj ∈ R+. Then, the EOT plan

γλ(µ, ν) ∈ Π(µ, ν) for the OT problem (µ, ν, c) can be approximated by the EOT plan
γλ(µm, νn) ∈ Π(µm, νn) for the OT problem (µm, νn, c). There are three distributions that
have their discrete counterparts; thus, with a fixed size m, n ∈ Z∗, a naive idea about the
objective to be optimized can be

Ωk,ρ(µm, νn) = Wk
k (µ, µm) + Wk

k (ν, νn) + ρWk
k (γλ(µ, ν), γλ(µm, νn)), (1)

where Wk
k (φ, ψ) represents the k-th power of k-Wasserstein distance between measures φ

and ψ. The hyperparameter ρ > 0 balances between the estimation accuracy over marginals
and that of the transference plan, while the weights on marginals are equal.
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To properly compute Wk
k (γλ(µ, ν), γλ(µm, νn)), a metric dX×Y on X×Y is needed. We

expect dX×Y on X-slices or Y-slices to be compatible with dX or dY, respectively; further-
more, we may assume that there exists a constant A > 0 such that:

max{dk
X(x1, x2), dk

Y(y1, y2)} ≤ dk
X×Y((x1, y1), (x2, y2)) ≤ A(dk

X(x1, x2) + dk
Y(y1, y2)). (2)

For instance, (2) holds when dX×Y is the p-product metric for 1 ≤ p ≤ ∞.
The objective Ωk,ρ(µm, νn) is estimated by its entropy regularized approximation

Ωk,ζ,ρ(µm, νn) for efficient computation, where ζ is the regularization parameter, as follows:

Ωk,ζ,ρ(µm, νn) = Wk
k,ζ(µ, µm) + Wk

k,ζ(ν, νn) + ρWk
k,ζ(γλ(µ, ν), γλ(µm, νn)). (3)

Here, Wk
k (µ, µm) = 〈dk

X, γ(µ, µm)〉1/k is estimated by Wk
k,ζ(µ, µm) = 〈dk

X, γζ(µ, µm)〉1/k.

γζ(µ, µm) is computed by optimizing Ŵk
k,ζ(µ, µm)= 〈dk

X , γζ(µ, µm)〉+ λKL(γζ(µ, µm)||µ⊗
µm).

One major difficulty in optimizing Ωk,ζ,ρ(µm, νn) is to evaluate Wk
k,ζ(γλ(µ, ν), γλ(µm, νn)).

In fact, obtaining γλ(µ, ν) is intractable, which is the original motivation for the discretization.
To overcome this drawback, by utilizing the dual formulation of EOT, the following are
shown (see proof in Appendix A):

Proposition 1. When X and Y are two compact spaces, and the cost function c is C∞, there exists
a constant C1 ∈ R+ such that

max{Wk
k (µ, µm),Wk

k (ν, νn)}≤Wk
k,ζ(γλ(µ, ν),γλ(µm, νn)) ≤ C1[Wk

k,ζ(µ, µm) + Wk
k,ζ(ν, νn)].

Notice that Proposition 1 indicates that Wk
k,ζ(γλ(µ, ν),γλ(µm, νn)) is bounded above

by multiples of Wk
k,ζ(µ, µm) + Wk

k,ζ(ν, νn), i.e., when the continuous marginals µ and ν are
properly approximated, so is the optimal transference plan between them. Therefore, to
optimize Ωk,ζ,ρ(µm, νn), we focus on developing algorithms to obtain µ∗m, ν∗n that minimize
Wk

k,ζ(µ, µm) and Wk
k,ζ(ν, νn).

Remark 1. The regularizing parameters (λ and ζ above) introduce smoothness, together with an
error term, into the OT problem. To make an accurate approximation, we need λ and ζ to be as
small as possible. However, when parameters become too small, the matrices to be normalized in
the Sinkhorn algorithm lead to an overflow or underflow problem of numerical data types (32-bit
or 64-bit floating point numbers). Thus, the value for regularizing the constant threshold is
proportional to the k-th power of the diameter of the supported region. In this work, we try our
best to control the value (mainly on ζ), which ranges from 10−4 to 0.01 when the diameter is 1 in
different examples.

3. Gradient of the Objective Function

Let ν = ∑m
i=1 wiδyi be a discrete probability measure in the position of “µm” in the

last section. For a fixed (continuous) µ, the objective now is to obtain a discrete target
ν∗ = argmin Wk

k,ζ(µ, ν).
In order to apply a stochastic gradient descent (SGD) to both the positions {yi}m

i=1 and
their weights {wi}m

i=1 to achieve ν∗, we now derive the gradient of Wk
k,ζ(µ, ν) about ν by

following the discrete discussions of [13,14]. The SGD on X is either derived through an
exponential map, or by treating X as (part of) an Euclidean space.

Let g(x, y) := dk
X(x, y), and denote the joint distribution minimizing Ŵk

k,ζ as π with

the differential form at (x, yi) being dπi(x), which is used to define Wk
k,ζ in Section 2.

By introducing the Lagrange multipliers α ∈ L∞(X), β ∈ Rmi, we have Ŵk
k,ζ(µ, ν) =

maxα,βL(µ, ν; α, β),
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where L(µ, ν; α, β) =
∫

X α(x)dµ(x) + ∑n
i=1 βwi − ζ

∫
X ∑n

i=1 wiEi(x)dµ(x) with Ei(x) =

e(α(x)+βi g(x,yi))/ζ (see [5]). Let α∗, β∗ be the argmax; then, we have

Wk
k,ζ(µ.ν) =

∫
X

n

∑
i=1

g(x, yi)E∗i (x)widµ(x)

with E∗i (x) = e(α
∗(x)+β∗i −g(x,yi))/ζ . Since α′(x) := α(x) + t and β′i := βi − t produce the

same Ei(x) for any t ∈ R, the representative with βn = 0 that is equivalent to β (as well
as β∗) is denoted by β (similarly β

∗
) below in order to obtain uniqueness and make the

differentiation possible.
From a direct differentiation of Wk

k,ζ , we have

∂Wk
k,ζ

∂wi
=
∫

X
g(x, yi)E∗i (x)dµ(x)+

1
ζ

∫
X

n

∑
j=1

g(x, yj)

(
∂α∗(x)

∂wi
+

∂β∗j
∂wi

)
wjE∗j (x)dµ(x). (4)

∇yiW
k
k,ζ =

∫
X
∇yi g(x, yi)

(
1− g(x, yi)

ζ

)
E∗i (x)widµ(x)+

1
ζ

∫
X

n

∑
j=1

g(x, yj)
(
∇yiα

∗(x)+∇yiβ
∗
j

)
wjE∗j (x)dµ(x). (5)

With the transference plan dπi(x) = wiE∗i (x)dµ(x) and the derivatives of α∗, β∗, g(x, yi)

calculated, the gradient of Wk
k,ζ can be assembled.

Assume that g is a Lipschitz constant that is differentiable almost everywhere (for
k ≥ 1 and a dX Euclidean distance in Rd, differentiability fails to hold only when k = 1 and
yi = x) and that∇yg(x, y) is calculated. The derivatives of α∗ and β

∗
can then be calculated

thanks to the Implicit Function Theorem for Banach spaces (see [15]).
The maximality of L at α∗ and β

∗
induces N := ∇α,βL|(α∗ ,β̄∗) = 0 ∈ (L∞(X) ⊗

Rm−1)∨, and the Fréchet derivative vanishes. By differentiating (in the sense of Fréchet)
again on (α, β) and yi, wi, respectively, we get

∇(α,β)N = −1
ζ

[
dµ(x)δ(x, x′) dπj(x′)

dπi(x) wiδij

]
(6)

as a bilinear functional on L∞(X)× Rm−1 (note that, in Equation (6), the index i of dπi
cannot be m). The bilinear functional ∇(α,β)N is invertible, and we denote its inverse by

M as a bilinear form on
(

L∞(X)⊗Rm−1)∨. The last ingredient for the Implicit Function
Theorem is ∇wi ,yiN :

∇wiN =

(
− 1

wi

∫
X
( · )dπi(x),~0

)
(7)

∇yiN =

(
1
ζ

∫
X
(·)∇yi g(x, yi)dπi(x),

δij

ζ

∫
X
∇yi g(x, yi)dπi(x)

)
. (8)

Then, ∇wi ,yi (α
∗, β
∗
) = M(∇wi ,yiN ). Therefore, we have gradient ∇wi ,yi W

k
k,ζ calculated.

Moreover, we can differentiate Equations (4)–(8) to get a Hessian matrix of Wk
k,ζ on wi’s

and yi’s to provide a better differentiability of g(x, y) (which may enable Newton’s method,
or a mixture of Newton’s method and minibatch SGD to accelerate the convergence). More
details about the claims, calculations, and proofs are provided in the Appendix B.
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4. The Discretization Algorithm

Here, we provide a description of an algorithm for the efficient discretizations of
optimal transport (EDOT) from a distribution µ to µm with integer m, which is a given
cardinality of support. In general, µ does not need not be explicitly accessible, and, even
if it is accessible, computing the exact transference plan is not feasible. Therefore, in this
construction, we assume that µ is given in terms of a random sampler, and we apply a
minibatch stochastic gradient descent (SGD) through a set of samples that are independently
drawn from µ of size N on each step to approximate µ.

To calculate the gradient∇µmWk
k,ζ(µ, µm) =

(
∇xi W

k
k,ζ(µ, µm),∇wi W

k
k,ζ(µ, µm)

)m

i=1
, we

need: (1). πX,ζ , the EOT transference plan between µ and µm, (2). the cost g = d k
X on X,

and (3). its gradient on the second variable ∇x′d
k

X (x, x′). From N samples {yi}N
i=1, we

can construct µN = 1
N ∑N

i=1 δyi and calculate the gradients with µ replaced by µN as an
estimation, whose effectiveness (convergence as N → ∞) is proved in [5].

We call this discretization algorithm the Simple EDOT algorithm. The pseudocode is
stated in the Appendix C.

Proposition 2 (Convergence of the Simple EDOT). The Simple EDOT generates a sequence
(µ

(i)
m ) in the compact set Xm×∆. If the set of limit points of (µ(i)

m ) does not intersect with Xm× ∂∆,
then (µ

(i)
m ) converges to a stationary point in Xm × Int(∆) where Int(·) represents the interior.

In simulations, we fixed k = 2 to reduce the computational complexity and fixed the
regularizer ζ = 0.01 for X of diameter 1 and scales proportional with diam(X)k (see next
section). Such a choice for ζ is not only small enough to reduce the error between the EOT
estimation Wk,ζ and the true Wk, but also ensures that e−g(x,y)/ζ and its byproduct in the
SK are distinguishable from 0 in a double format.

Examples of discretization: We demonstrated our algorithm on the following:
E.g., (1). µ is the uniform distribution on X = [0, 1].
E.g., (2) µ is the mixture of two truncated normal distributions on X = [0, 1], and

the PDF is f (x) = 0.3φ(x; 0.2, 0.1) + 0.7φ(x; 0.7, 0.2), where φ(x; ξ, σ) is the density of the
truncated normal distribution on [0, 1] with the expectation ξ and standard deviation σ.

E.g., (3) µ is the mixture of two truncated normal distributions on X = [0, 1]2, where the
two distributions are φ(x; 0.2, 0.1)φ(y; 0.3, 0.2) of weight 0.3 and φ(x; 0.7, 0.2)φ(y; 0.6, 0.15)
of weight 0.7.

Let N = 100 for all plots in this section. Figure 2a–c plots the discretizations (µm) for
E.g., (1)–(3) with m = 5, 5, and 7, respectively.

Figure 2f illustrates the convergence rate of Wk
k,ζ(µ, µm) versus the SGD steps for

Example (2) with µm obtained by a 5-point EDOT. Figure 2d,e plot the entropy-regularized
Wasserstein Wk

k,ζ(µ, µm) versus m, thereby comparing EDOT and naive sampling for
Examples (1) and (2). Here, the µms are: (a) from the EDOT with 3 ≤ m ≤ 7 in Example 1
and 3 ≤ m ≤ 8 in Example 2, which are shown by ×s in the figures. (b) from naive
sampling, which is simulated using a Monte Carlo of volume 20,000 on each size from 3 to
200. Figure 2d,e demonstrate the effectiveness of the EDOT: as indicated by the orange hor-
izontal dashed line, even 5-point EDOT discretization in these two examples outperformed
95% of the naive samplings of size 40, as well as 75% of the naive samplings of size over
100 (the orange dash and dot lines).

An example of a transference plan: In Figure 3a, we illustrate the efficiency of the
EDOT on an OT problem: X = Y = [0, 1], where the marginal µ and ν are truncated normal
(mixtures), and µ has two components (shown in red curve on the left), while ν has only
one component (shown in red curve on the top). The cost function is the squared Euclidean
distance, and λ = ζ = 0.01.
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(a) (b) (c)

(d) (e) (f)

Figure 2. (a–c) Plots of EDOT discretizations of the Examples (1)–(3). In (c), the x-axis and y-axis
are the 2D coordinates, and the probability density of µ and weights of µm are encoded by color.
(d,e) show comparison between EDOT and i.i.d. sampling for Examples (1) and (2). EDOT are
calculated with m = 3 to 7 (3 to 8). The 4 boundary curves of the shaded region are 5%-, 25%-,
75%-, and 95%-percentile curves; the orange line represents the level of m = 5; (f) plots the entropy
regularized Wasserstein distance Wk

k,ζ(µ, µm) versus the SGD steps for Example (2) with µm optimized
by 5-point EDOT. ζ=0.01 in all cases.

(a)

(b)

Figure 3. (a): Approximation of a transference plan. Left: 5× 5 EDOT approximation. Right: 25× 25
naive approximation. In both figures, magnitudes of each point is color coded, the background
grayscale density represents the true EOT plan. (b): An example of adaptive refinement on a
unit square. Left: division of 10,000 sample S approximating a mixture of two truncated Gaussian
distributions and the refinement for 30 discretization points. Number of discretization points assigned
to each region is marked by black numbers. E.g., upper left regaion needs 6 points. Right: the
discretization optimized locally and combined as a probability measure with k = 2.

The left of Figure 3a shows a 5× 5 EDOT approximation with Wk
k,ζ(µ, µ5) = 4.792×

10−3, Wk
k,ζ(ν, ν5) = 5.034× 10−3, and Wk

k,ζ(γ, γ5,5) = 8.446× 10−3. The high density area
of the EOT plan is correctly covered by EDOT estimating points with high weights. The
right shows a 25× 25 naive approximation with Wk

k,ζ(µ, µ7) = 5.089× 10−3, Wk
k,ζ(ν, ν7) =

2.222× 10−2, and Wk
k,ζ(γ, γ7,7) = 2.563× 10−2. The points of the naive estimating with the

highest weights missed the region where the true EOT plan was of the most density.
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5. Methods of Improvement

I. Adaptive EDOT: The computational cost of a simple EDOT increases with the
dimensionality and diameter of the underlying space. Discretization with a large m is
needed to capture higher dimensional distributions, which result an increase in parameters
for calculating the gradient of Wk

k,ζ : md for the yi positions and m− 1 for the wi weights.
Such an increment will not only increase the complexity in each step, but also require more
steps for the SGD to converge. Furthermore, the calculation will have a higher complexity
(O(mN) for each normalization in Sinkhorn).

We proposed to reduce the computational complexity using a “divide and conquer”
approach. The Wasserstein distance took the k-th power of the distance function d k

X as a

cost function. The locality of distance dX made the solution to the OT / EOT problem local,
meaning that the probability mass was more likely to be transported to a close destination
than to a remote one. Thus, we can “divide and conquer”—thereby cutting the space X
into small cells and solve the discretization problem independently.

To develop a “divide and conquer” algorithm, we need: (1) an adaptive dividing
procedure that is able to partition X = X1 t · · · t XI , which balances the accuracy and
computational intensity among the cells; (2) to determine the discretization size mi and
choose a proper regularizer ζi for each cell Xi. The pseudocodes for all variations are shown
in the Appendix C Algorithms A2 and A3.

Choosing size m: An appropriate choice of mi will balance contributions to the Wasser-
stein among the subproblems as follows: Let Xi be a manifold of dimension d, let diam(Xi)
be its diameter, and let pi = µ(Xi) be the probability of Xi. The entropy-regularized Wasser-
stein distance can be estimated as Wk

k,ζ = O(pim
−k/d
i diam(Xi)

k) [16,17]. The contribution

to Wk
k,ζ(µ, µm) per point in support of µm is O(pim

−(k+d)/d
i diam(Xi)

k). Therefore, to bal-
ance each point’s contribution to the Wasserstein among the divided subproblems, we set

mi ≈
(pidiam(Xi)

k)d/(k+d)

∑Ij=1(pjdiam(Xj)k)d/(k+d) .

Occupied volume (Variation 1):A cell could be too vast (e.g., large in size with few
points in a corner), thus resulting in obtaining a larger mi than needed. To fix it, we
may replace the diam(Xi) above with Vol(Xi)

1/d, where Vol(Xi) is the occupied volume
calculated by counting the number of nonempty cells in a certain resolution (levels in
previous binary division). The algorithm (Variation 1) becomes a binary tree to resolve and
obtain the occupied volume for each cell, then there is tree traversal to assign mi.

Adjusting the regularizer ζ: In the Wk
k,ζ , the SK on e−g(x,y)/ζ is calculated. Therefore, ζ

should scale with dk
X to ensure that the transference plan is not affected by the scaling of

dX . Precisely, we may choose ζi = diam(Xi)
kζ0 for some constant ζ0.

The division: Theoretically, any refinement procedure that proceeds iteratively and
eventually makes the diameter of each cell approach 0 can be applied for division. In our
simulation, we used an adaptive kd-tree-style cell refinement in a Euclidean space Rd. Let
X be embedded into Rd within an axis-aligned rectangular region. We chose an axis xl in
Rd and evenly split the region along a hyperplane orthogonal to xl (e.g., cut square [0, 1]2

along the line x = 0.5); thus, we constructed X1 and X2. With the sample set S given, we
split it into two sample sizes S1 and S2 according to which subregion each sample was
located in. Then, the corresponding mi and ζi could be calculated as discussed above. Thus,
two cells and their corresponding subproblems were constructed. If some of the mi was
still too large, the cell was cut along another axis to construct two other cells. The full list
of cells and subproblems could be constructed recursively. In addition, another cutting
method (variation 2) that chooses the most sparse point as a cutting point through a sliding
window is sometimes useful in practice.

After having the set of subproblems, we could apply the EDOT for the solutions
in each cell, then combine the solutions µ

(i)
mi = ∑mi

j=1 w(i)
j δ

y(i)j

into the final result µm :=

∑Ii=1 ∑mi
j=1 piw

(i)
j δ

y(i)j

.
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Figure 3b shows the optimal discretization for the example in Figure 2c with m = 30,
which was obtained by applying the EDOT with adaptive cell refinement, or ζ = 0.01× diam2.

II. On embedded CW complexes: Although the samples on space X are usually
represented as a vector in Rd, inducing an embedding X ↪→ Rd, the space X usually has its
own structure as a CW complex (or simply a manifold) with a more intrinsic metric. Thus,
if the CW complex structure is known, even piecewise, we may apply the refinement on X
with respect to its own metric, whereas direct discretization as a subset in Rd may result in
a low expressing efficiency.

We now illustrate the adaptive EDOT by an example on a mixture normal distribution
of a sphere mapped through stereographic projection. More examples of a truncated
normal mixture over a Swiss roll and the discretization of a 2D optimal transference plan
are detailed in the Appendix D.5.

On the sphere: The underlying space Xsphere is the unit sphere in R3. µsphere is the
pushforward of a normal mixture distribution on R2 by stereographic projection. The
sample set Ssphere ∼ µsphere over Xsphere is shown on Figure 4 on the left. Consider a (3D)
Euclidean metric on the Xsphere induced by the embedding. Figure 4a (right) plots the
EDOT solution with refinement for µm with m = 40. The resulting cell structure is shown
as colored boxes.

(a)

(b)

Figure 4. (a) Left: 30,000 samples from µsphere and the 3D cells under divide-and-conquer algorithm
Right: 40-point EDOTs in 3D. (b) The 40-point CW-EDOTs in 2D. Red dots: samples, other dots:
discrete atoms with weights represented in colors. Left: upper hemisphere. Right: lower hemisphere,
stereographic projections about poles. ζ = 0.01× diam2.

To consider the intrinsic metric, a CW complex was constructed about a point on the
equator as a 0-cell structure; the rest of the equator was constructed as a 1-cell, and the
upper hemisphere and lower hemisphere were constructed as two dimension 2- (open)
cells. We took the upper and lower hemispheres and mapped them onto a unit disk through
stereographic projection with respect to the south and north pole, respectively. Then, we
took the metric from spherical geometry and rewrote the distance function and its gradient
using the natural coordinate on the unit disk. Figure 4b shows the refinement of the EDOT
on the samples (in red) and the corresponding discretizations in colored points. More
figures can be found in the Appendices.

6. Analysis of the Algorithms

In this section, we derive the complexity of the simple EDOT and the adaptive EDOT.
In particular, we show the following:

Proposition 3. Let µ be a (continuous) probability measure on a space X. A simple EDOT of size
m has time complexity O((N + m)2mdL + NmL log(1/ε)) and space complexity O((N + m)2),
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where N is the minibatch size (to construct µN in each step to approximate µ), d is the dimension
of X, L is the maximal number of iterations for SGD, and ε is the error bound in the Sinkhorn
calculation for the entropy-regularized optimal transference plan between µN and µm.

Proposition 3 quantitatively shows that, when the adaptive EDOT is applied, the total
complexities (in time and space) are reduced, because the magnitudes of both N and m are
much smaller in each cell.

The procedure of dividing sample set S into subsets through the adaptive EDOT is
similar to Quicksort; thus, the space and time complexities are similar. The similarity comes
from the binary divide-and-conquer structure, as well as that each split action is based on
comparing each sample with a target.

Proposition 4. For the preprocessing (job list creation) for the adaptive EDOT, the time complexity
is O(N0 log N0) in the best and average case and O(N2

0 ) in the worst case, where N0 is the total
number of sample points, and the space complexity isO(N0d + m), or simplyO(N0d) as m� N0.

Remark 2. Complexity is the same as Quicksort. The set of N0 sample points in the algorithm are
treated as the “true” distribution in the adaptive EDOT, since, in the later EDOT steps for each
cell, no further samples are taken, as it is hard for a sampler to produce a sample in a given cell.
Postprocessing of the adaptive EDOT has O(m) complexity in both time and space.

Remark 3. For the two algorithm variations in Section 5, the occupied volume estimation works
in the same way as the original preprocessing step, which has the same time complexity as before
(by itself, since dividing must happen after knowing the occupied volume of all cells), but, with the
tree built, the original preporcessing becomes a tree traversal and has (additional) time complexity
O(N0) and (additional) space complexity O(N0) for the space storing occupied volume.

For details on choosing cut points with window sliding, the discussion can be seen in the Appendix C.5.

Comparison with naive sampling: After having a size m discretization on X and a
size n discretization on Y, the EOT solution (Sinkhorn algorithm) has time complexity
O(mn log(1/ε)). In the EDOT, two discretization problems must be solved before applying
the Sinkhorn, while the naive sampling requires nothing but sampling.

According to Proposition 3, solving a single continuous EOT problem using a size
m simple EDOT method may result in higher time complexity than naive sampling with
an even larger sample size N (than m). However, unlike the EDOT, which only requires
access to a distance function dX and dY on X and Y, respectively, a known cost function
c : X×Y → R is necessary for naive sampling. In real applications, the cost function may
be from real world experiments (or from extra computations) done for each pair (x, y) in
the discretization; thus, the size of discretized distribution is critical for cost control. dX
and dY usually come along with the spaces X and Y, respectively, and are easy to compute.
An additional application of the EDOT is necessary when the marginal distributions µX
and νY are fixed for different cost functions; then, discretizations can be reused. Thus, the
cost of discretization is calculated one time, and the improvement it brings accumulates in
each repeat.

7. Related Work and Discussion

Our original problem was the optimal transport problem between general distributions
as samplers (instead of integration oracles). We translated that into a discretization problem
and an OT problem between discretizations.

I. Comparison with other discretization methods: There are several other methods
that generate discrete distributions from arbitrary distributions in the literature, which
are obtained via semi-continuous optimal transport where the calculation of a weighted
Voronoi diagram is needed. Calculating the weighted Voronoi diagrams usually requires
1. that the cost function be a squared Euclidean distance and 2. the application of De-
launay triangulation, which is expensive in more than two dimensions. Furthermore,
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semi-continuous discretization may only optimize one aspect between the position and
weights of the atoms, and this process is mainly based on [18] (the optimized position)
and [19] (the optimized weights).

We mainly compared the prior work of [18], which focuses on the barycenter of a set
of distributions under the Wasserstein metric. This work resulted in a discrete distribution
called the Lagrangian discretization, which is of the form 1

m ∑m
i=1 δxi [2]. Other works, such

as [20,21], find barycenters but do not create a discretization. Refs. [19,22] studied the
discrete estimation of a 2-Wasserstein distance locating discrete points through a clustering
algorithm k-means++ and a weighted Voronoi diagram refinement, respectively. Then, they
assigned weights and made them non-Lagrangian discretizations. Ref. [19] (comparison in
Figure 5) roughly followed a “divide-and-conquer” approach in selecting positions, but
the discrete positions were not tuned according to Wasserstein distance directly. Ref. [22]
converged as the number of discrete points increased. However, it lacked a criterion (such
as the Wasserstein in the EDOT) to show that the choice is not just one among all possible
converging algorithms, but, rather, it is a special one.

By projecting the gradient in the SGD to the tangent space of the submanifold Xm ×
{em/m} = { 1

m ∑ δxi}, or by equivalently fixing the learning rate on the weights to zero, the
EDOT can estimate a Lagrangian discretization (denoted by EDOT-Equal). A comparison
among the methods is held on the map of the Canary islands, which is shown in Figure 6.
This example shows that our method can get a similar result using Lagrangian discretization
as the methods in the literature, while, in general, this type of EDOT can work better.

Moreover, the EDOT can be used to solve barycenter problems.
Note that, to apply adaptive EDOT for barycenter problems, compatible divisions of

the target distributions are needed (i.e., a cell A from one target distribution transports
onto a discrete subset D thoroughly, and D transports onto a cell B from another target
distribution, etc.).

Figure 5. EDOT of an example from [19]. Potrait of Riemann, discretization of size 625. Left: green
dots show position and weights of EDOT discretization (same as right); cells in background are
discretization of the same size in the original [19]. Right: A size 10,000 discretization from [19]; we
directly applied EDOT to this picture, treating it as the continuous distribution. ζ = 0.01× diam2.

Figure 6. A comparison of EDOT (left), EDOT-Equal (mid), and [18] (right) on the Canary islands,
treated as a binary distribution with a constant density on islands and 0 in the sea. Discretizations for
each method is shown by black bullets. Wasserstein distances: EDOT: W2

0.005 = 0.02876, EDOT-Equal:
W2

0.005 = 0.05210, Claici: W2
0.005 = 0.05288. Map size is 3.13× 1.43.

We also tested these algorithms on discretizing gray/colored scale pictures. The
comparison of discretization with points varying from 10 to 4000 for a kitty image between
EDOT, EDOT-equal, [18] and estimations of their Wasserstein distances to the original
image are shown in Figures 7 and 8.



Entropy 2023, 25, 839 11 of 30

(a) (b) (c) (d)

Figure 7. Discretization of a kitty. Discretization by each method is shown in red bullets on top of
the Kitty image. (a) EDOT, 10 points, W2

0.001 = 0.009176, radius represents weight; (b) EDOT-Equal,
10 points, W2

0.001 = 0.008960; (c) [18], 10 points, W2
0.001 = 0.009832; (d) [18], 200 points. Figure size

1× 1, ζ = 0.01× diam2.

(a) (b) (c)

Figure 8. 2000-Point Discretizations, (a). EDOT (weight plotted in color), (b). EDOT-Equal, (c).
Relations between log(W2) and log m (all with divide and conquer); it can be seen that the advantage
of WEDOT over WEqual grows with the size of discretization.

Furthermore, the EDOT may be applied on RGB channels of an image independently,
which then combine plots of discretizations in the corresponding color. The results are
shown in Figure 1 at the beginning of this paper.

Lagrangian discretization may have a disadvantage in representing repetitive patterns
with incompatible discretization points.

In Figure 9, we can see that discretizing 16 objects with 24 points caused weight
incompatibility locally for the Lagrangian discretization, thus making points locate between
objects and increasing the Wasserstein distance. With the EDOT, the weights of points
that lie outside of the blue object were much smaller. The patterned structure was better
represented by the EDOT. In practice, patterns often occur as part of the data (e.g., pictures
of nature), and it is easy to get an incompatible number in Lagrangian discretization, since
the equal weight-requirement is rigid; consequently, patterns cannot be properly captured.

(a) (b) (c)

Figure 9. Discretization of 16 blue disks in a unit square with 24 points (black). (a) EDOT,
W2

ζ = 0.001398; (b) EDOT-Equal, W2
ζ = 0.002008; (c) [18], W2

ζ = 0.002242. ζ = 10−4. Figure size is
1× 1.

II. General k and deneral distance dX : Our algorithms (Simple EDOT, adaptive EDOT,
and EDOT-Equal) work for a general choice of parameter k > 1 and C2 distance dX on
X. For example, in Figure 4 part (b), the distance used on each disk was spherical (arc
length along the big circle passing through two points), which could not be isometrically
reparametrized into a plane with Euclidean metrics because of the difference in curvatures.

III. Other possible impacts: As the OT problem widely exists in many other areas,
our algorithm can be applied accordingly, e.g., the location and size of supermarkets or
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electrical substations in an area, or even air conditioners in the rooms of supercomputers.
Our divide-and-conquer methods are suitable for solving these real-world applications.

IV. OT for discrete distributions: Many algorithms have been developed to solve OT
problems between two discrete distributions [3]. Linear programming algorithms were first
developed, but their applications have been restricted by high computational complexity.
Other methods such as [23], with a cost of form c(x, y) = h(x − y) for some h, which
applies the “back-and-forth” method by hopping between two forms of a Kantorovich dual
problem (on the two marginals, respectively) to get a gradient of the total cost over the dual
functions, usually solve problems with certain conditions. In our work, we chose to apply
an EOT developed by [8] for an estimated OT solution of the discrete problem.

8. Conclusions

We developed methods for efficiently approximating OT couplings with fixed size
m× n approximations. We provided bounds on the relationship between a discrete ap-
proximation and the original continuous problem. We implemented two algorithms and
demonstrated their efficacy as compared to naive sampling and analyzed computational
complexity. Our approach provides a new approach to efficiently compute OT plans.
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Appendix A. Proof of Proposition 1

Proof. We will adopt the notations Z = X × Y and zi = (xi, yi) ∈ Z. Furthermore, recall
the condition:

max{dX(x, x′), dY(y, y′)} ≤ dZ(z, z′) ≤ dX(x, x′) + dY(y, y′) (A1)

For inequality (i) without loss, assume that

max{Wk
k (µ, µm), Wk

k (ν, νn)} = Wk
k (µ, µm)
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Denote the optimal πZ ∈ Π(γλ(µ, ν), γλ(µm, νn)) that achieves Wk
k (γλ(µ, ν), γλ(µm, νn))

by π∗Z and similarly for π∗X . Then, we have:

Wk
k (γλ(µ, ν), γλ(µm, νn)) =

∫
Z2

dk
Z(z1, z2)dπ∗Z ≥ A

∫
Z2

dk
X(x1, x2)dπ∗Z

= A
∫

X2
dk

X(x1, x2)
∫

Y2
dπ∗Z

(a)
= A

∫
X2

dk
X(x1, x2)dπ′X

(b)
≥ A

∫
X2

dk
X(x1, x2)dπ∗X = Wk

k (µ, µm)

Here, π′X ∈ Π(µ, µm) and eq (a) hold since π∗Z ∈ Π(γλ(µ, ν), γλ(µm, νn)), and ineq (b)
holds since π∗X is the optimal choice.

For inequality (ii), we use the following to simplify the notations: dγ ⊗ dγmn :=
dγλ(µ, ν)⊗ dγλ(µm, νn) and dk

Z := dk
Z(z1, z2), dk

X := dk
X(x1, x2), dk

Y := dk
Y(y1, y2)

Wk
k,ζ(γλ(µ, ν), γλ(µm, νn)) =

∫
Z2

dk
Z(z1, z2)dπ∗z,ζ

(a)
=
∫

Z2
dk

Z · exp(
α(z1) + β(z2)− dk

Z(z1, z2)

ζ
)dγ⊗ dγmn

(b)
≤ A

∫
Z2
(dk

X + dk
Y) · exp(

α(z1) + β(z2)− dk
Z

ζ
)dγ⊗ dγmn

(c)
≤ C1

∫
Z2
(dk

X + dk
Y) · exp(

−dk
Z

ζ
)dγ⊗ dγmn

(d)
≤ C1[

∫
Z2

dk
X · exp(

−dk
X

ζ
) + dk

Y · exp(
−dk

Y
ζ

)dγ⊗ dγmn]

(e)
= C1[

∫
X2

dk
X · exp(

−dk
X

ζ
)dµ⊗ dµm +

∫
Y2

dk
Y · exp(

−dk
Y

ζ
)dν⊗ dνn]

( f )
≤ C1

∫
X2

dk
X · exp(

s(x1) + t(x2)− dk
X

ζ
)dµ⊗ dµm

+ C1

∫
Y2

dk
Y · exp(

s′(y1) + t′(y2)− dk
Y

ζ
)dν⊗ dνn

= C1[Wk
k,ζ(µ, µm) + Wk

k,ζ(ν, νn)]

Justifications for the derivations:
(a) Based on the dual formulation, it is shown in [5] Proposition 1 that, for ζ > 0, there

exist α(z1), β(z2) ∈ C(Z) such that:

dπ∗z,ζ = exp( α(z1)+β(z2)−dk
Z(z1,z2)

ζ )dγ⊗ dγmn;
(b) Inequality (ii) of Equation (A1);
(c) According to Ref. [24] Theorem 2, when X and Y are compact and c is smooth, α

and β are uniformly bounded; moreover, both dk
X and dk

Y are uniformly bounded by the
diameter of X and Y, respectively; hence, the constant B exists;

(d) Inequality (ii) of Equation (A1);
(e) γλ(µ, ν) ∈ Π(µ, ν) and γλ(µm, νn) ∈ Π(µm, νn);
(f) Similarly as in (a), for ζ > 0, there exist s(x1), t(x2) ∈ C(X), and s′(y1), t′(y2) ∈

C(Y) such that exp(−dk
X

ζ )dµ ⊗ dµm = dπ∗X and exp(−dk
Y

ζ )dν ⊗ dνn = dπ∗Y. Moreover,∫
X2 dk

X · exp( s(x1)+t(x2)
ζ )dµ⊗ dµm ≥ 0, and

∫
Y2 dk

Y · exp( s′(y1)+t′(y2)
ζ )dν⊗ dνn ≥ 0.
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Appendix B. Gradient of Wk
k,ζ

Appendix B.1. The Gradient

Following the definitions and notations in Sections 2 and 3 of the paper, we calculate
the gradient of Wk

k,ζ(µ, µm) about parameters of µm := ∑m
i=1 wiδyi in detail.

Wk
k,ζ(µ, µm) =

∫
X2 g(x, y)dγζ(x, y), where

γζ = argmin γ∈Π(µ,µm)

∫
X2

g(x, y)dγ(x, y) + ζKL(γ||µ⊗ µm). (A2)

Let α ∈ L∞(X) and β ∈ Rm. Denote β = ∑m
i=1 βiδyi , and let

F (γ; µ, µm, α, β) :=
∫

X2
g(x, y)dγ(x, y) + ζKL(γ||µ⊗ µm)

+
∫

X
α(x)

(∫
X

dγ(x, y)− dµm(y)
)

+
∫

X
β(y)

(∫
X

dγ(x, y)− dµ(x)
)

=
∫

X2
g(x, y)dγ(x, y) + ζKL(γ||µ⊗ µm)

+
∫

X
α(x)

(
m

∑
i=1

dγ(x, yi)− dµm(yi)

)

+
m

∑
i=1

βi

(∫
X

dγ(x, yi)− dµ(x)
)

(A3)

Since γ on the second component X is discrete and supported on {yi}m
i=1, we may

denote dγ(x, yi) by dπi(x); thus,

F (γ; µ, µm, α, β) =
∫

X

m

∑
i=1

g(x, yi)dπi(x)

+ ζ
m

∑
i=1

∫
X

(
ln

dπi(x)
dµ(x)

− ln(µm(yi))

)
dπi(x)

+
∫

X
α(x)

(
m

∑
i=1

dπi(x)− dµm(yi)

)

+
m

∑
i=1

βi

(∫
X

dπi(x)− dµ(x)
)

(A4)

Then, the Fenchel duality of Problem (A2) is

L(µ, µm; α, β)

=
∫

X
α(x)dµ(x) +

m

∑
i=1

βiwi − ζ
∫

X

m

∑
i=1

e(α(x)+βi−g(x,yi))/ζ widµ(x). (A5)

Let α∗ and β∗ be the argmax of the Fenchel dual (A5). The primal is solved by dγ∗(x, yi) =

e(α
∗(x)+β∗i −g(x,yi))/ζ widµ(x). To make the solution unique, we restrict the freedom of the

solution (where we see that L(µ, µm; α, β) = L(µ, µm; α + t, β− t) for any t ∈ R). We use
the condition βm = 0 to narrow the choices down to only one, and denote the dual variable
β having the property β and β

∗
.

We first calculate ∇wi ,yiL(µ, µm; α∗, β
∗
) with α∗ and β

∗
as functions of µm. (from

the paper).
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∂L
∂wi

=
∫

X
g(x, yi)E∗i (x)dµ(x)+

1
ζ

∫
X

n

∑
j=1

g(x, yj)

(
∂α∗(x)

∂wi
+

∂β∗j
∂wi

)
wjE∗j (x)dµ(x). (A6)

∇yiL =
∫

X
∇yi g(x, yi)

(
1− g(x, yi)

ζ

)
E∗i (x)widµ(x)+

1
ζ

∫
X

n

∑
j=1

g(x, yj)
(
∇yiα

∗(x)+∇yiβ
∗
j

)
wjE∗j (x)dµ(x). (A7)

Next, we calcuate the derivatives of α∗ and β
∗

by finding their defining equation and
then using the Implicit Function Theorem.

The optimal solution to the dual variables α∗ and β∗ is obtained by solving the
stationary state equation ∇α,βL = 0. The derivatives are taken in the sense of the
Fréchet derivative. The Fenchel dual function on α and β, has its domain and codomain
L(µ, µm; ·, ·) : L∞(X)×Rm−1 → R. The derivatives are

∇αL(µ, µm; α, β) =
∫

X

(
1−

m

∑
i=1

wiEi(x)

)
( · )dµ(x), (A8)

∂

∂βi
L(µ, µm; α, β) = wi

(
1−

∫
X

Ei(x)dµ(x)
)

(A9)

where Ei(x) = e(α(x)+βi−g(x,yi))/ζ is defined as in the paper, ∇αL(µ, µm; α, β) ∈ (L∞(X))∨

(as a linear functional), and
∂

∂βi
L(µ, µm; α, β) ∈ R. Next, we need to show that L is

differentiable in the sense of the Fréchet derivative, i.e.,

lim
||h||→0

1
||h||

(
L(µ, µm; α + h, β)−L(µ, µm; α, β) −∇αL(µ, µm; α, β)(h)

)
= 0. (A10)

By the definition of L (we write L(α) for L(µ, µm; α, β)),

L(α + h)−L(α)−∇αL(α)(h)

=
∫

X
h(x)dµ(x)−ζ

∫
X

m

∑
i=1

(
eh(x)/ζ−1

)
wiEi(x)dµ(x)−

∫
X

(
1−

m

∑
i=1

wiEi(x)

)
h(x)dµ(x)

=ζ
∫

X

m

∑
i=1

(
1 +

h(x)
ζ
− eh(x)/ζ

)
Ei(x)widµ(x)

=ζ
∫

X

(
∞

∑
k=2

1
k!

h(x)k

ζk

)
m

∑
i=1

Ei(x)widµ(x), (A11)

The last equality is from a Taylor expansion of the exponential function. Consider that
||h||∞ = ess sup |x∈Xh(x)| the essential supremum of |h(x)| for x ∈ X given measure µ.



Entropy 2023, 25, 839 16 of 30

Denote N := ∇α,βL,

1
||h|| (L(α + h)−L(α)−∇αL(α)(h))

≤ ζ

||h||

∫
X

(
∞

∑
k=2

1
k!
|h(x)|k

ζk

)
m

∑
i=1

Ei(x)widµ(x)

≤ ζ

||h||

∫
X

(
∞

∑
k=2

1
k!
||h||k

ζk

)
m

∑
i=1

Ei(x)widµ(x)

=ζ

(
∞

∑
k=2

1
k!
||h||k−1

ζk

) ∫
X

m

∑
i=1

Ei(x)widµ(x)

=ζ

(
∞

∑
k=2

1
k!
||h||k−1

ζk

)
(A12)

Therefore,

lim
||h||→0

1
||h|| (L(α + h)−L(α)−∇αL(α)(h)) = 0, (A13)

which shows that the expression of ∇αL(α) in Equation (A8) gives the correct Fréchet
derivative. Note here that α ∈ L∞(X) is critical in Equation (A12).

Let N := ∇α,βL values in (L∞(X))∨ ×Rm−1. Then, N = 0 defines α∗ and β
∗
, which

makes it possible to differentiate them about µm using the Implicit Function Theorem for
Banach spaces. From now on,N take values at α = α∗, β = β

∗
, i.e., the marginal conditions

on dπi(x) = wiEi(x)dµ(x) hold.
Thus, we need ∇α,βN and ∇wi ,yiN calculated, and prove that ∇α,βN is invertible

(and give the inverse).
It is necessary to make sure which form ∇α,βN is in according to the Fréchet deriva-

tive. Start from the map N (µ, µm; ·, ·) : (L∞(X))×Rm−1 → (L∞(X))∨ × (Rm−1)∨, where
Rm−1 is isomorphic to its dual Banach space (Rm−1)∨. Then, ∇α,βN ∈ Homb

R(L∞(X)×
Rm−1, (L∞(X))∨ × (Rm−1)∨), where Homb represents the set of bounded linear operators.
Moreover, recall that (·)⊗ A is the left adjoint functor of Homb

R(A, ·); then, for R-vector
spaces, Homb

R(L∞(X) × Rm−1, (L∞(X))∨ × (Rm−1)∨) ∼= Homb
R
(
(L∞(X)×Rm−1)⊗2,R

)
.

Thus, we can write ∇α,βN in terms of a bilinear form on vector space L∞(X)×Rm−1.
From the expression of N , we may differentiate (similarly as the calculations (A11)

to (A13)):

∇αN =

(
−1

ζ

∫
X
(·)(−)

m

∑
i=1

wiEi(x)dµ(x) , −1
ζ

∫
X
(·)wiEi(x)dµ(x)

)
(A14)

∇βN =

(
−1

ζ

∫
X
(·)wiEi(x)dµ(x) , −

δij

ζ

∫
X

wiEi(x)dµ(x)
)

(A15)

Consider the boundary conditions ∑m
i=1 wiEi(x)dµ(x) = ∑m

i=1 dπi(x) = µ(x) and∫
X wiEi(x)dµ(x) =

∫
X πi(x) = wi. The ∇α,βN as the Hessian form of L can be written as

∇α,βN = −1
ζ

[
〈−, ·〉

〈
πj, ·

〉
〈−, πi〉 wiδij

]
(A16)

with 〈φ1, φ2〉 =
∫

X φ1(x)φ2(x)µ(x), or further as

∇α,βN = −1
ζ

[
dµ(x)dµ(x′)δ(x, x′) dπj(x)

dπi(x′) wiδij

]
(A17)
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over the basis {δ(x), ei}x∈X,i<m.
By the inverse of ∇α,βN , we mean the element in Homb

R
(
(L∞(X))∨ × (Rm−1)∨,

L∞(X)×Rm−1) which composes with ∇α,βN (on the left and on the right) as identities.
By the natural identity between double dual V∨∨ ∼= V and the tensor hom adjunction,

Homb
R

(
(L∞(X))∨×(Rm−1)∨, L∞(X)×Rm−1

)
∼=Homb

R

(
(L∞(X))∨×(Rm−1)∨, (L∞(X)×Rm−1)∨∨

)
∼=Homb

R

(
((L∞(X))∨ × (Rm−1)∨)⊗2,R

)
, (A18)

we can write the inverse of ∇α,βN as a bilinear form again.

Denote∇α,βN in the block form
[

A B
BT D

]
. According to the block-inverse formula

[
A B
BT D

]−1

=

[
A−1+A−1BF−1BT A−1 −A−1BF−1

−F−1BT A−1 F−1

]
, (A19)

where F = D− BT A−1B, whose invertibility determines the invertibility of
[

A B
BT D

]
.

Consider that A−1 ∈ Homb
R((L∞(X)∨)⊗2,R); explicitly, A−1(x, y) = δ(x, y). There-

fore, from Equation (A17),

Fij =δijwi −
∫

X2
δ(x, x′)πi(x)πj(x′)

=δijwi −
∫

X
wiwjEi(x)Ej(x)µ(x). (A20)

The matrix F is symmetric, of rank m− 1, and strictly diagonally dominant; therefore, it is
invertible. To see the strictly diagonal dominance, consider ∑m

j=1
∫

X wiwjEi(x)Ej(x)µ(x) =∫
X wiEi(x)∑m

j=1 wjEj(x)µ(x) =
∫

X wiEi(x)µ(x) = wi by applying the marginal conditions.
The matrix F is of size (m− 1)× (m− 1) (there is no i = m or j = m for Fij). Then, the
matrix F is strictly diagonally dominant.

With all ingradients known in formula (A19), we can calculate the inverse of ∇α,βN .
Following the implicit function theorem, we need ∇wi ,yiN ; each partial derivative is

an element in L∞(X)∨ ×Rm−1.
∂N
∂wi

=

(
−
∫

X
Ei(x)(·)dµ(x), δij

(
1−

∫
X

Ei(x)dµ(x)
))

=

(
−
∫

X
(·)Ei(x)dµ(x), 0

)
. (A21)

Note that if we apply the constraint ∑m
i=1 wi = 1 to the wis, we may set wm = 1−∑m−1

i=1 wi
and recalculate the above derivatives as ∇w′i

N = ∇wiN − ∇wmN when i 6= m and

∇w′mN = ∑m−1
i=1 ∇wiN .

∇yiN =

(
1
ζ

∫
X
(·)∇yi g(x, yi)wiEi(x)dµ(x),

δij

ζ

∫
X
∇yi g(x, yi)wiEi(x)dµ(x)

)
(A22)

Finally, by the Implicit Function Theorem,

∇wi ,yj(α
∗, β
∗
) = −

(
∇α,βN |α∗ ,β∗

)−1(
∇wi ,yjN |α∗ ,β∗

)
which fits in (A6) and (A7).
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Appendix B.2. Second Derivatives

In this part, we calculate the second derivatives of Wk
k,ζ(µ, µm) with respect to the

ingredients of µm, i.e., wis and yis, for the potential of applying Newton’s method to the
EDOT (which we have not implemented yet).

Using the previous results, we can further calculate the second derivatives of Wk
k,ζ

about wis and yis. Differentiating (A6) and (A7) results in

∂2L
∂wi∂wj

=
1
ζ

∫
X

g(x, yj) ∑
k=i,j

(
∂α(x)
∂wk

+
∂βk
∂wk

)
Ek(x)dµ(x)

+
1
ζ

∫
X

n

∑
k=1

(
∂2α(x)
∂wi∂wj

+
∂2βk

∂wi∂wj

)
wkEk(x)dµ(x)

+
1
ζ2

∫
X

m

∑
k=1

∏
l=i,j

(
∂α(x)
∂wl

+
∂βk
∂wl

)
wkEk(x)dµ(x) (A23)

∇yj

∂L
∂wi

=δij

[∫
X

(
1− g(x, yi)

ζ

)
∇yi Ei(x)dµ(x)

]
+

1
ζ

∫
X
∇yj g(x, yj)

(
∂α(x)
∂wi

+
∂βj

∂wi

)
wjEj(x)dµ(x)

+
1
ζ

∫
X

g(x, yj)∇yj

(
∂α(x)
∂wi

+
∂βj

∂wi

)
wjEj(x)dµ(x)

+
1
ζ2

∫
X

m

∑
k=1

g(x, yk)

(
∂α(x)
∂wi

+
∂βk
∂wi

)(
∇yj α(x) +∇yj βk

)
wkEk(x)dµ(x) (A24)

∇yj∇yiL =δij

[∫
X
∇2

yi
g(x, yi)(1−

g(x, yi)

ζ
)wiEi(x)dµ(x)

−1
ζ

∫
X

(
∇yi g(x, yi)

)2
(2− g(x, yi)

ζ
)wiEi(x)dµ(x)

]
+

1
ζ

∫
X

(
1− g(x, yi)

ζ

)
∇yi g(x, yi) ·

(
∇yj α(x) +∇yj βi

)
wiEi(x)dµ(x)

+
1
ζ

∫
X

(
1−

g(x, yj)

ζ

)
∇yj g(x, yj) ·

(
∇yi α(x) +∇yi β j

)
wjEj(x)dµ(x)

+
1
ζ

∫
X

m

∑
k=1

g(x, yk)
(
∇yi∇yj α(x) +∇yi∇yj βk

)
· wkEk(x)dµ(x)

+
1
ζ2

∫
X

m

∑
k=1

g(x, yk) ∏
l=i,j

(
∇lα +∇l βk

)
· wkEk(x)dµ(x) (A25)

Once we have the second derivatives of g(x, y) on yis, we need the second derivatives
of α∗ and β

∗
to build the above second derivatives. From the formula ∇wi ,yj(α

∗, β
∗
) =

−
(
∇α,βN |α∗ ,β∗

)−1(
∇wi ,yjN |α∗ ,β∗

)
, we can differentiate

∇wk ,yl∇wi ,yj(α
∗, β
∗
)

=−∇wk ,yl

(
∇α,βN |α∗ ,β∗

)−1(
∇wi ,yjN |α∗ ,β∗

)
−
(
∇α,βN |α∗ ,β∗

)−1(
∇wk ,yl∇wi ,yjN |α∗ ,β∗

)
. (A26)

Here, from the formula that ∇A−1 = −A−1∇AA−1 (this is the product rule for
AA−1 = I), we have
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∇wk ,yl

(
∇α,βN |α∗ ,β∗

)−1
= −

(
∇α,βN |α∗ ,β∗

)−1
∇wk ,yl

(
∇α,βN |α∗ ,β∗

) (
∇α,βN |α∗ ,β∗

)−1
(A27)

and

∇wk

(
∇α,βN |α∗ ,β∗

)
= −1

ζ

[
0 δjkEk(x)dµ(x)

δikEk(x′)dµ(x′) δijδjk

]
(A28)

∇yk

(
∇α,βN |α∗ ,β∗

)
=

1
ζ2

[
0 δjk∇yk g(x, yk)dπk(x)

δik∇yk g(x′, yk)dπk(x′) 0

]
. (A29)

The last piece we need is
(
∇wk ,yl∇wi ,yjN |α∗ ,β∗

)
:

∂2N
∂wj∂wi

= (0, 0), (A30)

∇yj

∂N
∂wi

=

(
1
ζ

∫
X
(·)∇yj g(x, yj)Ei(x)dµ(x), 0

)
, (A31)

∇yj∇yiN =
δij

ζ

(∫
X
(·)∇2

yi
g(x, yi)wiEi(x)dµ(x) +

∫
X
(·)
(
∇yi g(x, yi)

)2wiEi(x)dµ(x),

δik

∫
X
∇2

yi
g(x, yi)wiEi(x)dµ(x) +

∫
X

(
∇yi g(x, yi)

)2wiEi(x)dµ(x)
)

, (A32)

where in the last one, k, represents the k-th component in N ’s second part (about β).

Appendix C. Algorithms

Appendix C.1. Algorithm: Simple EDOT

The following states the Algorithm A1 of Simple EDOT.

Algorithm A1 Simple EDOT using minibatch SGD

1: input: µ, k, m, ζ, N batch size, ε for stopping criterion, α = 0.2 for momentum, β = 0.2 for
learning rate.

2: output: xi ∈ X, wi > 0 such that µm = ∑m
i=1 wiδxi .

3: initialize: randomly choose ∑m
i=1 w(0)

i δ
x(0)

i

; set t = 0; set learning rate ηt = 0.5(1 + βt)−s (for

t > 0 and s ∈ (0.5, 1]).
4: repeat
5: Set t← t + 1;
6: Sample N points {yj}N

j=1 ⊆ X from µ independently;

7: Construct µ
(t)
N = 1

N ∑N
j=1 δyj ;

8: Calculate gradients ∇xŴk
k,ζ(µ

(t)
N , µ

(t)
m ) and ∇wŴk

k,ζ(µ
(t)
N , µ

(t)
m );

9: Update Dxt ← αDxt−1 +∇xŴk
k,ζ(µ

(t)
N , µ

(t)
m ), Dwt ← αDwt−1 +∇wŴk

k,ζ(µ
(t)
N , µ

(t)
m );

10: Update x(t) ← x(t−1) − ηtDxt, w(t) ← w(t−1) − ηtDwt;
11: until |∇xŴk

k,ζ |+ |∇wŴk
k,ζ | < ε;

12: Set output xi ← x(t)i , wi ← w(t)
i .

Appendix C.2. Proof of Proposition 2

Remark A1. The convergence to a stationary point in expectation means that the liminf of the
expected norm of the gradient over all the sequences considered approaches to 0.
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Proof. Discrete distributions of size m can be parameterized by Xm × ∆ in terms of
∑m

i=1 piδyi with (p1, p2, . . . , pm) ∈ ∆ and yi ∈ X.
To make the SGD work, we assume that X is a path-connected subset of Rd of dimen-

sion d.
For ε > 0, let ∆ε = ∆m−1

ε = {(p1, p2, . . . , pm) : ∑m
i=1 pi = 1, pi ≥ ε}. First, we prove

the claim by assuming that (∗) the set of limit points of (µ(i)
m ) is contained in Xm × ∆ε.

According to Theorem 4.10 and Corollary 4.12 of [25], to show that Algorithm A1
converges to a stationary point in expectation, i.e., lim infi→0 E[||∇Wk

k,ζ(µ, µ
(i)
m )||2] = 0, one

needs to check: (1). Wk
k,ζ(µ, µ

(i)
m ) is second-differentiable; (2). ∇Wk

k,ζ(µ, µ
(i)
m ) is Lipschitz

continuous; and (3). E[||∇Ŵk
k,ζ(µ

(i)
N , µ

(i)
m )−∇Wk

k,ζ(µ, µ
(i)
m )||2] is bounded.

(1). The second differentiablity of Wk
k,ζ(µ, µ

(i)
m ) is shown in Appendix B.2 with the

second derivative calculated.
(2). As a consequence of (a), we have that ∇Wk

k,ζ(µ, µ
(i)
m ) is continuous. Moreover, by

checking each factor of∇2Wk
k,ζ(µ, µ

(i)
m ) shown in Appendix B.2, we can see that∇2Wk

k,ζ(µ, µ
(i)
m )

is bounded. (Actually, we need det(∇α,βN ) finite to make the SIM bounded, which is true

in ∆ε.) Therefore, ∇Wk
k,ζ(µ, µ

(i)
m ) is Lipschitz continuous.

(3). Noise has bounded variance: Equivalently, we just need to check that
Var(||∇Wk

k,ζ(µN , µm)||2) is finite, where µN is the empirical distribution with N samples
taken (which is stochastic), and µm is the fixed discretization in Xm ×∆ε (this need not to be
the “optimal” one). ∇Wk

k,ζ(µ
(i)
N , µ

(i)
m ) is continuous with respect to both µ

(i)
N and µ

(i)
m ; hence,

it is continuous over compact space XN × Xm × ∆ε; hence, it is bounded by a constant C.
Thus, the proposition holds with assumption (∗).
Further suppose that assumption (∗) does not hold. Then, for any sequence ε1, ε2 · · · →

0, there always exist infinite limit points of (µ(i)
m ) that lie outside ∆εk for any k > 0. There-

fore, we can construct a subsequence of µ
(i)
m converging to a point p ∈ Xm × ∂∆. Thus, p is

also a limit point. This contradicts the assumption that the set of limit points of (µ(i)
m ) does

not intersect with Xm × ∂∆. The proof is then complete.

Appendix C.3. Proof of Proposition 3

Proof. First, for each iteration in the minibatch SGD, let N be the sample (minibatch) size
of µN for approximating µ. Let m be the size of target discretization µm (the output). Fur-
thermore, let d be the dimension of X and ε be the error bound in the Sinkhorn calculation
for the entropy-regularized optimal transference plan between µN and µm . The Sinkhorn
algorithm for the positive matrix e−g(x,y)/ζ (of size N ×m) converges linearly, which takes
O(log(1/ε)) steps to fall into a region of radius ε, thus contributing O(Nm log(1/ε)) in

time complexity. The inverse matrix M of∇(α,β̄)N = − 1
ζ

[
A B
BT D

]
(Equation (6)) is taken

block-wise

M = −ζ

[
A−1 + A−1BE−1BT A−1 −A−1BE−1

−E−1BT A−1 E−1

]
,

where E = D − BT A−1B. Block E is constructed in O(Nm2) and inverted in O(m3);
block A−1BE−1 takes O(Nm2), as A is diagonal; and the block A−1 + A−1BE−1BT A−1

takes O(N2m) to construct. When m � N, the time complexity in constructing M is
O(N2m). From M to the gradient of dual variables, the tensor contractions have complexity
O((N + m)2md). Finally, to get the gradient, the complexity is dominated by the second
term of∇yiW

k
k,ζ (see Equation (5)), which is a contraction between a matrix Nm (i.e., gdπ(x))

with tensors of sizes Nmd and m2d (two gradients on the dual variables α and β) along N
and m, respectively. Thus, the final step contributes O((N + m)md).

The time complexity of increment steps in the SGD turns out to be O(md). Therefore,
for L steps of the minibatch SGD, the time complexity isO((N +m)2mdL+ NmL log(1/ε)).
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For space complexity of the simple EDOT, the Sinkhorn algorithm (which can be
done in position O(Nm)) is the only iterative computation in a single SGD step, and
between two SGD steps, only the resulting distribution is passed to the next step. Therefore,
the space complexity is O((N + m)2) coming from the M; others are, at most, of size
O(m(N + m)).

Appendix C.4. Adaptive Refinement via DFS: Midpoints

The pseudocode for the division algorithm of the adaptive EDOT using KD-tree
refinement cutting at the midpoints is shown in Algorithm A2. The Round0.5↑ means the
rounding method with 0.5 rounded up, and Round0.5↓ is that with 0.5 rounded down; thus,
the discretization point is correctly partitioned.

Algorithm A2 Adaptive Refinement via Depth First Search

1: input: m, µ, N0 sample size, m∗ max number of points in a cell, a = (a0, a1, . . . , ad−1) and
b = (b0, b1, . . . , bd−1) as lower/upper bounds of the region;

2: output: out: stack of subproblems (Si, mi, pi) with ∑ pi = 1, ∑ mi = m, ∑ |Si| = N0;
3: initialization: p0 ← 1; T, out be empty stacks;
4: Sample N0 points S0 ∼ µ;
5: T.push((S0, m, p0, a, b));
6: while T is not empty do
7: (S, m, p, a, b)← T.pop();
8: l ← argmax {bi − ai}, mid← (al + bl)/2;
9: a(1) ← a, a(2) ← (a0, . . . , mid, . . . , ad−1);

10: b(1) ← (b0, . . . , mid, . . . , bd−1), b(2) ← b;
11: S1 ← {x ∈ S : xl <= mid}, S2 ← {x ∈ S : xl > mid}, N1 ← |S1|, N2 ← |S2|;

12: m1 ← Round0.5↑

(
Nd/(k+d)

1

Nd/(k+d)
1 +Nd/(k+d)

2

)
;

13: m2 ← Round0.5↓

(
Nd/(k+d)

2

Nd/(k+d)
1 +Nd/(k+d)

2

)
;

14: if m1 = 0 then
15: p1 ← 0, p2 ← (N1 + N2)/N0;
16: else if m2 = 0 then
17: p1 ← (N1 + N2)/N0, p2 ← 0;
18: else
19: p1 ← N1/N0, p2 ← N2/N0;
20: end if
21: for i← 1, 2 do
22: if mi > m∗ then
23: T.push((Si, mi, pi, a(i), b(i)));
24: else if mi > 0 then
25: out.push((Si, mi, pi));
26: end if
27: end for
28: end while
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Algorithm A3 Adaptive EDOT Variation 1

1: input: m, µ, N0 sample size, m∗ max number of points in a cell, a = (a0, a1, . . . , ad−1) and
b = (b0, b1, . . . , bd−1) as lower/upper bounds of the region, let R be resolution for occupied
volume;

2: output: out: stack of subproblems (Si, mi, pi) with ∑ pi = 1, ∑ mi = m;
3: initialization: p0 ← 1;
4: procedure BUILDTREE(node)
5: a← node.lower, b← node.upper
6: l ← argmax {bi − ai}, mid← (al + bl)/2;
7: a(0) ← a, a(1) ← (a0, . . . , al−1, mid, al+1 . . . , ad−1);
8: b(0) ← (b0, . . . , bl−1, mid, . . . , bl+1, bd−1), b(1) ← b;
9: S0 ← {x ∈ S : xl <= mid}, S1 ← {x ∈ S : xl > mid};

10: for i← 0, 1; do
11: if ∏d−1

j=0 (bj − aj) > R and |Si| > 0; then

12: node.child[i] = {occVol : 0, lower : a(i), upper : b(i), sample : Si, child :
Array(2), discSize : 0};

13: BUILDTREE(node.child[i])
14: else if |Si| = 0; then
15: node.child[i] = {occVol : 0, lower : a(i), upper : b(i), sample : Si, child :

Array(2), discSize : 0}
16: else
17: node.child[i] = {occVol : ∏d−1

j=0 (b
(i)
j − a(i)j ), lower : a(i), upper : b(i), sample : Si, child :

Array(2), discSize : 0}
18: end if
19: end for
20: node.occVol ← node.child[0].occVol + node.child[1].occVol;
21: end procedure
22: Sample N0 points S0 ∼ µ;
23: Root = {occVol : 0, lower : a, upper : b, sample : S0, child : Array(2), discSize : 0};
24: BUILDTREE(Root);
25: T, out← empty stack;
26: T.push(Root)
27: while T is not empty do
28: node← T.pop();
29: P0 ← |node.child[0].sample|, P1 ← |node.child[1].sample|;
30: V0 ← node.child[0].occVol, V1 ← node.child[1].occVol;
31: M0 ← P0 ·Vk/d

0 , M1 ← P1 ·Vk/d
1 ;

32: m0 ← Round0.5↑

(
Md/(k+d)

0

Md/(k+d)
0 +Md/(k+d)

1

)
;

33: m1 ← Round0.5↓

(
Md/(k+d)

1

Md/(k+d)
0 +Md/(k+d)

1

)
;

34: if m0 = 0 then
35: p0 ← 0, p1 ← (M0 + M1)/N0;
36: else if m1 = 0 then
37: p0 ← (M0 + M1)/N0, p1 ← 0;
38: else
39: p0 ← M0/N0, p1 ← M1/N0;
40: end if
41: for i← 0, 1; do
42: if mi > m∗ then
43: T.push(node.child[i]);
44: else if mi > 0 then
45: out.push((Si, mi, pi));
46: end if
47: end for
48: end while

Appendix C.5. Adaptive Refinement: Variation 1

The original division algorithm of the adaptive EDOT (Algorithm A2) cuts a cell
into two based on the balance of the averaged contribution of Wk per discretization point
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between the divided cells. However, when the mass of µ is not distributed evenly in a
cell to be cut, especially if it concentrates on a few small regions, the estimation of Wk

by the diameter of a cell becomes far greater than the actual one, thereby resulting in
assigning much more discretizaiton points to a cell (Figure A1). Thus, we develop the
division algorithm of Variation 1 to elevate the performance in this situation by estimating
the Wasserstein distance using an occupied volume of a set of sample points (usually the
same sample points we used in Algorithm A2): Given a resolution R > 0 (the upper bound
of a cell’s volume can be taken as Vol(X)/N0, with N0 as the size of sample points), we
keep cutting the region X until each cell is either of a volume smaller than R or contains
no sample points; then, we call the total volume of those nonempty cells by the occupied
volume VOcc(X). Similar definition applies to each cell Xi.

Figure A1. Divide-and-conquer strategies: original and Variation 1. Original tends to assign more
atoms to vast region with small weights, while Variation 1 does better. Example: distribution on
[0, 10], pdf is plotted in blue curve, discretization size of each cell is in black.

After having the occupied volume of each cell, we may proceed to assign a number of
discretization points to each cell. The only improvement of division algorithm Variation
1 in this part is on the Wasserstein estimation step (line 12 and 13 in Algorithm A2),
where the estimated Wasserstein Wk of cell i is changed from µ(Xi) ·m−1/d

i · (diamXi)
k to

µ(Xi) ·m−1/d
i · (VOcc(Xi))

k/d.
It is considered that the algorithm assigning the discretization size depends on the

estimation of the Wasserstein distance; however, this estimation in Variation 1 requires the
occupied volume, which is calculated from leaf to root, meaning that the binary tree for
occupied volume has to be built before starting Algorithm A2 with a modified estimation
of Wk. Fortunately, as the cutting points in this step have to coincide with the occupied-
volume-calculation step, and the sample points belonging to each cell are both needed,
we may save the sample points partition in the binary tree building for occupied volume
and reuse them in discretization size assigning. Therefore, the discretization size assigning
step works as a tree traversal (on a subtree with the same root, which is defined by
the stopping conditions in depth along each path) of the binary tree built for occupied
volume calculation.

Therefore, the time complexity for the occupied volume calculation is againO(N0 log N0),
as the algorithm works in the same way as Quicksort again, and the time complexity for
the rest (assigning discretization sizes) is O(m) as traversal on a tree of, at most, m leaves
(m discretization points in total).

For space complexity, it is still O(N0 + m), since after the calculation of occupied
volume, the rest is only adding constant size decorations onto the subtree with, at most, m
leaves mentioned above.

Appendix C.6. Adaptive Refinement: Variation 2

The “cutting in the middle” method is easy to implement and guarantee the volume
decreasing while going deeper in the tree (so the depth of getting under the resolution is
guaranteed). However, it is also too rigid to fit the natural gaps of the original distribution,
which may critically affect the optimal location of discretization points.

Our Variation 2 is on the dimension of redefining the cutting points from midpoints
along the corresponding axis to the most sparse points. The sparsity is calculated by the
moving window method along an axis / component of the d-coordinates; by applying the



Entropy 2023, 25, 839 24 of 30

moving window method, we may have to sort the data points every time (since at each
node, the sorting axis / component may be different). Since we still want to control the
depth of the tree, a correction must be added to avoid the cutting point from locating too
close to the boundaries (usually, the function − C

(x−a)k(x−b)k with a and b the boundaries
and C > 0 as a constant). One influence is that now each cell’s volume (not the occupied
volume) has to be calculated using the rectangular boundaries instead of being indicated
only from its depth as before.

Thus, the influence on the time complexity is the following: 1. Changing the tree-
building step to N2

0 (log N0)
2 in the average case, N4

0 in worst case (if Quicksort is applied)
on each node’s moving-window method), and 2. Introducing a O(N0) for calculating
the volume on each node in the binary tree. Furthermore, it introduces, at most, O(N0)
additional space complexity, since each cell’s volume has to be stored instead of being
calculated directly from the depth.

Variation 2 can be applied together with Variation 1, since they are aiming at different
parts of the algorithm. An example is shown in Figure A6.

Appendix D. Empirical Parts

Appendix D.1. Estimate Wk
k,ζ : Richardson Extrapolation and Others

In the analysis, we may need Wk
k,ζ(µ, µm) to compare how discretization methods

behave. However, when the µ is not discrete, we are generally not able to obtain the
analytical solution to the Wasserstein distance.

In certain cases, including all examples this paper contains, the Wasserstein can be
estimated by finite samples (with a large size). According to [26], for µ ∈ P(X) in our
setup (a probability measure on a compact Polish space with Borel algebra) and with
g = dk

X ∈ C(X2) being a continuous function, the Online Sinkhorn method can be used to
estimate Wk

k,ζ . The Online Sinkhorn needs a large number of samples for µ (in batch) to
be accurate.

In our paper, as X are compact subsets in Rn, and µ has a continuous probability den-
sity function, we may use the Richardson Extrapolation method to estimate the Wasserstein
distance between µ and µm, which may require fewer samples and fewer computations
(the Sinkhorn twice with different sizes).

Our examples are on intervals or rectangles, in which two grids Λ1 of N points and
Λ2 of rN points (N and rN are both integers) can be constructed naturally for each. With µ
determined by a smooth probability density function ρ, let µ(N) be the normalization of

∑N
i=1 ρ(Λi)δΛi (this may not be a probability distribution, so we use its normalization). From

a continuity of ρ and the boundedness of the dual variables α and β, we can conclude that

lim
N→∞

Wk
k,ζ(µ(N), µm) = Wk

k,ζ(µ, µm).

Let Wk
k,ζ(µ(N), µm) be a function of 1/N; to apply Richardson extrapolation, we need the

exponent of the lowest term of 1/N in the expansion Wk
k,ζ(µ(N), µm) = W∗ +O(1/Nh) +

O((1/N)h+1), where W∗ = Wk
k,ζ(µ, µm).

Consider that ∣∣∣Wk
k,ζ(µ, µm)−Wk

k,ζ(µ(N), µm)
∣∣∣ ≤Wk

k,ζ(µ, µ(N)).

Since Wk,ζ(µ(N), µ) ∝ N−1/d, we may conclude that h = k/d, where d is the dimension of
X. Figure A2 shows an empirical example in a d = 1 and k = 2 situation.
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Figure A2. Richardson Extrapolation: the power of the expansion about N−1. We take the EDOT
µ5 of example 2 (1-dim truncated normal mixture) as the target µm and use evenly positioned µN

for different Ns to estimate. The y-axis is ln(W2
2,0.01(µ(rN), µ5)−W2

2,0.01(µ(N), µ5)), where r = 2 and
r = 3 are calculated. With ln N as x-axis, linearity can be observed. The slopes are both about−1.9998,
which represent the exponent of the leading non-constant term of W2

2,0.01(µ(N), µ5) on N, while the
theoretical result is r = −k/d = −2. The differences are from higher order terms on N.

Appendix D.2. Example: The Sphere

The CW complex structure of the unit sphere S2 is constructed as follows: let (1, 0, 0),
the point on the equator, be the only dimension-0 structure, and let the equator be the
dimension-1 structure (line segment [0, 1] attached to the dimension-0 structure by identify-
ing both end points to the only point (1, 0, 0)). The dimension-2 structure is the union of two
unit discs, which is identified to the south/north hemisphere of S2 by stereographic projection:

π±N : (X, Y)→ 1
1 + X2 + Y2

(
2X, 2Y,±(X2 + Y2 − 1)

)
(A33)

with respect to the north / south pole.

Spherical Geometry

The spherical geometry is the Riemannian manifold structure induced by embedding
onto the unit sphere in R3.

The geodesic between two points is the shorter arc along the great circle determined
by the two points. In their R3 coordinates, dS2(x, y) = arccos(〈x, y〉). Composed with stere-
ographic projections, the distance in terms of CW complex coordinates can be calculated
(and be differentiated).

The gradient about y (or its CW coordinate) can be calculated via the above formulas.
In practice, the only problem is when x = ±y function arccos at ±1 is singular. From
the symmetry of sphere on the rotation along axis x, the derivatives of distance along
all directions are the same. Therefore, we may choose the radial direction on the CW
coordinate (unit disc). Furthermore, the differentiations are primary to calculate.

Appendix D.3. A Note on the Implementation of SGD with Momentum

There is a slight difference between our implementation of the SGD and the algorithm
provided in the paper. In the implementation, we give two different learning rates to the
positions (yis) and the weights (wis), as moving along positions is usually observed much
slower than moving along weights. Empirically, we make the learning rates on the positions
be exactly three times the learning rates on the weights at each SGD iteration. With this
change, the convergence is faster, but we do not have a theory or empirical evidence to
show that a fixed ratio of three is the best choice.

Implementing and testing the Newton’s method (hybrid with SGD) and other im-
proved SGD methods could be good problems to work on.
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Figure A3. The sphere example with 3D discretization (same as the paper) on two view directions.
Colors of dots represent the weights of each atom in the distribution.

Appendix D.4. An Example on Transference Plan with Adaptive EDOT

We now illustrate the performance of the adaptive EDOT on a 2D optimal transport
task. Let X = Y = [0, 1]2, c = dX be the Euclidean distance, g = d2

X , and the marginal µ, ν be
truncated normal (mixtures), where µ has only two components and ν has five components.
Figure A4 plots the McCann Interpolation of the OT plan between µ and ν (shown in
red dots) and its discrete approximations (weights are color coded) with m = n = 30.
With m = n = 10, the adaptive EDOT results were as follows: Wk

k,ζ(µ, µ10) = 1.33× 10−2,

Wk
k,ζ(ν, ν10) = 1.30 × 10−2, and Wk

k,ζ(γ, γ10,10) = 2.71 × 10−2. With m = n = 30, the

adaptive EDOT results were as follows: Wk
k,ζ(µ, µ30) = 9.62× 10−3, Wk

k,ζ(ν, ν30) = 9.18×
10−3, and Wk

k,ζ(γ, γ30,30) = 1.516 × 10−2. The naive sampling results were as follows:

Wk
k,ζ(µ, µ′30) = 1.75× 10−2, Wk

k,ζ(ν, ν′30) = 1.58× 10−2, and Wk
k,ζ(γ, γ′30,30) = 3.95× 10−2.

The adaptive EDOT approximated the quality of 900 naive samples with only 100 points
on a four-dimensional transference plan.

Figure A4. The McCann interpolation figures in finer time resolution for visualizing the transference
plan from (1)–(11). It is a refined figure of the original paper. We see can see that the larger bubbles
(representing a large probability mass) moved in a short distance, and smaller pieces moved longer.
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Appendix D.5. Example: Swiss Roll

In this case, the underlying space Xswiss is a the Swiss Roll, which is a 2D rectangular
strip embedded in R3: (θ, z) 7→ (θ, θ, z) in cylindrical coordinates. µswiss is a truncated nor-
mal mixture on a (θ, z)-plane. Samples Sswiss ∼ µswiss over Xswiss are shown in Figure A5
(left) embedded in 3D and in Figure A6a as isometric into R2.

By following the Euclidean metric in R3, Figure A5 (right) plots the EDOT solution µm
through adaptive cell refinement (Algorithm A2) with m = 50. The resulting cell structure
is shown as colored boxes. The corresponding partition of Sswiss is shown on Figure A6a,
with samples contained in a cell marked by the same color. According to Figure A5 (right),
the points in µm were mainly located on the strip, with only one point off in the most sparse
cell (yellow cell located in the bottom in the figure).

Figure A5. Discretization of a distribution supported on a Swiss Roll. Left: A total of 15,000 samples
from the truncated normal mixture distribution µswiss over Xswiss. Right: A 50-point 3D discretization
using Variation 2 of Algorithm A2; the refinement cells are shown in colored boxes.

On the other hand, consider the metric on Xswiss induced by the isometry from the
Swiss Roll as a manifold to a strip on R2. A more intrinsic discretization of µswiss can
be obtained by applying the EDOT through a refinement on the coordinate space—the
(2D) strip. The partition of Sswiss is shown on Figure A6b, and the resulting discretization
µ50 is shown in Figure A6c. Notice that all 50 points were located on the (locally) high
density region of the Swiss Roll. We observe from Figure A6a,b that the 3D partition pulled
disconnected and intrinsically remote regions together, while the 2D partition maintained
the intrinsic structure.
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(a)

(b)

(c)

Figure A6. Swiss Roll under isometry. (a) Refinement cells under 3D Euclidean metric (one color
per samples from a refinement cell). (b) Refinement cells under 2D metric induced by the isometry.
(c) EDOT of 50 points with respect to the 2D refinement. ζ = 0.01× diam2 for all.

Appendix D.6. Example: Figure Densities

We used OpenCV to process the figures. The cat figure is a gray-scale figure of size
180× 180. Variation 1 was used in cutting the figure into pieces, since the figure contains
some sparse regions on which the original division algorithm does not work well.

For the colored figures (Starry Night and Girl with a Pearl Earring) in Figure 1,
we process the three channels independently, then plotted the colored dots, and finally
combined them as corresponding channels in a colored file. In the reconstruction of Starry
Night, we made the size of the colored dots of same size with a modified color value
according to the weights. Furthermore, for Girl with a Pearl Earring, we used pure color
((255,0,0) as red, etc.) and changed the size of the dots (with an area proportional to
the weights).

Appendix D.7. Example: Simple Barycenter Problems

The EDOT in simple form (no divide and conquer) can solve barycenter problems. The
idea is simple: the gradient of a sum of functions is the sum of gradients of each function.
Thus, to find the discrete barycenter of size m for several distributions µi, we take the
objective to be the sum of Wasserstein distances (raised to power k for rationality), whose
gradient-to-target distribution is the sum of gradients between the discretization and each
target distribution. This method only works for the simple EDOT, since there is no locality
in barycenter problems. After a division, the weights of each target distribution in each
cell of the partition may be different, so there is inter-cell transport in the optimal transport
plan, which the current algorithm cannot deal with.
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We can see in Figure A7 that the simple EDOT-Equal (no divide and conquer) achieved
similar results as the non-regularized discretization in [18], whereas the EDOT produced a
better approximation of the barycenter by taking advantage of changing weights freely.

(a) (b) (c)

Figure A7. A 7-point barycenter of two Gaussian distributions: (a): EDOT, area of dots represent
the weights, W2

sum = 0.7322; (b): EDOT-Equal, W2
sum = 0.7380; (c): [18], W2

sum = 0.7389; W are
regularized with ζ = 0.04.
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