
Majorization Minimization Methods for Distributed Pose Graph
Optimization

Taosha Fan and Todd D. Murphey

Abstract—We consider the problem of distributed pose graph
optimization (PGO) that has important applications in multi-
robot simultaneous localization and mapping (SLAM). We pro-
pose the majorization minimization (MM) method for distributed
PGO (MM−PGO) that applies to a broad class of robust loss
kernels. The MM−PGO method is guaranteed to converge to
first-order critical points under mild conditions. Furthermore,
noting that the MM−PGO method is reminiscent of proximal
methods, we leverage Nesterov’s method and adopt adaptive
restarts to accelerate convergence. The resulting accelerated
MM methods for distributed PGO—both with a master node
in the network (AMM−PGO∗) and without (AMM−PGO#)—
have faster convergence in contrast to the MM−PGO method
without sacrificing theoretical guarantees. In particular, the
AMM−PGO# method, which needs no master node and is fully
decentralized, features a novel adaptive restart scheme and has
a rate of convergence comparable to that of the AMM−PGO∗

method using a master node to aggregate information from
all the nodes. The efficacy of this work is validated through
extensive applications to 2D and 3D SLAM benchmark datasets
and comprehensive comparisons against existing state-of-the-art
methods, indicating that our MM methods converge faster and
result in better solutions to distributed PGO. The code is available
at https://github.com/MurpheyLab/DPGO.

I. INTRODUCTION

Pose graph optimization (PGO) is a nonlinear and non-
convex optimization problem estimating unknown poses from
noisy relative pose measurements. PGO associates each pose
with a vertex and each relative pose measurement with an
edge such that the optimization problem is well represented
through a graph. PGO has important applications in a num-
ber of areas, including but not limited to robotics [1]–[3],
autonomous driving [4], and computational biology [5], [6].
Recent advances [7]–[16] suggest that PGO can be well solved
using iterative optimization. Nevertheless, the aforementioned
techniques [7]–[16] are difficult to distribute across a network
due to communication and computational limitations, and are
only applicable to small- and medium-sized problems with at
most tens of thousands poses. In addition, their centralized
pipelines are equivalent to using a master node to aggregate
information from the entire network, and thus, fail to meet
privacy requirements one may wish to impose [17], [18].

In multi-robot simultaneous localization and mapping
(SLAM) [19]–[28], each robot estimates not only its own
poses but those of the others as well to build an environment
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map. Even though such a problem can be solved by PGO,
communication between robots is restricted and multi-robot
SLAM has more unknown poses than single-robot SLAM.
Thus, instead of using centralized PGO [7]–[16], it is more
reasonable to formulate this large-sized estimation problem
involving multiple robots as distributed PGO—each robot in
multi-robot SLAM is represented as a node and two nodes
(robots) are said to be neighbors if there exists a noisy
relative pose measurement between them (a more detailed
description of distributed PGO can be found in Section IV). In
most cases, it is assumed that inter-node communication only
occurs between neighboring nodes and most of these iterative
optimization methods are infeasible due to the expensive
communication cost of solving linear system and performing
line search [7]–[16], which renders distributed PGO more
challenging than centralized PGO.

In this paper, we propose majorization minimization (MM)
methods [29], [30] for distributed PGO. As the name would
suggest, MM methods have two steps. First, in the majoriza-
tion step, we construct a surrogate function that majorizes the
objective function, i.e., the surrogate function is greater to the
objective function except for the current iterate where both of
them attain the same value. Then, in the minimization step,
we minimize the surrogate function instead of the original
objective function to improve the iterate. MM methods remain
difficult, albeit straightforward, in practical use, e.g., the sur-
rogate function, whose construction and minimization can not
be more difficult than solving the optimization problem itself,
is usually unknown, and MM methods might fail to converge
and suffer from slow convergence. Thus, the implementation
of MM methods on large-scale, complicated and nonconvex
optimization problems like distributed PGO is nontrivial, and
inter-node communication requirements impose extra restric-
tions making it more so. All of these issues are addressed both
theoretically and empirically in the rest of this paper.

This paper extends the preliminary results in [31], [32],
where we developed MM methods for centralized and dis-
tributed PGO that are guaranteed to converge to first-order
critical points. In [31], [32], we also introduced and elaborated
on the use of Nesterov’s method [33], [34] and adaptive restart
[35] for the first time to accelerate the convergence of PGO.
Beyond the initial results in [31], [32], this paper presents
completely redesigned MM methods for distributed PGO and
provides more comprehensive theoretical and empirical results.
In particular, our MM methods in this paper are capable of
handling a broad class of robust loss kernels, no longer require
each iteration to attain a local optimal solution to the surrogate
function for the convergence guarantees, and adopt a novel
adaptive restart scheme for distributed PGO without a master
node to make full use of Nesterov’s acceleration.

https://github.com/MurpheyLab/DPGO


In summary, the contributions of this paper are the follows:
1) We derive a class of surrogate functions that suit well

with MM methods for distributed PGO. These surrogate
functions apply to a broad class of robust loss kernels in
robotics and computer vision.

2) We develop MM methods for distributed PGO that are
guaranteed to converge to first-order critical points under
mild conditions. Our MM methods for distributed PGO
implement a novel update rule such that each iteration
does not have to minimize the surrogate function to a
local optimal solution.

3) We leverage Nesterov’s methods and adaptive restart to
accelerate MM methods for distributed PGO and achieve
significant improvement in convergence without any com-
promise of theoretical guarantees.

4) We present a decentralized adaptive restart scheme to
make full use of Nesterov’s acceleration such that accel-
erated MM methods for distributed PGO without a master
node are almost as fast as those requiring a master node.

The rest of this paper is organized as follows. Section II
reviews the state-of-the-art methods for distributed PGO. Sec-
tion III introduces mathematical notation and preliminaries
that are used in this paper. Section IV formulates the problem
of distributed PGO. Sections V and VI present surrogate
functions for individual loss terms and the overall distributed
PGO, respectively, which are fundamental to our MM meth-
ods. Sections VII to IX present unaccelerated and accelerated
MM methods for distributed PGO that are guaranteed to
converge to first-order critical points, which are the major
contributions of this paper. Section X implements our MM
methods for distributed PGO on a number of simulated and
real-world SLAM datasets and make extensive comparisons
against existing state-of-the-art methods [36], [37]. Section XI
concludes this paper and discusses future work.

II. RELATED WORK

In the last decade, multi-robot SLAM has been becoming
increasingly popular, which promotes the development of
distributed PGO [36]–[39].

Choudhary et al. [36] present a two-stage algorithm that
implements either Jacobi Over-Relaxation or Successive Over-
Relaxation as distributed linear system solvers. Similar to cen-
tralized methods, [36] first evaluates the chordal initialization
[40] and then improves the initial guess with a single Gauss-
Newton step. However, one step of Gauss-Newton method
in most cases can not lead to sufficient convergence for dis-
tributed PGO. In addition, no line search is performed in [36]
due to the communication limitation, and thus, the behaviors
of the single Gauss-Newton step is totally unpredictable and
might result in bad solutions.

Tian et al. [37] present the distributed certifiably correct
PGO using Riemannian block coordinate descent method,
which is later generalized to asynchronous and parallel dis-
tributed PGO [41]. Specially, their method makes use of
Riemannian staircase optimization to solve the semidefinite
relaxation of distributed PGO and is guaranteed to converge to
global optimal solutions under moderate measurement noise.

Following our previous works [31], [32], they implement
Nesterov’s method for acceleration as well. Contrary to our
MM methods, a major drawback of [37] is that their method
has to precompute red-black coloring assignment for block
aggregation and keep part of the blocks in idle for estimate
updates. In addition, although several strategies for block
selection (e.g., greedy/importance sampling) and Nesterov’s
acceleration (e.g., adaptive/fixed restarts) are adopted in [37] to
improve the convergence, most of them are either inapplicable
without a master node or at the sacrifice of computational
efficiency and theoretical guarantees. In contrast, our MM
methods are much faster (see Section X) but have no such
restrictions for acceleration. More recently, Tian et al. fur-
ther apply Riemannian block coordinate descent method to
distributed PGO with robust loss kernels [28]. However, they
solve robust distributed PGO by trivially updating the weights
using graduated nonconvexity [42] and no formal proofs of
convergence are provided. Again, this is in contrast to the
work presented here that has provable convergence to first-
order critical points for a broad class of robust loss kernels.

Tron and Vidal [38] present a consensus-based method
for distributed PGO using Riemannian gradient. The authors
derive a condition for convergence guarantees related with the
stepsize of the method and the degree of the pose graph.
Nonetheless, their method estimates rotation and translation
separately, fails to handle robust loss kernels, and needs extra
computation to find the convergence-guaranteed stepsize.

Cristofalo et al. [39] present a novel distributed PGO
method using Lyapunov theory and multi-agent consensus.
Their method is guaranteed to converge if the pose graph has
certain topological structures. However, [39] updates rotations
without exploiting the translational measurements and only ap-
plies to pairwise consistent PGO with nonrobust loss kernels.

In comparison to these aforementioned techniques, our
MM methods have the mildest conditions (not requiring any
specific pose graph structures, any extra computation for
preprocessing, any master nodes for information aggregation,
etc.) to converge to first-order critical points, apply to a
broad class of robust loss kernels in robotics and computer
vision, and manage to implement decentralized acceleration
with convergence guarantees. Most importantly, as is shown
in Section X, our MM methods outperform existing state-of-
the-art methods in terms of both efficiency and accuracy on a
variety of SLAM benchmark datasets.

III. NOTATION1

Miscellaneous Sets. R denotes the sets of real numbers;
R+ denotes the sets of nonnegative real numbers; Rm×n and
Rn denote the sets of m × n matrices and n × 1 vectors,
respectively. SO(d) denotes the set of special orthogonal
groups and SE(d) denotes the set of special Euclidean groups.
| · | denotes the cardinality of a set.

Matrices. For a matrix X ∈ Rm×n, [X]ij denotes the
(i, j)-th entry or (i, j)-th block of X , and [X]i denotes the
i-th entry or i-th block of X . For symmetric matrices X, Y ∈
Rn×n, X ⪰ Y (or Y ⪯ X) and X ≻ Y (or Y ≺ X) mean

1A more complete summary of the notation is given in [43, Appendix A].



that X − Y is positive (or negative) semidefinite and definite,
respectively.

Inner Products and Norms. For a matrix M ∈ Rn×n,〈
·, ·

〉
M

: Rm×n × Rm×n → R denotes the function〈
X,Y

〉
M

≜ trace(XMY ⊤) (1)

where X, Y ∈ Rm×n. If M is the identity matrix,
〈
·, ·

〉
M

is
also represented as

〈
·, ·
〉
: Rm×n × Rm×n → R such that〈

X,Y
〉
≜ trace(XY ⊤). (2)

For a positive semidefinite matrix M ∈ Rn×n, ∥ · ∥M :
Rm×n → R+ denotes the function

∥X∥M ≜
√
trace(XMX⊤) (3)

where X ∈ Rm×n. Also, ∥ · ∥ denotes the Frobenius norm of
matrices and vectors, and ∥ · ∥2 denotes the induced 2-norms
of matrices and linear operators.

Riemannian Geometry. If F (·) : Rm×n → R is a func-
tion,M⊂ Rm×n is a Riemannian manifold and X ∈M, then
∇F (X) and gradF (X) denote the Euclidean and Riemannian
gradients, respectively.

Graph Theory. PGO is represented as a directed graph−→
G = (V,

−→
E ) where V and E are the sets of vertices and edges,

respectively [8]. In distributed PGO, each vertex is described
as an ordered pair (α, i) ∈ V where α is the node index and
i the local index of the vertex within node α. For any nodes
α and β in distributed PGO,

−→
E αβ denotes the set of edges

between nodes α and β:
−→
E αβ ≜ {(i, j)|((α, i), (β, j)) ∈

−→
E }; (4)

and Nα
− denotes the set of nodes with edges from node α:

Nα
− ≜ {β|

−→
E αβ ̸= ∅ and α ̸= β}; (5)

and Nα
+ denotes the set of nodes with edges to node α:

Nα
+ ≜ {β|

−→
E βα ̸= ∅ and α ̸= β}; (6)

and Nα denotes the set of nodes with edges from or to node
α:

Nα≜ Nα
− ∪Nα

+ ≜ {β|
−→
E αβ ̸=∅ or

−→
E βα ̸=∅ and α ̸=β}. (7)

Optimization. For optimization variables X , Xα, Rα, tα,
etc., the notation X(k), Xα(k), Rα(k), tα(k), etc. denotes the
k-th iterate of corresponding optimization variables.

IV. PROBLEM FORMULATION

A. Distributed Pose Graph Optimization

In distributed PGO [36]–[38], we are given |A| nodes
A ≜ {1, 2, · · · , |A|} and each node α ∈ A has nα poses
gα1 , gα2 , · · · , gαnα

∈ SE(d). Let gα(·) ≜ (tα(·), R
α
(·)) where

tα(·) ∈ Rd is the translation and Rα
(·) ∈ SO(d) the rotation.

We consider the problem of estimating unknown poses gα1 ,
gα2 , · · · , gαnα

∈ SE(d) for all the nodes α ∈ A given intra-
node noisy measurements g̃ααij ≜ (t̃ααij , R̃

αα
ij ) ∈ SE(d) of the

relative pose

gααij ≜
(
gαi

)−1
gαj ∈ SE(d) (8)

within a single node α, and inter-node noisy measurements
g̃αβij ≜ (t̃αβij , R̃

αβ
ij ) ∈ SE(d) of the relative pose

gαβij ≜
(
gαi

)−1
gβj ∈ SE(d) (9)

between different nodes α ̸= β. In Eqs. (8) and (9), note that
t̃ααij and t̃αβij ∈ Rd are translational measurements, and R̃αα

ij

and R̃αβ
ij ∈ SO(d) are rotational measurements.

Following Eqs. (4) to (7), we represent distributed PGO
as a directed graph

−→
G = (V,

−→
E ) such that unknown pose

gαi ∈ SE(d) and noisy measurement g̃αβij ∈ SE(d) have one-
to-one correspondence to vertex (α, i) ∈ V and directed edge
((α, i), (β, j)) ∈

−→
E , respectively. We refer nodes α and β ∈

A as neighbors as long as either
−→
E αβ ̸= ∅ or

−→
E βα ̸= ∅.

Then, Nα
− and Nα

+ are the sets of neighbors with a directed
edge from and to node α, respectively, and Nα is the set of
neighbors with a directed edge connected to node α.

In the rest of this paper, we make the following assumption
that each node can communicate with its neighbors and the
network topology is unchanged during optimization. These
assumptions are common in distributed PGO [36]–[39].

Assumption 1. Each node α can communicate with its neigh-
bors β ∈ Nα and the network topology is fixed.

B. Loss Kernels

In practice, it is inevitable that there exist inter-node mea-
surements that are outliers resulting from false loop closures.
These outliers adversely affect the overall performance of
distributed PGO. To address this issue, it is popular to use
non-trivial loss kernels—e.g., Huber and Welsch losses—to
enhance the robustness of distributed PGO [44]–[46].

In this paper, we make the following assumption that applies
to a broad class of loss kernels ρ(·) : R+ → R in robotics and
computer vision.

Assumption 2. The loss kernel ρ(·) : R+ → R satisfies the
following properties:
(a) ρ(s) ≥ 0 for any s ∈ R+ and the equality “=” holds if

and only if s = 0;
(b) ρ(·) : R+ → R is continuously differentiable;
(c) ρ(·) : R+ → R is a concave function;
(d) 0 ≤ ∇ρ(s) ≤ 1 for any s ∈ R+ and ∇ρ(0) = 1;
(e) φ(·) : Rm×n → R with φ(X) ≜ ρ(∥X∥2) has Lipschitz

continuous gradient, i.e., there exists µ > 0 such that
∥∇φ(X)−∇φ(X ′)∥ ≤ µ · ∥X −X ′∥ for any X, X ′ ∈
Rm×n.

In the following, we present some examples of loss kernels
(see Fig. 1) satisfying Assumption 2.

Example 1 (Trivial Loss).

ρ(s) = s. (10)

Example 2 (Huber Loss).

ρ(s) =

{
s, |s| ≤ a,
2
√
a|s| − a, |s| ≥ a

(11)

where a > 0.



Fig. 1: ρ(x2) for the trivial, Huber, Welsch loss kernels.

Example 3 (Welsch Loss).

ρ(s) = a− a exp
(
− s
a

)
(12)

where a > 0.

C. Objective Function

Recall that each node α ∈ A has nα unknown poses gα1 ,
gα2 , · · · , gαnα

∈ SE(d). For notational simplicity, we define
Xα and X as

Xα ≜ Rd×nα × SO(d)nα

and
X ≜ X 1 × · · · × X |A| ⊂ Rd×(d+1)n,

respectively, where n ≜
∑

α∈A nα. Furthermore, we represent
gαi ∈ SE(d), i.e., the i-th pose of node α ∈ A, as a d×(d+1)
matrix

Xα
i ≜

[
tαi Rα

i

]
∈ SE(d) ⊂ Rd×(d+1), (13)

represent (gα1 , gα2 , · · · , gαnα
) ∈ SE(d)nα , i.e., all the poses of

node α ∈ A, as an element of Xα as well as a d× (d+1)nα
matrix

Xα ≜
[
tα Rα

]
∈ Xα ⊂ Rd×(d+1)nα , (14)

where
tα ≜

[
tα1 · · · tαnα

]
∈ Rd×nα

and

Rα ≜
[
Rα

1 · · · Rα
nα

]
∈ SO(d)nα ⊂ Rd×dnα ,

and represent {(gα1 , gα2 , · · · , gαnα
)}α∈A ∈ SE(d)n, i.e., all

the poses of distributed PGO, as an element of X as well as
a d× (d+ 1)n matrix

X ≜
[
X1 · · · X |A|] ∈ X ⊂ Rd×(d+1)n. (15)

Remark 1. Xα and X are by definition homeomorphic to
SE(d)nα and SE(d)n, respectively. Thus, Xα ∈ Xα and
X ∈ X are sufficient to represent elements of SE(d)nα and
SE(d)n.

Following [8], [31], [32], distributed PGO can be formulated
as an optimization problem on X =

[
X1 · · · X |A|] ∈ X :

Problem 1 (Distributed Pose Graph Optimization).

min
X∈X

F (X). (16)

The objective function F (X) in Eq. (16) is defined as

F (X) ≜
∑
α∈A

∑
(i,j)∈

−→
E αα

1

2

[
κααij ∥Rα

i R̃
αα
ij −Rα

j ∥2+

τααij ∥Rα
i t̃

αα
ij + tαi − tαj ∥2

]
+∑

α,β∈A,
α ̸=β

∑
(i,j)∈

−→
E αβ

1

2

[
ρ
(
καβij ∥R

α
i R̃

αβ
ij −R

β
j ∥

2 +

ταβij ∥R
α
i t̃

αβ
ij + tαi − t

β
j ∥

2
) ]
, (17)

where κααij , τααij , καβij , ταβij are the weights and ρ(·) : R+ → R
is the loss kernel.

For notational simplicity, F (X) in Eq. (17) can be also
rewritten as

F (X) =
∑
α∈A

∑
(i,j)∈

−→
E αα

Fαα
ij (X)+

∑
α,β∈A,
α ̸=β

∑
(i,j)∈

−→
E αβ

Fαβ
ij (X) (18)

where

Fαα
ij (X) ≜

1

2
κααij ∥Rα

i R̃
αα
ij −Rα

j ∥2+
1

2
τααij ∥Rα

i t̃
αα
ij + tαi − tαj ∥2, (19a)

Fαβ
ij (X) ≜

1

2
ρ
(
καβij ∥R

α
i R̃

αβ
ij −R

β
j ∥

2+

1

2
ταβij ∥R

α
i t̃

αβ
ij + tαi − t

β
j ∥

2
)
. (19b)

Note that Fαα
ij (X) and Fαβ

ij corresponds to intra- and inter-
node measurements, respectively.

In the next sections, we will present MM methods for
distributed PGO, which is the major contribution of this paper.

V. THE MAJORIZATION OF LOSS KERNELS

In this section, we present surrogate functions majorizing
the loss kernels ρ(·). The resulting surrogate functions lead
to an intermediate upper bound of distributed PGO while
attaining the same value as the original objective function at
each iterate.

It is straightforward to show that there exists sparse and
positive semidefinite matrices Mαβ

ij ∈ R(d+1)n×(d+1)n for
either α = β or α ̸= β such that

1

2
∥X∥2

Mαβ
ij

=
1

2
καβij ∥R

α
i R̃

αβ
ij −R

β
j ∥

2+

1

2
ταβij ∥R

α
i t̃

αβ
ij + tαi − t

β
j ∥

2. (20)

Then, in terms of intra-node measurements with α = β and
inter-node measurements with α ̸= β, Fαα

ij (X) and Fαβ
ij take

the form of
Fαα
ij (X) ≜

1

2
∥X∥2Mαα

ij
, (21a)



Fαβ
ij (X) ≜

1

2
ρ
(
∥X∥2

Mαβ
ij

)
. (21b)

From Eqs. (19a) and (19b), we obtain an upper bound of
Fαα
ij (X) and Fαβ

ij (X) as the following proposition states.

Proposition 1. Let X(k) =
[
X1(k) · · · X |A|(k)] ∈ X with

Xα(k) ∈ Xα be an iterate of Eq. (16). If ρ(·) : R+ → R is a
loss kernel that satisfies Assumption 2, then we obtain

1

2
ω
αβ(k)
ij ∥X −X(k)∥2

Mαβ
ij

+
〈
∇Fαβ

ij (X(k)), X −X(k)
〉
+

Fαβ
ij (X(k)) ≥ Fαβ

ij (X) (22)

for any X and X(k) ∈ Rd×(d+1)n, in which ω
αβ(k)
ij ∈ R is

defined as

ω
αβ(k)
ij ≜

{
1, α = β,

∇ρ
(
∥X(k)∥2

Mαβ
ij

)
, α ̸= β.

(23)

In Eq. (22), the equality “=” holds as long as X = X(k).

Proof. See [43, Appendix B].

Note that F (X), as is shown in Eq. (18), is equivalent to the
sum of all Fαα

ij (X) and Fαβ
ij (X). Then, an immediate upper

bound of F (X) resulting from Proposition 1 is

1

2

∥∥X −X(k)
∥∥2
M(k) +

〈
∇F (X(k)), X −X(k)

〉
+

F (X(k)) ≥ F (X) (24)

in which M (k) ∈ R(d+1)n×(d+1)n is a positive semidefinite
matrix that is defined as

M (k) ≜
∑
α∈A

∑
(i,j)∈

−→
E αα

Mαα
ij +

∑
α,β∈A,
α ̸=β

∑
(i,j)∈

−→
E αβ

ω
αβ(k)
ij ·Mαβ

ij ∈ R(d+1)n×(d+1)n. (25)

In addition, the equality “=” in Eq. (24) holds as long as
X = X(k).

Remark 2. If the loss kernel ρ(·) is non-trivial, ωαβ(k)
ij is a

function of X(k) as defined in Eq. (23), and M (k) is a positive
semidefinite matrix depending on X(k) as well.

It is obvious that Eq. (24) has Xα ∈ Xα of different nodes
coupled with each other, and as a result, is difficult to be
used for distributed PGO. In spite of that, as is shown in the
next sections, Eq. (24) is still useful for the development and
analysis of our MM methods for distributed PGO.

VI. THE MAJORIZATION OF DISTRIBUTED POSE GRAPH
OPTIMIZATION

In this section, following a similar procedure to our previous
works [31], [32], we present surrogate functions G(X|X(k))
and H(X|X(k)) that majorize the objective function F (X).
The surrogate functions G(X|X(k)) and H(X|X(k)) decouple
unknown poses of different nodes, and thus, are critical to our
MM methods for distributed PGO.

A. The Majorization of Fαβ
ij (X)

For any matrices B, C and P ∈ Rm×n, it can be shown
that

1

2
∥B − C∥2

Mαβ
ij

≤ ∥B − P∥2
Mαβ

ij

+ ∥C − P∥2
Mαβ

ij

(26)

as long as Mαβ
ij ∈ Rn×n is positive semidefinite, where “=”

holds if
P =

1

2
B +

1

2
C.

If we let P = 0, Eq. (26) becomes
1

2
∥B − C∥2

Mαβ
ij

≤ ∥B∥2
Mαβ

ij

+ ∥C∥2
Mαβ

ij

, (27)

which holds for any B and C ∈ Rm×n. Applying Eq. (27) on
the right-hand side of Eq. (20), we obtain

1

2
∥X∥2

Mαβ
ij

≤ καβij ∥R
α
i R̃

αβ
ij ∥

2 + καβij ∥R
β
j ∥

2+

ταβij ∥R
α
i t̃

αβ
ij + tαi ∥2 + ταβij ∥t

β
j ∥

2

=καβij ∥R
α
i ∥2 + καβij ∥R

β
j ∥

2+

ταβij ∥R
α
i t̃

αβ
ij + tαi ∥2 + ταβij ∥t

β
j ∥

2,

(28)

where the last equality is due to
(
R̃αβ

ij

)⊤
R̃αβ

ij =

R̃αβ
ij

(
R̃αβ

ij

)⊤
= I. Furthermore, there exists a positive

semidefinite matrix Ωαβ
ij ∈ R(d+1)n×(d+1)n such that the right-

hand side of Eq. (28) can be rewritten as
1

2
∥X∥2

Ωαβ
ij

=καβij ∥R
α
i ∥2 + καβij ∥R

β
j ∥

2+

ταβij ∥R
α
i t̃

αβ
ij + tαi ∥2 + ταβij ∥t

β
j ∥

2,
(29)

where Ωαβ
ij is a block diagonal matrix decoupling unknown

poses of different nodes. Replacing the right-hand side of
Eq. (28) with Eq. (29) results in

1

2
∥X∥2

Mαβ
ij

≤ 1

2
∥X∥2

Ωαβ
ij

for any X ∈ Rd×(d+1)n, which suggests

Ωαβ
ij ⪰M

αβ
ij . (30)

With Ωαβ
ij ∈ R(d+1)n×(d+1)n in Eqs. (29) and (30), we define

Eαβ
ij (·|X(k)) : Rd×(d+1)n → R:

Eαβ
ij (X|X(k)) ≜

1

2
ω
αβ(k)
ij ∥X −X(k)∥2

Ωαβ
ij

+〈
∇Fαβ

ij (X(k)), X −X(k)
〉
+ Fαβ

ij (X(k)), (31)

where ωαβ(k)
ij is given in Eq. (23). From the equation above,

it can be concluded that Eαβ
ij (X|X(k)) majorizes Fαβ

ij (X) as
the following proposition states, which is important for the
construction of surrogate functions for distributed PGO.

Proposition 2. Given any nodes α, β ∈ A with either α = β
or α ̸= β, if ρ(·) : R+ → R is a loss kernel that satisfies
Assumption 2, then we obtain

Eαβ
ij (X|X(k)) ≥ Fαβ

ij (X). (32)

for any X ∈ Rd×(d+1)n. In the equation above, the equality
“=” holds if X = X(k).

Proof. See [43, Appendix C].



B. The Majorization of F (X)

From Proposition 2, it is straightforward to construct surro-
gate functions majorizing F (X) in Eq. (17) as the following
proposition states.

Proposition 3. Let X(k) =
[
X1(k) · · · X |A|(k)] ∈ X with

Xα(k) ∈ Xα be an iterate of X ∈ X in Eq. (16). Suppose
G(·|X(k)) : Rd×(d+1)n → R is a function:

G(X|X(k)) ≜
∑
α∈A

∑
(i,j)∈

−→
E αα

Fαα
ij (X)+

∑
α,β∈A,
α ̸=β

∑
(i,j)∈

−→
E αβ

Eαβ
ij (X|X(k)) +

ξ

2

∥∥X −X(k)
∥∥2 (33)

where ξ ∈ R and ξ ≥ 0. Then, we have the following results:
(a) For any X ∈ Rd×(d+1) and X(k) ∈ X ,

G(X|X(k)) ≥ F (X) (34)

where the equality “=” holds if X = X(k).
(b) G(X|X(k)) is equivalent to

G(X|X(k)) =
∑
α∈A

Gα(Xα|X(k)) + F (X(k)), (35)

where Gα(Xα|X(k)) is a function of Xα ∈ Xα within a
single node α.

(c) For any node α ∈ A, there exists positive-semidefinite
matrices Γα(k) ∈ R(d+1)nα×(d+1)nα such that

Gα(Xα|X(k)) ≜
1

2
∥Xα −Xα(k)∥2Γα(k)+〈
∇XαF (X(k)), Xα −Xα(k)

〉
(36)

where ∇XαF (X(k)) is the Euclidean gradient of F (X)
with respect to Xα ∈ Xα at X(k) ∈ X .

Proof. See [43, Appendix D].

Following Proposition 3, we might further majorize F (X)
as well as G(X|X(k)) by applying Eq. (32) to Eq. (33) and
replacing Fαα

ij (X|X(k)) with Eαα
ij (X|X(k)), which results in

the following proposition.

Proposition 4. Let X(k) =
[
X1(k) · · · X |A|(k)] ∈ X with

Xα(k) ∈ Xα be an iterate of X ∈ X in Eq. (16), and Xα(k)
i =[

tα(k) Rα(k)
]
∈ SE(d) the corresponding iterate of Xα

i ∈
SE(d). Suppose H(·|X(k)) : Rd×(d+1)n → R is a function:

H(X|X(k)) =
∑
α∈A

∑
(i,j)∈

−→
E αα

Eαα
ij (X|X(k))+

∑
α,β∈A,
α ̸=β

∑
(i,j)∈

−→
E αβ

Eαβ
ij (X|X(k)) +

ζ

2

∥∥X −X(k)
∥∥2 (37)

where ζ ∈ R and ζ ≥ ξ ≥ 0. Note that ξ ∈ R is given in
Eq. (33). Then, we have the following results:
(a) For any X ∈ Rd×(d+1) and X(k) ∈ X ,

H(X|X(k)) ≥ G(X|X(k)) ≥ F (X) (38)

where the equality “=” holds if X = X(k).

(b) H(X|X(k)) is equivalent to

H(X|X(k)) =
∑
α∈A

Hα(Xα|X(k)) + F (X(k))

=
∑
α∈A

nα∑
i=1

Hα
i (X

α
i |X(k)) + F (X(k))

(39)

where Hα(Xα|X(k)) is a function of Xα ∈ Xα within
a single node α, and Hα

i (X
α
i |X(k)) is a function of a

single pose Xα
i ∈ SE(d) ⊂ Rd×(d+1).

(c) For any node α ∈ A and i ∈ {1, · · · , nα}, there exists
positive-semidefinite matrices Πα(k) ∈ R(d+1)nα×(d+1)nα

and Π
α(k)
i ∈ R(d+1)×(d+1) such that

Hα(Xα|X(k)) =
1

2
∥Xα −Xα(k)∥2Πα(k)+〈
∇XαF (X(k)), Xα −Xα(k)

〉
, (40)

Hα
i (X

α
i |X(k)) =

1

2
∥Xα

i −X
α(k)
i ∥2

Π
α(k)
i

+〈
∇Xα

i
F (X(k)), Xα

i −X
α(k)
i

〉
(41)

where ∇XαF (X(k)) and ∇Xα
i
F (X(k)) are the Euclidean

gradients of F (X) with respect to Xα ∈ Xα and Xα
i ∈

SE(d) at X(k) ∈ X , respectively.

Proof. The proof is similar to that of Proposition 3.

Remark 3. As a result of Eq. (39), Hα(Xα|X(k)) can be
rewritten as the sum of Hα

i (X
α
i |X(k)), i.e.,

Hα(Xα|X(k)) =

nα∑
i=1

Hα
i (X

α
i |X(k)). (42)

Note that Hα
i (X

α
i |X(k)) in Eqs. (39) and (42) relies on a

single pose Xα
i ∈ SE(d) ⊂ Rd×(d+1). This will be later

exploited in Sections VII to IX to improve the computational
efficiency of distributed PGO.

Remark 4. Propositions Propositions 3 and 4 indicate that
G(X|X(k)) and H(X|X(k)) not only majorize F (X) but also
decouple poses from different nodes through Gα(Xα|X(k))
and Hα(Xα|X(k)), making it possible to implement majoriza-
tion minimization methods for distributed PGO.

Remark 5. ζ and ξ in Eqs. (33) and (37) are important for
the convergence analysis of MM methods for distributed PGO
in Sections VII to IX . It is recommended to be set ζ > ξ > 0
but close to zero such that G(X|X(k)) and H(X|X(k)) are
tighter upper bounds of F (X) and yield faster convergence.

Recall that Gα(Xα|X(k)) and Hα(Xα|X(k)) in Eqs. (36)
and (40) rely on Γα(k), Πα(k), ∇XαF (X(k)), which—
according to Eqs. (18) and (19)—are only related to Fαα

ij (X),
Fαβ
ij (X), F βα

ji (X). Also, Eq. (19) indicates that Fαα
ij (X)

depends on Xα
i and Xα

j , while Fαβ
ij (X) and F βα

ji (X) on
Xα

i and Xβ
j . Therefore, Γα(k), Πα(k), ∇XαF (X(k)) can be

evaluated as long as node α have access to Xβ from its
neighbor β. Furthermore, Gα(Xα|X(k)) and Hα(Xα|X(k))
can be constructed in a distributed setting with one inter-node
communication round between neighboring nodes α and β.



In the next sections, we will present MM methods for
distributed PGO using G(X|X(k)) and H(X|X(k)) that are
guaranteed to converge to first-order critical points.

VII. THE MAJORIZATION MINIMIZATION METHOD FOR
DISTRIBUTED POSE GRAPH OPTIMIZATION

In distributed optimization, MM methods are one of the
most popular first-order optimization methods [29], [30]. As
mentioned before, MM methods solve an optimization prob-
lem by iteratively minimizing an upper bound of the objec-
tive function such that the objective value is nonincreasing.
Recall that G(X|X(k)) and H(X|X(k)) majorize F (X) and
decouple poses from different nodes; see Propositions 3 and 4,
respectively. Therefore, we might make use of MM methods
where distributed PGO is reduced to independent optimization
problems that can be solved in parallel. In Section VII-A, we
propose MM methods for distributed PGO using G(X|X(k))
and H(X|X(k)). Then, in Section VII-B, we present the
algorithm and prove that the proposed method is guaranteed
to converge to first-order critical points.

A. Update Rule

According to Propositions 3 and 4, G(X|X(k)) and
H(X|X(k)) are surrogate functions majorizing F (X):

H(X|X(k)) ≥ G(X|X(k)) ≥ F (X), (43)

H(X(k)|X(k)) = G(X(k)|X(k)) = F (X(k)). (44)

Following the notion of MM methods [29], we propose the
following update rule:

X(k+ 1
2 ) ← arg min

X∈X
H(X|X(k)), (45)

X(k+1) ← arg min
X∈X

G(X|X(k)). (46)

Here, X(k+ 1
2 ) in Eq. (45) is first solved and used to initialize

X(k+1) in Eq. (46). Also, Eqs. (35) and (39) indicate that
Eqs. (45) and (46) are equivalent to |A| independent opti-
mization problems of Xα ∈ Xα within a single node α:

Xα(k+ 1
2 ) ← arg min

Xα∈Xα
Hα(Xα|X(k)), ∀α ∈ A, (47)

Xα(k+1) ← arg min
Xα∈Xα

Gα(Xα|X(k)), ∀α ∈ A, (48)

where Xα(k+ 1
2 ) in Eq. (47) is the initial guess to solve

Xα(k+1) in Eq. (48). We remark that Eqs. (47) and (48) can be
solved within a single node α ∈ A. Recalling from Eq. (42)
that Hα(Xα|X(k)) =

∑nα

i=1H
α
i (X

α
i |X(k)), we further reduce

Eq. (47) to n ≜
∑

α∈A nα independent optimization problems
on a single pose Xα

i ∈ SE(d):

X
α(k+ 1

2 )
i ← arg min

Xα
i ∈SE(d)

Hα
i (X

α
i |X(k)),

∀α ∈ A and i ∈ {1, · · · , nα}. (49)

In [43, Appendix K], we have shown that Eq. (49) admits an
efficient closed-form solution involving only matrix multipli-
cation and singular value decomposition [47].

Algorithm 1 The MM−PGO Method

1: Input: An initial iterate X(0) ∈ X and ζ ≥ ξ ≥ 0.
2: Output: A sequence of iterates {X(k)} and {X(k+ 1

2 )}.
3: for k← 0, 1, 2, · · · do
4: for node α← 1, · · · , |A| do
5: retrieve Xβ(k) from β ∈ Nα

6: evaluate Γα(k), Πα(k), ∇XαF (X(k))

7: Xα(k+ 1
2 ) ← arg min

Xα∈Xα
Hα(Xα|X(k)) using Al-

gorithm 2
8: Xα(k+1) ← improve arg min

Xα∈Xα
Gα(Xα|X(k))

with Xα(k+ 1
2 ) as the initial guess

9: end for
10: end for

Algorithm 2 Solve Xα(k+ 1
2 ) ← arg min

Xα∈Xα
Hα(Xα|X(k))

1: Input: Xα(k), Πα(k), ∇XαF (X(k)).
2: Output: Xα(k+ 1

2 ).
3: for i← 1, · · · , nα do
4: X

α(k+ 1
2 )

i ← arg min
Xα

i ∈SE(d)
Hα

i (X
α
i |X(k)) using [43,

Appendix K]
5: end for
6: retrieve Xα(k+ 1

2 ) from X
α(k+ 1

2 )
i in which i = 1, · · · , nα

From Eqs. (43) and (44), we conclude that Eqs. (45) to (48)
result in

F (X(k)) = H(X(k)|X(k)) ≥ H(X(k+ 1
2 )|X(k)) ≥ F (X(k+ 1

2 )),
(50a)

F (X(k)) = G(X(k)|X(k)) ≥ G(X(k+1)|X(k)) ≥ F (X(k+1))
(50b)

which indicate F (X(k+ 1
2 )) ≤ F (X(k)) and F (X(k+1)) ≤

F (X(k)). Therefore, Eqs. (45) to (48) are a reasonable up-
date rule for distributed PGO. In particular, we remark that
Eqs. (45) to (48) combine the strengths of our previous work
[31], [32]. Even though Eqs. (45) and (47) are motivated by
[31], Eqs. (46) and (48) make better use of the information
within a single node, and thus, take fewer iterations. In contrast
to [32], since Eqs. (45) and (47) have an efficient closed-form
solution to Eq. (49) that yields sufficient improvement, the
time-consuming local minimization of Eqs. (46) and (48) is
avoided as long as X(k+1) and Xα(k+1) are initialized with
X(k+ 1

2 ) and Xα(k+ 1
2 ). Most importantly, as is shown later in

Proposition 5, the proposed updated rule of Eqs. (45) to (48)
has provable convergence to first-order critical points.

B. Algorithm

The proposed update rule results in the MM−PGO method
for distributed PGO (Algorithm 1). The outline of MM−PGO
is as follows:
1) In line 5 of Algorithm 1, each node α performs one

inter-node communication round to retrieve Xβ(k) from
its neighbors β ∈ Nα. Note that that no other inter-node
communication is required.



2) In lines 6 of Algorithm 1, each node α evaluates Γ, Π,
∇XαF (X(k)) with Xα(k) and Xβ(k) where β ∈ Nα are
neighbors of node α.

3) In line 7 of Algorithm 1, we obtain the intermediate
solution Xα(k+ 1

2 ) using Algorithm 2. We have proved that
the resulting Xα(k+ 1

2 ) is already sufficient to guarantee the
convergence to first-order critical points.

4) In line 4 of Algorithm 2, there exists an exact and efficient
closed-form solution to Xα(k+ 1

2 ) using [43, Appendix K].
5) In line 8 of Algorithm 1, we use Xα(k+ 1

2 ) to initialize
Eq. (48), and improve the final solution Xα(k+1) through
iterative optimization such that Gα(Xα(k+1)|X(k)) ≤
Gα(Xα(k+ 1

2 )|X(k)). Note that Xα(k+1) does not have to be
a local optimal solution to Eq. (48), nevertheless, Xα(k+1)

is still expected to have a faster convergence than Xα(k+ 1
2 ).

Remark 6. In line 5 of Algorithm 1, node α does not retrieve
all the poses in Xβ(k)—only poses related to inter-node
measurements are needed and exchanged. This also applies
to line 2 of Algorithm 4, and lines 5 and 13 of Algorithm 5
in the following sections.

Remark 7. MM−PGO (Algorithm 1) requires no inter-node
communication except for line 5 of Algorithm 1 that is used
to evaluate Γα(k), Πα(k), ∇XαF (X(k)), which, as mentioned
before, can be distributed with one inter-node communication
round between neighboring nodes α and β without introducing
any additional computation.

Since Xα(k+ 1
2 ) in Eq. (47) has a closed-form solution that

can be efficiently computed, and Eq. (48) does not require
Xα(k+1) to be a local optimal solution, the overall compu-
tational efficiency of the MM−PGO method is significantly
improved in contrast to [31], [32]. More importantly, the
MM−PGO method still converges to first-order critical points
as long as the following assumption holds.

Assumption 3. For Xα(k+1) and Xα(k+ 1
2 ), it is assumed that

Gα(Xα(k+1)|X(k)) ≤ Gα(Xα(k+ 1
2 )|X(k)) (51)

for each node α = 1, 2 · · · , |A|.

Note that Assumption 3 can be satisfied with ease as long
as line 8 of Algorithm 1 is initialized with Xα(k+ 1

2 ). Then,
we have the following proposition about the convergence of
MM−PGO (Algorithm 1).

Proposition 5. If Assumptions 1 to 3 hold, then for a sequence
of {X(k)} and {X(k+ 1

2 )} generated by Algorithm 1, we have
(a) F (X(k)) is nonincreasing as k→∞;
(b) F (X(k))→ F∞ as k→∞;
(c) ∥X(k+1) −X(k)∥ → 0 as k→∞ if ξ > 0;
(d) ∥X(k+ 1

2 ) −X(k)∥ → 0 as k→∞ if ζ > ξ > 0;
(e) if ζ > ξ > 0, then there exists ϵ > 0 such that

min
0≤k<K

∥gradF (X(k+ 1
2 ))∥ ≤

√
2

ϵ
· F (X

(0))− F∞

K+ 1

for any K ≥ 0;
(f) if ζ > ξ > 0, then gradF (X(k)) → 0 and

gradF (X(k+ 1
2 ))→ 0 as k→∞.

Proof. See [43, Appendix E].

Remark 8. In contrast to other distributed PGO algorithms
[36]–[39], MM−PGO has the mildest conditions for conver-
gence and apply to a broad class of loss kernels.

VIII. THE ACCELERATED MAJORIZATION MINIMIZATION
METHOD FOR DISTRIBUTED POSE GRAPH OPTIMIZATION

WITH MASTER NODE

In the last several decades, a number of accelerated first-
order optimization methods have been proposed [33], [34].
Even though most of them were originally developed for
convex optimization, it has been recently found that these ac-
celerated methods also work well for nonconvex optimization
[48]–[50]. In our previous works [31], [32], we proposed to use
Nesterov’s method to accelerate distributed PGO, which yield
much faster convergence. Since MM−PGO is a first-order op-
timization method, it is possible to exploit Nesterov’s method
for acceleration. In Section VIII-A, we implement Nesterov’s
method to accelerate MM methods for distributed PGO. Then,
in Section VIII-B, we introduce the adaptive restart scheme
[35] to guarantee the convergence if a master node exists.
Lastly, in Section VIII-C, we propose the accelerated MM
method for distributed PGO with master and prove that such
a method converges to first-order critical points.

A. Nesterov’s Method

According to Propositions 3 and 4, Eqs. (45) and (46) are
proximal operators of F (X), making it possible to implement
Nesterov’s method [33], [34] for acceleration and resulting in
the following update rule for Xα(k+ 1

2 ) and Xα(k+1):

sα(k+1) =

√
4sα(k)2+1+1

2 , (52)

λα(k) = sα(k)−1
sα(k+1) , (53)

Y α(k) = Xα(k) + λα(k) ·
(
Xα(k) −Xα(k−1)

)
, (54)

Xα(k+ 1
2 ) = arg min

Xα∈Xα
Hα(Xα|Y (k)), (55)

Xα(k+1) = arg min
Xα∈Xα

Gα(Xα|Y (k)). (56)

In Eqs. (55) and (56), Gα(·|Y (k)) : Xα → R and Hα(·|Y (k)) :
Xα → R are surrogate functions at Y α(k):

Gα(Xα|Y (k)) =
1

2
∥Xα − Y α(k)∥2Γα(k)+〈
∇XαF (Y (k)), Xα − Y α(k)

〉
, (57)

Hα(Xα|Y (k)) =
1

2
∥Xα − Y α(k)∥2Πα(k)+〈
∇XαF (Y (k)), Xα − Y α(k)

〉
, (58)

where Γα(k) and Πα(k) are the same as these in Gα(·|X(k))
and Hα(·|X(k)) in Eqs. (36) and (40).

The key insight of Nesterov’s method is to exploit the mo-
mentum Xα(k)−Xα(k−1) for acceleration, which is essentially
governed by Eqs. (52) to (54). Note that Nesterov’s method
using Eqs. (52) to (56) is equivalent to Eqs. (47) and (48)
when sα(k) = 1 and λα(k) = 0, and then increasingly affected
by the momentum as sα(k) and λα(k) increase.



Nesterov’s method is known to converge quadratically for
convex optimization while the unaccelerated MM method only
has linear convergence [33], [34]. Even though distributed
PGO is a nonconvex optimization problem, similar to [31],
[32], Eqs. (52) to (56) using Nesterov’s method for accelera-
tion empirically have significant speedup while introducing
almost no extra computation or communication compared
to the MM−PGO method. Thus, it is preferable to adopt
Nesterov’s method to accelerate distributed PGO.

B. Adaptive Restart

In spite of faster convergence, Nesterov’s accelerated dis-
tributed PGO using Eqs. (52) to (56) is no longer nonincreas-
ing, and might fail to converge due to the nonconvexity of
PGO. Fortunately, such a problem can be remedied with an
adaptive restart scheme [31], [32], [35] as the following.

Let F
(k)

be an exponential moving averaging of F (X(0)),
F (X(1)), · · · , F (X(k)) :

F
(k)

≜

{
F (X(0)), k = 0,

(1− η) · F (k−1)
+ η · F (X(k)), otherwise

(59)

where η ∈ (0, 1]. Following [31], [50], [51], the adap-
tive restart scheme guarantees the convergence by keep-
ing F (X(k+1)) ≤ F

(k)
. Even though it is not obvious,

F (X(k+1)) ≤ F (k)
can be achieved with the following steps:

1) Update X(k+ 1
2 ) and X(k+1) by solving Eqs. (55) and (56)

for each node α ∈ A;
2) If F (X(k+ 1

2 )) > F
(k)

, update X(k+ 1
2 ) again by solving

Eq. (47) for each node α ∈ A;
3) If F (X(k+1)) > F

(k)
, update X(k+1) again by solving

Eq. (48) and reduce sα(k+1) for each node α ∈ A.
Due to space limitation, the complete analysis of the adaptive
restart scheme is left in [43, Appendix F] where more details
are presented.

Remark 9. Since η ∈ (0, 1] in Eq. (59), then F
(k+1) ≤ F (k)

as long as F (X(k+1)) ≤ F
(k)

. Note that Eqs. (47) and (48)
lead to F (X(k+ 1

2 )) ≤ F (X(k)) and F (X(k+1)) ≤ F (X(k)),
and we have proved in [43, Appendix F] that F (X(k)) ≤ F (k)

.
This suggests F (X(k+1)) ≤ F

(k)
if X(k+1) is updated from

Eq. (48), and thus, satisfies the restart conditions. Then, the
adaptive restart scheme above results in a nonincreasing
sequence of F

(k)
. Furthermore, [43, Appendix F] indicates

that such an adaptive restart scheme is sufficient to guaran-
tee the convergence to first-order critical points under mild
conditions.

Note that one has to aggregate information across the net-
work to evaluate and compare F

(k)
, F (X(k+ 1

2 )), F (X(k+1))
using Eqs. (18) and (59). Thus, a master node capable of
communicating with each node α ∈ A is required. In the
rest of this section, we make the following assumption about
the existence of such a master node.

Assumption 4. There is a master node to retrieve Xα(k)

and Xα(k+ 1
2 ) from each node α ∈ A and evaluate F

(k)
,

F (X(k+ 1
2 )), F (X(k+1)).

Algorithm 3 The AMM−PGO∗ Method

1: Input: An initial iterate X(0) ∈ X , and ζ ≥ ξ ≥ 0, and
η ∈ (0, 1], and ψ > 0, and ϕ > 0.

2: Output: A sequence of iterates {X(k)} and {X(k+ 1
2 )}.

3: for node α← 1, · · · , |A| do
4: Xα(−1) ← Xα(0) and sα(0) ← 1

5: send Xα(0) to the master node
6: end for
7: evaluate F (X(0)) using Eq. (17) at the master node

8: F
(−1) ← F (X(0)) at the master node

9: for k← 0, 1, 2, · · · do
10: for node α← 1, · · · , |A| do

11: sα(k+1) ←
√

4sα(k)2+1+1
2 , λα(k) ← sα(k)−1

sα(k+1)

12: Y α(k) ← Xα(k) + λα(k) ·
(
Xα(k) −Xα(k−1)

)
13: end for
14: F

(k)←(1−η) ·F (k−1)
+η ·F (X(k)) at the master node

15: update X(k+ 1
2 ) and X(k+1) using Algorithm 4

16: end for

C. Algorithm

Implementing Nesterov’s method and the adaptive restart
scheme, we obtain the AMM−PGO∗ method for distributed
PGO (Algorithm 3), where “∗” indicates the existence of a
master node.

The outline of AMM−PGO∗ is as follows:
1) In lines 11, 12 of Algorithm 3, each node α computes

Y (k) for Nesterov’s acceleration that is related with sα(k) ∈
[1, ∞) and λα(k) ∈ [0, 1).

2) In line 2 of Algorithm 4, each node α performs one inter-
node communication round to retrieve Xβ(k) and Y β(k)

from its neighbors β ∈ Nα.
3) In line 5 of Algorithm 3 and lines 6, 12, 20 of Algorithm 4,

each node α performs one inter-node communication round
to send Xα(k+ 1

2 ) and Xα(k+1) to the master node.
4) In lines 3 of Algorithm 4, each node α evaluates Γ(k),

Πα(k), ∇XαF (X(k)), ∇XαF (Y (k)) using Xα(k), Y α(k),
Xβ(k), Y β(k) where β ∈ Nα are neighbors of node α.

5) In lines 8, 14 of Algorithm 3 and lines 8, 14, 22 of
Algorithm 4, the master node evaluates F

(k)
, F (X(k+ 1

2 )),
F (X(k+1)) that are used for adaptive restart.

6) In lines 9 to 23 of Algorithm 4, the master node per-
forms adaptive restart to keep F (X(k+ 1

2 )) ≤ F
(k)

and
F (X(k+1)) ≤ F (k)

, which yields a nonincreasing sequence
of F

(k)
to guarantee the convergence.

7) In lines 5, 18 of Algorithm 4, note that Xα(k+1) does not
have to be a local optimal solution to Eq. (48).

8) In lines 24 to 26 of Algorithm 4, F (X(k+1)) is guaranteed
to yield sufficient improvement over F

(k)
compared to

F (X(k+ 1
2 )).

In spite of acceleration, AMM−PGO∗ converges to first-order
critical points as the following proposition states.

Proposition 6. If Assumptions 1 to 4 hold, ψ > 0 and ϕ > 0,
then for a sequence of {X(k)} and {X(k+ 1

2 )} generated by



Algorithm 4 Updates for the AMM−PGO∗ Method

1: for node α← 1, · · · , |A| do
2: retrieve Xβ(k) and Y β(k) from β ∈ Nα

3: evaluate Γα(k), Πα(k), ∇XαF (X(k)), ∇XαF (Y (k))

4: Xα(k+ 1
2 ) ← arg min

Xα∈Xα
Hα(Xα|Y (k)) using Algo-

rithm 2
5: Xα(k+1) ← improve arg min

Xα∈Xα
Gα(Xα|Y (k)) with

Xα(k+ 1
2 ) as the initial guess

6: send Xα(k+ 1
2 ) and Xα(k+1) to the master node

7: end for
8: evaluate F (X(k+ 1

2 )) and F (X(k+1)) using Eq. (17) at the
master node

9: if F (X(k+ 1
2 )) > F

(k) − ψ · ∥X(k+ 1
2 ) −X(k)∥2 then

10: for node α← 1, · · · , |A| do
11: Xα(k+ 1

2 ) ← arg min
Xα∈Xα

Hα(Xα|X(k)) using Al-
gorithm 2

12: send Xα(k+ 1
2 ) to the master node

13: end for
14: evaluate F (X(k+ 1

2 )) using Eq. (17) at the master node
15: end if
16: if F (X(k+1)) > F

(k) − ψ · ∥X(k+1) −X(k)∥2 then
17: for node α← 1, · · · , |A| do
18: Xα(k+1) ← improve arg min

Xα∈Xα
Gα(Xα|X(k))

with Xα(k+ 1
2 ) as the initial guess

19: sα(k+1) ← max{ 12s
α(k+1), 1}

20: send Xα(k+1) to the master node
21: end for
22: evaluate F (X(k+1)) using Eq. (17) at the master node
23: end if
24: if F (k) − F (X(k+1)) < ϕ ·

(
F

(k) − F (X(k+ 1
2 ))

)
then

25: X(k+1) ← X(k+ 1
2 ) and F (X(k+1))← F (X(k+ 1

2 ))

26: end if

Algorithm 3, we have

(a) F
(k)

is nonincreasing;
(b) F (X(k))→ F∞ and F

(k) → F∞ as k→∞;
(c) ∥X(k+1) −X(k)∥ → 0 as k→∞ if ξ > 0 and ζ > 0;
(d) ∥X(k+ 1

2 ) −X(k)∥ → 0 as k→∞ if ζ ≥ ξ > 0;
(e) if ζ ≥ ξ > 0, then there exists ϵ > 0 such that

min
0≤k<K

∥gradF (X(k+ 1
2 ))∥ ≤ 2

√
1

ϵ
· F (X

(0))− F∞

K+ 1

for any K ≥ 0;
(f) if ζ > ξ > 0, then gradF (X(k)) → 0 and

gradF (X(k+ 1
2 ))→ 0 as k→∞.

Proof. See [43, Appendix F].

Remark 10. If η = 1 in Eq. (59), F (X(k)) = F
(k)

, and
F (X(k)) is also nonincreasing according to Proposition 6(a).
While F (X(k)) might fail to be nonincreasing, we still recom-
mend to choose η ≪ 1 that empirically yields fewer adaptive
restarts and faster convergence for distributed PGO.

Remark 11. ψ > 0 and ϕ > 0 in Algorithm 4 guarantee
that F (X(k+ 1

2 )) and F (X(k+1)) yield sufficient improvement
over F

(k)
in terms of ∥X(k+ 1

2 )−X(k)∥ and ∥X(k+1)−X(k)∥,
and are recommended to set close to zero to avoid unnecessary
adaptive restarts and make full use of Nesterov’s acceleration.

IX. THE ACCELERATED MAJORIZATION MINIMIZATION
METHOD FOR DISTRIBUTED POSE GRAPH OPTIMIZATION

WITHOUT MASTER NODE

The adaptive restart is essential for the convergence of
accelerated MM methods. In AMM−PGO∗ (Algorithm 3),
the adaptive restart scheme needs a master node to evaluate
F (X(k+1)) and F

(k)
and guarantee the convergence. On

the other hand, if there is no master node, the adaptive
restart scheme requires substantial amount of inter-node com-
munication, making AMM−PGO∗ unscalable for large-scale
distributed PGO. Recently, we developed an adaptive restart
scheme for distributed PGO that does not require a master
node while generating convergent iterates [32]. Nevertheless,
the adaptive restart scheme in [32] is conservative and suffers
from unnecessary restarts that hinder acceleration and yield
slower convergence. Thus, we need to redesign the adaptive
restart scheme for distributed PGO without master node to
maximize the performance of accelerated MM methods. To
address this issue, in Section IX-A, we develop a novel
adaptive restart scheme that requires no master node and is
fully decentralized. Then, in Section IX-B, we propose the
accelerated MM method for distributed PGO without master
that has provable convergence to first-order critical points. In
particular, the resulting accelerated MM method, which needs
no master node and is fully decentralized, empirically has no
loss of computational efficiency in contrast to AMM−PGO∗

with master node; see Section X for more details.

A. Adaptive Restart

Recall that AMM−PGO∗’s adaptive restart scheme guaran-
tees the convergence by keeping F (X(k+1)) ≤ F

(k)
, where

the master node only evaluates and compares F (X(k+1)) and
F

(k)
. This suggests that if we could achieve F (X(k+1)) ≤

F
(k)

without evaluating and comparing F (X(k+1)) and F
(k)

,
no master node will be needed. We also note that if there is a
sequence of {Fα(k)} and {Fα(k)} for each node α such that

F (X(k)) =
∑
α∈A

Fα(k), (60)

F
(k)

=
∑
α∈A

F
α(k)

, (61)

Fα(k+1) ≤ Fα(k)
, (62)

then F (X(k+1)) =
∑

α∈A F
α(k+1) ≤

∑
α∈A F

α(k)
= F

(k)
.

Therefore, the sequence above of {Fα(k)} and {Fα(k)} is
sufficient to keep F (X(k+1)) ≤ F

(k)
despite that F (X(k+1))

and F
(k)

are not explicitly evaluated and compared. More
importantly, an adaptive restart scheme without master node
can be developed with the sequence. In rest of this section,



we will construct {Fα(k)} and {Fα(k)} satisfying Eqs. (60)
to (62), which further results in the adaptive restart scheme
for distributed PGO without a master node.

For notational simplicity, we define ∆Gα(X|X(k)) : X →
R related to the majorization gap of G(X|X(k)) over F (X):

∆Gα(X|X(k)) ≜ −ξ
2

∥∥Xα −Xα(k)
∥∥2+

1

2

∑
β∈Nα

−

∑
(i,j)∈

−→
E αβ

(
Fαβ
ij (X)− Eαβ

ij (X|X(k))
)
+

1

2

∑
β∈Nα

+

∑
(i,j)∈

−→
E βα

(
F βα
ij (X)− Eβα

ij (X|X(k))
)

(63)

where Fαβ
ij (X), F βα

ij (X), Eαβ
ij (X|X(k)), Eβα

ij (X|X(k)) are
given in Eqs. (19) and (31). From ∆Gα(X|X(k)) in Eq. (63),
we recursively define Fα(k), F

α(k)
, Gα(k) according to:

1) If k = −1, each node α initializes Fα(−1) and F
α(−1)

with

Fα(−1)≜
∑

(i,j)∈
−→
E αα

Fαα
ij (X(0)) +

1

2

∑
β∈Nα

−

∑
(i,j)∈

−→
E αβ

Fαβ
ij (X(0))+

1

2

∑
β∈Nα

+

∑
(i,j)∈

−→
E βα

F βα
ij (X(0)), (64)

F
α(−1)

≜ Fα(−1). (65)

2) If k ≥ 0, each node α recursively updates Gα(k), Fα(k)

and F
α(k)

according to

Gα(k) ≜ Gα(Xα(k)|X(k−1)) + Fα(k−1), (66)

Fα(k) ≜ Gα(k) +∆Gα(X(k)|X(k−1)), (67)

F
α(k)

≜ (1− η) · Fα(k−1)
+ η · Fα(k) (68)

where η ∈ (0, 1].

In [43, Appendix G], we have proved that such a sequence
of {Fα(k)} and {Fα(k)} satisfies Eqs. (60) to (62) as long as
Gα(k+1) ≤ Fα(k)

, which yields the following proposition.

Proposition 7. For Gα(k), Fα(k), F
α(k)

in Eqs. (64) to (68),
we have
(a) F (X(k)) =

∑
α∈A F

α(k) where F (X(k)) is given in
Eq. (17);

(b) F
(k)

=
∑

α∈A F
α(k)

where F
(k)

is given in Eq. (59);

(c) Fα(k+1) ≤ Fα(k+1) ≤ Fα(k)
if Gα(k+1) ≤ Fα(k)

.

Proof. See [43, Appendix G].

It can be concluded from Propositions 7(a) and 7(b) that the
resulting {Fα(k)} and {Fα(k)} satisfies Eqs. (60) and (61), and
Proposition 7(c) indicates that Eq. (62) holds if Gα(k+1) ≤
F

α(k)
. In [43, Appendix H], we have also proved that the

following steps are sufficient to lead to Gα(k+1) ≤ Fα(k)
:

1) Update Xα(k+1) by solving Eq. (56) at node α;
2) Compute Gα(k+1) with Eq. (66) at node α;
3) If Gα(k+1) > F

α(k+1)
, update Xα(k+1) again by solving

Eq. (48) and reduce sα(k+1)) at node α ∈ A.

Algorithm 5 The AMM−PGO# Method

1: Input: An initial iterate X(0) ∈ X , and η ∈ (0, 1], and
ζ ≥ ξ ≥ 0, and ψ > 0, and ϕ > 0.

2: Output: A sequence of iterates {X(k)} and {X(k+ 1
2 )}.

3: for node α← 1, · · · , |A| do
4: Xα(−1) ← Xα(0) and sα(0) ← 1

5: retrieve Xβ(−1) and Xβ(0) from β ∈ Nα

6: evaluate Fα(−1), F
α(−1)

using Eqs. (64) and (65)
7: Gα(0) ← Gα(Xα(0)|X(−1)) + Fα(−1)

8: end for
9: for k← 0, 1, 2, · · · do

10: for node α← 1, · · · , |A| do

11: sα(k+1) ←
√

4sα(k)2+1+1
2 , λα(k) ← sα(k)−1

sα(k+1)

12: Y α(k) ← Xα(k) + λα(k) ·
(
Xα(k) −Xα(k−1)

)
13: retrieve Xβ(k) and Y β(k) from β ∈ Nα

14: Fα(k) ← Gα(k) + ∆Gα(X(k)|X(k−1)) using
Eqs. (63) and (66)

15: F
α(k) ← (1− η) · Fα(k−1)

+ η · Fα(k)

16: update Xα(k+ 1
2 ) and Xα(k+1) using Algorithm 6

17: end for
18: end for

Then, we not only obtain a sequence of {Fα(k)} and {Fα(k)}
satisfying Eqs. (60) to (62), but also an adaptive restart scheme
using Gα(k), Fα(k), F

α(k)
to keep F (X(k+1)) ≤ F

(k)
. Note

that F (X(k+1)) and F
(k)

are neither evaluated nor compared.
Instead, we evaluate and compare Gα(k+1) and F

α(k)
inde-

pendently at each node α. Moreover, according to Eqs. (19),
(36) and (63), it is tedious but straightforward to show that
Gα(k), Fα(k), F

α(k)
in Eqs. (64) to (68) can be computed with

one inter-node communication round between node α and its
neighbors β ∈ Nα. We emphasize that such an adaptive restart
scheme differs from those in AMM−PGO∗ and [31], [50], [51]
that have a master node to evaluate and compare F (X(k+1))

and F
(k)

. In contrast, the resulting adaptive restart scheme
keeps F (X(k+1)) ≤ F (k)

but needs no master node, and thus,
is well-suited for distributed PGO without master node.

Remark 12. Fαβ
ij (X) − Eαβ

ij (X|X(k)) and F βα
ji (X) −

Eβα
ji (X|X(k)) are majorization gaps of inter-node measure-

ments related to nodes α and β. According to Eq. (63),
∆Gα(Xα|X(k)) takes half of these majorization gaps of
inter-node measurements for node α. Then, Eq. (67) uses
∆Gα(Xα|X(k)) to compute Fα(k) with majorization gaps
Fαβ
ij (X)−Eαβ

ij (X|X(k)) and F βα
ji (X)−Eβα

ji (X|X(k)) evenly
redistributed between nodes α and β. However, Fαβ

ij (X) and
F βα
ji (X) of inter-node measurements might fail to be evenly

distributed between nodes α and β for k > 0.

B. Algorithm

With the adaptive restart scheme using Gα(k), Fα(k), F
α(k)

to keep F (X(k+1)) ≤ F
(k)

, we obtain the AMM−PGO#

method (Algorithm 5) for distributed PGO, where “#” in-
dicates that no master node is needed.



Algorithm 6 Updates for the AMM−PGO# Method

1: evaluate ωαβ(k)
ij and ωβα(k)

ji using Eq. (23)
2: evaluate Γα(k), Πα(k), ∇XαF (X(k)), ∇XαF (Y (k)) in

Eqs. (36) and (40)
3: Xα(k+ 1

2 ) ← arg min
Xα∈Xα

Hα(Xα|Y (k)) using Algorithm 2

4: Gα(k+ 1
2 ) ← Gα(Xα(k+ 1

2 )|X(k)) + Fα(k)

5: Xα(k+1) ← improve arg min
Xα∈Xα

Gα(Xα|Y (k)) with

Xα(k+ 1
2 ) as the initial guess

6: Gα(k+1) ← Gα(Xα(k+1)|X(k)) + Fα(k)

7: if Gα(k+ 1
2 ) > F

α(k) − ψ · ∥Xα(k+ 1
2 ) −Xα(k)∥2 then

8: Xα(k+ 1
2 ) ← arg min

Xα∈Xα
Hα(Xα|X(k)) using Algo-

rithm 2
9: Gα(k+ 1

2 ) ← Gα(Xα(k+ 1
2 )|X(k)) + Fα(k)

10: end if
11: if Gα(k+1) > F

α(k) then
12: Xα(k+1) ← improve arg min

Xα∈Xα
Gα(Xα|X(k)) with

Xα(k+ 1
2 ) as the initial guess

13: Gα(k+1) ← Gα(Xα(k+1)|X(k)) + Fα(k)

14: sα(k+1) ← max{ 12s
α(k+1), 1}

15: end if
16: if Fα(k) −Gα(k+1) < ϕ ·

(
F

α(k) −Gα(k+ 1
2 )
)

then
17: Xα(k+1) ← Xα(k+ 1

2 ) and Gα(k+1) ← Gα(k+ 1
2 )

18: end if

The outline of AMM−PGO# is similar to AMM−PGO∗ and
the key difference is the adaptive restart scheme:

1) In lines 5, 13 of Algorithm 5, each node α performs
one inter-node communication round to retrieve Xβ(k) and
Y β(k) from its neighbors β ∈ Nα. We remark that no other
inter-node communication is required.

2) In lines 6, 14, 15 of Algorithm 5 and lines 4, 6, 9, 13 of
Algorithm 6, each node α evaluates Fα(k), F

α(k)
, Gα(k+ 1

2 ),
Gα(k+1) that are used for adaptive restart. Note that Xβ(k)

and Xβ(k−1) from node α’s neighbors β ∈ Nα are needed.
3) In lines 7 to 15 of Algorithm 6, each node α performs

independent adaptive restart such that Gα(k+ 1
2 ) ≤ F

α(k)

and Gα(k+1) ≤ F
α(k)

, which also results in F (X(k+1)) ≤
F

(k)
and a nonincreasing sequence of F

(k)
for distributed

PGO without master node.
4) In lines 16 to 18 of Algorithm 6, Gα(k+1) is guaranteed

to yield sufficient improvement over F
α(k)

compared to
Gα(k+ 1

2 ).

Furthermore, AMM−PGO# converges to first-order critical
points as the following propositions states.

Proposition 8. If Assumptions 1 to 3 hold, ψ > 0 and ϕ > 0,
then for a sequence of {X(k)} and {X(k+ 1

2 )} generated by
Algorithm 5, we have

(a) F
(k)

is nonincreasing;
(b) F (X(k))→ F∞ and F

(k) → F∞ as k→∞;
(c) ∥X(k+1) −X(k)∥ → 0 as k→∞ if ζ > ξ > 0;
(d) ∥X(k+ 1

2 ) −X(k)∥ → 0 as k→∞ if ζ > ξ > 0;

(e) if ζ ≥ ξ > 0, then there exists ϵ > 0 such that

min
0≤k<K

∥gradF (X(k+ 1
2 ))∥ ≤ 2

√
1

ϵ
· F (X

(0))− F∞

K+ 1

for any K ≥ 0;
(f) if ζ ≥ ξ > 0, then gradF (X(k)) → 0 and

gradF (X(k+ 1
2 ))→ 0 as k→∞.

Proof. See [43, Appendix H].

In spite of no master node, Proposition 8 indicates that
AMM−PGO# has provable convergence as long as each node
α ∈ A can communicate with its neighbors β ∈ Nα.
Thus, AMM−PGO# eliminates the bottleneck of communi-
cation for distributed PGO without master node. In addition,
AMM−PGO# also reduces unnecessary adaptive restarts com-
pared to [32], and thus makes better of Nesterov’s acceleration
and has faster convergence.

X. EXPERIMENTS

In this section, we evaluate the performance of our MM
methods (MM−PGO, AMM−PGO∗ and AMM−PGO#) for
distributed PGO on the simulated Cube datasets and a number
of 2D and 3D SLAM benchmark datasets [8]. In terms of
MM−PGO, AMM−PGO∗ and AMM−PGO#, η, ξ, ζ, ψ and ϕ
in Algorithms 1, 3 and 5 are 5×10−4, 1×10−10, 1.5×10−10,
1× 10−10 and 1× 10−6, respectively, for all the experiments.
In addition, MM−PGO, AMM−PGO∗ and AMM−PGO# can
take at most one iteration when solving Eqs. (48) and (56)
to improve the estimates. All the experiments have been
performed on a laptop with an Intel Xeon(R) CPU E3-1535M
v6 and 64GB of RAM running Ubuntu 20.04.

A. Cube Datasets

In this section, we test and evaluate our MM methods for
distributed PGO on 20 simulated Cube datasets (see Fig. 2)
with 5, 10 and 50 robots. In the experiment, a simulated
Cube dataset has 12 × 12 × 12 cube grids with 1 m side
length, a path of 3600 poses along the rectilinear edge of
the cube grid, odometric measurements between all the pairs
of sequential poses, and loop-closure measurements between
nearby but non-sequential poses that are randomly available
with a probability of 0.1. We generate the odometric and
loop-closure measurements according to the noise models in
[8] with an expected translational RMSE of 0.02 m and an
expected angular RMSE of 0.02π rad. The centralized chordal

Fig. 2: A Cube dataset has 12×12×12 grids of side length of 1
m, 3600 poses, loop closure probability of 0.1, an translational
RSME of 0.02 m and an angular RSME of 0.02π rad.



(a) AMM−PGO# vs. MM−PGO (b) 5 robots (c) 10 robots (d) 50 robots

Fig. 3: The relative suboptimality gaps of MM−PGO, AMM−PGO∗, AMM−PGO# and AMM−PGO [32] for distributed PGO
with the trivial loss kernel on 5, 10 and 50 robots. The results are averaged over 20 Monte Carlo runs.

(a) AMM−PGO# vs. MM−PGO (b) 5 robots (c) 10 robots (d) 50 robots

Fig. 4: The Riemannian gradient norms of MM−PGO, AMM−PGO∗, AMM−PGO# and AMM−PGO [32] for distributed PGO
with the trivial loss kernel on 5, 10 and 50 robots. The results are averaged over 20 Monte Carlo runs.

initialization [40] is implemented such that distributed PGO
with different number of robots have the same initial estimate.
The maximum number of iterations is 1000.

We evaluate the convergence of MM−PGO, AMM−PGO∗

and AMM−PGO# in terms of the relative suboptimality gap
and Riemannian gradient norm. For reference, we also make
comparisons against AMM−PGO [32]. Note that AMM−PGO
is the original accelerated MM method for distributed PGO
whose adaptive restart scheme is conservative and might
prohibit Nesterov’s acceleration.

Relative Suboptimality Gap. We implement the certifiably-
correct SE−Sync [8] to get the globally optimal objective
value F ∗ of distributed PGO with the trivial loss kernel
(Example 1), making it possible to compute the relative
suboptimality gap (F−F ∗)/F ∗ where F is the objective value
for each iteration. The results are in Fig. 3.

Riemannian Gradient Norm. We also compute the Rie-
mannian gradient norm of distributed PGO with the trivial,
Huber and Welsch loss kernels in Examples 1 to 3 for
evaluation. Note that it is difficult to find globally optimal
solutions to distributed PGO if Huber and Welsch loss kernels
are used. The results are in Figs. 4 to 6.

In Figs. 3 to 6, it can be seen that MM−PGO, AMM−PGO∗,
AMM−PGO# and AMM−PGO have a faster convergence if
the number of robots (nodes) decreases. This is expected since
G(X|X(k)) and H(X|X(k)) in Eqs. (33) and (37) result
in tighter approximations for distributed PGO with fewer
robots (nodes). In addition, Figs. 4 to 6 suggest that the
convergence rate of MM−PGO, AMM−PGO∗, AMM−PGO#

and AMM−PGO also relies on the type of loss kernels.

Nevertheless, AMM−PGO∗, AMM−PGO# and AMM−PGO
accelerated by Nesterov’s method outperform unaccelerated
MM−PGO by a large margin for any number of robots and
any types of loss kernels, which means that Nesterov’s method
improves the convergence of distributed PGO. In particular,
Figs. 3(a), 4(a), 5(a), 6(a) indicate that AMM−PGO# with
50 robot still converges faster than MM−PGO with 5 robots
despite that the later has a much smaller number of robots.
Therefore, we conclude that Nesterov’s method accelerates the
convergence of distributed PGO.

We emphasize the convergence comparisons of Nesterov’s
accelerated AMM−PGO∗, AMM−PGO# and AMM−PGO
that merely differ from each other by the adaptive restart
schemes—AMM−PGO∗ has an additional master node to
aggregate information from all the robots (nodes), whereas
AMM−PGO# and AMM−PGO are restricted to one inter-node
communication round per iteration among neighboring robots
(nodes). Notwithstanding limited local communication, as is
shown in Figs. 3, 5 and 6, AMM−PGO# has a convergence
rate comparable to that of AMM−PGO∗ using a master node
while being significantly faster than AMM−PGO. In particu-
lar, AMM−PGO# reduces adaptive restarts by 80% to 95%
compared to AMM−PGO on the Cube datasets, and thus, is
expected to make better use of Nesterov’s acceleration. Since
AMM−PGO# and AMM−PGO differ in the adaptive restart
schemes, we attribute the faster convergence of AMM−PGO#

to its redesigned adaptive restart scheme. These results suggest
that AMM−PGO# is advantageous over other methods for
very large-scale distributed PGO where computational and
communicational efficiency are equally important.



(a) AMM−PGO# vs. MM−PGO (b) 5 robots (c) 10 robots (d) 50 robots

Fig. 5: The Riemannian gradient norms of MM−PGO, AMM−PGO∗, AMM−PGO# and AMM−PGO [32] for distributed PGO
with the Huber loss kernel on 5, 10 and 50 robots. The results are averaged over 20 Monte Carlo runs.

(a) AMM−PGO# vs. MM−PGO (b) 5 robots (c) 10 robots (d) 50 robots

Fig. 6: The Riemannian gradient norms of MM−PGO, AMM−PGO∗, AMM−PGO# and AMM−PGO [32] for distributed PGO
with the Welsch loss kernel on 5, 10 and 50 robots. The results are averaged over 20 Monte Carlo runs.

B. Benchmark Datasets

In this section, we evaluate our MM methods (MM−PGO,
AMM−PGO∗ and AMM−PGO#) for distributed PGO on a
number of 2D and 3D SLAM benchmark datasets [8] (see
[43, Appendix L]). We use the trivial loss kernel and there
are no outliers such that the globally optimal solution can
be exactly computed with SE−Sync [8]. For each dataset,
we also make comparisons against SE−Sync [8], distributed
Gauss-Seidel (DGS) [36] and the Riemannian block coordinate
descent (RBCD) [37] method2, all of which are the state-of-
the-art algorithms for centralized and distributed PGO. The
SE−Sync and DGS methods use the recommended settings in
[8], [36]. We implement two Nesterov’s accelerated variants of
RBCD [37], i.e., one with greedy selection rule and adaptive
restart (RBCD++∗) and the other with uniform selection
rule and fixed restart (RBCD++#)3. As mentioned before,
AMM−PGO∗ and AMM−PGO# can take at most one iteration
when updating Xα(k+1) using Eqs. (48) and (56), which is
similar to RBCD++∗ and RBCD++#. An overview of the
aforementioned methods is given in Table I.

Number of Iterations. First, we examine the conver-
gence of MM−PGO, AMM−PGO∗, AMM−PGO#, DGS [36],
RBCD++∗ [37] and RBCD++# [37] w.r.t. the number of
iterations. The distributed PGO has 10 robots and all the
methods are initialized with distributed Nesterov’s accelerated

2RBCD [37] solves the lifted problem which usually results in slightly
smaller objective values than the original problem.

3In the experiments, we run RBCD++# [37] with fixed restart frequencies
of 30, 50 and 100 iterations for each dataset and report the best results.

TABLE I: An overview of the state-of-the-art algorithms for
distributed and centralized PGO. Note that AMM−PGO∗ and
RBCD++∗ require a master node for distributed PGO, and
AMM−PGO# is the only accelerated method with provable
convergence for distributed PGO without master node.

Method Distributed Accelerated Masterless Converged

SE−Sync [8] × N/A N/A YES
DGS [36] YES × YES ×

RBCD++∗ [37] YES YES × YES
RBCD++# [37] YES YES YES ×

MM−PGO YES × YES YES
AMM−PGO∗ YES YES × YES
AMM−PGO# YES YES YES YES

chordal initialization [32].
The objective values of each method with 100, 250 and 1000

iterations are reported in Table II and the reconstruction results
using AMM−PGO# are shown in Figs. 7 and 8. For almost
all the benchmark datasets, AMM−PGO∗ and AMM−PGO#

outperform the other methods (MM−PGO, DGS, RBCD++∗

and RBCD++#). While RBCD++∗ and RBCD++# have
similar performances in four relatively easy datasets—CSAIL,
sphere, torus and grid—AMM−PGO∗ and AMM−PGO#

achieve much better results in the other more challenging
datasets in particular if there are no more than 250 iterations.
As discussed later, AMM−PGO∗ and AMM−PGO# have
faster convergence to more accurate estimates without any ex-
tra computation and communication in contrast to RBCD++∗

and RBCD++#. Last but not the least, Table II demonstrates
that the accelerated AMM−PGO∗ and AMM−PGO# converge



TABLE II: Results of distributed PGO on 2D and 3D SLAM benchmark datasets (see [43, Appendix L]). The distributed PGO
has 10 robots and is initialized with distributed Nesterov’s accelerated chordal initialization [32]. We report the objective values
of each method with 100, 250 and 1000 iterations. F (k) and F ∗ are the objective value at iteration k and globally optimal
objective value, respectively. The best results are colored in red and the second best in blue if no methods tie for the best.

Dataset F (0) F ∗ k

F (k)

Methods w/ Master Node Methods w/o Master Node
AMM−PGO∗ RBCD++∗ [37] MM−PGO AMM−PGO# DGS [36] RBCD++# [37]

2D SLAM Benchmark Datasets

ais2klinik 3.8375× 102 1.8850× 102
100 2.0372× 102 2.1079× 102 2.1914× 102 2.0371× 102 8.4701× 102 2.1715× 102

250 1.9447× 102 2.0077× 102 2.1371× 102 1.9446× 102 9.1623× 101 2.1084× 102

1000 1.8973× 102 1.9074× 102 2.0585× 102 1.8936× 102 3.8968× 102 2.0253× 102

city 7.0404× 102 6.3862× 102
100 6.4327× 102 6.5138× 102 6.5061× 102 6.4327× 102 7.7745× 102 6.5396× 102

250 6.3899× 102 6.4732× 102 6.4850× 102 6.3899× 102 7.0063× 102 6.5122× 102

1000 6.3862× 102 6.3935× 102 6.4461× 102 6.3863× 102 6.5583× 102 6.4768× 102

CSAIL 3.1719× 101 3.1704× 101
100 3.1704× 101 3.1704× 101 3.1706× 101 3.1704× 101 3.2479× 101 3.1705× 101

250 3.1704× 101 3.1704× 101 3.1706× 101 3.1704× 101 3.1792× 101 3.1704× 101

1000 3.1704× 101 3.1704× 101 3.1705× 101 3.1704× 101 3.1712× 101 3.1704× 101

M3500 2.2311× 102 1.9386× 102
100 1.9446× 102 1.9511× 102 1.9560× 102 1.9447× 102 1.9557× 102 1.9551× 102

250 1.9414× 102 1.9443× 102 1.9516× 102 1.9414× 102 1.9445× 102 1.9511× 102

1000 1.9388× 102 1.9392× 102 1.9461× 102 1.9388× 102 1.9415× 102 1.9455× 102

intel 5.3269× 101 5.2348× 101
100 5.2397× 101 5.2496× 101 5.2517× 101 5.2397× 101 5.2541× 101 5.2526× 101

250 5.2352× 101 5.2415× 101 5.2483× 101 5.2351× 101 5.2441× 101 5.2489× 101

1000 5.2348× 101 5.2349× 101 5.2421× 101 5.2348× 101 5.2381× 101 5.2425× 101

MITb 8.8430× 101 6.1154× 101
100 6.1331× 101 6.1518× 101 6.3657× 101 6.1330× 101 9.5460× 101 6.1997× 101

250 6.1157× 101 6.1187× 101 6.2335× 101 6.1165× 101 7.8273× 101 6.1599× 101

1000 6.1154× 101 6.1154× 101 6.1454× 101 6.1154× 101 7.2450× 101 6.1209× 101

3D SLAM Benchmark Datasets

sphere 1.9704× 103 1.6870× 103
100 1.6870× 103 1.6870× 103 1.6901× 103 1.6870× 103 1.6875× 103 1.6870× 103

250 1.6870× 103 1.6870× 103 1.6874× 103 1.6870× 103 1.6872× 103 1.6870× 103

1000 1.6870× 103 1.6870× 103 1.6870× 103 1.6870× 103 1.6872× 103 1.6870× 103

torus 2.4654× 104 2.4227× 104
100 2.4227× 104 2.4227× 104 2.4234× 104 2.4227× 104 2.4248× 104 2.4227× 104

250 2.4227× 104 2.4227× 104 2.4227× 104 2.4227× 104 2.4243× 104 2.4227× 104

1000 2.4227× 104 2.4227× 104 2.4227× 104 2.4227× 104 2.4236× 104 2.4227× 104

grid 2.8218× 105 8.4319× 104
100 8.4323× 104 8.4320× 104 1.0830× 105 8.4399× 104 1.4847× 105 8.4920× 104

250 8.4319× 104 8.4319× 104 8.6054× 104 8.4321× 104 1.4066× 105 8.4319× 104

1000 8.4319× 104 8.4319× 104 8.4319× 104 8.4319× 104 1.4654× 105 8.4319× 104

garage 1.5470× 100 1.2625× 100
100 1.3105× 100 1.3282× 100 1.3396× 100 1.3105× 100 1.3170× 100 1.3364× 100

250 1.2872× 100 1.3094× 100 1.3288× 100 1.2872× 100 1.2867× 100 1.3276× 100

1000 1.2636× 100 1.2681× 100 1.3145× 100 1.2636× 100 1.2722× 100 1.3124× 100

cubicle 8.3514× 102 7.1713× 102
100 7.1812× 102 7.2048× 102 7.2300× 102 7.1812× 102 7.3185× 102 7.2210× 102

250 7.1714× 102 7.1794× 102 7.2082× 102 7.1715× 102 7.2308× 102 7.2081× 102

1000 7.1713× 102 7.1713× 102 7.2082× 102 7.1713× 102 7.2044× 102 7.1845× 102

rim 8.1406× 104 5.4609× 103
100 5.5044× 103 5.7184× 103 5.8138× 103 5.5044× 103 6.1840× 103 5.7810× 103

250 5.4648× 103 5.5050× 103 5.7197× 103 5.4648× 103 6.1184× 103 5.7195× 103

1000 5.4609× 103 5.4617× 103 5.5509× 103 5.4609× 103 6.0258× 103 5.5373× 103

significantly faster than the unaccelerated MM−PGO, which
further validates the usefulness of Nesterov’s method.

We also compute the performance profiles [52] based on
the number of iterations. Given a tolerance ∆ ∈ (0, 1], the
objective value threshold F∆(p) of a PGO problem p is

F∆(p) = F ∗ +∆ ·
(
F (0) − F ∗) (69)

where F (0) and F ∗ are the initial and globally optimal
objective values, respectively. Let I∆(p) denote the minimum
number of iterations that a PGO method takes to reduce the
objective value to F∆(p), i.e.,

I∆(p) ≜ min
k

{
k ≥ 0|F (k) ≤ F∆(p)

}

where F (k) is the objective value at iteration k. Then, for a
problem set P , the performance profiles of a PGO method
is the percentage of problems solved w.r.t. the number of
iterations k:

percentage of problems solved
at iteration k

≜

∣∣{p ∈ P|I∆(p) ≤ k}
∣∣

|P|
.

The performance profiles based on the number of iterations
over a variety of 2D and 3D SLAM benchmark datasets
(see [43, Appendix L]) are shown in Fig. 9. The tolerances
evaluated are ∆ = 1 × 10−2, 5 × 10−3, 1 × 10−3 and 1 ×
10−4. We report the performance of MM−PGO, AMM−PGO∗,
AMM−PGO#, DGS [36], RBCD++∗ [37] and RBCD++#

[37] for distributed PGO with 10 robots (nodes). As expected,
AMM−PGO∗ and AMM−PGO∗ dominates the other methods



(a) ais2klinik (b) city (c) CSAIL

(d) M3500 (e) intel (f) MITb

Fig. 7: AMM−PGO# results on the 2D SLAM benchmark datasets where the different colors denote the odometries of different
robots. The distributed PGO has 10 robots and is initialized with the distributed Nesterov’s accelerated chordal initialization
[32]. The number of iterations is 1000.

(a) sphere (b) torus (c) grid

(d) garage (e) cubicle (f) rim

Fig. 8: AMM−PGO# results on the 3D SLAM benchmark datasets where the different colors denote the odometries of different
robots. The distributed PGO has 10 robots and is initialized with the distributed Nesterov’s accelerated chordal initialization
[32]. The number of iterations is 1000.



(a) ∆ = 1× 10−2 (b) ∆ = 5× 10−3 (c) ∆ = 1× 10−3 (d) ∆ = 1× 10−4

Fig. 9: Performance profiles for MM−PGO, AMM−PGO∗, AMM−PGO#, DGS [36], RBCD++∗ [37] and RBCD++# [37]
on 2D and 3D SLAM Benchmark datasets (see [43, Appendix L]). The performance is based on the number of iterations k
and the evaluation tolerances are ∆ = 1× 10−2, 5× 10−3, 1× 10−3, 1× 10−4. The distributed PGO has 10 robots (nodes)
and is initialized with distributed Nesterov’s accelerated chordal initialization [32]. Note that AMM−PGO∗ and RBCD++∗

require a master node, whereas MM−PGO, AMM−PGO#, DGS and RBCD++# do not.

(MM−PGO, DGS, RBCD++∗ and RBCD++#) in terms of
the convergence for all the tolerances ∆, which means that
both of them are better choices for distributed PGO.

In Table II and Fig. 9, we emphasize that AMM−PGO#

requiring no master node achieves comparable performance to
that of AMM−PGO∗ using a master node, and is a lot better
than all the other methods with a master node (RBCD++∗)
and without (MM−PGO, DGS and RBCD++#). Even though
RBCD++∗ and RBCD++# are similarly accelerated with
Nesterov’s method, we remark that RBCD++# without a
master node suffers a great performance drop compared to
RBCD++∗, and more importantly, RBCD++# has no con-
vergence guarantees to first-order critical points. These results
reverify that AMM−PGO# is more suitable for very large-
scale distributed PGO with limited local communication.

Note that all of MM−PGO, AMM−PGO∗, AMM−PGO#,
DGS [36], RBCD++∗ [37] and RBCD++# [37] have to ex-
change poses of inter-node measurements with the neighbors,
and thus, need almost the same amount of communication
per iteration. However, Fig. 9 indicates that AMM−PGO∗ and
AMM−PGO# have much faster convergence in terms of the
number of iterations, which also means less communication
for the same level of accuracy. In addition, RBCD++∗ and
RBCD++# have to keep part of the nodes in idle during
optimization and rely on red-black coloring for block aggre-
gation and random sampling for block selection, which induce
additional computation and communication. In contrast, nei-
ther AMM−PGO∗ nor AMM−PGO# has any extra practical
restrictions except Assumptions 1 to 4.

Optimization Time. We evaluate the optimization time of
AMM−PGO∗ and AMM−PGO# with different numbers of
robots (nodes) against the centralized baseline SE−Sync [8].
To improve the time efficiency of our methods, Xα(k+1) in
Eqs. (48) and (56) uses the same rotation as Xα(k+ 1

2 ) in
Eqs. (47) and (55) and merely updates the translation. Due to
the different numbers of robots (nodes), the centralized chordal
initialization [40] is used for all the runs.

Similar to the number of iterations, we use the performance
profiles to evaluate AMM−PGO∗ and AMM−PGO# in terms
of the optimization time. Recall from Eq. (69) the objective

value threshold F∆(p) where p is the PGO problem and
∆ ∈ (0, 1] is the tolerance. Since the average optimization
time per node is directly related with the speedup, we measure
the efficiency of a distributed PGO method with N nodes by
computing the average optimization time T∆(p,N) that each
node takes to reduce the objective value to F∆(p):

T∆(p,N) = T∆(p)
N (70)

where T∆(p) denotes the total optimization time of all the N
nodes. We remark that the centralized optimization method has
N = 1 node and T∆(p,N) = T∆(p). Let TSE−Sync denote the
optimization time that SE−Sync needs to find the globally op-
timal solution. The performance profiles assume a distributed
PGO method solves problem p for some µ ∈ [0, +∞) if
T∆(p,N) ≤ µ · TSE−Sync. Note that µ is the scaled average
optimization time per node and SE−Sync solves problem p
globally at µ = 1.

As a result of [52], the performance profiles evaluate the
speedup of distributed PGO methods for a given optimization
problem set P using the percentage of problems solved w.r.t.
the scaled average optimization time per node µ ∈ [0, +∞):

percentage of problems
solved at µ ≜

∣∣{p ∈ P|T∆(p, N)≤µ · TSE−Sync}
∣∣

|P|
.

Our method, due to the optimization method taking dis-
tribution into account, can be parallelized while retaining
guarantees on convergence and computation. A comparison
using TSE−Sync assumes there is no value in parallelization,
and indeed in that setting SE−Sync would be competitive
with our method. But parallelization is valuable, and the
T∆(p,N) = T∆(p)

N metric in Eq. (70) captures that value,
and shows that when we distribute the optimization across
agents we get performance that is both superior in accuracy
and faster.

Fig. 10 shows the performance profiles based on the scaled
average optimization time per node. The tolerances evaluated
are ∆ = 1 × 10−2, 1 × 10−3, 1 × 10−4 and 1 × 10−5. We
report the performance of AMM−PGO∗ and AMM−PGO#

with 10, 25 and 100 robots (nodes). For reference, we also
evaluate the performance profile of the centralized PGO base-
line SE−Sync [8]. As the results demonstrate, AMM−PGO∗



(a) ∆ = 1× 10−2 (b) ∆ = 1× 10−3 (c) ∆ = 1× 10−4 (d) ∆ = 1× 10−5

Fig. 10: Performance profiles for AMM−PGO∗, AMM−PGO# and SE−Sync [8] on 2D and 3D SLAM benchmark datasets (see
[43, Appendix L]). The performance is based on the scaled average optimization time per node µ ∈ [0, +∞) with tolerances
∆ = 1× 10−2, 1× 10−3, 1× 10−4, 1× 10−5. The distributed PGO has 10, 25 and 100 robots (nodes) and is initialized with
the centralized chordal initialization [40]. Note that SE−Sync solves all the PGO problems globally at µ = 1.

and AMM−PGO# are significantly faster than SE−Sync [8]
in most cases for modest accuracies of ∆ = 1 × 10−2

and ∆ = 1 × 10−3, for which the only challenging case
is the CSAIL dataset, whose chordal initialization is already
very close to the globally optimal solution. In spite of the
performance decline for smaller tolerances of ∆ = 1 × 10−4

and ∆ = 1×10−5, AMM−PGO∗ and AMM−PGO# with 100
robots (nodes) still achieve a 2.5 ∼ 20x speedup of optimiza-
tion time over SE−Sync for more than 70% of the benchmark
datasets, not to mention that the average optimization time
per node of AMM−PGO∗ and AMM−PGO# decreases with
the number of robots (nodes). Note that the communication
overhead is not considered in the experiments. Nevertheless
Fig. 10 indicates that AMM−PGO∗ and AMM−PGO# are
promising as fast parallel backends for very large-scale PGO
and real-time multi-robot SLAM.

In summary, AMM−PGO∗ and AMM−PGO# achieve the
state-of-the-art performance for distributed PGO and enjoy
a significant multi-node speedup compared to the centralized
baseline [8] for modestly but sufficiently accurate estimates.

C. Robust Distributed PGO

In this section, we evaluate the robustness of AMM−PGO#

against the outlier inter-node loop closures. Similar to [24],
[27], we first use the distributed pairwise consistent mea-
surement set maximization algorithm (PCM) [53] to reject
spurious inter-node loop closures and then solve the resulting
distributed PGO using AMM−PGO# with the trivial, Huber
and Welsch loss kernels in Examples 1 to 3 .

We implement AMM−PGO# on the 2D intel and 3D
garage datasets (see [43, Appendix L]) with 10 robots
(nodes). For each dataset, we add false inter-node loop closures
with uniformly random rotation and translation errors in the
range of [0, π] rad and [0, 5] m, respectively. In addition, after
the initial outlier rejection using the PCM algorithm [53], we
initialize AMM−PGO# with distributed Nesterov’s accelerated
chordal initialization [32] for all the loss kernels.

The absolute trajectory errors (ATE) of AMM−PGO# w.r.t.
different outlier ratios of inter-node loop closures are in
Fig. 11. The ATEs are computed against the outlier-free results
of SE−Sync [8] and averaged over 10 Monte Carlo runs.

(a) intel (b) garage

Fig. 11: Absolute trajectory errors (ATE) of distributed PGO
using AMM−PGO# with the trivial, Huber and Welsch loss
kernels on the 2D intel and 3D garage datasets. The outlier
ratios of inter-node loop closures are 0 ∼ 0.9. The ATEs are
computed against the outlier-free results of SE−Sync [8] and
are averaged over 10 Monte Carlo runs. PCM [53] is used to
initially reject spurious loop closures.

In Fig. 11(a), PCM [53] rejects most of the outlier inter-
node loop closure for the intel dataset and AMM−PGO#

solves the distributed PGO problems regardless of the loss
kernel types and outlier ratios. Note that AMM−PGO# with
the Welsch loss kernel has larger ATEs (avg. 0.057 m) against
SE−Sync [8] than those with the trivial and Huber loss kernels
(avg. 0.003 m), and we argue that this is related to the loss
kernel types. The ATEs are evaluated based on SE−Sync
using the trivial loss kernel, which is in fact identical/similar
to distributed PGO with the trivial and Huber loss kernels
but different from that with the Welsch loss kernel. Thus, the
estimates from the trivial and Huber loss kernels are expected
to be more close to those of SE−Sync, which result in smaller
ATEs compared to the Welsch loss kernel if no outliers.

For the more challenging garage dataset, as is shown in
Fig. 11(b), PCM fails for outlier ratios over 0.4, and further,
distributed PGO with the trivial and Huber loss kernels results
in ATEs as large as 65 m. In contrast, distributed PGO with the
Welsch loss kernel still successfully estimates the poses with
an average ATE of 2.5 m despite the existence of outliers—
note that the garage dataset has a trajectory over 7 km. For
the garage dataset, a qualitative comparison of distributed



(a) SE−Sync (b) The trivial loss kernel (c) The Huber loss kernel (d) The Welsch loss kernel

Fig. 12: Qualitative comparisons of distributed PGO with the trivial, Huber and Welsch loss kernels for the garage dataset
with spurious inter-node loop closures. The outlier-free result of SE−Sync [8] is shown in Fig. 12(a) for reference. The outlier
ratio of inter-node loop closures is 0.6 and PCM [53] is used for initial outlier rejection.

PGO with different loss kernels is also presented in Fig. 12,
where the Welsch loss kernel still has the best performance.
The results are not surprising since the Welsch loss kernel is
known to be more robust against outliers than the other two
loss kernels [46].

The results above indicate that our MM methods can be
applied to distributed PGO in the presence of outlier inter-
node loop closures when combined with robust loss kernels
like Welsch and other outlier rejection techniques like PCM
[53]. In addition, we emphasize again that our MM methods
have provable convergence to first-order critical points for a
broad class of robust loss kernels, whereas the convergence
guarantees of existing distributed PGO methods [36]–[39] are
restricted to the trivial loss kernel.

XI. CONCLUSION AND FUTURE WORK

We presented majorization minimization (MM) methods
for distributed PGO that has important applications in multi-
robot SLAM. Our MM methods had provable convergence
for a broad class of robust loss kernels in robotics and
computer vision. Furthermore, we elaborated on the use
of Nesterov’s method and adaptive restart for acceleration
and developed accelerated MM methods AMM−PGO∗ and
AMM−PGO# without sacrifice of convergence guarantees.
In particular, we designed a novel adaptive restart scheme
making AMM−PGO# without a master node comparable to
AMM−PGO∗ using a master node for information aggregation.
The extensive experiments on numerous 2D and 3D SLAM
datasets indicated that our MM methods outperformed existing
state-of-the-art methods and robustly handled distributed PGO
with outlier inter-node loop closures.

Our MM methods for distributed PGO can be improved as
follows. A more tractable and robust initialization technique
is definitely beneficial to the accuracy and efficiency of dis-
tributed PGO. Even though our MM methods have reliable
performances against outliers, a more complete theoretical
analysis for robust distributed PGO is still necessary. We might
also extend our MM methods for differentiable distributed
PGO [54]. In addition, our MM methods can be implemented
as local solvers for distributed certifiably correct PGO [37] to
handle poor or random initialization. Since all the nodes are
now assumed to be synchronized, it is necessary and useful to
extend our MM methods for asynchronous distributed PGO.

Lastly, real multi-robot tests might make the results of our MM
methods more convincing where not only the optimization
time but also the communication overhead can be validated.
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