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Abstract

We study a stochastic compartmental susceptible-infected (SI) epidemic process
on a configuration model (CM) random graph with a given degree distribution
over a finite time interval. We split the population of graph vertices into two
compartments, namely, S and I, denoting susceptible and infected vertices,
respectively. In addition to the sizes of these two compartments, we keep
track of the counts of SI-edges (those connecting a susceptible and an infected
vertex), and SS-edges (those connecting two susceptible vertices). We describe
the dynamical process in terms of these counts and present a functional central
limit theorem (FCLT) for them as the number of vertices in the random graph
grows to infinity. The FCLT asserts that the counts, when appropriately scaled,
converge weakly to a continuous Gaussian vector semimartingale process in the
space of vector-valued cadlagfunctions endowed with the Skorohod topology.
We discuss applications of the FCLT in percolation theory and in modeling
spread of computer viruses. We also provide simulation results illustrating

FCLT for some common degree distributions.
Keywords: SI process; Functional CLT; Configuration model; Random graphs;
Scaling limit

2020 Mathematics Subject Classification: Primary 60F17
Secondary 60F05; 92D30

1. Introduction

Large-graph scaling limits, such as the functional laws of large numbers (FLLNS)
and the functional central limit theorems (FCLTs), of dynamical processes on ran-
dom graphs have received much attention of late. Although dynamical processes on
random graphs themselves have long been studied by mathematicians, physicists, epi-
demiologists, computer scientists and engineers, a comprehensive and mathematically
rigorous body of work on various scaling limits under general settings remains elusive.
Such scaling limits have been derived rigorously only for a handful of special cases
to date. Notable breakthroughs in the context of epidemiological processes include
[2, 3, 21, 32, 31], appearing primarily in the probability theory literature. They
provide functional laws of large numbers under various sets of technical assumptions.

However, scaling limits in the form of functional central limit theorems have not been



FCLT for SI Process on CM Graphs 3

well investigated to the best of our knowledge. We are not aware of any rigorously
derived FCLT for dynamical processes on random graphs, except for diffusion-type
approximations attempted in special cases like an early-stage epidemic in [27] and
normal approximation theorems for graph statistics in configuration model random
graphs [7]. In this paper, we provide an FCLT for a particular type of binary dynamics
on configuration model (CM) random graphs (see [47, Chapter 7|, [16]) as n, the

number of vertices in the graph, grows to infinity.

1.1. Our Contribution

In the current paper we study a stochastic compartmental susceptible-infected (SI)
epidemic process on a configuration model random graph with a given degree dis-
tribution over a finite time interval 7y := [0,7T], for some T > 0. In this setting,
we segregate the population into two compartments, namely, S and I, containing
the susceptible and the infected individuals, respectively. In addition to the sizes of
these two compartments, we keep track of the counts of SI-edges (those connecting a
susceptible and an infected individual) and SS-edges (those connecting two susceptible
individuals). We describe the dynamical process in terms of these counts and present
a functional central limit theorem for them as n grows to infinity. To be precise, let
Xsr,;(t) and Xgg ;(t) denote the numbers of infected and susceptible neighbours of a
susceptible vertex i at time ¢. Based on these local processes, define

Xss(t Z Xss,i(t) and Xgp(t Z Xt
i€S(t) i€S(t)
where S(t) denotes the set of susceptible vertices at time ¢. We will denote the set of
infected vertices at time ¢ by I(t). While Xgj is the count of SI-type edges, the process
Xgg counts each SS-type edge twice. Let

X (t) = (Xs(t), Xsi1(t), Xss(t))

denote the aggregated state vector of the system at time ¢ > 0, where Xg(t) :==| S(¢) |

keeps track of the number of susceptible vertices. Also, let
Xsol(t) == Xsr(t) + Xgs(t).

A functional law of large numbers for the SI process approximates the scaled counts

n~1X by the solution to a system of Ordinary Differential Equations (ODEs). That is,
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n~'X = z for sufficiently large n, where z is the solution to the FLLN limit ODE. In
this paper, we prove an FCLT for the fluctuations of the scaled process n~'X around
the FLLN limit z. Our main result (Theorem 2 in Section 4.3) asserts that, under ap-
propriate technical assumptions, the fluctuation process Y (t) :=y/n (n='X(t) — z(t))
converges weakly to a Gaussian vector semimartingale in D®), the space of real 3-
dimensional vector-valued cadlag functions on 7y endowed with the Skorohod topology.

The technical assumptions needed for the result to hold will be made precise later
in Section 3. A precise statement of the FCLT result with additional discussion and

further details is presented in Section 4.

1.2. Proof Strategy and Paper Outline

Our derivation relies on the application of an FCLT for local martingales due to
Rebolledo, referred to as the Rebolledo theorem hereinafter. In [45], Rebolledo provided
sufficient conditions for the convergence of local martingales to a continuous Gaussian
(vector) martingale in terms of the associated optional and predictable quadratic
variation processes, and the martingale process containing “big” jumps of the original
process. Helland later provided a simpler proof of the Rebolledo theorem in [28]. For
our purpose, we do not need the Rebolledo theorem in its full generality; a version of
it tailored to the setting of square integrable martingales suffices and, for the sake of
completeness, we provide the statement of such a version in Appendix C.

The first step towards the FCLT is to perform a Doob-Meyer decomposition ([37])
of the semimartingale of the vector of counts into a zero-mean martingale and a
compensator. Then one can show that the predictable quadratic variation of the
appropriately scaled martingale process converges in probability to a deterministic
quantity. Furthermore, in the limit, its sample paths turn out to be close to continuous
in the sense that their “big” jumps vanish. Weak convergence in the sense of [14] is
then established by applying the Rebolledo theorem.

The rest of the paper is structured as follows: The construction of the CM random
graph and the epidemic process on it are described in detail in Section 2. In Section 3,
we make our technical assumptions precise and provide a law of large numbers before
presenting our FCLT (Theorem 2) in Section 4. Necessary technical lemmas are also

discussed leading up to the FCLT. In Section 5, we discuss applications of our FCLT
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in percolation theory (from a non-equilibrium statistical mechanics point of view), and
in computer science in the context of spread of computer viruses. In Section 5, we
also discuss the peculiar case of Poisson-type degree distributions under which the cor-
relation equations-based mean-field pair approximation approach correctly estimates
the limiting process. For illustration, we provide simulation results for some common

degree distributions.

2. The SI process on CM random graphs

2.1. Notational Conventions

We use the notations N and R to denote the set of natural numbers and the set of
real numbers respectively. Also, we use Ny := NU {0} and R} =R\ (—o00,0]. Given
R C R, we denote the o-field of Borel subsets of R by B(R). Recall 7y := [0,T] for
some t > 0. We denote by D = D(7;) the space of real functions on 7y that are
right continuous and have left-hand limits. Functions in D are called cadlag. Unless
otherwise mentioned, the space D is assumed endowed with the Skorohod topology [14,
Chapter 3|, which turns D into a Polish space. We call D the Skorohod space. Let the
triplet (Q, F,P) denote our probability space. For an event A, we use 1 (A) to denote
the indicator (or characteristic) function of A. We shall use the following shorthand
notation (a), = a(a—1)(a—2)---(a—b+1) for a > b and a,b € N. The symbols O(.)
and o(.) are the big O and small o notations respectively, and they carry their usual
meanings. For a differentiable function f defined on some set £ C R%, we denote its
partial derivative with respect to the i-th variable by 0; f, fori = 1,2,...,d. With some
abuse of notation, we use df(z) to denote the derivative of a differentiable function of
a single variable at z. For a stochastic process Z(t) with paths in D, we denote the

associated jump process Z(t) — Z(t—) by 6Z(t). We also denote T := (0,T] C To.

2.2. Model

We begin with the class of all configuration model random graphs [47, Chapter
7] with n vertices, for n € N. The main advantage of the configuration model is
that it allows one to fix the degrees before constructing the graph itself. There are

numerous real life situations where random graphs with a prescribed degree sequence
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Ficure 1: Dynamics of the stochastic SI model over a finite time interval 7g. Susceptible
vertices are shown in yellowish green and infected vertices, in dark red. Different types of
edges are shown in different colours. (a) State of the system at a given time. We know the
degree of each vertex. For each infected vertex, we know its number of infected neighbours
(number of II-type edges, which are shown in solid red) and the number of IS-type half-edges,
which are shown in dashed blue. The green dotted half-edges emanating from the susceptible
vertices are of undetermined types. (b) An IS-type half-edge rings and is randomly matched
with a half-edge originating from a susceptible vertex. A full edge is thus formed. (c) We
change the status of the chosen susceptible vertex to infected (and change its colour to dark

red). (d) We determine the types of the remaining half-edges of the newly infected vertex.

(or a probability distribution for the degree sequence) are reasonable and intuitive. See

[47, Chapter 7] for some examples.

Given degrees di,ds,...,d, for n vertices, we first assign d; half-edges to ver-
tex i. The configuration model random graph is then obtained by uniformly-at-random
matching (or pairing) of all available half-edges. Two paired half-edges form an edge.
We assume the degrees di,ds, . ..,d, are drawn from a probability distribution, which
we call the degree distribution. If the sum of the drawn degrees is not even, we add
a parity half-edge to the last vertex. That is, we first draw dy,ds,...,d,_1 and d;l

as an independent and identically distributed (i.i.d.) random sample from the degree
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distribution and then set d,, := d,, +1 (d;l + E;:ll d; is odd). However, for large n the
contribution of the added indicator function is negligible with probability one (see, e.g.,
[47, Section 7.6, pp. 239]), and we will thus ignore it in our asymptotic calculations.

Additionally, we assume the first three moments of the degree distribution are finite.
Note that, by matching half-edges uniformly at random, we obtain a multigraph because
the resulting graph may have self-loops and multiple edges. Interestingly, when the
degrees dy,ds, ..., d, are drawn independently, [23, Theorem 3.1.2] states that, as the
number of vertices grows to infinity, the numbers of self-loops and parallel edges have
independent Poisson limits whose means depend only on the first two moments of
the degree distribution. Since the focus of this paper is on the functional limit of
the fluctuations of the scaled stochastic process n~1X, the contributions of self-loops
and parallel edges are negligible in the limit. Therefore, we will ignore self-loops and
parallels edges in our calculations of the asymptotic terms.

Let us denote the probability generating function (PGF) of the underlying degree
distribution by 1, i.e.,

U(@) =Y s, (2.1)
k

where py is the probability that a randomly chosen vertex has degree k, for k € Nj.
We denote the class of all CM random graphs with n vertices by G(i,n).

A half-edge is referred to as SI-type (resp., IS-type) if it originates at a susceptible
(resp., infected) vertex and is a part of an SI-type edge. Similarly, an SS-type half-
edge is a part of an SS-type edge and an II-type half-edge is a part of an II-type edge
(connecting two infected individuals).

We consider the Markovian susceptible-infected model on CM random graphs. Each
infected individual (represented by a vertex of the graph) infects one of its neighbours
at rate $ > 0, independently of the other neighbours. We split the population into two
compartments consisting respectively of the susceptible and the infected individuals. In
order to prove the FCLT result outlined in the introduction, we need to approximate the
probability distributions of the counts Xg, Xg1 and Xgg, which requires us to calculate
the probability that the susceptible vertex of degree k has [ infected neighbours, for
I < k. As we explain below, obtaining this probability is particularly easy if we allow

the graph to be constructed dynamically as the infection spreads. Consequently, we
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adopt the following dynamic construction of the graph first proposed in [21].

Dynamic construction of the graph Suppose we are given n vertices with degrees
(or number of half-edges) dy,ds,...,d,. A subset of size Xg(0) of n vertices is chosen
uniformly at random. Those vertices are designated as susceptible, and the remaining
vertices, infected. Note that since we can write
Xai(t) = Y Xisilt),
i€l(t)

where Xig ;(t) denotes the number of IS-type half-edges originating at an infected
vertex i at time ¢, it suffices to follow the infected vertices in the dynamic construction.

We start at time ¢ = 0 by infecting a random subset of vertices and revealing
their connections by matching their half-edges uniformly at random with the available
half-edges (see below). We then associate with each IS-type half-edge an independent
exponential clock with parameter 5. The first of all these clocks that rings determines
the next event. Therefore, at time ¢ we know that the next infection will take place in
a time exponentially distributed with parameter 8Xgi(t). Let t* > t denote the time
of the next infection with its left limit denoted by t*-. At t*, we update the state of

the epidemic as follows.

Step 1. We randomly match the IS-type half-edge that has rung to a half-edge originating

from a susceptible. This susceptible is the newly infected with degree, say, k.

Step 2. We choose uniformly k& — 1 half-edges among all the available half- edges (they
either are of type IS or SS). Let nig (resp., ngs) be the number of IS-type
(resp., of SS-type) half-edges drawn among these k — 1 half-edges. Note that the
probability of drawing a specific pair (nis, nss) is given by the hypergeometric
distribution
(XSI(t*—)) (Xss(t*—))
nis nss
(%)
k—1
The chosen njg half-edges of type IS determine the infected neighbors of the

newly infected individual. The remaining ngg edges of type SS remain open in

the sense that the susceptible neighbor is not fixed.

Step 3. We change the status of the nig (resp., ngs) IS-type (resp., SS-type) edges created
to Il-type (resp., SI-type).
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Step 4. We change the status of the newly infected from S to I and wait for the next
clock to ring at a new time t** > t* to repeat Steps 1-4. The process stops when

there are no more IS-type half-edges.

The above algorithm (see Figure 1 for a pictorial representation) gives rise to the
natural filtration F; as the o-field generated by the process history up to and including
time ¢t > 0 [22, Chapter 1, p. 14]. The filtration F; includes information about the
status of all vertices (susceptible or infected), and all paired and unpaired half-edges.

To be precise, we define
Fe =0 ({S(s), 1(s), { X186, X11,i icr(s) | s < t}) .

We let Fy contain all P-null sets in F. We include all P-null sets in Fqy so that the
filtration family {F;} is complete. It is also right continuous (i.e., F;4 = F; for every
t > 0, where Fyy = NgsoFrrs 18 the o-field of events immediately after t), because it
is generated by a right continuous jump process [1, Chapter II, p. 61]. Therefore, the
usual Dellacherie’s conditions on {F;} are satisfied [45, 34, 25]. We denote the o-field
of events strictly prior to t € Ry by F;— and write Fy_ := Fy, by convention.

Denote the collection of vertices of degree k that remain susceptible at time t by
Sk(t). Recall that X (¢) = (Xs(t), Xs1(t), Xss(t)) denotes the aggregated state vector
of the system at time ¢ > 0. Note that, since we may calculate Xgg(t) if we know
Xsi1(t) and Xi1(t), the process X is adapted to F;. However, the process X itself is not
necessarily Markovian. Let X = (Xst1,i, Xss,i)ies. By the Doob-Meyer decomposition

theorem [37], we decompose X as
X(t) = X(0) +/0 Fx (X(s)) ds+ M(0), (2.2)

where M'(t) = (M{(t), M&(t), M§g(t)) is a zero-mean martingale adapted to the
filtration F; and Fx (X) = (Fg (f() ,Fgr (X) ,Fss (f()) is an integrable function

given by
Fs (%) = —fBzs1,
Fgp (2) = Zﬂfﬂsu(ﬂfss,i — XSLi),
Py (2.3)

Fss () = =2  Brsriss.i,

€S
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for & = (ws1,i,Tss,i)ies and Ts1 = Y ;g Ts1i, Tss = ) _;cqTss,i- Lhe first equation
follows from the fact that the number of susceptible vertices decreases by 1 at rate
BXgs1 because of the Markovian assumption of the SI process and the independence
of the infection transmissions along the edges. Similarly, when a susceptible vertex 4
gets infected, which happens at rate 5Xg; (again due to the independence of infection
transmissions along each of its Xgr; infectious edges), the SI edges connected to that
susceptible vertex turn into II-type edges whereas its SS-type edges turn into SI-type
edges. Therefore, the net change to the total count of Sl-edges is (Xss; — Xs1,i)
whenever a susceptible vertex ¢ gets infected. Because of the independence assumption,
we sum over all susceptible vertices to arrive at the second equation. See Figure 2 for
a visualization. The third equation can be explained similarly by computing the rates
and the corresponding net changes to the total count of SS-edges when a susceptible
vertex gets infected.

We note that as a consequence of the uniformly-at-random matching of half edges in
the dynamic construction, similarly to Step 2, we obtain also the following hypergeo-
metric distribution (see also [31]) for the number of infected and susceptible neighbours

of a susceptible vertex of degree k at time ¢.

Lemma 1. For k € Ny and i € Si(t), conditionally on the process history until time

t, the vector (Xsr,i(t), Xss,i(t)) follows the hypergeometric distribution
(XSI(t)> (Xss(t))

ns1 nss
(*s2)

P (Xsr,i(t) = ngr, Xss,i(t) = ngs | Fr) = (2.4)

supported on nsy + nss = k where ngr,nsgs € Np.

Proof. Consider Xgi(t), the number of half-edges of type IS emanating from the
set of infected vertices. By construction, they all connect to the susceptible vertices
uniformly at random. Thus the probability that ng; of them connect to a given vertex
i € S, when a total of Xg,.(t) half-edges are available to choose from is

E\( Xse(t)—k
(nSI) (XSSI(t)—TLSI)

(X))

which works out to be the same as the hypergeometric probability (2.4). O

Since we partition the collection of susceptible vertices S(t) by their degree k € N,
we have S(t) = USk(t). Therefore, Xg(t) = >, Xg,(t), where Xg, (t) is the size of
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FI1GURE 2: Change to the edge counts. When a susceptible vertex i gets infected (turns red
from green; see Step 2 of the dynamic construction), the SI edges attached to that vertex
turns into II edges whereas SS edges become new SI edges. This visualization is helpful in

understanding the Doob—Meyer decomposition in Equation (2.2).

Sk(t). Note that Xgo(t) =, kXg,(t). To study the large graph limit of the system,
we also define the following quantity

0(¢) == exp(—ﬁ/o/ ))((SSI.((Z)) ds), (2.5)

which can be intuitively described as the probability that a degree-1 vertex that was
susceptible at time zero remains susceptible till time ¢ > 0 ([48, 38, 39]). It may be

described equivalently as

0(t) = 0(0) + /Ot Fo (Xs1(s), Xse(s),0(s)) ds,

Xs1
XS. .

where 6(0) = 1 and Fy (Xg1, Xse,0) = —30

3. The Law of Large Numbers

As done in [31], we make the following technical assumptions. Unless otherwise
stated, all limits below and elsewhere in the paper are taken in the large graph limit,

7.€., a8 N — OQ.
A1 There exists a positive constant cg, such that P (n_lXS.(T) > cs.) — 1.

A2 The fraction of initially susceptible vertices is non-random and converges to some

as, i.e.,
n_le(O) — as. (3.1)

We also assume that the initially infected and susceptible vertices are selected

uniformly at random and 0 < ag < 1.
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A3 The degree distribution {py} satisfies Y, k*pi < oo.

We note that by virtue of the uniformly-at-random selection of the infected vertices

at time zero, A2 also implies (see [31])

TL71X1(0) —a;=1—ag >0,
n_le[(O) — agr = ag(1l — ag)oyY(1), (3.2)
’n_les(O) — ags = Ot%@’(/)(l)

Below, for simplicity, we use the vector notation « := (ag, asr, ass). The process X
captures the number of infected individuals. Although it appears that the assumption
A1 may be unnecessary, we retain it for the sake of consistency with the work [31]
since in our FCLT derivations we rely on some of the results obtained there.

We note that simulating the stochastic system satisfying A1, A2, and A3 is straight-
forward with the help of the dynamic construction described above. Indeed, for a
given choice of the degree distribution satisfying A3 with mean degree 91 (1), we may
draw degrees di,ds,...,d, and assign d; half-edges to vertex 7. Then we initialize the
number of infected and susceptible nodes as in the dynamic graph construction above,
assigning the initial proportions according to «. We then run the epidemic process
following the dynamic construction up until a finite time 7', which is independent of n,
when there are still susceptible vertices left. This simulation algorithm also constructs
the stochastic process X satisfying A1, A2, and A3.

For f : R — R and r € N, the quantity f” is understood as (r — 1)-times multiplica-
tion of f with itself for r € Ny with the convention f° := 1. The symbol 0" f denotes
the r-th derivative of the function f, and by convention, we write 0f := 9'f. Now,
define the operator D" f as

a"f
@f)r
for f : R — R and r € N whenever the division of " f by (9f)" is permissible, i.e.,

D" f = frt (3.3)

df # 0. The operator D" is used to capture the impact of the graph structure on
the limiting dynamics through the degree distribution. Let x := (g, sy, zss), and

0 : R4y — [0,1] be a function. Then define x(¢J) as

r(0) == D*) o . (3.4)
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Note that

()8 0 9)(x))
) = 5o o))

If (x,9) is the large graph FLLN limit of (n=!X,6), then, following [31, Sec-

Lz ER. (3.5)

tion 3.3.3], we interpret x(¢}) as the limiting ratio of the average excess degree of
a susceptible vertex chosen randomly as a neighbour of an infectious individual, to
the average degree of a susceptible vertex ps. The quantity k(1) allows us to count
various pairs accurately. In general, the operator D" t!4 o o recursively compares
the excess degree of a susceptible vertex randomly chosen as a neighbour of r infected
individuals with that of a randomly chosen susceptible vertex. Therefore, it allows us to
count various r-configurations (different subgraph structures on r vertices, e.g., triples,
quadruples etc.) accurately in the limit. To be precise, in Lemma 5 in Appendix B,
we explicitly show

D +ep 0§ = s (6) D™ 0§ 5Dy o0, (3.6)

ps(0)
(r)

where pg’ is the average excess degree of a susceptible vertex randomly chosen as

a neighbour of r infected individuals. In Appendix B, we calculate these quantities
explicitly.
Let us also define the operator H (x,9) = (Hy (z,9) ,Hp (z,9)), where Hy (z,9) ==
(Hs (z,9) , Hgp (x,9) , Hss (,1)), and Hy (x,9) are given by
Hs (z,9) == —Bzsr,

Hsy (x,9) = 5“6(19)%(%85 — xg1) — B,

3.7
Hss (z,9) = —2&;@9)%7 (3.7)
— ZSI
HQ (1‘,19) = ﬂiasaw(’l?)

Now, noting that A1l implies P(Xse > k) — 1 for any & > 0 and A3 implies
>4 k?pr < 0o, recall the strong law on large graphs due to [31]. In the following we

take the norm |.|| to be uniform norm.

Theorem 1. Assume A1, A2, and A3 for a configuration model graph G(i,n).
Then, for any T > 0, the following holds

(1Y (/. 6(1)) = (a(8), 0(2) | =0,
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where (x,9) = ((xs, xs1, xss), V) is the solution of
¢
(x(t), (1)) = (2(0),0(0)) + ; H ((s),9(s)) ds, (3.8)
with the initial condition £(0) = a and ¥(0) =1

Observe that in the absence of recovery, the numbers of susceptible and infected
individuals are linearly related as Xg + X1 = n in the standard susceptible-infected-
recovered (SIR) model. The proof therefore follows immediately by setting the recovery
rate in the SIR model to zero and assuming that there is only one layer in [31].
The crucial observation is that the neighbourhood distribution of a susceptible vertex,
conditional on the process history, can be expressed as a hypergeometric distribution
(see Lemma 1) whose mixed moments can be approximated by the corresponding
multinomial ones. This allows us to “average out” the individual-based quantities such
as Xg1,; for i € S. The convergence is then established by calculating several quadratic

variations. The proof of our FCLT presented in Section 4 exploits similar calculations.

4. Functional Central Limit Theorem

Having obtained the functional law of large numbers, we now derive a functional
central limit theorem for X after an appropriate scaling. To this end, we begin by first

defining the scaled martingale process
M(t) = (Ms(t), Msi(t), Mss (1)) = n""/2M'(t), (4.1)

which is square integrable. We study the quadratic variation of the scaled martingale
M (t). The idea is to check whether either the optional or the predictable quadratic
variation of the scaled process M converges in probability to a deterministic limit. If
either of them does, and if the paths of M become approximately continuous in the limit
(“big” jumps disappear), we can make use of the Rebolledo theorem (see Appendix C;
also [45, 28]) to establish the asymptotic limit.

For each € > 0, define
Me(t) = (Mg(t), Mg;(t), Mg (t)) (4.2)

to be a vector of square integrable martingales (only) containing all jumps of M (t)

larger in absolute value than e.
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We use the shorthand notation (M) (t) for the 3 x 3 matrix of predictable covariation

processes of the components of M (t). That is,

(Ms) () (Ms, Mg1) (t)  (Ms, Mss) (t)
(M) (t) = | (Ms1, Ms) (t) (Msr) (t) (Mg1, Mss) (t) | - (4.3)
(Mss, Ms) (t)  (Mss, Mst) (t) (Mss) ()

Here (Ms) (t) == (Mg, Mg) (t) etc., by convention. See Appendix C for definitions of
quadratic variation processes. Define (M€) similarly. We shall study the large graph
limits of (M) (t) and (M*®) (t) as n — oo for each t € Ty. For this purpose, we need the
neighbourhood distribution of a susceptible vertex i of degree k, i.e., the distribution

of (Xsr,i, Xss,i) for a vertex ¢ € S, for all k € N.

We quote an important remark from [31] that would come in handy for the deriva-

tions.

Remark 1. Note that the total number of edges in the graph is 271" .d;. With
0 < as < 1, it immediately follows that n=*Xg1 < n™1Xge < 9Y(1) and n=1 Xgg <
n~'Xge < 0Y(1) for sufficiently large n € N. Also note that 0 < 6 < 1 and
ow(0) < 0v(1), so that asfdy(0) < dy(1). By virtue of A1, n='Xg,. is bounded
away from 0 on To and hence, so is 6 (see [31, Section 3.1]). As a consequence of
[31, Lemma 1(b)], we can take the same lower bound for agfoy(0). Let us denote
by & > 0 the uniform lower bound for n~'Xse and asf0y(0) so that we can write
n'Xse € [€,01(1)] C Ry. Note that all these bounds hold with probability 1.
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4.1. Deterministic Limit of (M) (t)

Recall that (x,9) = ((zs,zs1,zss),?). Let us begin by defining the following

operators acting on the function (x,d),

vg = frsi,
zs1(zss — zsr)? xsr(rss — 3z
vs1 = B (SI(SSQSI)D%(,?) _ Zsi(@ss =375 pa gy +x31>,
g s
vgs = w% (‘";SSSD%(@) +D2w(z9)) ,
e e (4.4)

vgs1 = —f3 (SISxSSSIDQWﬁ) - 1‘81) ,
vg,88 = 25338;7288]@21/1(?9),
USL,SS = — Qﬂxswss(ﬂfst — xSI)D?’T/’(ﬁ)-

3
The intuition behind the operators in Equation (4.4) will be clear when we compute
the predictable quadratic variation (M) of the martingale process M and seek its limit
as n — o0o. In particular, we shall see that each of the terms on the right-hand side of
Equation (4.4) is a function of various multinomial moments, which we find as a limit
of the corresponding hypergeometric ones in order to approximate the expected jump
sizes conditional on the process history.

Now, define a 7-indexed family of matrices {V (t)} as follows

Ve(t)  Vssi(t) Vsss(?)
V(t)= | Vars(t) Ver(t) Verss(®) |- (4.5)
Ves,s(t) Vsssi(t)  Vss(t)

where, given v;q, ia,(x, ) for idy,ids € {S,SI, SS} in Equation (4.4),

Vs a0 (1) = / Vi 1y (£(5), 9(5)) ds, (4.6)

with the convention v;4, id, = vidy.ida, for idy,ids € {S,SI,SS} and wvig, idy = Vid,
whenever id; = idy € {S,SI, SS}. Note that this also sets the convention Vg4, s, (t) ==
Vidy,idy (t) for idq,ids € {S,SI,SS} and Vig, id,(t) = Via, (t) whenever id; = idy €
{S,SI,SS} for each t € T.

Let us now present our first result providing the deterministic limit of (M) in the

following lemma. Recall that proving a deterministic limit of (M) would satisfy one of
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the conditions of the Rebolledo theorem. The key strategy in establishing the result will
be to approximate various hypergeometric moments by the corresponding multinomial

ones.

Lemma 2. Consider the stochastic SI model described in Section 2.2. Assume Al,

A2 and A3 for a configuration model graph G(i,n). Then,
(M) (t) — V(1)

for each t € T, as n — oo where V (t) is as defined in Equation (4.5), and (z,9) is the
solution of Equation (3.8) with x(0) = « and ¥(0) = 1.

Proof of Lemma 2. To show convergence of the matrix random process (M) (t) to
V(t), we show component-wise convergence of the respective components. The general
strategy to prove convergence for these components remains the same. To conserve
space, we only demonstrate here the strategy for establishing Mg (t) .P>V51(t). Re-

maining assertions follow similarly.

Computation of (Mg;) The process Mgy jumps only if a susceptible vertex gets

infected. Therefore, the predictable quadratic variation is computed as follows

(Msr) (t) = <n_1/2Mé1> (t) = /0 Z% > BXgri(Xss — Xsii)® ds.
%

1€Sk

Now, for a randomly selected i € Si, we seek to find the (conditional) moments

E [XSM(XSS,Z' — Xsr1,i)? | .Ft_]. Define the function CF : 7o — R as
C;f(t) =K [XSI,i(t)(XSS,i(t) — XSLZ'(t))Q | ]:t,] .

Following the computations in Appendix A, we get

(k)3 Xs1

Cr(t) = (Xso)s [(Xss)2 —2(Xsr — 1) Xgs + (Xs1 — 1)2]
(k)2 X, X
— (T.)S;[XSS — 3(XSI — 1)] + ]CXSSI. .

To be precise, the processes on the right-hand side of the above equation are evaluated

at t—. To approximate the hypergeometric moments by corresponding multinomial
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ones, define the multinomial compensator C¥, : To x [¢,0%(1)] — R as

k)sn3X,
Onk@(ta z) = %(XSS2 —2Xgq1Xss + X§1)
E)an=2X, kn~1X
_ (o X )2n2 o (Xss — 3Xs) + 2
z z
(k)3n*Xs1(Xss — Xs1)®  (k)an > Xg1(Xss — 3Xs1) n kn~! Xgp
B 23 22 z

Again, to be precise, the processes on the right-hand side of the above equation are

evaluated at t—. Please observe that there exists an L > 0 such that
Ch(t,2(1) < LE?, (4.7)

uniformly in n. This holds because n~' Xg; and n~! Xgg are uniformly bounded above
by virtue of Remark 1 and z is bounded away from zero, by definition. The function
Ck (t,2(t)) is also Lipschitz continuous in z. Now recall the definition of vs; from

Equation (4.4) and define

A= 30 37 BXara(t) (Xsslt) — Xsealt)? — vsi(a(t), 9(1)

k i€ES
= Z% > BXsi(t)(Xss () — Xsri(t)? — vsi(n ' X (), 0(t))
kK i€Sk

+usi(n” X (1), 0(1)) — vsi(x(t), V(1))
= Ay (t) + Aq(t),

where Ay(t) == >, % Ziesk BXsri(t)(Xss,i(t) — Xs1:(t)* — vsi(n™t X (t),0(t)), and
Ag(t) = vs1(n~1X(t),0(t)) — vsi(a(t), I(t)). To show (Msy) —> Vi, it suffices to show
sup,er|A(t)] —£,0. We achieve this by separately showing sup,c|A;(2)] 2,0 and

P
sup; 7 |A2(t)| — 0.
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Convergence of A;(t) See that

1 n" 3 Xgr(Xss — Xs1)? 939(0)
A=Y - Xsri(Xss,i — Xs14)® —
1(t) Ek: n z.gs:k B SI, ( SS, SI, ) 5[ ag ((91/)(9))3
n_zXSI(XSS — 3XSI) 82¢(9) 1
- s @i T
1 n3Xs1(Xss — Xs1)? (k)360Fpp
_ 1 Xers(Xsss — Xeia)? — s1(Xss s
zk:[n ng;kﬂ s1,i(Xss, st,i)” — B ol (000:(0))°
~ n T Xs1(Xss — 3Xs1) (k)20 py, et kOpy, N
as (00v(0))? > 00y (9)
= Z[% Z BXsr,i(Xssi — Xs1,i)? — Basped™CE (¢, a0y (0))].
k 1€Sk

The second equality follows by expressing the derivatives of the PGFs as sum over
all possible degrees k and then collecting terms involving degree k. Define Agk)(t) =
%Ziesk BXs1:i(Xssi — Xsr.i)? — Basppf*CF (t,as001(0)). Our task boils down to
showing that sup,cr|> ", Agk) ()| 50 as n — 0o. We achieve this in two steps. First
we show that the tails of ), Agk)(t) are negligible. Second, we show that each term

Agk) (t) converges to zero uniformly in probability for a fixed k& € N.

(Step I) Tails are negligible Let us begin by showing that as N — oo,

sup sup | Z A(lk)(t)| 2.
neNteT | TN

Observe that, for sufficiently large n,

|% > BXsri(Xssi — Xsra)?| < g > K Xs, <28 K, (4.8)

k>N i€Sy k>N k>N

because n~1Xg, < 2p; for sufficiently large n in the light of Remark 1. Following

Remark 1 and the bound on C* from Equation (4.7), we get

| D Basprt*Cy,(t,as000(0))] < BL Y Kpr. (4.9)

k>N k>N

Therefore, we get sup,, ey Supie 7| > psn Agk) )] —20, combining inequalities (4.8) and

(4.9) in view of A3.
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(Step II) Uniform convergence in probability for a fixed k In addition to
Step 1, it is sufficient to show supt€7—|A§k)(t)| 250 for an arbitrarily fixed k£ € N to
justify sup, | A (2)] —2,0. Observe that

1
AP ()] = |ﬁ Z BXsr,i(Xss: — Xsi,i)? — Basped™CP (¢, a0y (0))]

1ESk
< pn Y Z Xs1i(Xssi — Xs1.4)? — X5, Cr(t)] (4.10)
1E€Sk
+ B~ X, |CF(t) — CF (t,n ' Xg4)| (4.11)
+ BIn "1 X5, CF (t,n 1 Xg4) — asprf®CF (t,n 1 Xg,)| (4.12)
+ Basprl®|CE (t,n ' Xg4) — CF (t, agf0(0))]. (4.13)

We show that each of the above summands converges uniformly in probability to zero.
Define the process Agkl) (t) =Y ies, Xsri(Xssi— Xsr.4)* — X, CF(t). Observe that
Agkl) (t) is a zero-mean, piecewise constant, cadlag martingale with paths in D. The
jumps of A(lkl) (t) take place when a vertex of degree-k gets infected. The quadratic
variation of Agkl)(t) is therefore the sum of its squared jumps
(Al @ = YAl 6)? < kn,
s<t
because the number of jumps can not exceed n. Therefore, by Doob’s martingale
inequality we get supteT|n_1Aglf1)(t)| 2,0, since E HAgkﬂ (t)] =E [(Agkl) (t))Q} =
O(n). That is, the quantity in (4.10) converges uniformly in probability to zero.
For the term in (4.11), take into account n~'Xg, <1 and see that
3
sup C (1) = Ch(tn ™ Xs)| < 55—
for some ¢; > 0, because Xg, is non-increasing on Ty. Therefore, by A1, the quantity
in (4.11) converges to zero uniformly in probability.
Now observe that
§1€15_|n71X5k CF (t,n ' Xg4) — agprf*CE (t,n ' Xg,)|

< Lk*sup |n"' Xg, — asprd”| R 0,
teT

by virtue of the bound on C¥ in Equation (4.7) and [31, Lemma 1(a)]. Therefore, the

term in (4.12) also converges to zero uniformly in probability.
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Finally, by virtue of Lipschitz continuity of C% (¢, z) in z, we get

sup |CF (t,n ' Xg4) — CF (t,a5001(0))| < cosup |[n~ 1 Xgo — aghOih(6)],
teT teT

for some ¢o > 0. Because sup,cr|n ' Xse — g0y (0)] 50 as shown in [31], we
conclude that the term in (4.13) converges to zero uniformly in probability.

Having shown the terms in (4.10), (4.11), (4.12) and (4.13) converge to zero uni-
formly in probability, we establish that supte7—|Agk)(t)| 20 uniformly in probability
for any fixed k € N. Finally, by virtue of Step I and Step II, we obtain sup,c+|A1 ()] N

Convergence of Ay(t) Note that vsi(n=1 X, 6) is Lipschitz continuous on its domain

that we can take as (0,1] x [¢,9%(1)]? x [£,1], by Remark 1. Therefore,

)

sup [vsr(n™' X, 0) — vgi(z,9)| < czsup ||(n7'X,0) — (x,9)
teT teT

for some Lipschitz constant ¢3 > 0. Since (z,v) is the solution of Equation (3.8),
with initial condition z(0) = « and 9(0) = 1, we get by virtue of Theorem 1,

P
supycr|Aa(t)] 2> 0.

Final Conclusion Since sup,c7|A1(t)] 2,0 and sup,eg|As ()] 2,0, we conclude

sup,er|A(t)] 240, which is a sufficient condition for

(Mgr) (t) — Vi () = /0 vs1(z(s), 9(s)) ds.
Il

We remark that the various moment estimates used in the proof above (and else-
where in the paper) ignore the contributions of self-loops and parallel edges. Their
contributions are asymptotically negligible as discussed earlier in Section 2.2. Also,
note that we may need to add a parity edge to the last vertex if the sum of the drawn
degrees is not even. This is relevant for the calculations in Steps I and II. However,
as discussed earlier in Section 2.2, the contribution due to this minor adjustment is

negligible and hence, is not shown explicitly.

4.2. Asymptotic Rarefaction of Jumps

Recall that M€ = (Mg, M§;, MSg) is the vector of square integrable martingales

containing all jumps of components of M larger than € in absolute value, for € > 0,
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i.e., M;q(t) — M, (t) is a local square integrable martingale and |0M;q(t) — M5, (t)| < €
for all id € {S, SI,SS} and ¢t € 7. We wish to show (M) (t) 250 for all id € {8, SI,SS}
and t € T, as n — co. We would like to point out that this condition is essentially the
strong Asymptotic Rarefaction of Jumps Condition of the second type (strong ARJ(2))
as described in [45, 1]. Intuitively this ensures that the sample paths of the martingale
M (t) are close to continuous in the limit. Before proceeding further, we offer the

following remark.

Lemma 3. For the configuration model graph G(1,n) along with A3, the following
holds true:

N7 Ay —5 0, (4.14)
where dmax s the mazimum degree observed in a realization of G(¢,n).

Proof of Lemma 3. The result follows by a direct application of the result in [8,
Theorem 5.2] along with A3.
O

Let us now compute the predictable quadratic variation of M€ and establish its

asymptotic limit.

Lemma 4. Consider the stochastic SI model described in Section 2.2. Assume Al,
A2 and A3 for a configuration model graph G(¢,n). Consider the vector M€ of square
integrable martingales containing all jumps of components of M(t) larger than € in
absolute value for ¢ > 0, as defined in Equation (4.2). Then, as n — oo, for all
id € {S,SI,SS}, for each t € T,

. P
(M) (1) 250, (4.15)
Proof of Lemma 4. We proceed in the following two steps.

Computation of (M§) Note that the original process Mg makes only unit jumps.
Then, for arbitrary € > 0,

ago< [ 2 [(035(5))%1 (|8MA()] > n1/2e) | F.] ds = 0¥n > &

— <M§)(t)—P>0forall0<t§Tandforalle>Oasn—>oo.
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Computation of (M¢) and (MSg) Note that both Mg and Mgg jump only if
infection of a vertex occurs. This in particular implies that the jump sizes of M§; and
M{q are bounded above by the degree of the vertex getting infected. Therefore, they
are also bounded above by the maximum degree d,.x. For an arbitrary € > 0, and for

id € {SI, SS},
t
M) O < [ B [0Ma(6)1 (10 sl > €) | F-] ds
0
<tn'd?, .1 (|n_1/2dmax| > e) :
By Lemma 3, along with the continuous mapping theorem and the fact that almost sure
convergence implies convergence in probability, we can claim that the right-hand side
1 (|n‘1/2dmax| > 6) L0 foreach 0 < t <Tande> 0.

1(|n"Y2dmax| > €) > h) — 0

as n — 0o, establishing (M) (t) L0asn — oo forall 0 <¢<T ande>0. This

of the above inequality tn~1d2,,

Therefore, for all b > 0, P ((Mg,) (t) > h) <P (tn~'d2

max

completes the proof. O

4.3. Statement and Proof of the FCLT

Having shown the convergence of all relevant quadratic variation processes, we are
now ready to present the functional central limit theorem. First we state that the
function V found in Lemma 2 is a positive semidefinite (psd) matrix-valued function
on T, with positive semidefinite increments. Set V' (0) := 0, the 3 x 3 null matrix, so that
we can treat V(t) as a psd matrix-valued function on the entirety of 7y. Let us denote
the collection of all such psd 3 x 3 matrix-valued functions on 7y that has psd increments
and that is 0 at time zero by V. Given such a matrix-valued function V€ V, let G
be a continuous Gaussian vector martingale such that (G) = [G] = V. Such a process
always exists [1, Chapter II, p. 83]. In particular, G(t) — G(s) ~ N(0,V(t) — V(s)),

the multivariate normal distribution for 0 < s < ¢.

Theorem 2. (Functional Central Limit Theorem.) Consider the stochastic SI model
described in Section 2.2. Assume A1, A2 and A3 for a configuration model graph
G(,n). Consider, fort € Ty, the fluctuation process

Y(t) = Valn X (t) — (1)) (4.16)
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Assume lim, o Y (0) = U(0), for some nonrandom U(0). Then, there exists a matriz-

valued function V€V on Ty such that
Y =2 U in D® asn — 00, (4.17)
where U is a continuous Gaussian vector semimartingale satisfying
Ut)=U(0)+ G(t) + /Ot VH, (z(s),9(s)) U(s) ds, (4.18)

where VHy (z,9) = ((0;Hi (z,9))) for i,j € {S,SI,SS} and G is a continuous Gaus-
sian vector martingale such that (G) = [G] =V, provided V' remains finite on the

entirety of To and VHy (z(s),9(s)) is continuous.

Proof of Theorem 2. We first prove an FCLT for the martingale process M defined
in Equation (4.1). We wish to apply Rebolledo’s functional central limit theorem for
local martingales on M. A version of the Rebolledo theorem adequate for our purpose
is provided in Appendix C. Note that, in the light of Doob-Meyer decomposition given
in Equation (2.2), M is indeed a pure jump, zero-mean, locally square integrable,
cadlag martingale. After having established an FCLT for the martingale process M,
we prove convergence of the fluctuation process Y. It suffices to carry out the following

three steps.

(Step I) Deterministic Limit of (M) Let (z,9) be the solution of Equation (3.8)
with initial condition z(0) = o and ¥(0) = 1, as given in Theorem 1. Then, by virtue
of Lemma 2, we conclude, for each t € T, (M) (t) —P>V(t), where the matrix-valued

function V is defined in Equation (4.5), and we set V(0) := 0, the 3 x 3 null matrix.

(Step II) Asymptotic Rarefaction of Jumps Let € > 0 be arbitrary. Consider
the vector M€ of square integrable martingales containing all jumps of components of
M (t) larger than e in absolute value for € > 0, as defined in Equation (4.2). Then, by
means of Lemma 4, we conclude (M) (t) 240, for each t € Tand id € {8, SI, SS}.
Now let G be the continuous Gaussian vector martingale such that (G) = [G] =
V. In the light of Rebolledo’s theorem for locally square integrable martingales (see

Appendix C and also, [1, Chapter II, p. 83]), Step I and Step II are sufficient to establish

(M (ty), M(t2),...,M(t;)) =2 (G(t1),G(t2),...,G(t;)) as m — o0
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for all t1,ts,...,t; € T. Furthermore, since 7T is dense in 7y, we conclude M £ G in
D®) as n — oo, and (M) and [M] converge uniformly on compact subsets of Tp, in

probability, to V.

(Step IIT) Convergence of the Fluctuation Process In keeping with the Doob—

Meyer decomposition given in Equation (2.2),
t
1 .
YO =Y O+ M)+ [ ValEx (X)) - B 2(6),0(9)) ds,
0
we expect the following limit process
t
U(t)=U(0)+ G(t) + / VH, (z(s),9(s)) U(s) ds. (4.19)
0
Indeed, define

At) = /()t\/ﬁ<iFX (X(5)) ~ B (a(s), 9(s) — —= VEL (2(s), 9(5)) Y(s)> ds

:/Ot ﬁ(lﬁx (j((s)) —H, (IX(S),G(S)) + H, (;X(S)ﬁ(S))

n n
1

vn

Note that the strong law of large numbers in Theorem 1 establishes uniform convergence

(in probability) of the operators n~1Fx (f((s)) and Hy (£ X(s),60(s)), and the latter

— Hy (2(s),9(s)) VH, (2(s),9(s)) Y(s)) ds.

1
operator is Lipschitz continuous on its domain (see [31]). In the light of Theorem 1 and
A3, it follows from the Lipschitz continuity of various multinomial compensators C¥, in-
troduced in the proof of Lemma 2 that lim,,_,~ /1 (%FX (f((s)) — Hy (%X(s), 9(5))) =
0. Moreover, we have just shown M =2 G in D®. If V remains finite on the entirety
of 7o, the matrix-valued function VHy (z(s),9(s)) is continuous, and lim,,_,~ Y (0) =

U(0), for some nonrandom U (0), then we have sup, . [A(t)] 20 following Theorem 1,

and by application of the continuous mapping theorem, we conclude
D . (3)
Y = U in D*” as n — o0,

where the Gaussian semimartingale U satisfies Equation (4.19) with the Gaussian

martingale G being such that (G) = [G] = V. This completes the proof. O



26 KhudaBukhsh et al.

5. Applications

Here, we consider some applications of our result. As we discuss these applications,
we shall also present some numerical and simulation results that are intended not only
to provide insights into the dynamics of the process, but also to serve as a verification

of our results.

5.1. Percolation

There is a connection between the stochastic SI model and the percolation theory
known from statistical physics and developed to study the process of liquid filtering
(“percolating”) through a porous medium. Classical equilibrium-mechanics studies
its stationary behaviour and premises upon the axiom that the underlying quantum-
mechanical laws are designed so as to maximize the entropy. Stationary distribution
of such a stochastic system is given by the Boltzmann ensemble. This classical treat-
ment of the subject, however, does not explain the non-equilibrium behaviour of the
dynamical system, i.e., when it is still in a transient phase. Consequently, the non-
equilibrium behaviour of percolation has aroused much interest in recent times. Some
notable contributions include [29, 5]. The standard treatment of percolation, both
equilibrium and non-equilibrium, has been extended in another important direction
concerning the structure of the porous medium. Traditionally it has been studied
on lattices and grids. Of late, however, percolation on random graphs has also been
considered ([9, 19, 30]). Continuing in this direction, we shall treat (non-equilibrium)
percolation as a dynamical process on a configuration model random graph and study

its behaviour over a finite time interval.

One of the key quantities of interest in the study of non-equilibrium percolation
is the time evolution of the number of wetted sites (also called “active” vertices in
the literature). The correspondence between our stochastic SI model as described in
Section 2.2 and non-equilibrium percolation is visible if we treat the infected vertices
as the ones wetted during the process of percolation. Accordingly, in this context,
we give the process X (t) appropriate new interpretation. The process Xg(t), for
example, captures the number of unwetted sites until time ¢, and the process Xgj,

the number of channels (bonds) through which the liquid can percolate. In Figure 1,
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the percolated component up to a given time (the wetted part of the graph) is shown in
red. Having made the correspondence precise, we can apply Theorem 2 to approximate

these quantities in the large graph limit.

Numerical Illustration In Figure 3, we show some simulation results to check the
accuracy of our scaling limit. We compare the expected sample paths of Xg and
Xgr provided by Theorems 1 and 2, with estimates obtained using simulations of the
Gillespie’s algorithm on a CM graph. In particular, we considered a Poisson degree
distribution in Figure 3a and a 3-regular random graph in Figure 3b (obtained by the
CM construction with degree distribution pr = 1(k = 3)). In Figure 4, we compare
the simulated sample paths of the true Gillespie dynamics and that corresponding to
the diffusion approximation for Negative Binomial degree distribution. Figures 3a, 3b
and 4 show convincing accuracy of the diffusion approximation. In Figure 5, we show
the time evolution of the correlation coefficient between the jumps of Xg and Xgj, and
also the expected sample path coupled with 95%-confidence ellipses in the space of Xg
and Xgi. The orientation of the confidence ellipses is calculated as the angle of the
eigenvector corresponding to the largest eigenvalue of the covariance matrix towards the
x-axis. To be specific: the orientation is given by w = arctan es/e;, where e := (eg, e3)
is the eigenvector corresponding to the largest eigenvalue of the covariance matrix. The
lengths of the major and the minor axes are determined using the eigenvalues and by
looking up the probability table of chi squared distribution (recall that squared normal
variates follow a chi squared distribution). The Matlab script used to draw the ellipses
is based on a script provided by [46].

The existence of a giant component and the proportion of vertices on the giant
component play an important role in percolation theory, especially from an equilibrium
point of view in statistical mechanics. The case of a degree distribution {pg}ren,
such that 3, . k2p, = 23 pen, kpr and p1 = 0 (or, equivalently py +p2 = 1) is a
curious one in that quite different behaviours of the giant component are observable
for such a degree distribution. Please refer to [33] for examples of such behaviours.
Barring this exceptional case, in the light of A3, the condition for existence of a giant
component is satisfied (see [40]) for our stochastic SI model in the traditional sense. To

be precise, setting g = 1 and taking asymptotic limit in time, one finds the fraction
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(a) Simulation setting: Poisson distribution with A = 5,as = 0.9, and 8 = 0.5.
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(b) Simulation setting: r-regular random graph with r = 3, as = 0.9, and 3 = 0.5.

Ficure 3: Comparison of our diffusion approximation with simulation results obtained

by Gillespie’s algorithm.
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Ficure 4:  Comparison of simulated sample paths. (Left) Sample paths obtained
through Gillespie’s algorithm. (Right) Sample paths obtained through diffusion
approximation. Simulation setting: n = 1000, Negative Binomial distribution with

r=2p=3/4.

of vertices on the giant component to be 1 — ¥ (6 ), where 6, > 0 is the solution
of 0Y(1)0s = OY(0s) (see (32, 41]). However, as mentioned earlier, we take a non-
equilibrium point of view and concern ourselves with the time evolution of the fraction
of vertices on the infected part of the graph, the “percolated component” . As a by-
product of the scaling limits in Theorem 1 and Theorem 2, the variable 6 defined in
Equation (2.5) gives us a tool to approximate the proportion of susceptible individuals
in the population (and hence, the proportion of infected vertices as well). We expect
the fraction of infected individuals to converge in probability to 1 —agi(d) as n — oo,
¥ being the scaling limit of #. A fixed time interval 7Ty enables us to look for critical
values in the space of the infection rate § > 0. This allows us to decide whether

the system “percolates” in the sense that the fraction of vertices on the percolated
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Ficure 5: The figures on the left depict the time evolution of the correlation coefficient
between jumps of Xg and Xgj as estimated from numerical simulations (via Gillespie’s
algorithm) pitted against theoretical values computed from the functional central limit
theorem (Theorem 2). The figures on the right show the expected sample path in the
space of Xg and Xg;. The two lines correspond to numerical simulation and theoretical
values. The dotted ellipses are the 95%-confidence ellipses based on estimates of
covariances between Xg and Xg; from the diffusion approximation created using a
Matlab script provided by [46]. The arrows indicate the time direction. (Above)
Poisson distribution with mean 5. (Below) r-regular random graph with » = 3. In

both cases, n = 1000, g = 0.9, and g = 0.5.

component achieves a value greater than a pre-specified one (usually close to unity)

by time T. Using different colours in Figure 6, we depict the fraction of vertices on
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Ficure 6: Comparison of percolation profiles of three degree distributions having the
same mean. (Left) Poisson distribution with mean 6. (Middle) A heterogeneous
population with degree distribution py == 0.7 x 1(k=1)+ 02 x 1(k=4) + 0.1 x
1(k =45). Such a degree distribution represents a population segregated into three
classes. Weak vertices constitute the biggest class, followed by medium strength
vertices and then strong vertices. (Right) Negative Binomial distribution with
parameters r = 2,p = 3/4. The figures show time evolution of the fraction of vertices
on the percolated component for varying infection rates 5. We assume the initial
fraction of infected vertices is 0.1 in all three cases. The yellow region in each of
the plots corresponds to the terminal state. Questions such as whether the system
with an infection rate [ “percolates” are immediately settled by drawing a horizontal
line and checking whether the lines passes through the colour corresponding to a pre-
specified level. It is worth noting that the limiting percentages of vertices in the giant
components eventually getting infected are also quite different for the three degree
distributions. While it is around 0.91 (approximately) for the Negative Binomial
distribution and the hand-picked degree distribution in the middle, the percentage
is relatively high for the Poisson distribution (around 0.99 approximately).

the percolated component as a function of both time and the infection rate 8 (let us
call such a figure a percolation profile) for three degree distributions with the same
mean. Questions such as whether the system with an infection rate § “percolates” are
immediately settled by drawing a horizontal line and checking whether the line passes
through the colour corresponding to the pre-specified level. See Figure 7 for another
comparative view, highlighting the need to take into account higher moments of the

degree distribution.
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Ficure 7: (Left) Comparison of the time evolution of the fraction of vertices on the
percolated component for different degree distributions with the same mean. The 2-
degree distribution in the plot refers to the degree distribution pr, = 0.5 x 1(k=1) +
0.5 x 1 (k =9), where none of the vertices have degree 5 yet the average degree is 5.
This presents a pathological case and highlights the need to take into account higher
moments of the degree distribution. (Right) Comparison of discounted cost against
increasing average degree for different degree distributions. With increasing average
degree the graphs lose sparsity and facilitate spread of computer virus. Therefore, they
incur higher cost. When the average degree is very small, regular random graphs seem
favourable compared to random graphs with negative binomial distributed degrees.

The costs are computed with n = 1000,~ = 1.

5.2. The strange case of Poisson-type degree distributions and the exactness

of the pair approximation

We consider a particular class of degree distributions called “Poisson-type” (PT) by
[31]. A degree distribution with PGF 1) is called PT if (1), defined in Equation (3.4),
is a constant, i.e., k() =  for some k € R (or equivalently, 9 () = 9y (1) (¢ (9))").
As a consequence, the operators defined in Equation (3.3) are also constants, and
satisfy

r—1

Do =[] k—i+1)=(r—1r—r+2)D o,

i=1
with DY) o9 = 1. The PT class includes Poisson (x = 1, irrespective of the mean

of the distribution), degenerate distribution (r-regular random graphs, x = %1 < 1),



FCLT for SI Process on CM Graphs 33

binomial (k = % < 1, independent of p for Bin(V, p)), negative binomial (k = T%l >
1, independent of p for NB(r, p)) degree distributions. The PT class is particularly
peculiar in that it totally decouples the vector 2 = (xg, 251, Zss ), and the matrix-valued
function V from the auxiliary variable 9 so that an autonomous system of ODEs can
be obtained for x and V, rendering 9} redundant. This allows for great simplification

in the limiting equations. Define G (z) = (Gs (z), Gg1 (z) , Gss (z)) as

Gs (x) == —fxgr,
TSI
Gsi (z) = Br—=(wss — xs1) — Bst, (5.1)
s
GSS (1‘) = —Zﬁ,‘iixSIxSS .
s

Plugging D21 0 ¥ = k, and D31 0 ¥ = k(2k — 1) in Equation (4.4), the matrix-valued

function V is entirely determined by x. The following is immediate.

Corollary 1. (Scaling limit under PT distributions.) Assume A1, A2, and A3 for a
configuration model graph G(,n) with OY(9¥) = oY (1)(Y(I))" for some k € R. Then,
the following law of large numbers holds

sup [[n~'X(t) — 2(t)|| L0,
0<t<T

where x is the solution of x(t) = xz(0) + fg((}(ac(s)) ds with ©(0) = a. Moreover,
the fluctuation process Y defined in Equation (4.16) converges weakly to a continuous

Gaussian vector semimartingale U satisfying
t
U(t)=U(0)+ G(t) + / VG (z(s)) U(s)ds,
0
where G is a Gaussian vector martingale such that (G) = [G] =V.

In fact, one can obtain a smaller system by expressing xg; and xsg explicitly as a
function of zg (see [31]). This is remarkable because, under the PT class, the graph
structure impacts the scaling limits only through two summary statistics of ¢, namely
the mean 9y (1) and k = D?¢(1). Recall that x, as defined in Equation 3.4, is the
limiting ratio of the average excess degree of a susceptible vertex chosen at random
as a neighbour of an infected vertex, to the average degree of a susceptible vertex.
Therefore it is, in general, dependent on time through . Under the PT class, this ratio

remains constant throughout the entire course of time 7y. Moreover, the mean 9y (1)



34 KhudaBukhsh et al.

only impacts the initial condition z(0) = « through Equation (3.2). The dynamics of
the limiting process are then dictated by the constant x under the PT class.

Now we revisit the correlation equations approach of [44] from ecology literature
to study the dynamics of counts of singles, pairs, triples, and quadruples of the form
A,AB,ABC,ABCD, where A,B,C,D € {S,I}. Following [44], we use the notation
[] to denote the count. In this mean-field approach, the dynamics of singles are
described by that of pairs; dynamics of pairs, by triples, and so on. In this context, pair
approximation refers to approximating the count of triples by pairs in the following
way

[AB] [BC]

[ABC] ~ K]T,

and closing the system at the level of pairs (also known as pair closure). In order to
draw an analogy, we divide the counts by n, and use the same notation for the scaled
counts. We also set the same initial condition ([S], [SI],[SS]) = a at ¢ = 0. The pair
approximation then yields a system of ODEs for ([S], [SI],[SS]) that exactly matches

the limiting ODEs for n™' X, i.e.,

%([S] »[ST,[88]) = G (([S], [S1],, [SS])) - (5.2)

Therefore, under the PT class, the pair approximation is eract in the sense that
it correctly estimates the limiting means of various counts. By virtue of Corollary 1,
our FCLT further enables it to correctly estimate all other higher limiting moments,
because V' is now entirely determined by the solution of Equation (5.2). As the PT class

is quite big, our FCLT thus greatly enhances the usefulness of the pair approximation.

5.3. Spread of Computer Viruses

Epidemic models have been used in the context of spread of computer virus for
some years now. The correspondence between our model and the application area
under consideration is apparent without requiring much change in nomenclature. Early
works in this direction did not take into account the inherent graph structure and
assumed “homogeneous mixing” in some sense. Recent works, however, duly studied

it on more realistic computer networks, which are often modelled as random graphs,
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without the assumption of “homogeneous mixing”. Lelarge, for example, based much
of his work on classical Erdds Rényi random graphs and configuration models (see,
e.g., [36]). Interested readers are referred to [35, 36, 49| for an overview of relevant
literature. Applying our results, we can approximate the number of virus-affected
computers over time and the edges of different types. Additionally, one might be
interested in estimating some “cost” involving the count variables in a linear or non-
linear fashion. For instance, if the cost function is polynomial in the count variables,
the mixed moments of various orders can be approximated by means of Theorem 2.
To illustrate the concept using a simple example, we assume an exponentiated form
for the incurred cost to emphasize the severity of a computer being virus-affected. We
can then compute time-discounted expected incurred cost and study how it behaves

with decreasing sparsity of the underlying graph. To this end, define
I(t) = exp(cX (1)),

Cy=E U% exp(—7t)1(t) dt] = /Toexp(—*yt)IE[I(t)] dt,

where ¢ > 0 and v > 0 are constants. In Figure 7, we plot the discounted cost Cy,

(5.3)

against an increasing average degree of the underlying graph, engendering decreasing
sparsity. When the average degree is very small, regular random graphs seem favourable

compared to random graphs with negative binomial distributed degrees.

6. Conclusion and Future Work

We conclude the paper with a brief literature review and a short discussion af-
terwards. In summary, we study the susceptible-infected (SI) model by formulating
a stochastic process on configuration model random graphs. Even though this is a
simple infection model, the Markovian process on the entirety of the random graph
suffers state space explosion as n grows to infinity. Analysis of the non-Markovian
aggregate process also becomes complicated. Therefore, scaling limits retaining key

features of the network are generally of interest.

6.1. Related Works

In the recent scientific literature one comes across a host of dynamical processes

arising from epidemiology ([18, 42, 27]), statistical physics ([17]), and computer science
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([36, 35, 49]). These dynamical processes are often similar and hence, lend themselves
to application across disciplines ([43]). In pursuit of scaling limits, much of the
research has been inspired by the mean-field approach from statistical physics. For
instance, the authors in [43] study epidemic dynamics on scale-free networks of [4].
The majority of work in this direction aims to obtain limiting ordinary differential
equations (ODEs) for the proportions of individuals in different compartments of
the population. Notwithstanding the simplicity of these methods, the scaling limits
presented are approximate and lack mathematical rigour by design. See [23, Chapter
1] for a critique. The standard mean-field method was further improved by use of pair-
approximation in [26]. Several other improvements yielding less approximate results
have been proposed afterwards. A detailed account is presented in [10]. Some of
these approximate results have been followed up by probabilists and improved upon
(23, 24, 20]).

A related line of research concerns the first-passage percolation (FPP) on random
graphs ([9, 19, 30, 12, 11, 13]). Given a graph G = (V, E) with n vertices, we assign
random weights W, to edges e € E. We assume the weights are independent and
identically distributed. For two vertices i,j € V, the passage time from i to j is

defined as

cn(4,7) = min We,
P7) e€p(i,)
where the minimum is taken over all paths p(¢, j) from the vertex i to the vertex j. By
convention, ¢, (4,7) := 0, and ¢, (4, j) := oo if there is no path from the vertex i to the
vertex j. For two typical vertices ¢ and j, chosen uniformly at random, one looks for

a sequence of reals ¢, such that
- D
(Cn - Cn) — Qv

for some limiting random variable @ with usually continuous support. Sometimes
scaling limit of the number of edges on the shortest path between two typical vertices
is also studied along with the passage times. That is, if h,, denotes the number of edges
on the shortest path between two typical vertices (chosen uniformly at random), we
seek a sequence h,, of scaling constants such that

D =~

(hn — ﬁn) = Q,
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for some limiting random variable Q The random variable h,, is often called the
typical hop-count. One of the important questions in the study of FPP is regarding
the growth rate of the sequence of the scaling constants ¢,, and hy, e.g., whether
they are of order log(n). Universality results are also important in the study of FPPs
and form a substantial body of literature. While the hop-count h,, measures typical
distances in the random graph, the passage time c,, can be interpreted as the typical
(minimum) amount of time required for an infectious disease to transmit from an
infected vertex to a susceptible vertex. As a result, limit theorems for the passage
time c,, provide a complementary view to our FCLT for the SI process on CM random
graphs as demonstrated by the numerical results in Section 5.

In an epidemiological context, limit theorems for a discrete-time random graph epi-
demic model were derived in [2] under rather restrictive assumptions such as finiteness
of a (4 4+ 9)-th moment of the degree distribution, for some § > 0. The work of Erik
Volz in [48] presented scaling limits for susceptible-infected-removed (SIR) model on
random graphs in the form of ODEs. The authors in [21] later proved Volz’s results
rigorously by summarising the epidemic process on configuration model random graphs
into some measure-valued equations. Several similar laws of large numbers-type scaling
limits under varying sets of technical assumptions surfaced afterwards. For example,
uniformly bounded degrees were assumed in [15, 6]. The authors in [32] assume degree
of a randomly chosen susceptible vertex to be uniformly integrable and the maximum
degree of initially infected vertices to be o(n). The work in [3] studies a variant of the
standard compartmental SIR with notions of local (within households, for example)
and global contacts, and uses a branching process approximation to derive threshold
behaviour and final outcome in the event of a global epidemic. Recently a law of large
numbers for the stochastic SIR process on a multilayer configuration model was derived
in [31] assuming finiteness of the second moment of the underlying degree distribution.

Although a number of scaling limits in the form of laws of large numbers have
surfaced over the years, appropriate diffusion approximations are not yet fully explored.
Our FCLT attempts to complement the laws of large numbers already available in the
literature. In particular, our FCLT lends itself as an approximating tool in applications
where laws of large numbers are inadequate, e.g., in situations involving higher order

moments.
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In our present work, we have disregarded “recovery” of the infected vertices. The
reason behind this exclusion is our inability to evaluate the neighbourhood distribution
of an infected vertex in the presence of spontaneous recovery of its neighbours. One dif-
ficulty is that, unlike the susceptible vertices (of a given degree) that are untouched by
the process of infection and hence, receive identically distributed neighbourhoods upon
uniformly-at-random matching of half-edges, the infected vertices are not identically
distributed because they already possess partially formed neighbourhoods consisting of
infected and recovered neighbours. This corresponds to the part of the graph that has
already been revealed up to a given time. Recall the construction of the configuration
model random graph where the graph is dynamically revealed as infection spreads (see
Section 4). As a result, the hypergeometric argument as mentioned in Lemma 1 seems
inadequate. For the purpose of obtaining a law of large numbers, we can circumvent
this difficulty by suitably bounding the jump sizes of different martingales arising in
the proof by the degrees of the vertices concerned. Therefore, we actually do not need
the exact neighbourhood distribution of an infected individual for deriving laws of large
numbers. However, to establish an FCLT, one needs to find the limit of the quadratic
covariation process that would involve the task of approximating quantities such as
Yoken, 2icr, Xis.i» where Iy is the collection of degree-k vertices that are infected and
Xis,; is the number of susceptible neighbours of an infected individual of degree k. We
suspect an elaborate bookkeeping of the infection spreading process would be necessary
to approximate such quantities. We have not been able to find a simple workaround

so far and intend to pursue this problem in the near future.

Appendix A. Hypergeometric Moments

Here, we compute various (conditional) moments that are useful for our derivations.

Let us use the shorthand notation

S(nst; Xsi, Xse, k) =P (Xs1; = ng1, Xsss = k —nsi | Fr),

conditional on the process history as given in Lemma 1. The following moments are

then computed keeping Lemma 1 in mind.
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In a straightforward fashion, we get for i € Sg,

02 C5)

E[(XSI,i)S | Fi] = Z(n51)3 ns1 XS’C:RSI
= 2°)

(Xs1)3 (XSI—3) ((Xs -—3)—(XSI—3))

_ (ns1)3 \ns1—3 (k—3)—(ns1—3)
— (ns1)s (Xs4)s (XS_%)
ns1 (k)g k—3
(k)3(Xs1)3
= Wsldss  Xsr— 3, Xso — 3,k —
(Xso)s %dnm, s1— 3, Xse —3 3)
_ (F)s(Xs1)s
(XSO)?)

Similarly, we can derive for i € S,

Gia) CRo™) _ ()2(Xs)s
B2 | ) = Dlnsn 2y s = GRS,

ns1

whence we get

E (X3, | 7] =E[(Xsvi)s | Fi] +3E [(Xs14)2 | Fe] + E[Xs1i | Fi

(k)3(Xs1)3 (k)2(Xs1)2 Xar
~ (Xse)s 3 (Xse)2 +sz.'

Proceeding in a similar fashion, for i € Sy,

(%2

E [Xs1:(Xss,)2 | Fi] = Z nsi(ngs)s —=" e :"SS
0<ngr+nss=k ( k )
@(XSI—l) (Xss)2 (XSl_XSI—2>
_ Z n (n ) nst \ngi—1/ (nss)2 \ k—nsi—2
SI\"lSS )2 (Xs )3 (XS._?’)
0<nsi+nss=k (k)3 k—3
k)3 Xsr(X
_ B)sXsiXss)o §~ (- Xgr — 1, Xs — 3,5~ 3)
(XS 0)3
ns1
_ (K)3Xsi(Xss)2
(XS 0)3
Similarly, for i € Sy,
k)3 (Xsr)a X
E [(XsLi)2Xss.i | Fi] = M7
(XS 0)3
k)oXqr X,
E[Xs1,Xss,i | Fe] = ()(}SS.I)QSS

Appendix B. Interpretation of the D operator

Here, we provide an intuitive explanation for the D operator defined in Equa-

tion (3.3) in the context of SI process on CM random graphs. Recall that pug, and ,u(sr)
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denote the average degree of a randomly chosen susceptible vertex, and the average
excess degree of a susceptible vertex randomly chosen as a neighbour of r infected
individuals, respectively. In Section 3, we mentioned that the operator D" 14 o
¥ recursively compared a susceptible vertex randomly chosen as a neighbour of r
infected individuals with a randomly chosen susceptible vertex. We make this notion

of comparison precise.

Lemma 5. Assume A1, A2, and A3 for the stochastic SI model on configuration
model graph G(,n). Then, D™ o GHPID)Tw o ¥ uniformly on Ty, and the following

recurrence relation for D™ holds

)
Digog=ts Opry g B.1
vl s (B

Proof of Lemma 5. The probability that a randomly chosen vertex i is susceptible
and is of degree k is given by P (i € Si(t)) = n~'Xg(0)0%(t)px. The following is then

immediate.

_ k0" (Wpe _ 0(8)0%(0(t)

ps(6(t)) = zk:kp (i€ Skt)|ieSt) = S e w(0(1)

(r)

In order to explicitly calculate ,usr , it will be helpful to keep the dynamic construction

of the graph in mind. In particular, we make use the neighbourhood distribution of a

susceptible vertex given in Lemma 1. Therefore,
_ 2k =r)P(i € Sp() E[(Xsri)r | Fi]
>ou P (i € Sk(t) E[(Xsra)r | Fo]
SR (O
>k (B)r 0% ()i,
() 0 (6(1)
o)

The recurrence relation then follows in a straightforward manner.

6O 1p0)  w(O) U0 w(0) _ pd(0)
0(e) T 60v6) " @d0) T ps(6)

1S (0())

D"ty of = D" o 8.

The convergence D" o 0 —P>]D)T¢ o ¢, uniformly on 7y, follows virtue of Theorem 1.

This completes the proof. O

g’ (0) P 2 us” () P 03
For our purposes, we only need is(e) — k(¥) = D o ¥, ;s(ﬁ) k(0) — D% o 9,

and hence the interpretation in Section 3 as a limiting ratio follows. The two operators
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D24 0 9, and D31) o ¥ essentially allow us to correctly estimate various pair and triple

counts in the large graph limit.

Appendix C. Rebolledo’s theorem

Here, we furnish a statement of the Rebolledo theorem as our derivation of the
functional central limit theorem relies heavily on it. The version presented here differs
slightly from the original one in [45]. In our application, we only need a central limit
theorem for locally square integrable martingales. Therefore, we borrow the following
version from [1].

Let My, Ms,...,M,,... be a sequence of vector-valued locally square integrable
martingales. We allow the possibility of they being defined on different sample spaces
for each n. Let us denote the components of M,, as M,, == (M, 1, My 2, ..., M, ) for
some k € N. Now, for each ¢ > 0, define M,(f) to be a vector-valued locally square
integrable martingale that contains all jumps of M, larger in absolute value than € as

only jumps. Write M) = (M), M)

n,l» n,27 "

,Mr(f,)c) Therefore, the absolute value of
the difference between jump sizes of M, ; and M,(fz is necessarily smaller than e.

The optional quadratic (co-) variation process [M,, ;, M, ;] of the processes M, ;
and M, ; is defined as the sum of the product of the jump sizes of the processes. That
is, for i,5 = 1,2,...,k, we define

(M, My 5] = 6My, i(5)5My 5(5).
s<t
By convention, we define [M,, ;| = [M,,;, M, ;]. For i,j =1,2,...,k, the predictable

quadratic (co-) variation process between M, ; and M, ; is given by
t
(My, 5, My, ;) () ::/ Cov(dM, i(s), dM, ;(s) | Fs—)ds,
0

with the convention (M, ;) = (M, ;, M, ;). Here, dM, ;(s) and dM, ;(s) are the in-
crements of M, ;, and M,, ; respectively. Denote the corresponding k x k matrix-valued
quadratic variation processes as (M,) = (((My i, M, ;))). Similarly, for the process
Mff), denote the corresponding predictable quadratic variation process as <M7(f)> =
((<Mr(fl), M£€;>)) Similarly, let [M,,] denote the matrix of optional quadratic variations
of the components of M,. That is, [M,] := (([My,i, M, ;])). Finally, let 75 := [0,T] be
as before and let 7 C 7.
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Theorem 3. (Rebolledo’s theorem for locally square integrable martingales.) Con-

sider the following three conditions

(M) () > V(1),VEE T, (C.1)
[M,] (t) =V (t),Yte T, (C.2)
(M) () 20,9t € Te > 0,i = 1,2, k, (C.3)

as n — oo, where V is a k X k semidefinite matriz-valued, continuous deterministic
function on Ty with positive semidefinite increments and V(0) = 0, the zero matriz.
Then, either of Equation (C.1) or Equation (C.2) together with Equation (C.3)

imply the following finite-dimensional convergence:
(M (t1), My (ta), - .., My (1)) == (W (t1), W (t2), ..., W (1)),

as n — oo, where W is a Gaussian vector martingale with [W] = (W) =V and
ti,to,...,t € T; moreover, both Equation (C.1) and Equation (C.2) then hold.
If, in addition, T is dense in Ty, then either of Equation (C.1) or Equation (C.2)

together with Equation (C.3) imply the following weak convergence:
M, = W

as n — oo in D®) | the space of R¥-valued cadlag functions on Ty endowed with the
Skorohod topology, and (M,) and [M,] converge uniformly on compact subsets of To to

V' in probability.
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