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Abstract

We study a stochastic compartmental susceptible-infected (SI) epidemic process

on a configuration model (CM) random graph with a given degree distribution

over a finite time interval. We split the population of graph vertices into two

compartments, namely, S and I, denoting susceptible and infected vertices,

respectively. In addition to the sizes of these two compartments, we keep

track of the counts of SI-edges (those connecting a susceptible and an infected

vertex), and SS-edges (those connecting two susceptible vertices). We describe

the dynamical process in terms of these counts and present a functional central

limit theorem (FCLT) for them as the number of vertices in the random graph

grows to infinity. The FCLT asserts that the counts, when appropriately scaled,

converge weakly to a continuous Gaussian vector semimartingale process in the

space of vector-valued càdlàg functions endowed with the Skorohod topology.

We discuss applications of the FCLT in percolation theory and in modeling

spread of computer viruses. We also provide simulation results illustrating

FCLT for some common degree distributions.

Keywords: SI process; Functional CLT; Configuration model; Random graphs;

Scaling limit
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1. Introduction

Large-graph scaling limits, such as the functional laws of large numbers (FLLNs)

and the functional central limit theorems (FCLTs), of dynamical processes on ran-

dom graphs have received much attention of late. Although dynamical processes on

random graphs themselves have long been studied by mathematicians, physicists, epi-

demiologists, computer scientists and engineers, a comprehensive and mathematically

rigorous body of work on various scaling limits under general settings remains elusive.

Such scaling limits have been derived rigorously only for a handful of special cases

to date. Notable breakthroughs in the context of epidemiological processes include

[2, 3, 21, 32, 31], appearing primarily in the probability theory literature. They

provide functional laws of large numbers under various sets of technical assumptions.

However, scaling limits in the form of functional central limit theorems have not been
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well investigated to the best of our knowledge. We are not aware of any rigorously

derived FCLT for dynamical processes on random graphs, except for diffusion-type

approximations attempted in special cases like an early-stage epidemic in [27] and

normal approximation theorems for graph statistics in configuration model random

graphs [7]. In this paper, we provide an FCLT for a particular type of binary dynamics

on configuration model (CM) random graphs (see [47, Chapter 7], [16]) as n, the

number of vertices in the graph, grows to infinity.

1.1. Our Contribution

In the current paper we study a stochastic compartmental susceptible-infected (SI)

epidemic process on a configuration model random graph with a given degree dis-

tribution over a finite time interval T0 := [0, T ], for some T > 0. In this setting,

we segregate the population into two compartments, namely, S and I, containing

the susceptible and the infected individuals, respectively. In addition to the sizes of

these two compartments, we keep track of the counts of SI-edges (those connecting a

susceptible and an infected individual) and SS-edges (those connecting two susceptible

individuals). We describe the dynamical process in terms of these counts and present

a functional central limit theorem for them as n grows to infinity. To be precise, let

XSI,i(t) and XSS,i(t) denote the numbers of infected and susceptible neighbours of a

susceptible vertex i at time t. Based on these local processes, define

XSS(t) :=
∑

i∈S(t)

XSS,i(t) and XSI(t) :=
∑

i∈S(t)

XSI,i(t),

where S(t) denotes the set of susceptible vertices at time t. We will denote the set of

infected vertices at time t by I(t). While XSI is the count of SI-type edges, the process

XSS counts each SS-type edge twice. Let

X(t) := (XS(t), XSI(t), XSS(t))

denote the aggregated state vector of the system at time t ≥ 0, where XS(t) :=| S(t) |
keeps track of the number of susceptible vertices. Also, let

XS •(t) := XSI(t) +XSS(t).

A functional law of large numbers for the SI process approximates the scaled counts

n−1X by the solution to a system of Ordinary Differential Equations (ODEs). That is,
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n−1X ≈ x for sufficiently large n, where x is the solution to the FLLN limit ODE. In

this paper, we prove an FCLT for the ŕuctuations of the scaled process n−1X around

the FLLN limit x. Our main result (Theorem 2 in Section 4.3) asserts that, under ap-

propriate technical assumptions, the ŕuctuation process Y (t) :=
√
n
(

n−1X(t)− x(t)
)

converges weakly to a Gaussian vector semimartingale in D(3), the space of real 3-

dimensional vector-valued càdlàg functions on T0 endowed with the Skorohod topology.

The technical assumptions needed for the result to hold will be made precise later

in Section 3. A precise statement of the FCLT result with additional discussion and

further details is presented in Section 4.

1.2. Proof Strategy and Paper Outline

Our derivation relies on the application of an FCLT for local martingales due to

Rebolledo, referred to as the Rebolledo theorem hereinafter. In [45], Rebolledo provided

sufficient conditions for the convergence of local martingales to a continuous Gaussian

(vector) martingale in terms of the associated optional and predictable quadratic

variation processes, and the martingale process containing “bigž jumps of the original

process. Helland later provided a simpler proof of the Rebolledo theorem in [28]. For

our purpose, we do not need the Rebolledo theorem in its full generality; a version of

it tailored to the setting of square integrable martingales suffices and, for the sake of

completeness, we provide the statement of such a version in Appendix C.

The first step towards the FCLT is to perform a Doob-Meyer decomposition ([37])

of the semimartingale of the vector of counts into a zero-mean martingale and a

compensator. Then one can show that the predictable quadratic variation of the

appropriately scaled martingale process converges in probability to a deterministic

quantity. Furthermore, in the limit, its sample paths turn out to be close to continuous

in the sense that their “bigž jumps vanish. Weak convergence in the sense of [14] is

then established by applying the Rebolledo theorem.

The rest of the paper is structured as follows: The construction of the CM random

graph and the epidemic process on it are described in detail in Section 2. In Section 3,

we make our technical assumptions precise and provide a law of large numbers before

presenting our FCLT (Theorem 2) in Section 4. Necessary technical lemmas are also

discussed leading up to the FCLT. In Section 5, we discuss applications of our FCLT
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in percolation theory (from a non-equilibrium statistical mechanics point of view), and

in computer science in the context of spread of computer viruses. In Section 5, we

also discuss the peculiar case of Poisson-type degree distributions under which the cor-

relation equations-based mean-field pair approximation approach correctly estimates

the limiting process. For illustration, we provide simulation results for some common

degree distributions.

2. The SI process on CM random graphs

2.1. Notational Conventions

We use the notations N and R to denote the set of natural numbers and the set of

real numbers respectively. Also, we use N0 := N ∪ {0} and R+ := R \ (−∞, 0]. Given

R ⊆ R, we denote the σ-field of Borel subsets of R by B(R). Recall T0 := [0, T ] for

some t > 0. We denote by D = D(T0) the space of real functions on T0 that are

right continuous and have left-hand limits. Functions in D are called càdlàg . Unless

otherwise mentioned, the space D is assumed endowed with the Skorohod topology [14,

Chapter 3], which turns D into a Polish space. We call D the Skorohod space. Let the

triplet (Ω,F,P) denote our probability space. For an event A, we use 1 (A) to denote

the indicator (or characteristic) function of A. We shall use the following shorthand

notation (a)b = a(a− 1)(a− 2) · · · (a− b+1) for a > b and a, b ∈ N. The symbols O(.)

and o(.) are the big O and small o notations respectively, and they carry their usual

meanings. For a differentiable function f defined on some set E ⊆ R
d, we denote its

partial derivative with respect to the i-th variable by ∂if , for i = 1, 2, . . . , d. With some

abuse of notation, we use ∂f(x) to denote the derivative of a differentiable function of

a single variable at x. For a stochastic process Z(t) with paths in D, we denote the

associated jump process Z(t)− Z(t−) by δZ(t). We also denote T := (0, T ] ⊂ T0.

2.2. Model

We begin with the class of all configuration model random graphs [47, Chapter

7] with n vertices, for n ∈ N. The main advantage of the configuration model is

that it allows one to fix the degrees before constructing the graph itself. There are

numerous real life situations where random graphs with a prescribed degree sequence
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Time

(a) (b) (c) (d)

Figure 1: Dynamics of the stochastic SI model over a finite time interval T0. Susceptible

vertices are shown in yellowish green and infected vertices, in dark red. Different types of

edges are shown in different colours. (a) State of the system at a given time. We know the

degree of each vertex. For each infected vertex, we know its number of infected neighbours

(number of II-type edges, which are shown in solid red) and the number of IS-type half-edges,

which are shown in dashed blue. The green dotted half-edges emanating from the susceptible

vertices are of undetermined types. (b) An IS-type half-edge rings and is randomly matched

with a half-edge originating from a susceptible vertex. A full edge is thus formed. (c) We

change the status of the chosen susceptible vertex to infected (and change its colour to dark

red). (d) We determine the types of the remaining half-edges of the newly infected vertex.

(or a probability distribution for the degree sequence) are reasonable and intuitive. See

[47, Chapter 7] for some examples.

Given degrees d1, d2, . . . , dn for n vertices, we first assign di half-edges to ver-

tex i. The configuration model random graph is then obtained by uniformly-at-random

matching (or pairing) of all available half-edges. Two paired half-edges form an edge.

We assume the degrees d1, d2, . . . , dn are drawn from a probability distribution, which

we call the degree distribution. If the sum of the drawn degrees is not even, we add

a parity half-edge to the last vertex. That is, we first draw d1, d2, . . . , dn−1 and d
′

n

as an independent and identically distributed (i.i.d.) random sample from the degree
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distribution and then set dn := d
′

n+1

(

d
′

n +
∑n−1
j=1 dj is odd

)

. However, for large n the

contribution of the added indicator function is negligible with probability one (see, e.g.,

[47, Section 7.6, pp. 239]), and we will thus ignore it in our asymptotic calculations.

Additionally, we assume the first three moments of the degree distribution are finite.

Note that, by matching half-edges uniformly at random, we obtain a multigraph because

the resulting graph may have self-loops and multiple edges. Interestingly, when the

degrees d1, d2, . . . , dn are drawn independently, [23, Theorem 3.1.2] states that, as the

number of vertices grows to infinity, the numbers of self-loops and parallel edges have

independent Poisson limits whose means depend only on the first two moments of

the degree distribution. Since the focus of this paper is on the functional limit of

the ŕuctuations of the scaled stochastic process n−1X, the contributions of self-loops

and parallel edges are negligible in the limit. Therefore, we will ignore self-loops and

parallels edges in our calculations of the asymptotic terms.

Let us denote the probability generating function (PGF) of the underlying degree

distribution by ψ, i.e.,

ψ(x) :=
∑

k

xkpk, (2.1)

where pk is the probability that a randomly chosen vertex has degree k, for k ∈ N0.

We denote the class of all CM random graphs with n vertices by G(ψ, n).

A half-edge is referred to as SI-type (resp., IS-type) if it originates at a susceptible

(resp., infected) vertex and is a part of an SI-type edge. Similarly, an SS-type half-

edge is a part of an SS-type edge and an II-type half-edge is a part of an II-type edge

(connecting two infected individuals).

We consider the Markovian susceptible-infected model on CM random graphs. Each

infected individual (represented by a vertex of the graph) infects one of its neighbours

at rate β > 0, independently of the other neighbours. We split the population into two

compartments consisting respectively of the susceptible and the infected individuals. In

order to prove the FCLT result outlined in the introduction, we need to approximate the

probability distributions of the counts XS, XSI and XSS, which requires us to calculate

the probability that the susceptible vertex of degree k has l infected neighbours, for

l ≤ k. As we explain below, obtaining this probability is particularly easy if we allow

the graph to be constructed dynamically as the infection spreads. Consequently, we
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adopt the following dynamic construction of the graph first proposed in [21].

Dynamic construction of the graph Suppose we are given n vertices with degrees

(or number of half-edges) d1, d2, . . . , dn. A subset of size XS(0) of n vertices is chosen

uniformly at random. Those vertices are designated as susceptible, and the remaining

vertices, infected. Note that since we can write

XSI(t) =
∑

i∈I(t)

XIS,i(t),

where XIS,i(t) denotes the number of IS-type half-edges originating at an infected

vertex i at time t, it suffices to follow the infected vertices in the dynamic construction.

We start at time t = 0 by infecting a random subset of vertices and revealing

their connections by matching their half-edges uniformly at random with the available

half-edges (see below). We then associate with each IS-type half-edge an independent

exponential clock with parameter β. The first of all these clocks that rings determines

the next event. Therefore, at time t we know that the next infection will take place in

a time exponentially distributed with parameter βXSI(t). Let t∗ > t denote the time

of the next infection with its left limit denoted by t∗−. At t∗, we update the state of

the epidemic as follows.

Step 1. We randomly match the IS-type half-edge that has rung to a half-edge originating

from a susceptible. This susceptible is the newly infected with degree, say, k.

Step 2. We choose uniformly k − 1 half-edges among all the available half- edges (they

either are of type IS or SS). Let nIS (resp., nSS) be the number of IS-type

(resp., of SS-type) half-edges drawn among these k− 1 half-edges. Note that the

probability of drawing a specific pair (nIS, nSS) is given by the hypergeometric

distribution
(

XSI(t
∗−)

nIS

)(

XSS(t
∗−)

nSS

)

(

XS •(t∗−)
k−1

) .

The chosen nIS half-edges of type IS determine the infected neighbors of the

newly infected individual. The remaining nSS edges of type SS remain open in

the sense that the susceptible neighbor is not fixed.

Step 3. We change the status of the nIS (resp., nSS) IS-type (resp., SS-type) edges created

to II-type (resp., SI-type).
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Step 4. We change the status of the newly infected from S to I and wait for the next

clock to ring at a new time t∗∗ > t∗ to repeat Steps 1-4. The process stops when

there are no more IS-type half-edges.

The above algorithm (see Figure 1 for a pictorial representation) gives rise to the

natural filtration Ft as the σ-field generated by the process history up to and including

time t > 0 [22, Chapter 1, p. 14]. The filtration Ft includes information about the

status of all vertices (susceptible or infected), and all paired and unpaired half-edges.

To be precise, we define

Ft := σ
(

{S(s), I(s), {XIS,i, XII,i}i∈I(s) | s ≤ t}
)

.

We let F0 contain all P-null sets in F. We include all P-null sets in F0 so that the

filtration family {Ft} is complete. It is also right continuous (i.e., Ft+ = Ft for every

t ≥ 0, where Ft+ := ∩s>0Ft+s is the σ-field of events immediately after t), because it

is generated by a right continuous jump process [1, Chapter II, p. 61]. Therefore, the

usual Dellacherie’s conditions on {Ft} are satisfied [45, 34, 25]. We denote the σ-field

of events strictly prior to t ∈ R+ by Ft− and write F0− := F0, by convention.

Denote the collection of vertices of degree k that remain susceptible at time t by

Sk(t). Recall that X(t) := (XS(t), XSI(t), XSS(t)) denotes the aggregated state vector

of the system at time t ≥ 0. Note that, since we may calculate XSS(t) if we know

XSI(t) and XII(t), the process X is adapted to Ft. However, the process X itself is not

necessarily Markovian. Let X̃ := (XSI,i, XSS,i)i∈S . By the Doob-Meyer decomposition

theorem [37], we decompose X as

X(t) = X(0) +

∫ t

0

FX

(

X̃(s)
)

ds+M ′(t), (2.2)

where M ′(t) := (M ′
S(t),M

′
SI(t),M

′
SS(t)) is a zero-mean martingale adapted to the

filtration Ft and FX

(

X̃
)

:= (FS

(

X̃
)

,FSI

(

X̃
)

,FSS

(

X̃
)

) is an integrable function

given by

FS (x̃) := −βxSI,

FSI (x̃) :=
∑

i∈S

βxSI,i(xSS,i − xSI,i),

FSS (x̃) := −2
∑

i∈S

βxSI,ixSS,i,

(2.3)
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for x̃ := (xSI,i, xSS,i)i∈S and xSI :=
∑

i∈S xSI,i, xSS :=
∑

i∈S xSS,i. The first equation

follows from the fact that the number of susceptible vertices decreases by 1 at rate

βXSI because of the Markovian assumption of the SI process and the independence

of the infection transmissions along the edges. Similarly, when a susceptible vertex i

gets infected, which happens at rate βXSI,i (again due to the independence of infection

transmissions along each of its XSI,i infectious edges), the SI edges connected to that

susceptible vertex turn into II-type edges whereas its SS-type edges turn into SI-type

edges. Therefore, the net change to the total count of SI-edges is (XSS,i − XSI,i)

whenever a susceptible vertex i gets infected. Because of the independence assumption,

we sum over all susceptible vertices to arrive at the second equation. See Figure 2 for

a visualization. The third equation can be explained similarly by computing the rates

and the corresponding net changes to the total count of SS-edges when a susceptible

vertex gets infected.

We note that as a consequence of the uniformly-at-random matching of half edges in

the dynamic construction, similarly to Step 2, we obtain also the following hypergeo-

metric distribution (see also [31]) for the number of infected and susceptible neighbours

of a susceptible vertex of degree k at time t.

Lemma 1. For k ∈ N0 and i ∈ Sk(t), conditionally on the process history until time

t, the vector (XSI,i(t), XSS,i(t)) follows the hypergeometric distribution

P (XSI,i(t) = nSI, XSS,i(t) = nSS | Ft) =
(

XSI(t)
nSI

)(

XSS(t)
nSS

)

(

XS •(t)
k

) , (2.4)

supported on nSI + nSS = k where nSI, nSS ∈ N0.

Proof. Consider XSI(t), the number of half-edges of type IS emanating from the

set of infected vertices. By construction, they all connect to the susceptible vertices

uniformly at random. Thus the probability that nSI of them connect to a given vertex

i ∈ Sk when a total of XS •(t) half-edges are available to choose from is
(

k
nSI

)(

XS •(t)−k
XSI(t)−nSI

)

(

XS •(t)
XSI(t)

)

which works out to be the same as the hypergeometric probability (2.4). □

Since we partition the collection of susceptible vertices S(t) by their degree k ∈ N0,

we have S(t) = ∪kSk(t). Therefore, XS(t) =
∑

kXSk
(t), where XSk

(t) is the size of
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i
i

Figure 2: Change to the edge counts. When a susceptible vertex i gets infected (turns red

from green; see Step 2 of the dynamic construction), the SI edges attached to that vertex

turns into II edges whereas SS edges become new SI edges. This visualization is helpful in

understanding the DoobśMeyer decomposition in Equation (2.2).

Sk(t). Note that XS •(t) =
∑

k kXSk
(t). To study the large graph limit of the system,

we also define the following quantity

θ(t) := exp
(

−β
∫ t

0

XSI(s)

XS •(s)
ds

)

, (2.5)

which can be intuitively described as the probability that a degree-1 vertex that was

susceptible at time zero remains susceptible till time t > 0 ([48, 38, 39]). It may be

described equivalently as

θ(t) = θ(0) +

∫ t

0

F0 (XSI(s), XS •(s), θ(s)) ds,

where θ(0) = 1 and F0 (XSI, XS •, θ) := −βθ XSI

XS •

.

3. The Law of Large Numbers

As done in [31], we make the following technical assumptions. Unless otherwise

stated, all limits below and elsewhere in the paper are taken in the large graph limit,

i.e., as n→ ∞.

A1 There exists a positive constant cS • such that P
(

n−1XS •(T ) > cS •

)

→ 1.

A2 The fraction of initially susceptible vertices is non-random and converges to some

αS, i.e.,

n−1XS(0) → αS. (3.1)

We also assume that the initially infected and susceptible vertices are selected

uniformly at random and 0 < αS < 1.
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A3 The degree distribution {pk} satisfies
∑

k k
3pk <∞.

We note that by virtue of the uniformly-at-random selection of the infected vertices

at time zero, A2 also implies (see [31])

n−1XI(0) → αI = 1− αS > 0,

n−1XSI(0) → αSI = αS(1− αS)∂ψ(1),

n−1XSS(0) → αSS = α2
S∂ψ(1).

(3.2)

Below, for simplicity, we use the vector notation α := (αS, αSI, αSS). The process XI

captures the number of infected individuals. Although it appears that the assumption

A1 may be unnecessary, we retain it for the sake of consistency with the work [31]

since in our FCLT derivations we rely on some of the results obtained there.

We note that simulating the stochastic system satisfying A1, A2, and A3 is straight-

forward with the help of the dynamic construction described above. Indeed, for a

given choice of the degree distribution satisfying A3 with mean degree ∂ψ(1), we may

draw degrees d1, d2, . . . , dn and assign di half-edges to vertex i. Then we initialize the

number of infected and susceptible nodes as in the dynamic graph construction above,

assigning the initial proportions according to α. We then run the epidemic process

following the dynamic construction up until a finite time T , which is independent of n,

when there are still susceptible vertices left. This simulation algorithm also constructs

the stochastic process X satisfying A1, A2, and A3.

For f : R → R and r ∈ N, the quantity fr is understood as (r− 1)-times multiplica-

tion of f with itself for r ∈ N0 with the convention f0 := 1. The symbol ∂rf denotes

the r-th derivative of the function f , and by convention, we write ∂f := ∂1f . Now,

define the operator D
rf as

D
rf := fr−1 ∂rf

(∂f)r
, (3.3)

for f : R → R and r ∈ N whenever the division of ∂rf by (∂f)r is permissible, i.e.,

∂f ̸= 0. The operator D
r is used to capture the impact of the graph structure on

the limiting dynamics through the degree distribution. Let x := (xS, xSI, xSS), and

θ : R+ → [0, 1] be a function. Then define κ(ϑ) as

κ(ϑ) := D
2ψ ◦ ϑ. (3.4)
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Note that

κ(ϑ)(x) =
ψ(ϑ(x))∂2(ψ ◦ ϑ)(x))

(∂(ψ ◦ ϑ)(x))2 , x ∈ R. (3.5)

If (x, ϑ) is the large graph FLLN limit of (n−1X, θ), then, following [31, Sec-

tion 3.3.3], we interpret κ(ϑ) as the limiting ratio of the average excess degree of

a susceptible vertex chosen randomly as a neighbour of an infectious individual, to

the average degree of a susceptible vertex µS. The quantity κ(ϑ) allows us to count

various pairs accurately. In general, the operator D
r+1ψ ◦ ϑ recursively compares

the excess degree of a susceptible vertex randomly chosen as a neighbour of r infected

individuals with that of a randomly chosen susceptible vertex. Therefore, it allows us to

count various r-configurations (different subgraph structures on r vertices, e.g., triples,

quadruples etc.) accurately in the limit. To be precise, in Lemma 5 in Appendix B,

we explicitly show

D
r+1ψ ◦ θ = µ

(r)
S (θ)

µS(θ)
D
rψ ◦ θ P−−→D

r+1ψ ◦ ϑ, (3.6)

where µ
(r)
S is the average excess degree of a susceptible vertex randomly chosen as

a neighbour of r infected individuals. In Appendix B, we calculate these quantities

explicitly.

Let us also define the operator H (x, ϑ) := (Hx (x, ϑ) ,H0 (x, ϑ)), where Hx (x, ϑ) :=

(HS (x, ϑ) ,HSI (x, ϑ) ,HSS (x, ϑ)), and H0 (x, ϑ) are given by

HS (x, ϑ) := −βxSI,

HSI (x, ϑ) := βκ(ϑ)
xSI
xS

(xSS − xSI)− βxSI,

HSS (x, ϑ) := −2βκ(ϑ)
xSIxSS
xS

,

H0 (x, ϑ) := −β xSI
αS∂ψ(ϑ)

.

(3.7)

Now, noting that A1 implies P (XS • > k) → 1 for any k > 0 and A3 implies
∑

k k
2pk < ∞, recall the strong law on large graphs due to [31]. In the following we

take the norm ∥.∥ to be uniform norm.

Theorem 1. Assume A1, A2, and A3 for a configuration model graph G(ψ, n).
Then, for any T > 0, the following holds

sup
0<t≤T

∥(X(t)/n, θ(t))− (x(t), ϑ(t))∥ P−−→ 0,
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where (x, ϑ) := ((xS, xSI, xSS), ϑ) is the solution of

(x(t), ϑ(t)) = (x(0), ϑ(0)) +

∫ t

0

H (x(s), ϑ(s)) ds, (3.8)

with the initial condition x(0) = α and ϑ(0) = 1.

Observe that in the absence of recovery, the numbers of susceptible and infected

individuals are linearly related as XS + XI = n in the standard susceptible-infected-

recovered (SIR) model. The proof therefore follows immediately by setting the recovery

rate in the SIR model to zero and assuming that there is only one layer in [31].

The crucial observation is that the neighbourhood distribution of a susceptible vertex,

conditional on the process history, can be expressed as a hypergeometric distribution

(see Lemma 1) whose mixed moments can be approximated by the corresponding

multinomial ones. This allows us to “average outž the individual-based quantities such

as XSI,i for i ∈ S. The convergence is then established by calculating several quadratic

variations. The proof of our FCLT presented in Section 4 exploits similar calculations.

4. Functional Central Limit Theorem

Having obtained the functional law of large numbers, we now derive a functional

central limit theorem for X after an appropriate scaling. To this end, we begin by first

defining the scaled martingale process

M(t) = (MS(t),MSI(t),MSS(t)) := n−1/2M ′(t), (4.1)

which is square integrable. We study the quadratic variation of the scaled martingale

M(t). The idea is to check whether either the optional or the predictable quadratic

variation of the scaled process M converges in probability to a deterministic limit. If

either of them does, and if the paths ofM become approximately continuous in the limit

(“bigž jumps disappear), we can make use of the Rebolledo theorem (see Appendix C;

also [45, 28]) to establish the asymptotic limit.

For each ϵ > 0, define

M ϵ(t) := (M ϵ
S(t),M

ϵ
SI(t),M

ϵ
SS(t)) (4.2)

to be a vector of square integrable martingales (only) containing all jumps of M(t)

larger in absolute value than ϵ.
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We use the shorthand notation ⟨M⟩ (t) for the 3×3 matrix of predictable covariation

processes of the components of M(t). That is,

⟨M⟩ (t) :=











⟨MS⟩ (t) ⟨MS,MSI⟩ (t) ⟨MS,MSS⟩ (t)
⟨MSI,MS⟩ (t) ⟨MSI⟩ (t) ⟨MSI,MSS⟩ (t)
⟨MSS,MS⟩ (t) ⟨MSS,MSI⟩ (t) ⟨MSS⟩ (t)











. (4.3)

Here ⟨MS⟩ (t) := ⟨MS,MS⟩ (t) etc., by convention. See Appendix C for definitions of

quadratic variation processes. Define ⟨M ϵ⟩ similarly. We shall study the large graph

limits of ⟨M⟩ (t) and ⟨M ϵ⟩ (t) as n→ ∞ for each t ∈ T0. For this purpose, we need the

neighbourhood distribution of a susceptible vertex i of degree k, i.e., the distribution

of (XSI,i, XSS,i) for a vertex i ∈ Sk, for all k ∈ N.

We quote an important remark from [31] that would come in handy for the deriva-

tions.

Remark 1. Note that the total number of edges in the graph is 2−1
∑

i di. With

0 < αS < 1, it immediately follows that n−1XSI ≤ n−1XS • ≤ ∂ψ(1) and n−1XSS ≤
n−1XS • ≤ ∂ψ(1) for sufficiently large n ∈ N. Also note that 0 ≤ θ ≤ 1 and

∂ψ(θ) ≤ ∂ψ(1), so that αSθ∂ψ(θ) ≤ ∂ψ(1). By virtue of A1, n−1XS • is bounded

away from 0 on T0 and hence, so is θ (see [31, Section 3.1]). As a consequence of

[31, Lemma 1(b)], we can take the same lower bound for αSθ∂ψ(θ). Let us denote

by ξ > 0 the uniform lower bound for n−1XS • and αSθ∂ψ(θ) so that we can write

n−1XS • ∈ [ξ, ∂ψ(1)] ⊂ R+. Note that all these bounds hold with probability 1.
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4.1. Deterministic Limit of ⟨M⟩ (t)

Recall that (x, ϑ) := ((xS, xSI, xSS), ϑ). Let us begin by defining the following

operators acting on the function (x, ϑ),

vS := βxSI,

vSI := β

(

xSI(xSS − xSI)
2

x2S
D

3ψ(ϑ)− xSI(xSS − 3xSI)

xS
D

2ψ(ϑ) + xSI

)

,

vSS := 4β
xSIxSS
xS

(

xSS
xS

D
3ψ(ϑ) + D

2ψ(ϑ)

)

,

vS,SI := − β

(

xSI(xSS − xSI)

xS
D

2ψ(ϑ)− xSI

)

,

vS,SS := 2β
xSIxSS
xS

D
2ψ(ϑ),

vSI,SS := − 2β
xSIxSS(xSS − xSI)

x2S
D

3ψ(ϑ).

(4.4)

The intuition behind the operators in Equation (4.4) will be clear when we compute

the predictable quadratic variation ⟨M⟩ of the martingale process M and seek its limit

as n→ ∞. In particular, we shall see that each of the terms on the right-hand side of

Equation (4.4) is a function of various multinomial moments, which we find as a limit

of the corresponding hypergeometric ones in order to approximate the expected jump

sizes conditional on the process history.

Now, define a T-indexed family of matrices {V (t)} as follows

V (t) :=











VS(t) VS,SI(t) VS,SS(t)

VSI,S(t) VSI(t) VSI,SS(t)

VSS,S(t) VSS,SI(t) VSS(t)











, (4.5)

where, given vid1,id2(x, ϑ) for id1, id2 ∈ {S, SI, SS} in Equation (4.4),

Vid1,id2(t) :=

∫ t

0

vid1,id2(x(s), ϑ(s)) ds, (4.6)

with the convention vid1,id2 := vid2,id1 for id1, id2 ∈ {S, SI, SS} and vid1,id2 := vid1

whenever id1 = id2 ∈ {S, SI, SS}. Note that this also sets the convention Vid1,id2(t) :=

Vid2,id1(t) for id1, id2 ∈ {S, SI, SS} and Vid1,id2(t) := Vid1(t) whenever id1 = id2 ∈
{S, SI, SS} for each t ∈ T.

Let us now present our first result providing the deterministic limit of ⟨M⟩ in the

following lemma. Recall that proving a deterministic limit of ⟨M⟩ would satisfy one of
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the conditions of the Rebolledo theorem. The key strategy in establishing the result will

be to approximate various hypergeometric moments by the corresponding multinomial

ones.

Lemma 2. Consider the stochastic SI model described in Section 2.2. Assume A1,

A2 and A3 for a configuration model graph G(ψ, n). Then,

⟨M⟩ (t) P−−→V (t),

for each t ∈ T, as n→ ∞ where V (t) is as defined in Equation (4.5), and (x, ϑ) is the

solution of Equation (3.8) with x(0) = α and ϑ(0) = 1.

Proof of Lemma 2. To show convergence of the matrix random process ⟨M⟩ (t) to

V (t), we show component-wise convergence of the respective components. The general

strategy to prove convergence for these components remains the same. To conserve

space, we only demonstrate here the strategy for establishing MSI(t)
P−−→VSI(t). Re-

maining assertions follow similarly.

Computation of ⟨MSI⟩ The process MSI jumps only if a susceptible vertex gets

infected. Therefore, the predictable quadratic variation is computed as follows

⟨MSI⟩ (t) =
〈

n−1/2M ′
SI

〉

(t) =

∫ t

0

∑

k

1

n

∑

i∈Sk

βXSI,i(XSS,i −XSI,i)
2 ds.

Now, for a randomly selected i ∈ Sk, we seek to find the (conditional) moments

E
[

XSI,i(XSS,i −XSI,i)
2 | Ft−

]

. Define the function Ckh : T0 → R as

Ckh(t) :=E
[

XSI,i(t)(XSS,i(t)−XSI,i(t))
2 | Ft−

]

.

Following the computations in Appendix A, we get

Ckh(t) =
(k)3XSI

(XS •)3
[(XSS)2 − 2(XSI − 1)XSS + (XSI − 1)2]

− (k)2XSI

(XS •)2
[XSS − 3(XSI − 1)] + k

XSI

XS •

.

To be precise, the processes on the right-hand side of the above equation are evaluated

at t−. To approximate the hypergeometric moments by corresponding multinomial
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ones, define the multinomial compensator Ckm : T0 × [ξ, ∂ψ(1)] → R as

Ckm(t, z) :=
(k)3n

−3XSI

z3
(XSS

2 − 2XSIXSS +X2
SI)

− (k)2n
−2XSI

z2
(XSS − 3XSI) +

kn−1XSI

z

=
(k)3n

−3XSI(XSS −XSI)
2

z3
− (k)2n

−2XSI(XSS − 3XSI)

z2
+
kn−1XSI

z
.

Again, to be precise, the processes on the right-hand side of the above equation are

evaluated at t−. Please observe that there exists an L > 0 such that

Ckm(t, z(t)) ≤ Lk3, (4.7)

uniformly in n. This holds because n−1XSI and n−1XSS are uniformly bounded above

by virtue of Remark 1 and z is bounded away from zero, by definition. The function

Ckm(t, z(t)) is also Lipschitz continuous in z. Now recall the definition of vSI from

Equation (4.4) and define

∆(t) :=
∑

k

1

n

∑

i∈Sk

βXSI,i(t)(XSS,i(t)−XSI,i(t))
2 − vSI(x(t), ϑ(t))

=
∑

k

1

n

∑

i∈Sk

βXSI,i(t)(XSS,i(t)−XSI,i(t))
2 − vSI(n

−1X(t), θ(t))

+ vSI(n
−1X(t), θ(t))− vSI(x(t), ϑ(t))

= ∆1(t) + ∆2(t),

where ∆1(t) :=
∑

k
1
n

∑

i∈Sk
βXSI,i(t)(XSS,i(t) − XSI,i(t))

2 − vSI(n
−1X(t), θ(t)), and

∆2(t) := vSI(n
−1X(t), θ(t))− vSI(x(t), ϑ(t)). To show ⟨MSI⟩ P−−→VSI, it suffices to show

supt∈T |∆(t)| P−−→ 0. We achieve this by separately showing supt∈T |∆1(t)| P−−→ 0 and

supt∈T |∆2(t)| P−−→ 0.
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Convergence of ∆1(t) See that

∆1(t) =
∑

k

1

n

∑

i∈Sk

βXSI,i(XSS,i −XSI,i)
2 − β[

n−3XSI(XSS −XSI)
2

α2
S

∂3ψ(θ)

(∂ψ(θ))3

− n−2XSI(XSS − 3XSI)

αS

∂2ψ(θ)

(∂ψ(θ))2
+ n−1XSI]

=
∑

k

[
1

n

∑

i∈Sk

βXSI,i(XSS,i −XSI,i)
2 − β{n

−3XSI(XSS −XSI)
2

α2
S

(k)3θ
kpk

(θ∂ψ(θ))3

− n−2XSI(XSS − 3XSI)

αS

(k)2θ
kpk

(θ∂ψ(θ))2
+ n−1XSI

kθpk
θ∂ψ(θ)

}]

=
∑

k

[
1

n

∑

i∈Sk

βXSI,i(XSS,i −XSI,i)
2 − βαSpkθ

kCkm(t, αSθ∂ψ(θ))].

The second equality follows by expressing the derivatives of the PGFs as sum over

all possible degrees k and then collecting terms involving degree k. Define ∆
(k)
1 (t) :=

1
n

∑

i∈Sk
βXSI,i(XSS,i − XSI,i)

2 − βαSpkθ
kCkm(t, αSθ∂ψ(θ)). Our task boils down to

showing that supt∈T |∑k∆
(k)
1 (t)| P−−→ 0 as n→ ∞. We achieve this in two steps. First

we show that the tails of
∑

k∆
(k)
1 (t) are negligible. Second, we show that each term

∆
(k)
1 (t) converges to zero uniformly in probability for a fixed k ∈ N.

(Step I) Tails are negligible Let us begin by showing that as N → ∞,

sup
n∈N

sup
t∈T

|
∑

k>N

∆
(k)
1 (t)| P−−→ 0.

Observe that, for sufficiently large n,

| 1
n

∑

k>N

∑

i∈Sk

βXSI,i(XSS,i −XSI,i)
2| ≤ β

n

∑

k>N

k3XSk
≤ 2β

∑

k>N

k3pk, (4.8)

because n−1XSk
≤ 2pk for sufficiently large n in the light of Remark 1. Following

Remark 1 and the bound on Ckm from Equation (4.7), we get

|
∑

k>N

βαSpkθ
kCkm(t, αSθ∂ψ(θ))| ≤ βL

∑

k>N

k3pk. (4.9)

Therefore, we get supn∈N supt∈T |
∑

k>N ∆
(k)
1 (t)| P−−→ 0, combining inequalities (4.8) and

(4.9) in view of A3.
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(Step II) Uniform convergence in probability for a fixed k In addition to

Step I, it is sufficient to show supt∈T |∆(k)
1 (t)| P−−→ 0 for an arbitrarily fixed k ∈ N to

justify supt∈T |∆1(t)|
P−−→ 0. Observe that

|∆(k)
1 (t)| = | 1

n

∑

i∈Sk

βXSI,i(XSS,i −XSI,i)
2 − βαSpkθ

kCkm(t, αSθ∂ψ(θ))|

≤ βn−1|
∑

i∈Sk

XSI,i(XSS,i −XSI,i)
2 −XSk

Ckh(t)| (4.10)

+ βn−1XSk
|Ckh(t)− Ckm(t, n−1XS •)| (4.11)

+ β|n−1XSk
Ckm(t, n−1XS •)− αSpkθ

kCkm(t, n−1XS •)| (4.12)

+ βαSpkθ
k|Ckm(t, n−1XS •)− Ckm(t, αSθ∂ψ(θ))|. (4.13)

We show that each of the above summands converges uniformly in probability to zero.

Define the process ∆
(k)
1,1(t) :=

∑

i∈Sk
XSI,i(XSS,i−XSI,i)

2−XSk
Ckh(t). Observe that

∆
(k)
1,1(t) is a zero-mean, piecewise constant, càdlàg martingale with paths in D. The

jumps of ∆
(k)
1,1(t) take place when a vertex of degree-k gets infected. The quadratic

variation of ∆
(k)
1,1(t) is therefore the sum of its squared jumps

[

∆
(k)
1,1

]

(t) =
∑

s≤t

(δ∆
(k)
1,1(s))

2 ≤ k6n,

because the number of jumps can not exceed n. Therefore, by Doob’s martingale

inequality we get supt∈T |n−1∆
(k)
1,1(t)|

P−−→ 0, since E

[[

∆
(k)
1,1

]

(t)
]

= E

[

(∆
(k)
1,1(t))

2
]

=

O(n). That is, the quantity in (4.10) converges uniformly in probability to zero.

For the term in (4.11), take into account n−1XSk
≤ 1 and see that

sup
t∈T

|Ckh(t)− Ckm(t, n−1XS •)| ≤
c1k

3

XS •(T )− 2
,

for some c1 > 0, because XS • is non-increasing on T0. Therefore, by A1, the quantity

in (4.11) converges to zero uniformly in probability.

Now observe that

sup
t∈T

|n−1XSk
Ckm(t, n−1XS •)− αSpkθ

kCkm(t, n−1XS •)|

≤ Lk3 sup
t∈T

|n−1XSk
− αSpkθ

k| P−−→ 0,

by virtue of the bound on Ckm in Equation (4.7) and [31, Lemma 1(a)]. Therefore, the

term in (4.12) also converges to zero uniformly in probability.
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Finally, by virtue of Lipschitz continuity of Ckm(t, z) in z, we get

sup
t∈T

|Ckm(t, n−1XS •)− Ckm(t, αSθ∂ψ(θ))| ≤ c2 sup
t∈T

|n−1XS • − αSθ∂ψ(θ)|,

for some c2 > 0. Because supt∈T |n−1XS • − αSθ∂ψ(θ)| P−−→ 0 as shown in [31], we

conclude that the term in (4.13) converges to zero uniformly in probability.

Having shown the terms in (4.10), (4.11), (4.12) and (4.13) converge to zero uni-

formly in probability, we establish that supt∈T |∆(k)
1 (t)| P−−→ 0 uniformly in probability

for any fixed k ∈ N. Finally, by virtue of Step I and Step II, we obtain supt∈T |∆1(t)| P−−→ 0.

Convergence of ∆2(t) Note that vSI(n
−1X, θ) is Lipschitz continuous on its domain

that we can take as (0, 1]× [ξ, ∂ψ(1)]2 × [ξ, 1], by Remark 1. Therefore,

sup
t∈T

|vSI(n−1X, θ)− vSI(x, ϑ)| ≤ c3 sup
t∈T

∥

∥(n−1X, θ)− (x, ϑ)
∥

∥ ,

for some Lipschitz constant c3 > 0. Since (x, ϑ) is the solution of Equation (3.8),

with initial condition x(0) = α and ϑ(0) = 1, we get by virtue of Theorem 1,

supt∈T |∆2(t)| P−−→ 0.

Final Conclusion Since supt∈T |∆1(t)| P−−→ 0 and supt∈T |∆2(t)| P−−→ 0, we conclude

supt∈T |∆(t)| P−−→ 0, which is a sufficient condition for

⟨MSI⟩ (t) P−−→VSI(t) =

∫ t

0

vSI(x(s), ϑ(s)) ds.

□

We remark that the various moment estimates used in the proof above (and else-

where in the paper) ignore the contributions of self-loops and parallel edges. Their

contributions are asymptotically negligible as discussed earlier in Section 2.2. Also,

note that we may need to add a parity edge to the last vertex if the sum of the drawn

degrees is not even. This is relevant for the calculations in Steps I and II. However,

as discussed earlier in Section 2.2, the contribution due to this minor adjustment is

negligible and hence, is not shown explicitly.

4.2. Asymptotic Rarefaction of Jumps

Recall that M ϵ := (M ϵ
S,M

ϵ
SI,M

ϵ
SS) is the vector of square integrable martingales

containing all jumps of components of M larger than ϵ in absolute value, for ϵ > 0,
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i.e., Mid(t)−M ϵ
id(t) is a local square integrable martingale and |δMid(t)−δM ϵ

id(t)| ≤ ϵ

for all id ∈ {S, SI, SS} and t ∈ T. We wish to show ⟨M ϵ
id⟩ (t)

P−−→ 0 for all id ∈ {S, SI, SS}
and t ∈ T, as n→ ∞. We would like to point out that this condition is essentially the

strong Asymptotic Rarefaction of Jumps Condition of the second type (strong ARJ(2))

as described in [45, 1]. Intuitively this ensures that the sample paths of the martingale

M(t) are close to continuous in the limit. Before proceeding further, we offer the

following remark.

Lemma 3. For the configuration model graph G(ψ, n) along with A3, the following

holds true:

n−
1
2 dmax

a.s.−−−→ 0, (4.14)

where dmax is the maximum degree observed in a realization of G(ψ, n).

Proof of Lemma 3. The result follows by a direct application of the result in [8,

Theorem 5.2] along with A3.

□

Let us now compute the predictable quadratic variation of M ϵ and establish its

asymptotic limit.

Lemma 4. Consider the stochastic SI model described in Section 2.2. Assume A1,

A2 and A3 for a configuration model graph G(ψ, n). Consider the vector M ϵ of square

integrable martingales containing all jumps of components of M(t) larger than ϵ in

absolute value for ϵ > 0, as defined in Equation (4.2). Then, as n → ∞, for all

id ∈ {S, SI, SS}, for each t ∈ T,

⟨M ϵ
id⟩ (t)

P−−→ 0. (4.15)

Proof of Lemma 4. We proceed in the following two steps.

Computation of ⟨M ϵ
S⟩ Note that the original process M ′

S makes only unit jumps.

Then, for arbitrary ϵ > 0,

⟨M ϵ
S⟩ (t) ≤

∫ t

0

E

[

(δM ϵ
S(s))

21

(

|δM ′
S(s)| > n1/2ϵ

)

| Fs−
]

ds = 0∀n > 1

ϵ2

=⇒ ⟨M ϵ
S⟩ (t)

P−−→ 0 for all 0 < t ≤ T and for all ϵ > 0 as n→ ∞.
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Computation of ⟨M ϵ
SI⟩ and ⟨M ϵ

SS⟩ Note that both M ′
SI and M ′

SS jump only if

infection of a vertex occurs. This in particular implies that the jump sizes of M ′
SI and

M ′
SS are bounded above by the degree of the vertex getting infected. Therefore, they

are also bounded above by the maximum degree dmax. For an arbitrary ϵ > 0, and for

id ∈ {SI, SS},

⟨M ϵ
id⟩ (t) ≤

∫ t

0

E

[

(δM ϵ
id(s))

21

(

|n−1/2dmax| > ϵ
)

| Fs−
]

ds

≤ tn−1d2max1

(

|n−1/2dmax| > ϵ
)

.

By Lemma 3, along with the continuous mapping theorem and the fact that almost sure

convergence implies convergence in probability, we can claim that the right-hand side

of the above inequality tn−1d2max1
(

|n−1/2dmax| > ϵ
) P−−→ 0 for each 0 < t ≤ T and ϵ > 0.

Therefore, for all h > 0, P (⟨M ϵ
id⟩ (t) > h) ≤ P

(

tn−1d2max1
(

|n−1/2dmax| > ϵ
)

> h
)

→ 0

as n → ∞, establishing ⟨M ϵ
id⟩ (t)

P−−→ 0 as n → ∞ for all 0 < t ≤ T and ϵ > 0. This

completes the proof. □

4.3. Statement and Proof of the FCLT

Having shown the convergence of all relevant quadratic variation processes, we are

now ready to present the functional central limit theorem. First we state that the

function V found in Lemma 2 is a positive semidefinite (psd) matrix-valued function

on T, with positive semidefinite increments. Set V (0) := 0, the 3×3 null matrix, so that

we can treat V (t) as a psd matrix-valued function on the entirety of T0. Let us denote

the collection of all such psd 3×3 matrix-valued functions on T0 that has psd increments

and that is 0 at time zero by V. Given such a matrix-valued function V ∈ V, let G

be a continuous Gaussian vector martingale such that ⟨G⟩ = [G] = V . Such a process

always exists [1, Chapter II, p. 83]. In particular, G(t) − G(s) ∼ N(0, V (t) − V (s)),

the multivariate normal distribution for 0 ≤ s ≤ t.

Theorem 2. (Functional Central Limit Theorem.) Consider the stochastic SI model

described in Section 2.2. Assume A1, A2 and A3 for a configuration model graph

G(ψ, n). Consider, for t ∈ T0, the ŕuctuation process

Y (t) :=
√
n(n−1X(t)− x(t)). (4.16)
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Assume limn→∞ Y (0) = U(0), for some nonrandom U(0). Then, there exists a matrix-

valued function V ∈ V on T0 such that

Y
D

=⇒ U in D(3) as n→ ∞, (4.17)

where U is a continuous Gaussian vector semimartingale satisfying

U(t) = U(0) +G(t) +

∫ t

0

∇Hx (x(s), ϑ(s))U(s) ds, (4.18)

where ∇Hx (x, ϑ) := ((∂jHi (x, ϑ))) for i, j ∈ {S, SI, SS} and G is a continuous Gaus-

sian vector martingale such that ⟨G⟩ = [G] = V , provided V remains finite on the

entirety of T0 and ∇Hx (x(s), ϑ(s)) is continuous.

Proof of Theorem 2. We first prove an FCLT for the martingale process M defined

in Equation (4.1). We wish to apply Rebolledo’s functional central limit theorem for

local martingales on M . A version of the Rebolledo theorem adequate for our purpose

is provided in Appendix C. Note that, in the light of Doob-Meyer decomposition given

in Equation (2.2), M is indeed a pure jump, zero-mean, locally square integrable,

càdlàg martingale. After having established an FCLT for the martingale process M ,

we prove convergence of the ŕuctuation process Y . It suffices to carry out the following

three steps.

(Step I) Deterministic Limit of ⟨M⟩ Let (x, ϑ) be the solution of Equation (3.8)

with initial condition x(0) = α and ϑ(0) = 1, as given in Theorem 1. Then, by virtue

of Lemma 2, we conclude, for each t ∈ T, ⟨M⟩ (t) P−−→V (t), where the matrix-valued

function V is defined in Equation (4.5), and we set V (0) := 0, the 3× 3 null matrix.

(Step II) Asymptotic Rarefaction of Jumps Let ϵ > 0 be arbitrary. Consider

the vector M ϵ of square integrable martingales containing all jumps of components of

M(t) larger than ϵ in absolute value for ϵ > 0, as defined in Equation (4.2). Then, by

means of Lemma 4, we conclude ⟨M ϵ
id⟩ (t)

P−−→ 0, for each t ∈ T and id ∈ {S, SI, SS}.
Now let G be the continuous Gaussian vector martingale such that ⟨G⟩ = [G] =

V . In the light of Rebolledo’s theorem for locally square integrable martingales (see

Appendix C and also, [1, Chapter II, p. 83]), Step I and Step II are sufficient to establish

(M(t1),M(t2), . . . ,M(tl))
D

=⇒ (G(t1), G(t2), . . . , G(tl)) as n→ ∞
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for all t1, t2, . . . , tl ∈ T. Furthermore, since T is dense in T0, we conclude M
D

=⇒ G in

D(3) as n → ∞, and ⟨M⟩ and [M ] converge uniformly on compact subsets of T0, in

probability, to V .

(Step III) Convergence of the Fluctuation Process In keeping with the Doobś

Meyer decomposition given in Equation (2.2),

Y (t) = Y (0) +M(t) +

∫ t

0

√
n(

1

n
FX

(

X̃(s)
)

−Hx (x(s), ϑ(s))) ds,

we expect the following limit process

U(t) = U(0) +G(t) +

∫ t

0

∇Hx (x(s), ϑ(s))U(s) ds. (4.19)

Indeed, define

∆(t) :=

∫ t

0

√
n

(

1

n
FX

(

X̃(s)
)

−Hx (x(s), ϑ(s))−
1√
n
∇Hx (x(s), ϑ(s)) Y (s)

)

ds

=

∫ t

0

√
n

(

1

n
FX

(

X̃(s)
)

−Hx

(

1

n
X(s), θ(s)

)

+Hx

(

1

n
X(s), θ(s)

)

−Hx (x(s), ϑ(s))−
1√
n
∇Hx (x(s), ϑ(s)) Y (s)

)

ds.

Note that the strong law of large numbers in Theorem 1 establishes uniform convergence

(in probability) of the operators n−1
FX

(

X̃(s)
)

and Hx

(

1
nX(s), θ(s)

)

, and the latter

operator is Lipschitz continuous on its domain (see [31]). In the light of Theorem 1 and

A3, it follows from the Lipschitz continuity of various multinomial compensators Ckm in-

troduced in the proof of Lemma 2 that limn→∞

√
n
(

1
nFX

(

X̃(s)
)

−Hx

(

1
nX(s), θ(s)

)

)

=

0. Moreover, we have just shown M
D

=⇒ G in D(3). If V remains finite on the entirety

of T0, the matrix-valued function ∇Hx (x(s), ϑ(s)) is continuous, and limn→∞ Y (0) =

U(0), for some nonrandom U(0), then we have supt∈T0
|∆(t)| P−−→ 0 following Theorem 1,

and by application of the continuous mapping theorem, we conclude

Y
D

=⇒ U in D(3) as n→ ∞,

where the Gaussian semimartingale U satisfies Equation (4.19) with the Gaussian

martingale G being such that ⟨G⟩ = [G] = V . This completes the proof. □
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5. Applications

Here, we consider some applications of our result. As we discuss these applications,

we shall also present some numerical and simulation results that are intended not only

to provide insights into the dynamics of the process, but also to serve as a verification

of our results.

5.1. Percolation

There is a connection between the stochastic SI model and the percolation theory

known from statistical physics and developed to study the process of liquid filtering

(“percolatingž) through a porous medium. Classical equilibrium-mechanics studies

its stationary behaviour and premises upon the axiom that the underlying quantum-

mechanical laws are designed so as to maximize the entropy. Stationary distribution

of such a stochastic system is given by the Boltzmann ensemble. This classical treat-

ment of the subject, however, does not explain the non-equilibrium behaviour of the

dynamical system, i.e., when it is still in a transient phase. Consequently, the non-

equilibrium behaviour of percolation has aroused much interest in recent times. Some

notable contributions include [29, 5]. The standard treatment of percolation, both

equilibrium and non-equilibrium, has been extended in another important direction

concerning the structure of the porous medium. Traditionally it has been studied

on lattices and grids. Of late, however, percolation on random graphs has also been

considered ([9, 19, 30]). Continuing in this direction, we shall treat (non-equilibrium)

percolation as a dynamical process on a configuration model random graph and study

its behaviour over a finite time interval.

One of the key quantities of interest in the study of non-equilibrium percolation

is the time evolution of the number of wetted sites (also called “activež vertices in

the literature). The correspondence between our stochastic SI model as described in

Section 2.2 and non-equilibrium percolation is visible if we treat the infected vertices

as the ones wetted during the process of percolation. Accordingly, in this context,

we give the process X(t) appropriate new interpretation. The process XS(t), for

example, captures the number of unwetted sites until time t, and the process XSI,

the number of channels (bonds) through which the liquid can percolate. In Figure 1,
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the percolated component up to a given time (the wetted part of the graph) is shown in

red. Having made the correspondence precise, we can apply Theorem 2 to approximate

these quantities in the large graph limit.

Numerical Illustration In Figure 3, we show some simulation results to check the

accuracy of our scaling limit. We compare the expected sample paths of XS and

XSI provided by Theorems 1 and 2, with estimates obtained using simulations of the

Gillespie’s algorithm on a CM graph. In particular, we considered a Poisson degree

distribution in Figure 3a and a 3-regular random graph in Figure 3b (obtained by the

CM construction with degree distribution pk = 1 (k = 3)). In Figure 4, we compare

the simulated sample paths of the true Gillespie dynamics and that corresponding to

the diffusion approximation for Negative Binomial degree distribution. Figures 3a, 3b

and 4 show convincing accuracy of the diffusion approximation. In Figure 5, we show

the time evolution of the correlation coefficient between the jumps of XS and XSI, and

also the expected sample path coupled with 95%-confidence ellipses in the space of XS

and XSI. The orientation of the confidence ellipses is calculated as the angle of the

eigenvector corresponding to the largest eigenvalue of the covariance matrix towards the

x-axis. To be specific: the orientation is given by ω := arctan e2/e1, where e := (e1, e2)

is the eigenvector corresponding to the largest eigenvalue of the covariance matrix. The

lengths of the major and the minor axes are determined using the eigenvalues and by

looking up the probability table of chi squared distribution (recall that squared normal

variates follow a chi squared distribution). The Matlab script used to draw the ellipses

is based on a script provided by [46].

The existence of a giant component and the proportion of vertices on the giant

component play an important role in percolation theory, especially from an equilibrium

point of view in statistical mechanics. The case of a degree distribution {pk}k∈N0

such that
∑

k∈N0
k2pk = 2

∑

k∈N0
kpk and p1 = 0 (or, equivalently p0 + p2 = 1) is a

curious one in that quite different behaviours of the giant component are observable

for such a degree distribution. Please refer to [33] for examples of such behaviours.

Barring this exceptional case, in the light of A3, the condition for existence of a giant

component is satisfied (see [40]) for our stochastic SI model in the traditional sense. To

be precise, setting αS = 1 and taking asymptotic limit in time, one finds the fraction
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(a) Simulation setting: Poisson distribution with λ = 5, αS = 0.9, and β = 0.5.

(b) Simulation setting: r-regular random graph with r = 3, αS = 0.9, and β = 0.5.

Figure 3: Comparison of our diffusion approximation with simulation results obtained

by Gillespie’s algorithm.
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Figure 4: Comparison of simulated sample paths. (Left) Sample paths obtained

through Gillespie’s algorithm. (Right) Sample paths obtained through diffusion

approximation. Simulation setting: n = 1000, Negative Binomial distribution with

r = 2, p = 3/4.

of vertices on the giant component to be 1 − ψ(θ∞), where θ∞ > 0 is the solution

of ∂ψ(1)θ∞ = ∂ψ(θ∞) (see [32, 41]). However, as mentioned earlier, we take a non-

equilibrium point of view and concern ourselves with the time evolution of the fraction

of vertices on the infected part of the graph, the “percolated componentž . As a by-

product of the scaling limits in Theorem 1 and Theorem 2, the variable θ defined in

Equation (2.5) gives us a tool to approximate the proportion of susceptible individuals

in the population (and hence, the proportion of infected vertices as well). We expect

the fraction of infected individuals to converge in probability to 1−αSψ(ϑ) as n→ ∞,

ϑ being the scaling limit of θ. A fixed time interval T0 enables us to look for critical

values in the space of the infection rate β > 0. This allows us to decide whether

the system “percolatesž in the sense that the fraction of vertices on the percolated
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Figure 5: The figures on the left depict the time evolution of the correlation coefficient

between jumps of XS and XSI as estimated from numerical simulations (via Gillespie’s

algorithm) pitted against theoretical values computed from the functional central limit

theorem (Theorem 2). The figures on the right show the expected sample path in the

space of XS and XSI. The two lines correspond to numerical simulation and theoretical

values. The dotted ellipses are the 95%-confidence ellipses based on estimates of

covariances between XS and XSI from the diffusion approximation created using a

Matlab script provided by [46]. The arrows indicate the time direction. (Above)

Poisson distribution with mean 5. (Below) r-regular random graph with r = 3. In

both cases, n = 1000, αS = 0.9, and β = 0.5.

component achieves a value greater than a pre-specified one (usually close to unity)

by time T . Using different colours in Figure 6, we depict the fraction of vertices on
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Figure 6: Comparison of percolation profiles of three degree distributions having the

same mean. (Left) Poisson distribution with mean 6. (Middle) A heterogeneous

population with degree distribution pk := 0.7 × 1 (k = 1) + 0.2 × 1 (k = 4) + 0.1 ×
1 (k = 45). Such a degree distribution represents a population segregated into three

classes. Weak vertices constitute the biggest class, followed by medium strength

vertices and then strong vertices. (Right) Negative Binomial distribution with

parameters r = 2, p = 3/4. The figures show time evolution of the fraction of vertices

on the percolated component for varying infection rates β. We assume the initial

fraction of infected vertices is 0.1 in all three cases. The yellow region in each of

the plots corresponds to the terminal state. Questions such as whether the system

with an infection rate β “percolatesž are immediately settled by drawing a horizontal

line and checking whether the lines passes through the colour corresponding to a pre-

specified level. It is worth noting that the limiting percentages of vertices in the giant

components eventually getting infected are also quite different for the three degree

distributions. While it is around 0.91 (approximately) for the Negative Binomial

distribution and the hand-picked degree distribution in the middle, the percentage

is relatively high for the Poisson distribution (around 0.99 approximately).

the percolated component as a function of both time and the infection rate β (let us

call such a figure a percolation profile) for three degree distributions with the same

mean. Questions such as whether the system with an infection rate β “percolatesž are

immediately settled by drawing a horizontal line and checking whether the line passes

through the colour corresponding to the pre-specified level. See Figure 7 for another

comparative view, highlighting the need to take into account higher moments of the

degree distribution.
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Figure 7: (Left) Comparison of the time evolution of the fraction of vertices on the

percolated component for different degree distributions with the same mean. The 2-

degree distribution in the plot refers to the degree distribution pk = 0.5× 1 (k = 1) +

0.5 × 1 (k = 9), where none of the vertices have degree 5 yet the average degree is 5.

This presents a pathological case and highlights the need to take into account higher

moments of the degree distribution. (Right) Comparison of discounted cost against

increasing average degree for different degree distributions. With increasing average

degree the graphs lose sparsity and facilitate spread of computer virus. Therefore, they

incur higher cost. When the average degree is very small, regular random graphs seem

favourable compared to random graphs with negative binomial distributed degrees.

The costs are computed with n = 1000, γ = 1.

5.2. The strange case of Poisson-type degree distributions and the exactness

of the pair approximation

We consider a particular class of degree distributions called “Poisson-typež (PT) by

[31]. A degree distribution with PGF ψ is called PT if κ(ϑ), defined in Equation (3.4),

is a constant, i.e., κ(ϑ) = κ for some κ ∈ R (or equivalently, ∂ψ(ϑ) = ∂ψ(1) (ψ(ϑ))
κ
).

As a consequence, the operators defined in Equation (3.3) are also constants, and

satisfy

D
rψ ◦ ϑ =

r−1
∏

i=1

(iκ− i+ 1) = ((r − 1)κ− r + 2) Dr−1ψ ◦ ϑ,

with D
0ψ ◦ ϑ = 1. The PT class includes Poisson (κ = 1, irrespective of the mean

of the distribution), degenerate distribution (r-regular random graphs, κ = r−1
r < 1),
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binomial (κ = N−1
N < 1, independent of p for Bin(N, p)), negative binomial (κ = r+1

r >

1, independent of p for NB(r, p)) degree distributions. The PT class is particularly

peculiar in that it totally decouples the vector x = (xS, xSI, xSS), and the matrix-valued

function V from the auxiliary variable ϑ so that an autonomous system of ODEs can

be obtained for x and V , rendering ϑ redundant. This allows for great simplification

in the limiting equations. Define G (x) := (GS (x) ,GSI (x) ,GSS (x)) as

GS (x) := −βxSI,

GSI (x) := βκ
xSI
xS

(xSS − xSI)− βxSI,

GSS (x) := −2βκ
xSIxSS
xS

.

(5.1)

Plugging D
2ψ ◦ ϑ = κ, and D

3ψ ◦ ϑ = κ(2κ − 1) in Equation (4.4), the matrix-valued

function V is entirely determined by x. The following is immediate.

Corollary 1. (Scaling limit under PT distributions.) Assume A1, A2, and A3 for a

configuration model graph G(ψ, n) with ∂ψ(ϑ) = ∂ψ(1)(ψ(ϑ))κ for some κ ∈ R. Then,

the following law of large numbers holds

sup
0<t≤T

∥

∥n−1X(t)− x(t)
∥

∥

P−−→ 0,

where x is the solution of x(t) = x(0) +
∫ t

0
G (x(s)) ds with x(0) = α. Moreover,

the ŕuctuation process Y defined in Equation (4.16) converges weakly to a continuous

Gaussian vector semimartingale U satisfying

U(t) = U(0) +G(t) +

∫ t

0

∇G (x(s))U(s) ds,

where G is a Gaussian vector martingale such that ⟨G⟩ = [G] = V .

In fact, one can obtain a smaller system by expressing xSI and xSS explicitly as a

function of xS (see [31]). This is remarkable because, under the PT class, the graph

structure impacts the scaling limits only through two summary statistics of ψ, namely

the mean ∂ψ(1) and κ = D
2ψ(1). Recall that κ, as defined in Equation 3.4, is the

limiting ratio of the average excess degree of a susceptible vertex chosen at random

as a neighbour of an infected vertex, to the average degree of a susceptible vertex.

Therefore it is, in general, dependent on time through ϑ. Under the PT class, this ratio

remains constant throughout the entire course of time T0. Moreover, the mean ∂ψ(1)
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only impacts the initial condition x(0) = α through Equation (3.2). The dynamics of

the limiting process are then dictated by the constant κ under the PT class.

Now we revisit the correlation equations approach of [44] from ecology literature

to study the dynamics of counts of singles, pairs, triples, and quadruples of the form

A,AB,ABC,ABCD, where A,B,C,D ∈ {S, I}. Following [44], we use the notation

[·] to denote the count. In this mean-field approach, the dynamics of singles are

described by that of pairs; dynamics of pairs, by triples, and so on. In this context, pair

approximation refers to approximating the count of triples by pairs in the following

way

[ABC] ≈ κ
[AB] [BC]

[B]
,

and closing the system at the level of pairs (also known as pair closure). In order to

draw an analogy, we divide the counts by n, and use the same notation for the scaled

counts. We also set the same initial condition ([S] , [SI] , [SS]) = α at t = 0. The pair

approximation then yields a system of ODEs for ([S] , [SI] , [SS]) that exactly matches

the limiting ODEs for n−1X, i.e.,

d

dt
([S] , [SI] , [SS]) = G (([S] , [SI] , [SS])) . (5.2)

Therefore, under the PT class, the pair approximation is exact in the sense that

it correctly estimates the limiting means of various counts. By virtue of Corollary 1,

our FCLT further enables it to correctly estimate all other higher limiting moments,

because V is now entirely determined by the solution of Equation (5.2). As the PT class

is quite big, our FCLT thus greatly enhances the usefulness of the pair approximation.

5.3. Spread of Computer Viruses

Epidemic models have been used in the context of spread of computer virus for

some years now. The correspondence between our model and the application area

under consideration is apparent without requiring much change in nomenclature. Early

works in this direction did not take into account the inherent graph structure and

assumed “homogeneous mixingž in some sense. Recent works, however, duly studied

it on more realistic computer networks, which are often modelled as random graphs,
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without the assumption of “homogeneous mixingž. Lelarge, for example, based much

of his work on classical Erdős Rényi random graphs and configuration models (see,

e.g., [36]). Interested readers are referred to [35, 36, 49] for an overview of relevant

literature. Applying our results, we can approximate the number of virus-affected

computers over time and the edges of different types. Additionally, one might be

interested in estimating some “costž involving the count variables in a linear or non-

linear fashion. For instance, if the cost function is polynomial in the count variables,

the mixed moments of various orders can be approximated by means of Theorem 2.

To illustrate the concept using a simple example, we assume an exponentiated form

for the incurred cost to emphasize the severity of a computer being virus-affected. We

can then compute time-discounted expected incurred cost and study how it behaves

with decreasing sparsity of the underlying graph. To this end, define

I(t) := exp
(

cXI(t)
)

,

Cψ := E

[∫

T0

exp
(

−γt
)

I(t) dt

]

=

∫

T0

exp
(

−γt
)

E [I(t)] dt,
(5.3)

where c > 0 and γ > 0 are constants. In Figure 7, we plot the discounted cost Cψ

against an increasing average degree of the underlying graph, engendering decreasing

sparsity. When the average degree is very small, regular random graphs seem favourable

compared to random graphs with negative binomial distributed degrees.

6. Conclusion and Future Work

We conclude the paper with a brief literature review and a short discussion af-

terwards. In summary, we study the susceptible-infected (SI) model by formulating

a stochastic process on configuration model random graphs. Even though this is a

simple infection model, the Markovian process on the entirety of the random graph

suffers state space explosion as n grows to infinity. Analysis of the non-Markovian

aggregate process also becomes complicated. Therefore, scaling limits retaining key

features of the network are generally of interest.

6.1. Related Works

In the recent scientific literature one comes across a host of dynamical processes

arising from epidemiology ([18, 42, 27]), statistical physics ([17]), and computer science
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([36, 35, 49]). These dynamical processes are often similar and hence, lend themselves

to application across disciplines ([43]). In pursuit of scaling limits, much of the

research has been inspired by the mean-field approach from statistical physics. For

instance, the authors in [43] study epidemic dynamics on scale-free networks of [4].

The majority of work in this direction aims to obtain limiting ordinary differential

equations (ODEs) for the proportions of individuals in different compartments of

the population. Notwithstanding the simplicity of these methods, the scaling limits

presented are approximate and lack mathematical rigour by design. See [23, Chapter

1] for a critique. The standard mean-field method was further improved by use of pair-

approximation in [26]. Several other improvements yielding less approximate results

have been proposed afterwards. A detailed account is presented in [10]. Some of

these approximate results have been followed up by probabilists and improved upon

([23, 24, 20]).

A related line of research concerns the first-passage percolation (FPP) on random

graphs ([9, 19, 30, 12, 11, 13]). Given a graph G = (V,E) with n vertices, we assign

random weights We to edges e ∈ E. We assume the weights are independent and

identically distributed. For two vertices i, j ∈ V , the passage time from i to j is

defined as

cn(i, j) := min
p(i,j)

∑

e∈p(i,j)

We,

where the minimum is taken over all paths p(i, j) from the vertex i to the vertex j. By

convention, cn(i, i) := 0, and cn(i, j) := ∞ if there is no path from the vertex i to the

vertex j. For two typical vertices i and j, chosen uniformly at random, one looks for

a sequence of reals c̃n such that

(cn − c̃n)
D

=⇒ Q,

for some limiting random variable Q with usually continuous support. Sometimes

scaling limit of the number of edges on the shortest path between two typical vertices

is also studied along with the passage times. That is, if hn denotes the number of edges

on the shortest path between two typical vertices (chosen uniformly at random), we

seek a sequence h̃n of scaling constants such that
(

hn − h̃n

)

D
=⇒ Q̃,
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for some limiting random variable Q̃. The random variable hn is often called the

typical hop-count. One of the important questions in the study of FPP is regarding

the growth rate of the sequence of the scaling constants c̃n, and h̃n, e.g., whether

they are of order log(n). Universality results are also important in the study of FPPs

and form a substantial body of literature. While the hop-count hn measures typical

distances in the random graph, the passage time cn can be interpreted as the typical

(minimum) amount of time required for an infectious disease to transmit from an

infected vertex to a susceptible vertex. As a result, limit theorems for the passage

time cn provide a complementary view to our FCLT for the SI process on CM random

graphs as demonstrated by the numerical results in Section 5.

In an epidemiological context, limit theorems for a discrete-time random graph epi-

demic model were derived in [2] under rather restrictive assumptions such as finiteness

of a (4 + δ)-th moment of the degree distribution, for some δ > 0. The work of Erik

Volz in [48] presented scaling limits for susceptible-infected-removed (SIR) model on

random graphs in the form of ODEs. The authors in [21] later proved Volz’s results

rigorously by summarising the epidemic process on configuration model random graphs

into some measure-valued equations. Several similar laws of large numbers-type scaling

limits under varying sets of technical assumptions surfaced afterwards. For example,

uniformly bounded degrees were assumed in [15, 6]. The authors in [32] assume degree

of a randomly chosen susceptible vertex to be uniformly integrable and the maximum

degree of initially infected vertices to be o(n). The work in [3] studies a variant of the

standard compartmental SIR with notions of local (within households, for example)

and global contacts, and uses a branching process approximation to derive threshold

behaviour and final outcome in the event of a global epidemic. Recently a law of large

numbers for the stochastic SIR process on a multilayer configuration model was derived

in [31] assuming finiteness of the second moment of the underlying degree distribution.

Although a number of scaling limits in the form of laws of large numbers have

surfaced over the years, appropriate diffusion approximations are not yet fully explored.

Our FCLT attempts to complement the laws of large numbers already available in the

literature. In particular, our FCLT lends itself as an approximating tool in applications

where laws of large numbers are inadequate, e.g., in situations involving higher order

moments.
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In our present work, we have disregarded “recoveryž of the infected vertices. The

reason behind this exclusion is our inability to evaluate the neighbourhood distribution

of an infected vertex in the presence of spontaneous recovery of its neighbours. One dif-

ficulty is that, unlike the susceptible vertices (of a given degree) that are untouched by

the process of infection and hence, receive identically distributed neighbourhoods upon

uniformly-at-random matching of half-edges, the infected vertices are not identically

distributed because they already possess partially formed neighbourhoods consisting of

infected and recovered neighbours. This corresponds to the part of the graph that has

already been revealed up to a given time. Recall the construction of the configuration

model random graph where the graph is dynamically revealed as infection spreads (see

Section 4). As a result, the hypergeometric argument as mentioned in Lemma 1 seems

inadequate. For the purpose of obtaining a law of large numbers, we can circumvent

this difficulty by suitably bounding the jump sizes of different martingales arising in

the proof by the degrees of the vertices concerned. Therefore, we actually do not need

the exact neighbourhood distribution of an infected individual for deriving laws of large

numbers. However, to establish an FCLT, one needs to find the limit of the quadratic

covariation process that would involve the task of approximating quantities such as
∑

k∈N0

∑

i∈Ik
X2

IS,i, where Ik is the collection of degree-k vertices that are infected and

XIS,i is the number of susceptible neighbours of an infected individual of degree k. We

suspect an elaborate bookkeeping of the infection spreading process would be necessary

to approximate such quantities. We have not been able to find a simple workaround

so far and intend to pursue this problem in the near future.

Appendix A. Hypergeometric Moments

Here, we compute various (conditional) moments that are useful for our derivations.

Let us use the shorthand notation

ς(nSI;XSI, XS •, k) := P (XSI,i = nSI, XSS,i = k − nSI | Ft) ,

conditional on the process history as given in Lemma 1. The following moments are

then computed keeping Lemma 1 in mind.
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In a straightforward fashion, we get for i ∈ Sk,

E [(XSI,i)3 | Ft] =
∑

nSI

(nSI)3

(

XSI

nSI

)(

XS •−XSI

k−nSI

)

(

XS •

k

)

=
∑

nSI

(nSI)3

(XSI)3
(nSI)3

(

XSI−3
nSI−3

)(

(XS •−3)−(XSI−3)
(k−3)−(nSI−3)

)

(XS •)3
(k)3

(

XS •−3
k−3

)

=
(k)3(XSI)3
(XS •)3

∑

nSI

ς(nSI;XSI − 3, XS • − 3, k − 3)

=
(k)3(XSI)3
(XS •)3

.

Similarly, we can derive for i ∈ Sk,

E [(XSI,i)2 | Ft] =
∑

nSI

(nSI)2

(

XSI

nSI

)(

XS •−XSI

k−nSI

)

(

XS •(t)
k

) =
(k)2(XSI)2
(XS •)2

,

whence we get

E
[

X3
SI,i | Ft

]

= E [(XSI,i)3 | Ft] + 3E [(XSI,i)2 | Ft] + E [XSI,i | Ft]

=
(k)3(XSI)3
(XS •)3

+ 3
(k)2(XSI)2
(XS •)2

+ k
XSI

XS •

.

Proceeding in a similar fashion, for i ∈ Sk,

E [XSI,i(XSS,i)2 | Ft] =
∑

0≤nSI+nSS=k

nSI(nSS)2

(

XSI

nSI

)(

XS •−XSI

nSS

)

(

XS •

k

)

=
∑

0≤nSI+nSS=k

nSI(nSS)2

XSI

nSI

(

XSI−1
nSI−1

) (XSS)2
(nSS)2

(

XS •−XSI−2
k−nSI−2

)

(XS •)3
(k)3

(

XS •−3
k−3

)

=
(k)3XSI(XSS)2

(XS •)3

∑

nSI

ς(nSI, ;XSI − 1, XS • − 3, k − 3)

=
(k)3XSI(XSS)2

(XS •)3
.

Similarly, for i ∈ Sk,

E [(XSI,i)2XSS,i | Ft] =
(k)3(XSI)2XSS

(XS •)3
,

E [XSI,iXSS,i | Ft] =
(k)2XSIXSS

(XS •)2
.

Appendix B. Interpretation of the D operator

Here, we provide an intuitive explanation for the D operator defined in Equa-

tion (3.3) in the context of SI process on CM random graphs. Recall that µS, and µ
(r)
S
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denote the average degree of a randomly chosen susceptible vertex, and the average

excess degree of a susceptible vertex randomly chosen as a neighbour of r infected

individuals, respectively. In Section 3, we mentioned that the operator D
r+1ψ ◦

ϑ recursively compared a susceptible vertex randomly chosen as a neighbour of r

infected individuals with a randomly chosen susceptible vertex. We make this notion

of comparison precise.

Lemma 5. Assume A1, A2, and A3 for the stochastic SI model on configuration

model graph G(ψ, n). Then, D
rψ ◦ θ P−−→D

rψ ◦ ϑ uniformly on T0, and the following

recurrence relation for D
r holds

D
r+1ψ ◦ θ = µ

(r)
S (θ)

µS(θ)
D
rψ ◦ θ. (B.1)

Proof of Lemma 5. The probability that a randomly chosen vertex i is susceptible

and is of degree k is given by P (i ∈ Sk(t)) = n−1XS(0)θ
k(t)pk. The following is then

immediate.

µS(θ(t)) =
∑

k

kP (i ∈ Sk(t) | i ∈ S(t)) =

∑

k kθ
k(t)pk

∑

k θ
k(t)pk

=
θ(t)∂ψ(θ(t))

ψ(θ(t))
.

In order to explicitly calculate µ
(r)
S , it will be helpful to keep the dynamic construction

of the graph in mind. In particular, we make use the neighbourhood distribution of a

susceptible vertex given in Lemma 1. Therefore,

µ
(r)
S (θ(t)) =

∑

k(k − r)P (i ∈ Sk(t))E [(XSI,i)r | Ft−]
∑

k P (i ∈ Sk(t))E [(XSI,i)r | Ft−]

=

∑

k(k)r+1θ
k(t)pk

∑

k(k)rθ
k(t)pk

=
θ(t) ∂r+1ψ(θ(t))

∂rψ(θ(t))
.

The recurrence relation then follows in a straightforward manner.

D
r+1ψ ◦ θ = θ ∂r+1ψ(θ)

∂rψ(θ)
× ψ(θ)

θ∂ψ(θ)
× ψr−1(θ)∂rψ(θ)

(∂ψ(θ))r
=
µ
(r)
S (θ)

µS(θ)
D
rψ ◦ θ.

The convergence D
rψ ◦ θ P−−→D

rψ ◦ ϑ, uniformly on T0, follows virtue of Theorem 1.

This completes the proof. □

For our purposes, we only need
µ
(1)
S (θ)

µS(θ)

P−−→κ(ϑ) = D
2ψ ◦ ϑ,

µ
(2)
S (θ)

µS(θ)
κ(θ)

P−−→D
3ψ ◦ ϑ,

and hence the interpretation in Section 3 as a limiting ratio follows. The two operators
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D
2ψ ◦ ϑ, and D

3ψ ◦ ϑ essentially allow us to correctly estimate various pair and triple

counts in the large graph limit.

Appendix C. Rebolledo’s theorem

Here, we furnish a statement of the Rebolledo theorem as our derivation of the

functional central limit theorem relies heavily on it. The version presented here differs

slightly from the original one in [45]. In our application, we only need a central limit

theorem for locally square integrable martingales. Therefore, we borrow the following

version from [1].

Let M1,M2, . . . ,Mn, . . . be a sequence of vector-valued locally square integrable

martingales. We allow the possibility of they being defined on different sample spaces

for each n. Let us denote the components of Mn as Mn := (Mn,1,Mn,2, . . . ,Mn,k) for

some k ∈ N. Now, for each ϵ > 0, define M
(ϵ)
n to be a vector-valued locally square

integrable martingale that contains all jumps of Mn larger in absolute value than ϵ as

only jumps. Write M
(ϵ)
n := (M

(ϵ)
n,1,M

(ϵ)
n,2, . . . ,M

(ϵ)
n,k). Therefore, the absolute value of

the difference between jump sizes of Mn,i and M
(ϵ)
n,i is necessarily smaller than ϵ.

The optional quadratic (co-) variation process [Mn,i,Mn,j ] of the processes Mn,i

and Mn,j is defined as the sum of the product of the jump sizes of the processes. That

is, for i, j = 1, 2, . . . , k, we define

[Mn,i,Mn,j ] :=
∑

s≤t

δMn,i(s)δMn,j(s).

By convention, we define [Mn,i] = [Mn,i,Mn,j ]. For i, j = 1, 2, . . . , k, the predictable

quadratic (co-) variation process between Mn,i and Mn,j is given by

⟨Mn,i,Mn,j⟩ (t) :=
∫ t

0

Cov( dMn,i(s), dMn,j(s) | Fs−) ds,

with the convention ⟨Mn,i⟩ = ⟨Mn,i,Mn,i⟩. Here, dMn,i(s) and dMn,j(s) are the in-

crements of Mn,i, and Mn,j respectively. Denote the corresponding k×k matrix-valued

quadratic variation processes as ⟨Mn⟩ := ((⟨Mn,i,Mn,j⟩)). Similarly, for the process

M
(ϵ)
n , denote the corresponding predictable quadratic variation process as

〈

M
(ϵ)
n

〉

:=

((
〈

M
(ϵ)
n,i ,M

(ϵ)
n,j

〉

)). Similarly, let [Mn] denote the matrix of optional quadratic variations

of the components of Mn. That is, [Mn] := (([Mn,i,Mn,j ])). Finally, let T0 := [0, T ] be

as before and let T ⊂ T0.
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Theorem 3. (Rebolledo’s theorem for locally square integrable martingales.) Con-

sider the following three conditions

⟨Mn⟩ (t) P−−→V (t), ∀t ∈ T, (C.1)

[Mn] (t)
P−−→V (t), ∀t ∈ T, (C.2)

〈

M
(ϵ)
n,i

〉

(t)
P−−→ 0, ∀t ∈ T, ϵ > 0, i = 1, 2, . . . , k, (C.3)

as n → ∞, where V is a k × k semidefinite matrix-valued, continuous deterministic

function on T0 with positive semidefinite increments and V (0) = 0, the zero matrix.

Then, either of Equation (C.1) or Equation (C.2) together with Equation (C.3)

imply the following finite-dimensional convergence:

(Mn(t1),Mn(t2), . . . ,Mn(tl))
D

=⇒ (W (t1),W (t2), . . . ,W (tl)),

as n → ∞, where W is a Gaussian vector martingale with [W ] = ⟨W ⟩ = V and

t1, t2, . . . , tl ∈ T; moreover, both Equation (C.1) and Equation (C.2) then hold.

If, in addition, T is dense in T0, then either of Equation (C.1) or Equation (C.2)

together with Equation (C.3) imply the following weak convergence:

Mn
D

=⇒ W

as n → ∞ in D(k), the space of R
k-valued càdlàg functions on T0 endowed with the

Skorohod topology, and ⟨Mn⟩ and [Mn] converge uniformly on compact subsets of T0 to

V in probability.
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