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Abstract

Research on physical human robot interaction (pHRI) has necessar-

ily focused on device design—the creation of compliant and sensorized

hardware, such as exoskeletons, prostheses, and robot arms, that en-

ables people to safely come in contact with robotic systems and to

communicate about their collaborative intent. As hardware capabili-

ties, including sensing, have become sufficient for many applications,

and as computing capabilities have become more powerful, algorithms

that support fluent and expressive use of pHRI systems now play a

prominent role in determining their usefulness. In this review, we de-

scribe a selection of representative algorithmic approaches that regu-

late and interpret pHRI, describing the progression from algorithms

based on physical analogies, such as admittance/impedance, to com-

putational methods based on higher-level reasoning that take advan-

tage of multi-modal communication channels. Existing algorithmic ap-

proaches largely enable task-specific pHRI, but they do not generalize

to versatile human-robot collaboration. Throughout the review and in

our discussion of next steps, we therefore argue that emergent embod-

ied dialogue—bi-directional multi-modal communication that can be

learned through continuous interaction—is one of the next frontiers of

pHRI.
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1. Introduction

As robots have become more capable over recent decades, physical human–robot interaction

(pHRI) is no longer a nuisance but instead an opportunity for improved human-machine

communication and closer collaboration (1). A major milestone in pHRI has been the in-

troduction of specialized hardware approaches for pHRI, including series-elastic actuators,

co-bots, and distributed sensing. Progress in perception has made robots more situation-

ally aware of people during operation. Improved sensing, both novel (e.g., haptic skins)

and traditional (e.g., improved force sensing at the joints) has made pHRI practical, par-

ticularly in terms of safety. Progress in interfaces for capturing intent (dry EEG, high

density EMG, context-sensitive joysticks, etc.) have made devices easier to use. In par-

allel, progress in computing power has enabled real-time execution of sophisticated algo-

rithms. Although there is still plenty of room for hardware innovations, these developments

have made algorithm design an important next stage in pHRI. With novel algorithmic

approaches, available information channels have new potential utility as affordances for em-

bodied communication—multi-modal communication through actions, explicit interfaces,

and physical contact. Thanks to these advances, we can start to design for facets of pHRI

that were previously impractical, e.g., the subtle ways in which physical interaction creates

an opportunity for dialogue between a robot and a person during use.

Historically, pHRI methods have focused on one-directional communication, typically a

robot inferring something about a person through observation and providing assistance in

response. Sometimes robots provide feedback about the environment or their internal state.

This type of mostly uni-directional communication can be effective, but it does not take

advantage of the collaborative potential of the human-robot pair—the ability to negotiate

approaches, mutually adapt to each other and the environment, or coordinate a response
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Physical human-robot interaction (pHRI)

The term pHRI, as used in this review, spans multiple forms of physical interaction, ranging from haptics

and forceful touch to less traditional interfaces, such as vibrotactile sleeves, on-body sensors, or haptic

joysticks. As a consequence, facilitating pHRI plays a key role in the design of any robot that works in

close proximity with its human partners, including tightly coupled exoskeletons that move synchronously

with the wearer as well as stand-alone robot arms that experience intermittent contact with their human

collaborators.

to novelty. As a result, this approach tends to be best suited to narrow pre-specified

applications without generalizing well to novel unstructured interaction. If we want robots

to be versatile collaborative partners, we need better communicative capacity.

Notably, effective human-human communication relies on a bi-directional dialogue. In

his book “Speaking Our Minds” (2), Thom Scott-Phillips distinguishes two ways of de-

scribing human communication: code model or ostensive-inferential communication, and

builds a case for why code model communication cannot explain people’s incredibly flexible

communication capabilities. Code model communication is achieved through pairs of asso-

ciation: one between a state of the world and a signal, and the other between the signal

and a response. Morse code is an example of this type of communication—it is defined by

unambiguous symbols that can be broadcast into the ether and interpreted reliably with

a decoder. The code enables an efficient exchange of information, but it does not allow

fluent collaboration. Current human-machine communication at best aspires to code signal

communication.

Ostensive-inferential communication is different—it relies on people’s ability to express

and recognise intentions (2). Ostensive communication strictly depends on one agent in-

fluencing the mental state of another agent, and so any behavior can, in principle, be used

communicatively, so long as it influences the mental state of the other agent in the intended

manner. In this viewpoint, natural languages function to make ostensive communication

more precise and more expressive than it otherwise would be, but they are only one tool in

the communicative toolbox. In addition to communicating verbally, people largely rely on

non-verbal cuing during joint action, wherein they model each other’s activity and contri-

butions to a shared goal and enact voluntary non-verbal signalling in service of the shared

goal (3, 4, 5, 6, 7, 8, 9). Human-machine collaboration, specifically involving pHRI, stands

to benefit from an ostensive-inferential communication approach.

Secondly, much research and development effort is spent on making human-machine

communication as intuitive as possible. This includes designing the robot to interpret ei-

ther anthropomorphic signalling (e.g., hand gestures and natural language) or intuitive in-

tent signalling through biological signals (e.g., EMG and EEG) to influence robot behavior.

These forms of communicative conventions are often insufficient for fluent/expressive device

use and may not even be optimal for human-machine communication—anthropomorphic

signalling evolved and works well for human-human communication while measurable bi-

ological signals are noisy and only somewhat informative. Importantly, people are good

at adapting and developing communication protocols. How can we put more emphasis on

the emergence of embodied communication through pHRI rather than replicating familiar
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communication conventions for pHRI?

In this review, we explore how embodied communication can create a path for more nat-

ural collaborative workflows and how it can facilitate safer, more effective interaction. In

Section 2, we describe existing algorithmic approaches to facilitating human-machine com-

munication, from algorithms based on physical analogies, such as admittance/impedance,

to computational methods capable of task-level reasoning and adaptation. In Section 3,

we discuss the state-of-the-art communication paradigms for different applications of pHRI

and comment on how embodied human-machine dialogue could improve performance. In

Section 4, we conclude with an outline of future directions for developing embodied commu-

nication in pHRI systems. We discuss the need to algorithmically facilitate bi-directional

human-robot communication, where both the human and robot can both play a role in

shaping the communication protocol. As a key position statement established by this re-

view, we argue that to achieve versatile human-machine collaboration, we need algorithmic

methods that enable ostensive-inferential communication.

EMBODIED COMMUNICATION

From uni-directional human-machine communication... Human-robot teams rely on embodied

communication—a multi-modal exchange of information through actions, touch, forceful interaction, bio-

metric signals, verbal cues, and more. In its current form, communication is often uni-directional and static

over time: the robot is a passive observer of human intent, providing limited feedback back to its human

partner; and the communicative conventions do not evolve over time.

...towards emergent embodied dialogue. Effective human-robot collaboration can benefit from flexible

bi-directional dialogue that relies on an ostensive-inferential model of communication and emerges through

interaction. In this viewpoint, the human-robot pair are collaborative agents, refining their communicative

capacity over time and using communication to negotiate approaches to physical tasks.

2. Algorithmic approaches to embodied communication

Effective robotic assistance depends on successful communication of collaborative intent

from both the human and the machine. In pHRI, the simplest form of embodied commu-

nication is through movement and physical contact, which can be regulated on an action-

by-action basis (10). With additional sensing, the robot can reason about the person’s

intent and assess their performance (1); depending on the goal of the interaction, it can

adjust assistance, often putting its control strategy into the context of a task. The inter-

action benefits if the robot can adapt its communication protocol and assistive strategy

to its collaborative partner (11, 12). In this section, we describe the current approaches

to embodied communication in pHRI, ranging from task-agnostic communication through

compliant physical contact to adaptive task-based communication strategies.
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2.1. Admittance/impedance

Admittance and impedance control are arguably the first algorithmic approaches for reg-

ulating pHRI that have enabled reasonably safe human-machine interaction. Admittance

control dates back to the late 1970s (13), where it was used to respond to hard contact in

industrial applications. Impedance control gained academic interest in the 1980s (10) and

was one of the first algorithms used more broadly to control physical interaction with a

robot.

Fundamentally, both impedance and admittance control imitate mechanical properties

of contact between non-rigid systems, modulating elasticity in the collision. In impedance

control, motion is detected and converted into interaction forces through an internal model.

Impedance control is good at rendering low inertia but has difficulty with stiff virtual sur-

faces. In robot-assisted rehabilitation, it can be used to implement active assistance or

active resistance proportional to participant movement (14) without the hardware require-

ment of a force sensor. Admittance control (15), on the other hand, converts measured forces

into motion, requiring sensors to measure applied forces. It enables rendering stiff virtual

surfaces but struggles with constrained motion, e.g., interacting with real surfaces (16). In

human-robot collaboration, it can be used to account for unintended collisions (17) or to

jointly manipulate an object (18). It is commonly used to reduce inertia of bulky devices

with a payload (19) or to ease movement during rehabilitation (14). The HapticMaster (20)

is an example of a commercially available admittance-controlled end-effector robot.

Impedance/admittance control assumes a static model that maps human actions to

robot actions based on mechanical analogies. The model’s parameters can be tuned, us-

ing intuition about the mechanical analogies as a guide, but, given that the robot is not

responsible for any high-level reasoning about the task goal, the complexity of the interac-

tion is limited. Communication is constrained to negotiating real-time actions without the

possibility of task-level coordination of movement. Algorithmically, this is a conservative

attitude to facilitating pHRI, restricting the physical interactions to those that have me-

chanical properties (even if not always mechanically plausible, such as in (21)). With richer

sensory inputs and on-board computation, the robot can begin to reason about the task, in

terms of both its goal and a plausible solution. As a result, admittance/impedance control

is often combined with online algorithms that reason about human intent and enable more

effective task-oriented assistance, as described in the sections below.

2.2. Predicting intent

In human-robot collaboration, the human-robot pair often have complementary roles: the

person has a high-level understanding of the task while the robot has physical capabilities

that can help the person accomplish the task. One way of framing the communication

that occurs between a person and the robot is to view the robot as an observer, tasked

with inferring the person’s intent. Once the autonomy has an understanding of high-level

intent, it can provide assistance that is not simply proportional to a person’s motion or

forces (as is the case in impedance/admittance control). Below, we describe different ways

of inferring intent based on available sensory information. Example sensors for pHRI have

been visualized in Fig. 1.

2.2.1. From body motion and eye gaze. Motion data can be captured passively (without

requiring explicit human input) through a range of sensors on the body, including inertial
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Figure 1

Example devices for capturing human intent. From left to right: Shadow motion capture,

high-density EMG from OT Bioelettronica, wet EEG cap from TMSi, MERU joystick, sip-n-puff
from Therafin Corporation.

measurement units (IMUs), motion-capture markers, cameras, or encoders on back-drivable

electric motors. With recent advances in computer vision, it is possible to reliably estimate

pose from RGB images (22), as well as to track eye gaze during real-time interactions (23).

For stand-alone robots, camera-based monitoring of motion offers a significant advantage

over most alternatives, because it does not require sensors to be placed on the human body.

However, even with information about motion history, it is challenging to anticipate

intended human motion. Many methods have been proposed for recognizing motion (24),

often by classifying motion into primitives or modes, where mode sequences can be pre-

dicted based on the task objective. This type of reasoning enables a high-level prediction

of mode sequences (25, 26) and an anticipation of motion trajectories within modes based

on an approximation of motion dynamics (27). Other studies have proposed velocity-based

position projection (28), general value functions and temporal-difference learning (29), or

a combination of multiple approaches (28). Inferring intent from motion assumes that the

kinematics of motion are sufficiently rich to capture a person’s goals. In most scenarios,

motion trajectories are dependent on contextual information, and so inferring the situa-

tional context and/or additional sensory inputs are required to improve predictions. As an

example, some studies augment kinematics data with electromyography (EMG) signals to

improve predictions of motor intent (29, 12).

Motion can also be used to purposefully communicate intent, e.g., through gestures (30),

motion cues (31), facial movements (32), or gaze (33, 34). Substantial progress has been

made in sign language recognition that could be used in human-robot collaboration (35).

However, explicitly prescribing a set of communicative conventions for each motion type

is difficult and impractical because of the scope of possible communicative symbols. In

Section 4, we describe the need for algorithmic solutions that would enable communicative

conventions to emerge from interaction.

2.2.2. From electromyography (EMG). Electrical activity from skeletal muscles is an ap-

pealing source of intent prediction, particularly for prosthetics and exoskeletons—assistive

devices that are directly coupled with the human body. There are many approaches to

EMG-based control (29, 12, 36, 37). Despite a rapid increase in the use of advanced ma-

chine learning methods (36), two of the most commonly studied control methods continue to

be: (i) proportional control, where the EMG signals are used to generate low-level trajecto-

ries (38, 39), and (ii) mode-based control, where the EMG signals are classified into modes

based on pattern recognition techniques and used in combination with an autonomous

low-level controller (40, 41). Proportional control gives the user direct control over robot

6 Kalinowska • Pilarski • Murphey



motion but requires precise decoding of EMG signals. As a result, multi-joint motions

are typically difficult to achieve. Mode-based control expects sparser high-level commands

from the human operator and has been shown to achieve better performance (42). How-

ever, studies highlight the need for more research on the benefits of pattern recognition for

mode-based control (43, 44). Combining EMG signals with other control inputs is noted

by the community as a promising path forward (12). One example is EMG combined with

electroencephalography (EEG) (45, 46), which has shown promising initial potential.

While the person has some control over the EMG signal by voluntarily generating muscle

contractions, they are limited by their physiology in the variety and expressivity of patterns

that they can generate. As a result, even though a significant appeal of EMG signal is

its intuitiveness, some work explores EMG control using non-biological mappings, where

the person generates maximally differentiated muscle contractions (e.g., internal/external

rotation of the forearm) and these contractions are mapped onto useful configurations of

a robot (e.g. different grips of a hand prosthesis). These approaches show promising

performance, but can be difficult for a person to learn. Emergent interfaces, discussed in

Section 4, might offer a solution.

EMG-based methods are in many ways similar to motion-based approaches, in that they

infer intent based on a planned execution of motion. EMG methods have the advantage

of being able to anticipate motion before it happens or, as in the case of amputees, detect

motion intent. However, neither motion-based nor EMG-based methods attempt to infer

the cognitive intent of a person. EEG-based techniques, discussed next, try to use high-level

signalling in the brain to infer cognitive aspects of intent.

2.2.3. From electroencephalography (EEG). Reliably capturing and interpreting electrical

activity of the brain would enable ‘thought-controlled’ devices, or at least devices that are

explicitly dependent on what a person is thinking. If successful, EEG paves the path for

intuitive interfaces to control multi-dimensional robots. However, thus far surface EEG

(sEEG) has proven difficult to use as a control interface for robots (47) because of the

noisiness and low spatial resolution of sEEG signal. EEG signal is much stronger when

measured inside the brain through an implant, rather than noninvasively on the surface of

the skin. This is a promising avenue of research but has received limited attention because

of the risks associated with its invasiveness (48, 49).

Algorithmic approaches for interpreting EEG signal range from using combinations of

pre-specified features (e.g., amplitudes of signal within frequency bands in the motor cor-

tices) (50) to training deep neural networks on the raw signal (51). State-of-the-art algo-

rithms enable reaching a target in a 2D plane by interpreting sEEG signal as one of a handful

of mental states, corresponding to possible target locations of the robot’s end-effector (47).

As an example, EEG-predicted mental states in combination with a context-aware controller

enabled navigating a mobile robot through a network of connected rooms (52). Given the

low spatial resolution of sEEG signal, researchers have had difficulty identifying more than

three classes of distinct mental activities (47). In more recent studies, the error poten-

tial (errP) has been shown to successfully correct the 3D motion of a robot arm (53, 46).

This is an interesting approach that takes advantage of a biological interpretation of EEG

signal—the errP is detectable when a person perceives error.

The key outcome of these studies is that sEEG provides a way to record an array of

signals from the brain and, for now, to interpret them in a small number of ways. One of the

points we will make later is that this small number of interpretations are pre-specified—e.g.,

www.annualreviews.org • Embodied Communication in pHRI 7



they are trained to mean right, left, straight—when they could be an unlabeled range of

mental states that the robot learns to interpret over time.

2.2.4. From controller signals. There is a range of designated interfaces that can provide

human-generated input for an assistive robot. The most common are control devices that

can be operated by the hand, such as a joystick or remote controller with a range of

buttons. Hand-operated control devices are currently in commercial use and, although

they require effort (compared to passively measured biological signals), their control signal

is more informative and less noisy—they already achieve adequate performance for the

control of powered wheelchairs to warrant wide adoption.

In addition to hand-operated devices, there exist a range of control interfaces that are

designed to be used by individuals who are paralyzed below the neck. These include a

head array (that enables button presses with the head) or a sip-n-puff (that records a 1D

continuous signal from exhaling and inhaling air into a sensorized straw) (54). Signals

from these interfaces are lower dimensional than from a hand-operated controller, posing a

challenge even when controlling a 2D powered wheelchair.

In commercially available devices, the physical interfaces mentioned above (i.e., joy-

sticks, head arrays, or sip-n-puff devices) are treated like many control interfaces used in

non-robotic applications (e.g., video games)—the interface and its mapping of control in-

puts onto the action space are designed ahead of time, and it is up to the person to learn

and adjust to the pre-specified mapping. However, research shows that the physical inter-

action with the control interface is non-negligible and should be taken into account when

designing the mapping from interface inputs to control outputs, particularly for impaired

individuals (55). Although intentionally generated, the signal is often imperfect—recent

work highlights the effects of impairment and interface type on the acquired control signal,

including the timing, transient noise, and accuracy of a signal (56). When designing control

interfaces, particularly for impaired individuals, there is a need to enable adaptation to the

person’s unique physical and cognitive capabilities—effective communication can give the

person increased agency over their interaction with the robot.

2.2.5. Through natural language. With recent progress in natural language processing

(NLP) (57, 58), there are also many studies that incorporate voice commands into human-

robot interaction (59). This can be a useful tool for high-level task alignment and will

likely remain an important research direction. However, natural language control has three

main limitations: (i) it is non-pragmatic for many applications (e.g., a robot assisting with

eating), (ii) socially inconvenient (e.g., walking in a prosthesis and talking), and (iii) re-

quires high levels of effort for continuous control (i.e., guiding low-level movement). In the

context of pHRI, the most NLP can do is align the robot with the person’s high-level intent,

but actual robot actions need to be planned in the context of the body, environment, and

continuous-time continuous-space decision-making. Natural language will likely be used in

combination with other interfaces to provide high-level directions or corrective feedback.

2.3. Metrics of motion for adjusting assistance

Given a prediction of high-level intent, a robot requires a mathematical specification of

performance that enables continuous evaluation of human actions. In combination with

decision-making techniques (e.g., linear control, optimal control, reinforcement learning),
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this enables computational synthesis of real-time assistance.

2.3.1. Motion quality. One way to assess performance is by quantifying motion quality. As

an example, energy minimization has been shown to explain the dynamics of human motion

and so energy is a universally used assessments of motion quality (60). Motion has also been

assessed in a task-independent manner using the norm of mechanical jerk—the third time

derivative of state (61). Jerk is a way to quantify motion smoothness with the underlying

assumption that smooth motion is desirable.

2.3.2. Task performance. Another intuitive way to assess human actions is with respect to

a reference solution to a task goal. If one defines a task solution as a trajectory in time, one

can use error with respect to a pre-defined trajectory to provide real-time assistance (61).

This approach works well if there exists an optimal solution to a given task but over-specifies

the task solution when many trajectories can, for practical purposes, be considered equally

correct. For most tasks, there exist many correct ways to execute an action sequence and

achieve a high-level goal (62).

As an alternative, new metrics of solution quality have been proposed based on de-

composing trajectories in ways that ignore the solution’s time evolution in the state space.

Solution quality can be assessed based on the relative positioning of joints with respect to

one another (63). Task performance can also be measured using distribution-based metrics

that evaluate the statistics of a motion trajectory relative to the statistics of a task (64, 62),

or using frequency-domain assessments that quantify motion bandwidth (65, 66). Time-

independent ways of specifying the task allow one to include multiple approaches to solving

a task and do not constrain the solution as a function of time.

2.3.3. Motion predictability. Learned forecasts of movement and movement anomalies can

also be used as a metric to modulate pHRI. As one key example, researchers showed that

general value functions (GVFs) can be used to build predictions of anticipated motion and to

make control decisions based on the motion’s deviation from the learned prediction (67, 68).

Similarly, researchers have introduced and made use of metrics that quantify surprise, e.g.,

the Unexpected Demon Error (69). As an example, a study illustrated that unexpected

perturbations can be characterized through the process of continual temporal-difference

learning and that the resulting metrics can be used to effectively modulate assistance (69).

2.3.4. Effort. Lastly, in physical assistance, there is often interest in assessing physical effort

exerted by the individual (70). Effort can be measured directly using EMG (71), heart rate

(HR) variability (72), or respiratory data of the flow rates of oxygen and carbon dioxide (73,

74). As an example, one can adjust the parameters of an admittance or impedance controller

based on EMG readings to maintain a desired level of physical effort (75). Task effort can

also be approximated via cognitive load. Researchers are attempting to measure cognitive

load directly through EEG signal (76); other studies quantify cognitive effort via proxy

metrics, such as gaze trajectory and pupil size (77), or a combination of physiological data,

such as HR, breathing frequency, skin conductance, and skin temperature (78). As with

metrics of physical effort, metrics of cognitive load can be used in closed-loop to provide

real-time adjustments to the provided assistance (78) and maintain patient engagement.

While it is challenging to quantitatively assess task performance in real-time and to math-
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ematically specify motion quality or effort with enough generality, flexible specifications of

motion can both improve the adjustability of robotic assistance, as well as enable verifying

safety and developing provable safety guarantees for pHRI systems.

2.4. Task-based shared control paradigms

Once a task goal and performance metric are established, a consideration for the autonomy

is when and how much assistance to provide. Shared control paradigms distribute control

between the human and robot to improve overall performance and/or safety.

Performance-based shared control schemes rely on an estimate of the user’s intent, as

described in Section 2.2. Intent could be a high-level goal, such as a navigation landmark

to drive a wheelchair towards or an object to grasp using an assistive robotic arm (79).

Avoiding obstacles could be a high-level intent, in which case distance to obstacles could

be a metric for allocating control between the human and robot (80).

Once a task goal is identified, user control inputs can be directly modified by the au-

tonomy in a variety of ways. User input can be blended with the assumed optimal action,

obtaining an average action at every timestep (81). User input can be filtered using a task-

based criterion and, if sufficiently suboptimal, either ignored or replaced with an assumed

optimal action (82). Intervention could be conditioned on the certainty of the autonomy in

its prediction of the task goal (83, 84). If the robot is operated through mode-switching (ex-

plained in more detail in Section 3.5), a shared control paradigm may be designed to assist

with autonomous mode switching based on a prediction of the most likely mode (67, 85).

While many approaches vary assistance to optimize performance, others provide assis-

tance solely based on safety. This strategy has two significant advantages: (i) it limits

interference, relinquishing control to the human operator, and (ii) it is often easier to

specify—safety constraints of a human-machine system are usually easier to define than

the full task space. Even so, the optimal shared control paradigm is often specific to the

person and the application (86), highlighting the need for solutions that enable adaptation.

Bi-directional communication can help a person and a robot most flexibly agree on an op-

timal shared control strategy and to renegotiate that agreement throughout the course of

use. We discuss this idea in more detail in Section 4 on future directions.

2.5. Adaptation

Adaptable control interfaces show promise in their ability to improve performance and

safety, as well as to increase user satisfaction. The robot can adapt (i) its predictions or

model of its human partner, (ii) the mapping (or interpretation) of human inputs onto

predicted intent and (iii) the shared control paradigm, adjusting its intervention strategy

based on user capabilities and individual preferences. Unlike the majority of work described

above, adaptation assumes that how people start using a device will not necessarily be the

same across individuals as well as that how they use the device will change over the course

of use.

Many researchers have investigated options to personalize algorithms for pHRI to ac-

commodate biomechanical and physiological differences between individuals. A common

example is the customization of gait in an exoskeleton (87, 88), usually through an initial

calibration period of walking without assistance. Another example is the calibration of

EMG (42, 89, 37, 36, 12) or EEG (90, 91) mappings to an individual’s signal pattern or to

the specific placement of the electrodes on the body. A personalized remapping has also
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been shown to be beneficial for more established input devices, such as a joystick, when the

human operator suffers from physical limitations due to a neuromotor impairment (92).

In addition to personalization based on physiology, biomechanics, and physical capabil-

ities, users value the ability to customize an interface based on preferences. As an example,

individuals might exhibit preference for different shared control paradigms irrespective of

the objective performance benefits (e.g., time to task completion) (93). As a result, some

work utilizes the user’s control behavior to automatically vary parameters of the shared

control paradigm (94, 12). While preferences vary between participants, there is a gen-

eral trend favoring paradigms that retain stronger autonomy for the human operator (93).

People prefer interfaces that are intuitive to use and transparent in how they work (95).

Adaptation to the individual is important, but it is also important to recognize that

individuals’ performance and capabilities change over time, due to factors such as learn-

ing, fatigue or disease progression. In particular, in a study with a smart wheelchair,

people’s performance was shown to improve significantly between just two experimental

sessions (93)—the trend was observed across different control interfaces and shared auton-

omy paradigms. Another study showed that novices and experts prefer different shared

control paradigms (56). These results suggest that the shared control approach should

not be static over time and that continual adaptation of the communication paradigm can

benefit the human-machine system. While to date few research studies evaluate the adap-

tation of pHRI interfaces over time, we discuss in Section 4 that continual adaptation in an

important research direction for pHRI.

ALGORITHMIC APPROACHES: SUMMARY POINTS

1. Over the past decades, algorithmic approaches that facilitate pHRI have progressed

from algorithms based on physical analogies, such as admittance/impedance, to

computational methods based on higher-level reasoning.

2. Intent inference is often multi-sensory, taking advantage of a variety of technologies

that measure biomechanical and bioelectrical activity to inform control.

3. The algorithmic paradigms (incl. signal processing, optimal control, machine learn-

ing, and more) can be customized to the robotic systems and personalized to the

individual, but they do not adapt beyond an initial calibration, limiting the human-

robot collaborative potential.

4. Existing algorithms successfully enable task-specific interactions; future progress

can expand robotic applications from, e.g., semi-automated manufacturing and pre-

cision surgery to versatile at-home assistance.

3. Applications of pHRI

Physical HRI plays an important role in a number of applications, ranging from robot-

assisted rehabilitation to collaborative assembly during manufacturing. Here, we describe

how physical robotic assistance is being used in different settings. We comment on state-

of-the-art performance and discuss the current challenges associated with human-machine

communication in each application area. Example robotic platforms that have been devel-

oped for these applications are visualized in Fig. 2.
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3.1. Robot-assisted rehabilitation

One of the major applications of pHRI focuses on robot-assisted physical therapy (96, 97).

Robot-assisted rehabilitation offers promise of therapeutic regimens that are more effective,

more accessible, and more engaging than traditional therapy. To date, results are mixed

on the impact of robot-assisted training on clinical outcome measures. While some studies

show benefits of adaptive robot-assisted training compared to conventional therapy (98,

99), other studies show no statistically significant differences in clinical outcomes (100).

However, the evidence is strong that there are benefits from patients’ active participation in

therapy (101). These positive findings encourage research that promotes patient engagement

through reliable detection of intent and real-time metrics of performance and effort.

Research solutions attempt to maximize patient engagement using two approaches: (i)

assist-as-needed paradigms and (ii) measures of patient intent that guide robotic assis-

tance (97). Assist-as-needed strategies use adaptive controllers that estimate patient effort

and assess performance in real time, enabling adjustments to the level of assistance even

during a single movement (102). These strategies can rely on task-specific performance met-

rics or measures of motion quality and effort, as discussed in Section 2.3. As an example, in

2017, the HAL rehabilitation exoskeleton, which uses EMG signal to adjust assistance, was

officially approved by the US Food and Drug Administration (FDA) to enter the US medi-

cal rehabilitation market. In parallel, intent detection—e.g., using biometrics from EMG or

EEG—can further involve the patient by providing them agency over generating movement

trajectories (103). Intent prediction methods are particularly important for engaging more

severely impaired patients in robotic training, because these patients have difficulty with

independently generating voluntary movement (104).

More recently, work is being done on developing impairment-specific assessments of

motor abilities (105, 106, 107), with some metrics showing promise of real-time use (65).

With new algorithmic solutions, it should be possible to design patient-specific training

protocols, dependent upon each patient’s type of injury, level of impairment, and phase of

recovery. Embodied communication could play a role in designing interactive paradigms for

assessment of physical deficits. Specifically, interactive methods could enable more accurate

diagnosis of motor capabilities and lead to improved therapeutic efficacy through adaptive,

impairment-specific rehabilitation protocols.

For individuals with physical limitations, the ultimate goal is for robotic devices to

provide both therapy and assistance (108). Some devices are already attempting to show

efficacy for combined assistance and at-home rehabilitation (109). With robot-based contin-

uous metrics of impairment, person-specific rehabilitation protocols can be more effectively

incorporated into activities of daily living.

3.2. Physical assistance with exoskeletons

Exoskeletons—portable devices that are physically coupled with an individual—are the

most commonly considered type of robot for providing physical assistance. Many exoskele-

tons have been developed to augment people’s physical capabilities for both impaired and

able-bodied individuals (110, 73, 111). Most rigid exoskeletons are controlled in admittance

mode using force amplification and for some applications, such as level-ground walking,

this control mode works reasonably well (110). In fact, for level-ground walking, it is chal-

lenging to do better than admittance control in terms of movement freedom and flexibility.

However, while task-agnostic assistance performs well for walking, it does not provide help-
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Figure 2

Example robotic platforms. From left to right: Kinova MICO arm, Quickie Q500 M powered
wheelchair, Ekso Bionics lower-limb exoskeleton, ShirleyRyan Ability Lab upper-limb prosthesis,

Open-Source Leg, ACT3D (a modified HapticMaster end-effector robot).

ful support during unexpected events, e.g., tripping, or changing activities, e.g., climbing

stairs or transitioning to sitting (110). Alternatively, exoskeletons rely on a state-machine

controller, where an initiation event—e.g., a button press or a specific motion—are used

to communicate movement intent (112). Other controllers provide assistance through a

learned movement trajectory, giving the person little control over motion execution (112).

While exoskeletons have received substantial academic and commercial attention, their

practical adoption has been limited. Traditional rigid exoskeletons (113, 73) are bulky and

expensive. While they offer assistance with generation of gait, even for individuals with full

paralysis (112), they do not guarantee assistance with balance and hence require crutches

or therapist-assistance during use. More recently, lightweight designs have shown promising

results, reducing physical effort required to walk long distances (114) or increasing ability

of carrying heavy load (115).

When the human and machine are physically coupled, there is both a unique opportunity

for continuous communication (as in partner dancing (116)) as well as the challenge of arbi-

tration between human intent and robotic assistance—communication takes places through

subtle haptic cues and concurrent negotiation of movement. Interestingly, human-human

physical coupling can reliably lead to improved performance even if one of the partners is

less adept at the task (117). Studies on human-robot coupling show that forceful interac-

tion can lead to improved task performance even after the robot coupling is removed and

the person performs the task independently (118). These pieces of evidence illustrate the

potential of communication through physically coupled motion. However, while physical

interaction is a natural part of joint activity between people, how humans control motor

interaction with peers is still largely unknown (119). Human-robot interaction (e.g., via

exoskeletons) can help us discover the potential of physical communication and in turn help

improve algorithms for human-machine collaboration.

3.3. Physical augmentation through prosthetics

Powered prostheses offer promise of restoring lost functionality to individuals with a missing

limb. With recent progress in reducing the weight of the physical devices, the prostheses’ us-

ability largely depends on the effectiveness of the algorithmic solutions. Commercially avail-

able lower-limb powered prostheses (e.g., EmPower, Ottobock, Germany) use onboard sens-

ing (e.g., a load cell or motion sensor) to drive autonomous controllers for pre-programmed

activities (31). Transitions between gait phases can be triggered by sensor measurements,

while transitions between locomotion modes (e.g., over-ground walking or stair climbing)
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often require input from the human user (e.g., specific body motions measured by sen-

sors) (31). Some research solutions consider incorporating contextual information (e.g., a

laser distance meter) (120) to improve decision-making by detecting terrain, and some ex-

plore incorporating EMG signal to improve prediction of user intent (31). Existing control

techniques can already achieve decent performance—most lower-limb amputees feel confi-

dent in forward walking on level ground (121), while maintaining balance and walking on

uneven ground or on slopes remains a concern (121).

For the upper limb, the task space is more varied and open-ended, increasing the diffi-

culty of control. The main challenge is obtaining rich enough control signal from the human

partner to infer their movement intent without interrupting the person’s workflow. Intent

prediction using EMG has received the most attention (122, 12, 37) with EEG being a close

second. While EMG signals are usually stronger and more discernable than EEG, amputees

might have limited muscle fibers in their residual limb, depending on their level of ampu-

tation. To increase the strength and clarity of the EMG signals in the residual limb, two

clinical procedures have shown promising results. (i) Targeted motor and sensory reinnerva-

tion (TMR/TSR) can increase the number of information channels available to an amputee

for communicating with a prosthetic limb (123, 124). During the TMR/TSR clinical pro-

cedures, a surgeon reroutes nerves from the residual limb to a large muscle group, such

as pectoral muscles, restoring the number of intuitive EMG channels and sensory inputs

available to the individual. (ii) More recently, osseointegrated prosthetics controlled via

intramuscular EMG from implanted electrodes (125) have been shown to provide stronger

control signals and a robust mechanical coupling. These surgical advancements significantly

increase the capacity of the human-prosthesis communication channels, improving usability.

Even so, control of the prosthesis is for now limited to single degrees of freedom, and the

prosthetic arm is usually used passively as a support arm in bi-manual tasks (e.g., holding

a bowl while stirring with the other hand) (126).

A relatively new research effort focuses on restoring sensing capabilities to the individual.

Thus far, there are almost no clinical prosthetic systems for upper or lower limbs that

transfer sensations to the user (121). Interestingly, some prosthesis users find mechanical

prostheses more intuitive to use because the more rigid devices mechanically transmit haptic

feedback from the prosthesis tip to the residual limb. Osseointegrated prostheses share this

benefit (125). In socket-based powered prostheses, researchers are considering alternatives

for providing sensory feedback (12, 127). As an example, pressure stimulation in a prosthetic

socket is being used to communicate forces perceived by the hand (128). Systems leveraging

TSR (124) can increase the amputee’s capacity for sensory feedback as well as make the

sensory feedback more intuitive.

The human-prosthesis interaction can also benefit from communication to the user about

the prosthesis’ current state or movement intent (68). As an example, haptic feedback about

the opening or closing of a prosthetic hand has been shown to lead to a lesser need for visual

attention and improved task performance (129). Rich sensing and reciprocal communica-

tion of both the device’s perception and its intent is expected to improve the effectiveness

of the human-prosthesis interaction. While powered prostheses are meant to be natural

extensions of the human body, there is a desire to seamlessly integrate the artificial limb

into the person’s workflow without the need for explicit, cognitively-taxing communication

of intent. In this viewpoint, powered prostheses remain a challenging domain for inferring

intent, especially in contextually rich settings during activities of daily living. Bi-directional

communication for pHRI is an important area of research that could improve performance,
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as we discuss in Section 4.

3.4. Collaboration in close proximity with an autonomous robot

Some assistive robots are stand-alone devices that operate autonomously in close proximity

of a human partner. Physical interaction during this type of collaboration is arguably one

of the more difficult pHRI scenarios, because the human-robot pair has to work together

with the ability to (i) mostly avoid each other and (ii) intermittently seek out safe physical

contact. In the first scenario, physical interaction is an unintended byproduct of working

in close proximity. A large body of research focuses on intent prediction for avoiding

accidental interaction while working in close proximity with a human partner (130, 131)

or for avoiding collisions when navigating in crowded environments (132, 133). A common

focus area is interacting with a robot by jointly manipulating objects in the workspace. This

can involve collaboratively moving a table (134, 135) or handing over objects between the

human and the robot (136). These studies makes progress on relevant pHRI challenges, yet

they often explicitly separate the periods of physical interaction and autonomous operation.

Incorporating intermittent pHRI as a natural component of collaborative interaction will

be key to the emergence of complex, rich, and flexible collaboration.

A commonly studied form of prescribed pHRI involves kinesthetic demonstrations,

where the human moves the robot to demonstrate desired movements. Kinesthetic demon-

strations provide an intuitive avenue for people to teach robots new skills or customize

assistance without having to program reward functions or low-level behaviors (137). As

an example, learning from demonstration (LfD) paradigms have been successfully used for

manipulation tasks with a robot arm (138). One of the current challenges is that LfD ap-

proaches have difficulty learning salient aspects of a task. As a consequence, learned robot

policies do not generalize well to future unstructured human-robot interactions. Many stud-

ies show that a learned policy can generalize to new environmental conditions (139, 140),

such as new locations of objects, similar objects, and clutter. However, there are fewer

works that demonstrate motor skills that generalize between different tasks. Without the

ability to reuse motor skills for novel goal-oriented activities, the learning solutions are

less applicable to a versatile assistive robot. The question remains of how to algorithmi-

cally structure the interaction with the person to enable the robot to extract task-relevant

information from demonstrations (137).

New research directions explore interactive learning—the goal is to improve learning of

salient task elements by actively soliciting clarifying input from the human teacher. Some

approaches ask users to rank demonstrations (141, 142) or provide corrective input on the

learned task executions (143, 144). Additional feedback often increases task performance,

but it does so at the cost of an individual’s time and effort. Even though in their current

implementation the interactive paradigms might be inefficient, they are a step towards

bi-directional communication which will enable more versatile human-robot collaboration.

3.5. Teleoperation of a semi-autonomous robot

Robotic teleoperation has enabled robotic surgery, space exploration, assistance for physi-

cally impaired individuals, and more. Here, we focus on teleoperation as a way to control

a co-located collaborative device (e.g., a powered wheelchair or wheelchair-mounted robot

arm) rather than a remote robot (e.g., Mars rover or the Da Vinci Surgical System).

A semi-autonomous assistive device, like a smart powered wheelchair, can be successfully
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controlled by a hand-held joystick (54). Here, control is near-trivial because a 2D joystick

intuitively maps to a 2D control space. Direct control of the robot is more difficult when the

controller is lower-dimensional (e.g., a sip-n-puff as described in Section 2.2.4) or the robot

is more complex (e.g, a multi-degree-of-freedom robot arm), because low-dimensional in-

put has to be used to control high-dimensional motion. Mode-switching—toggling between

independent and typically orthogonal control directions, which usually span translation

and rotation in the xy- or xyz-coordinate space—has been proposed as a possible solu-

tion (145). Autonomous switching of modes can speed up task performance (85). However,

control via single degrees of freedom in a Cartesian coordinate space is an unintuitive ap-

proach to specifying robot movement, because people do not think about motion in terms

of one-dimensional adjustments. Instead, we tend to plan trajectories in terms of functional

movements or motion primitives (146).

In recent work, researchers have proposed using latent variables to map control in-

puts onto task-specific movement trajectories (147, 84). These approaches offer a way to

map control inputs onto more natural and functionally relevant movements of the robot.

In their current implementation, these approaches require a task library and a high-level

controller to determine the applicable latent space for the task, but this is a promising

research direction as it enables learning a communication manifold from human-robot in-

teraction. Algorithmically structuring the interaction, in a way that will effectively enable

these mappings to emerge, is an important future research direction.

4. Future directions for embodied communication in pHRI

Future work on pHRI will benefit from greater incorporation of embodied communication

to exploit the richness of the available communication channels both for human-robot com-

munication and increasingly robot-human communication. Aspirations for future pHRI

systems include safe operation enforced by the autonomy while allowing continual adapta-

tion, bi-directional communication, and support for emergent, unanticipated behavior and

communication during collaboration (as visualized in Fig. 3. Each of these goals antici-

pate that the person and the environment change over time and that the human-robot pair

will need to co-adapt to each other. Each of these goals also have something in common

technically—they lack standardized algorithmic tools, which are currently in development

in terms of theory and implementation, as we discuss below. As a result, datasets are

needed for developing pHRI-relevant algorithmic tools, for benchmarking algorithms prior

to use with people, and for comparing and evaluating current pHRI capabilities.

4.1. Continual adaptation with safety guarantees

Physical HRI involves potential safety hazards because of the direct mechanical contact and

energy exchange. As a result, safety has been a core focus of facilitating pHRI (148). Even

so, it is not clear how to guarantee safety without limiting parameters of robot motion (e.g.,

torque or velocity) and bounding the robot’s performance (149, 148). Due to the lack of

reliable alternatives, ISO guidelines released in 2016 suggest just that—they recommend

quantitative biomechanical limits, such as allowable peak forces or pressures for various

parts of the body, as a requirement for collaborative robots (150).

As an alternative, recent work takes advantage of predictive modelling to impose data-

driven safety guarantees (151). Other approaches involve modelling and closely monitoring
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Figure 3

Embodied communication enables effective human-robot collaboration. Developing new
algorithmic tools to facilitate human-machine dialogue and enable emergence of communicative

conventions without compromising safety is one of the next frontiers for pHRI.

people’s behavior in anticipation of unsafe robot motion. As an example, researchers show

the utility of hidden Markov models for estimating, in real time, human affective state during

pHRI (152), and propose using it as a feedback mechanism to prevent unsafe interactions.

Separately, safety can be formalized and theoretically analyzed in the context of efficient

value alignment (153). For Brown et al., the goal is to construct a kind of “driver’s test” that

a human can give to a robot for assessment prior to use. These efforts are a step towards

providing standardized safety guarantees (under reasonable assumptions) for data-driven

robotic systems.

In Section 2.5, we discussed the value of adaptation and data-driven methods for al-

gorithmic regulation of human-robot interaction. Notably, few studies consider continual

or long-term adaptation—most work focuses on learning within a confined period of ini-

tial interaction. One reason for this is that while it is challenging to assess the safety and

performance for data-driven methods, it is even more challenging for systems that are con-

tinually adapting. Developing methods for data-driven verification of safety while enabling

long-term learning is an important direction for future work. As discussed by Kress et al.

(154), we should aim to provide safety guarantees that at minimum maintain states within

safe sets and satisfy temporal logic guarantees while also providing specifications that are

appropriate for non-stationary models and reason about human variability and adaptation.

4.2. Multi-modal bi-directional communication

Just like we seek to infer informative measurement signals from the human for the robot,

the robot should seek out to provide informative signals to the person. Many human-

robot systems rely on the robot movement as implicit feedback for the human partner.

Some work augments the interaction with exaggerated robot movements (155, 156, 9) or
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anthropomorphic signalling (157). Purposefully communicative motion can be beneficial

for the interaction, because it makes robot behavior more predictable, allowing the person

to anticipate robot movements and adapt their own behavior accordingly (158). If robot

motion is predictable and allows humans to adapt—e.g., how humans swiftly adapt to

robot motion in crowd navigation (132)—safety constraints on the robot might be relaxed

to enable effective collaboration.

Other work takes advantage of communication through modes other than motion to

provide explicit feedback about robot intent. For instance, recent studies use vibrotactile

feedback in the form of a vibrating sleeve (129), pressure spots in a prosthetic socket (128),

or friction modulation on the surface of a touch screen (159). Other studies explore using

vibrotactile feedback to communicate emotion, imitating social touch with patterns of hap-

tic sensations on the arm (160, 161), or to communicate learned predictions of upcoming

hazards (162, 163). Without disturbing the task flow, vibrotactile stimulation and haptic

cues can significantly increase the information communicated to the person by the machine.

This can significantly increase collaborative potential.

As discussed throughout the review, one-way signalling about intent—from the person

to the robot—has enabled task-specific robotic assistance. We described how most work

on communication in pHRI treats the robot as a passive observer of human behavior.

In parallel, evidence shows that reciprocal signalling from the robot to the person can

improve the interaction (164, 66, 129, 68). Though bi-directional, thus far this type of

communication does not rely on improving understanding and alignment over time. Bi-

directional dialogue—where communication is dependent on both the mental state of the

communication partner as well as the communication history—could enable more versatile

collaboration.

4.3. Emergent interfaces

The model of signalling described above assumes that the communicating agent (human

or robot) has a correct mental model of the communicative conventions, and this assumed

mental model is typically static. If we are to move towards active non-verbal dialogue

between the human and the machine, novel non-verbal languages will form a foundation

for communication. As described in (165), we can capitalize on our kinematic, muscular,

and neural null space—excess degrees of freedom—to enable communication with assistive

devices without causing excessive increases in cognitive load. The question remains how to

facilitate efficient ‘neural resource allocation’ for a novel human-robot system (165).

As a baseline approach, the languages can be pre-defined and encoded in the robot—the

programmer determines a set of vectors in the neural null space and the human operator

is instructed in their interpretation and trained to generate them. However, how can func-

tionally optimal or near-optimal symbols be specified? And how can the cognitive burden

on the human partner—who is expected to learn the newly introduced vocabulary of non-

intuitive symbols—be reduced? If we are mapping joystick commands to the action space of

a powered wheelchair, there is an intuitive way to specify the mapping of the continuous 2D

control space onto the analogous 2D action space of the robot, making the language easy to

learn. However, if we are using shoulder shrugs to control movements of a robot arm (166)

or sips and puffs to maneuver a wheelchair (56), the mapping is no longer as intuitive, either

to specify or to learn, and may not even be within the motor control capacity of a given

individual.
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Interestingly, experiments show that humans are good at adapting and developing novel

communication protocols (167). For instance, in an experimental setup with an unfamiliar

task (168), people learned how to interpret vibrotactile stimulation without being given a

description of what the stimulation is intended to evoke. In the experiment, the vibrotactile

stimulation was synthesized by an optimal controller (rather than embodying a state mea-

surement) and context was sufficient for participants to infer the meaning of the vibrotactile

signals—subjects successfully learned to use the stimulation as a cue for motor response to

improve performance. Such anecdotal evidence illustrates potential for fluent co-adaptation

of the human-robot pair, on fast time scales and in an individualized manner.

There is a body of work that studies how to enable and facilitate communication emer-

gence in artificial agents (169), with recent studies exploring the role of deep reinforcement

learning (170, 171). These algorithmic approaches to facilitating collaborative development

of non-verbal languages have the potential to form the foundation for humans and robots

to cooperate flexibly (172) and to continuously negotiate their partnership. Enabling the

human-robot pair to jointly develop a communication protocol could reduce the cognitive

burden on the human partner and enable more effective communication protocols that are

uniquely relevant to the human-machine system and to the corresponding task space. How-

ever, unlike the anecdote mentioned above, the deep learning algorithms are data-intensive,

requiring thousands or millions of interactions in order to achieve a non-verbal language.

The opportunity is that these approaches assume naive agents that know little about their

environment or about each other. Incorporating these approaches into collaborative lan-

guage creation between a human and robot is the next step in bringing these theoretical

studies closer to the fast, individualized physical communication needed in human-machine

interaction.

4.4. Datasets & benchmarking

Acquiring human data is costly in terms of time and effort of both the researchers and

study participants, particularly when running experiments with vulnerable populations. As

a result, research studies focus on evaluating novel algorithmic solutions and few carry

out direct comparisons with existing approaches. To accelerate progress, sharing datasets

of benchmark tasks would be beneficial. Although statements of ‘data availability upon

request’ are common, they have been shown to be inefficient (173). This suggests that the

pHRI community needs open datasets and standards that define them, both in terms of

standardized sharing practices and standardized data formats.

Some researchers have already initiated this practice. A recent paper featured a dataset

of kinematic and EMG signals collected during reach-to-grasp movements with online ad-

justments in response to visual perturbations (174). Datasets like this one, which record

human kinematics in response to environmental stimuli, can be used for training robotic

controllers that aim to mimic human behaviors. Similarly, a multi-modal dataset of assis-

tive human-robot collaboration was released, including eye tracking, EEG, EMG, camera

images, joystick signals, and more (175). Although this data cannot substitute for an exper-

imental evaluation of a novel algorithm because of the interactive aspect of online control,

it can enable a baseline comparison of task performance. Sharing data is of particular im-

portance in fields, like pHRI, where active participation of human volunteers is required to

collect data.

While the benefits of sharing data are clear, we will need to create data standards that
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enable wide adoption and reliable benefits. Such standards may require a standarization of

task—this could be similar to clinical assessments of impairment (176) that are well-defined

and typically based on sets of standardized mini tasks that get scored independently and

summed to provide an estimate of motor deficit. The standards will also need to focus on

ease of use—e.g., sharing raw anonymized data along with Jupyter Notebooks for server-

side visualization, or making available code for reproducing statistics used in the original

study. Sharing data can improve benchmarking, facilitate collaborations, and accelerate

progress in designing machines that can effectively interact and communicate with people.

5. Conclusions

In current applications of human-robot collaboration, pHRI is largely avoided or completely

prescribed. The robot is often treated as a passive observer of human intent; in some sce-

narios, it can provide reciprocal feedback. While this type of embodied communication has

enabled successful collaboration within the constraints of a specific task, taking the inter-

action a step further towards embodied dialogue—comprised of a multi-modal exchange of

information based on a mental model of the collaborative partner and including intermit-

tent physical interaction—will enable effective human-robot collaboration in unanticipated

settings. Developing new algorithmic tools to facilitate human-machine dialogue and to

enable emergence of communicative conventions is one of the next frontiers for pHRI. If we

achieve flexible dialogue between the human-robot pair, human-robot collaboration will be

more effective and will become possible in currently impractical applications, such as flex-

ible co-existence in the home or continuous rehabilitation during robot-assisted execution

of daily activities.

FUTURE DIRECTIONS

1. Continual adaptation with safety guarantees: With growing use of data-

driven methods that learn over time, there is an increased need for provable safety

bounds that do not unnecessarily constrain the human-robot interaction or limit

overall performance.

2. Multi-modal dialogue: While many existing solutions rely on the robot to infer

intent from communicative signalling generated by its human partner and some

enable reciprocal signalling from the robot, continual bi-directional communication

could enable more versatile collaboration.

3. Emergent interfaces: While it is difficult to pre-specify a comprehensive multi-

modal vocabulary of symbols, a human-robot pair could gradually expand their

communicative capacity by establishing relevant conventions through interaction.

4. Datasets and benchmarking: With a growing number of algorithmic approaches

and the costliness of comparison-based evaluations, robust benchmarks and reliable

data-sharing could speed up innovation while reducing experimental overhead and

barriers to entry.
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