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Abstract—During a natural disaster such as hurricane, earth-
quake, or fire, robots have the potential to explore vast areas and
provide valuable aid in search & rescue efforts. These scenar-
ios are often high-pressure and time-critical with dynamically-
changing task goals. One limitation to these large scale deploy-
ments is effective human-robot interaction. Prior work shows
that collaboration between one human and one robot benefits
from shared control. Here we evaluate the efficacy of shared
control for human-swarm teaming in an immersive virtual
reality environment. Although there are many human-swarm
interaction paradigms, few are evaluated in high-pressure settings
representative of their intended end use. We have developed
an open-source virtual reality testbed for realistic evaluation of
human-swarm teaming performance under pressure. We conduct
a user study (n=16) comparing four human-swarm paradigms to
a baseline condition with no robotic assistance. Shared control
significantly reduces the number of instructions needed to operate
the robots. While shared control leads to marginally improved
team performance in experienced participants, novices perform
best when the robots are fully autonomous. Our experimental
results suggest that in immersive, high-pressure settings, the
benefits of robotic assistance may depend on how the human
and robots interact and the human operator’s expertise.

Index Terms—human-robot collaboration, human-robot team-
ing, multi-robot system, virtual reality, shared control.

I. INTRODUCTION

The technological capabilities of unmanned aeral vehicles
(UAVs) have increased, spurring interest in multi-robot sys-
tems. The expansion from single UAV deployment to multi-
unmanned aerial systems has the potential to benefit a range
of civilian applications, such as natural disaster support as
well as situational awareness missions. Furthermore, robots
are becoming a more integral part of human teams, acting
in close physical proximity to humans in the field. Testing
novel human-robot interaction algorithms in an experimental
environment that resembles end-user scenarios is crucial for
transferring effects of swarm assistance in controlled trials to
the real world usage.

One of the ways current platforms differ from real-world
scenarios is the absence of stressors like those induced in ap-
plications such as search and rescue missions [1]–[3], firefight-
ing [4]–[6], and during other natural disasters (i.e., hurricanes,
earthquakes, etc.) [7]–[9]. These situations are often time-
critical and hazardous with continuously changing exploration
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goals, necessitating dynamic response and human expertise [3]
as environmental conditions evolve. Many prior studies that
assess human-swarm interactions assume that the operator is
a passive, external observer with no additional involvement
in task completion besides swarm management duties [10]–
[13]. It is unclear if trends discovered in settings where the
human is solely responsible for robot operation will translate
to high-pressure, time-sensitive real world applications.

Here, we exploit virtual reality (VR) as a tool to enable the
evaluation of human interaction with a swarm of three drones
in a simulated environment that mimics features of real-world
applications. While we have implemented end-to-end system
architecture on hardware and demonstrated feasibility of our
control paradigm [14], repeatable real world experimental
testing is resource intensive. In addition to extensive logistics
necessary to address hardware and networking failures for
successful deployment, acquiring physical space usage that
complies with legal airspace regulations and safety require-
ments as well as establishing scientific constraints necessary
for rigorous problem isolation is unattainable without exten-
sive collaboration efforts. A VR platform is a feasible rep-
resentation of many facets of real world usage that addresses
safety and regulatory concerns, while enabling scientific rigour
for human subject studies with reproducible environmental
conditions for every trial. Our open-source VR platform [15]–
[17] performs a similar scientific function as field tests,
enabling benchmarking of recent [18]–[22] and future human-
swarm paradigms experimentally.

A variety of human-swarm algorithms have been proposed
and tested. Common swarm command approaches extend one
action input to a swarm by relying on leader-follower relation-
ship where remaining robots follow in a formation [22]–[27]
or applying the same command input to multiple robots [11],
[12], [19], [27]–[30], sometimes using mixed initiative con-
trol [31]. To address limitations of one-to-many approaches
and increase granularity of user specifications, some allow the
operator to select robot(s) to which a command will apply [11],
[12], [22], [26]. Other approaches bypass this question by
incorporating fully autonomous exploration strategies that do
not require any human input [2], [32], [33]. While fully
autonomous exploration may be necessary when the human
operator is unable to command the swarm, most swarm control
strategies are unable to adapt to a new setting and task goal
without a human input. User inputs result in more informed
swarm exploratory decisions [10], [11], [34].

In this work, we demonstrate the benefits of a distribution
based swarm control paradigm [35] that combines human



Fig. 1. Virtual reality environment. We challenge sixteen participants to complete a timed, treasure-gathering task while being chased by adversaries
(wearing black suits). Participants are assisted by a swarm of three drones that can alert the participant to the locations of possible adversaries on an aerial
minimap. The location of the treasure is indicated by a red “X” and the person’s location by a red pin. Next to the minimap is a life bar and the game time.

input with autonomous exploration for experienced users. Our
findings indicate that domain expertise impacts whether people
can exploit shared control paradigms, with experts taking
advantage of shared control and novices benefiting from fully
autonomous assistance. Participants complete a high pressure
task of collecting treasures while being chased in a VR
environment. Throughout the experiment, three drones provide
varying types and levels of aerial coverage assistance. The
advantages of our paradigm are assessed using measures for
task performance, the amount of interaction with the interface,
and perceived difficulty.

II. EXPERIMENTAL SYSTEM ARCHITECTURE

A. Hardware & Communication

Our experimental setup requires three computers for the
tactile tablet human interface, central computer containing
the swarm controllers, and Unity VR environment shown in
Figure 3. The tablet and VR system are both run on Windows
operating systems with the corresponding specs of Intel core
i9-9980HK CPU 2.40GHz and i7-8700 CPU 3.20GHz respec-
tively. The central computer is a Linux machine with Ubuntu
18.04 operating system and an Intel core i9-9980HK CPU
2.40GHz processor using ROS [36] (Robot Operating System,
version Melodic). The tactile tablet interface and the central
computer communicate over a TCP socket. Communication
between the central computer and the Unity game engine
happens over a ROSbridge websocket developed by Siemens.

B. Virtual Reality Environment

Two environments are created that differ in the building
density, and thus, represent areas of low (high-building den-
sity) and high (low-building density) spatial visibility. Both
environments are built on a 30-by-30 grid, with a 10-by-10
design block of buildings that is repeated to populate the
entire plane. The square grid shape simplifies algorithm im-
plementation. For the low-building density environment, 25%
of the buildings are removed and replaced with realistic city-
like spacious areas such as parks, outdoor dining and public
seating areas. In the high-building density urban environment,
inanimate objects such as various benches, trash containers, as

well as street signs and greenery are added to the rudimentary
block structure for a more realistic urban-like representation.

Participants used an HTC Vive headset and controllers
to maneuver in the virtual reality (VR) environment. The
VR experience is created using Unity 3D software (Unity3D
version 2019.3.0 Alpha 8) with asset behaviour and command
controls coded in C# using Visual Studio (2017 Visual Studio
version 15.9.17). So that the player can always access the
tablet interface on the table in front of them, participants
complete trials while seated in a chair that could not swivel,
primarily using the controllers to move within the VR world.
The walking movement is initiated when a controller’s trigger
button is held with the participants index finger, and the
direction of the forward progress is determined based on
player’s head orientation, as measured by the VR headset.
Users could either gradually change direction of motion by
turning their head in a desired direction, or perform 30 degree
snap turns by pressing buttons on either side of the controller.
When the controller is in the left hand, the left side grip
button initiates a 30 degrees counterclockwise rotation and the
right side grip button initiates a 30 degrees clockwise rotation;
rotation buttons are swapped when the controller is held in
the right hand. The controller is held with the participant’s
non-dominant hand so that the participant’s dominant hand
is available for interaction with the tablet interface. Both the
speed of movement as well as the choice and amount of snap
rotation is capped to limit the potential side effect of VR
motion sickness.

In addition to their direct first-person view of the virtual
world, the minimap shown in Figure 3A is displayed to
the user. It shows the overhead view of the environment as
well as the locations of the target and player at all times.
During control paradigm trials that included swarm assistance,
the minimap also displays the locations of the drones and
temporarily displays the locations of any detected people in
the environment for 3 seconds. In the 30x30 unit environment,
the drones could detect people within a 2x2 unit square area,
but are not given the capability of predicting the future path of
an asset. Furthermore, the drone’s velocity is capped at 1 unit
per second. To aid in spatial orientation in the environment,



the minimap display rotated so that the player’s view always
corresponded to up in the minimap, aligning the player’s
icon upward. Next to the minimap, the player’s health status
(number of lives left) and game time are represented via the
slider bar and the trial’s time counter shown in Figure 1.

C. Tactile Interface for User Commands

To enable players to orient themselves in the virtual reality
and send swarm commands while wearing a headset, partic-
ipants used a TanvasTouch monitor [37]. The TanvasTouch
enables the operator to maintain visual situational awareness,
an important human-swarm interaction factor which is desir-
able in real-world scenarios [38]. Given its capability to render
surface haptics by modulating the friction underneath the
user’s fingertip, we characterized two main features: player’s
location and environmental boundary. Fine textures, result-
ing in larger vibration, represented the former while coarse
textures, resulting in smaller vibrations, outlined the latter.
Their representation was dynamically updated to align with
the orientation of the minimap displayed to the player in the
virtual environment.

Swarm commands are both initiated and completed, sending
a command to respective agent(s), by double-tapping the
screen. They are followed by an auditory feedback, confirming
successful interaction with the tablet as participant’s view
is obscured with the virtual reality headset. The command
input differs based on the control method with users tracing
a desired trajectory (waypoint control) for each drone or
shading the region of exploratory interest (ergodic control)
where transformed coordinates are represented as a distribution
and communicated to the all agents. Waypoint control requires
additional input (i.e. intermediate taps) to specify which drone
will receive the command, with number of taps corresponding
to the agent ID (ID = 1, 2, ..., N where N is the total number
of drones in the swarm).

III. CONTROL PARADIGMS

We compared total of four different control paradigms
against a baseline of no robot assistance, described in the
following subsections.

A. Ergodic Coverage Control

Ergodic coverage control is a distribution based approach
to control multiple robotic agents. Ergodicity is a concept
for converting spatially distributed task information into tem-
porally driven motion. It determines the amount of time a
robotic agent spends in any particular area of the workspace
by generating trajectories that minimize the ergodic metric —
a metric that is used to compare the temporal statistics of the
robots’ response to a desired spatial distribution.

The decentralized implementation of ergodic control was
developed in [35] and implemented on a swarm of three rovers
for the DARPA OFFSET FX-3 Challenge [39]. While each
drone is responsible for full area coverage, it also simultane-
ously communicates its past and future exploration trajectories

to the rest of the swarm — this allows for local coverage prior-
itization while ensuring task completion regardless of number
of active agents. Collective inter-swarm communication is
not necessary but beneficial. Communication enables optimal
energy expenditure because task space coverage is distributed
across the entire swarm. Results from a field test implementa-
tion corroborate a persistent and responsive method of swarm
command regardless of agent availability [14].

1) User: In this mode, ergodic assistance from the swarm
is generated based on coverage needs specified by the user
alone. The tablet interface transmits a set of desired points
on the workspace communicated by the user for the swarm
to prioritize. The spatial distribution ϕu(x)

1 is generated by
assigning the highest priority value of 1 at each of those
points in a discretized workspace and a value of 0.005 at every
other point to generate minimal coverage over the rest of the
workspace.

2) Autonomous: When specifying autonomous information
the aim is to (1) maintain coverage around the operator by
covering blind spots and (2) reallocate priority to a given
region when task-relevant information is discovered2.

Given an operator’s location, an internal visual coverage
model generates a domain O that represents the operator’s
blind spots within a local radius. Respective distribution ϕo(x)
decreases in value along a constant slope as one gets further
from the operator such that the

∑
x ϕo(x) = 1.

When the locations of task-relevant items of interest are
discovered, in this case location of pedestrians within the
environment, they are communicated to each agent in the
network. An evolving dictionary of all the task-relevant infor-
mation is constructed D = {(pi, wi,Σi)}Ni=0 that consists of
a constantly updated list of tuples that represent the locations
p of task-relevant items of interest, an importance weight w,
and variance Σi.

The autonomous information ϕa(x)
1 is generated by param-

eterizing the distribution as a multimodel sum of Gaussians
and combining it with the visual coverage model:

ϕa(x) = 2ϕo(x) +
1

η

∑
D

Ψ(pi, wi)(x) (1)

where η is a normalization factor, and

Ψ(pi, wi)(x) = wi exp

(
−1

2
∥x− pi∥2Σ−1

i

)
. (2)

for all x in which ∥x−pi∥ < Π. The parameter Π is the width
of the region of attraction that can be tuned based on the size
of the task space and the desired granularity.

This representation generates high importance regions over
the operator and any pedestrian (i.e. objects of interest) when
discovered by the autonomy. Because these items of interests
may move over the course of the task, the list of items of

1The resulting distribution is normalized such that the
∑

x ϕ(x) = 1
and represented using 5 Fourier coefficients in each exploratory dimension.
Workspace coordinates are transformed and scaled to a bounding box of size
[0, 1]2 for numerical stability.

2Prior knowledge of the environment is assumed.



interest are constantly updating, and after a period of time (15
seconds), the item is removed from the list until located again.

3) Shared: To represent shared knowledge, a target dis-
tribution ϕs(x)

1 is defined as a linear combination of the
two spatial distributions (the user distribution ϕu(x) and the
autonomous distribution ϕa(x)):

ϕs(x) = wuϕu(x) + waϕa(x),

where wu, wa represent the weights of the individual compo-
nents of the shared control, user commands and autonomous
specification respectively. Weights wu = wa = 1 assign equal
contribution to the shared distribution.

Player Treasure
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Priority
High
Priority

Shared Distribution

ϕs(x)

ϕu(x)

User Distribution

Autonomous Distribution

ϕa(x)

user command

operator's
location

pedestrian's
location

Fig. 2. Coverage Control Paradigms During shared coverage control, each
robot linearly combines distributions provided separately by the user and the
robots. During user and fully autonomous coverage control, the robots only
rely on the distribution provided by the user and the robots, respectively. In
autonomous trials, the robot identifies the operator’s blind spots and prioritizes
regions around detected pedestrians, without knowing treasure location.

B. Waypoint

For the waypoint control method, users specify desired
trajectories for each individual drone in the swarm. The tablet
interface transmits this set of waypoints to the workspace for
each corresponding drone to follow. Prior to beginning the
task and before learning the starting location of the target and
themselves in the virtual world, users are allowed to specify
initial paths for individual drones. This initial input accounts
for uniform distribution area coverage, a starting point from
which trials with ergodic swarm specification begin. The user
can update the desired paths for the individual drones at any
point during the trial.

IV. METHODOLOGY

A. Participants

Healthy adults between ages 18 and 32 were recruited at
Northwestern University (NU). Participants with poor visual
acuity without contacts were excluded from this study due to
difficulty in fitting the VR headset over the glasses. Prior video
game experience over their lifetime, as determined by a pre-
study questionnaire, divided participants group into novices,

with less than 1000 hours of video games, and experts. Eight
novices completed our experiment. For comparable evaluation,
we randomly selected eight of the twenty-four experienced
subjects that participated. In total, we present experimental
data from sixteen participants in our paper.

B. Experimental Protocol

At the beginning of the experiment, each participant signed
a consent form approved by the Northwestern University’s
Institutional Review Board following an explanation of the
study. All participants then completed a training session that
lasted at least one hour, composed of a tutorial series that
familiarized them with the different parts of the experimental
setup and interface. The experiment employs a within-subject
design with five randomized control conditions under two
varying building densities. Thus, participants performed each
of the 10, 5-minute experiment rounds in a randomized order.
After completion of each trial round they were asked to rate
perceived difficulty of the control paradigm tested on a scale
of 1 to 10. Finally, participants would be asked to fill a post-
experiment survey to rank their interface preferences.

C. Experimental Task

The participants played a virtual reality game to (1) collect
as many treasures as possible and (2) avoid getting caught
by adversaries, resulting in loss of one life out of five. The
total score for each five-minute trial is summation of one
point per collected treasure and three points per leftover life.
Treasure location is marked by a red “X” on the minimap.
Reaching this position is equivalent to collecting a treasure.
This initiates spawning of new treasure at the random location,
both in the environment and on the minimap, with set distance
requirement between the consecutive placements. Although
our experimental task emulates real-world stressors, a game-
like description of the task simplified training.

In addition to the player, there are six virtual humanoid
characters, three pedestrians and adversarial agents each, with
predefined patrol paths. While pedestrians are placed on a
continuous trajectory loop for the game duration, adversaries
have a capability to switch into “chasing mode” if the player
enters their field of view. This behavior is active until either
an adversary (1) “loses” sight of a player or (2)“catches” a
player, taking their life away. Consequently, an adversary will
either return to their route’s nearest point or spawn at a random
location along the route, with set separation away and unable
to “see” the player.

The swarm of three drones assists the player by alerting
them of people in the environment. While our scale invariant
control paradigm is applicable to swarms of any size, the
experimental conditions such as available exploration area
and limited scalability of waypoint control constrained the
number of drones. Under assumption of perfect object recog-
nition capability, drones can unmistakably locate humans.
This information is shared with a player in the minimap
display. However, drones cannot perform classification — the
player needs to incorporate this knowledge and reason about



Fig. 3. Experimental System. Three computers for the tactile human interface, swarm control algorithms, and virtual reality environment run our experimental
software. Intercommunication occurs over websockets indicated by colored arrows in (A). The minimap in the Unity environment and TanvasTouch world
representation rotate together — forward translates to up on both displays. Participants navigated in the environment with the HTC Vive and one handheld
controller. They were seated in a chair during the experiment to avoid motion sickness and ensure access to the tactile interface as shown in (B).

possibility of encountering a pedestrians vs. adversaries as they
navigate en route to the treasure.

D. Statistical Analysis

For the number of interface interactions, repeated measures
ANOVAs with within-participant factors for control paradigm
and building density and a between-participant factor for ex-
pertise (experienced vs. novice) is performed in R (α = 0.05).
Assumptions are tested using Shapiro-Wilk test for normality
and Mauchly’s sphericity test. To help determine which control
paradigm is different from the rest, post-hoc, pairwise, and
two-way t-tests with a Bonferroni correction for multiple
comparisons is performed.

Perceived difficulty rating survey was collected from ques-
tionnaire administered at the end of the experiment. Given that
data is not normally distributed according to the Shapiro-Wilk
test for normality and following standard practices in human-
robot interaction studies [40], we use the non-parametric rank
test to test for statistical significance. The alternatives to an
ANOVA and a t-test used are respectively the Friedman Test
with blocks for “participant” and the Wilcoxon Signed Rank
Sum Test.

The final score measure had an implicit cap on performance
due to the authors setting the initial number of lives and the
player’s speed, thereby restricting the number of targets that
could be obtained. Therefore, we find that the performance
data is not normally distributed according to the Shapiro-Wilk
test for normality. Alternatively, we fit the data to a generalized
linear mixed-effects model (GLM) using the glmer function
in R, with the experimental factors as predictors. We chose to

parameterize the data using a Poisson distribution because a
participant’s final score is comprised of the number of times
particular events happen during a particular trial (e.g. a life
is lost or a target is acquired). After fitting GLMs to our
data, we use Wald chi-square tests to evaluate for statistical
significance; similar to an ANOVA, the Wald chi-square test
evaluates whether a given factor explains some of the variation
in an outcome measure. Post-hoc Tukey tests for multiple
comparisons are performed to look for significant differences
between different control paradigm pairs.

V. RESULTS

As part of the demographic intake form, participants es-
timated number of hours playing video games over their
lifetime. Data demonstrates a natural split in expertise around
1000 hours with no participants having between 580 and
1000 hours of video game experience. For the purpose of
analysis, the participants are split into two groups: 8 ex-
perienced participants with ≥ 1000 hours of video game
experience and 8 novice participants with < 1000 hours of
video game experience. In particular, three different measures
of performance are examined across novice and experienced
participants: (1) overall game performance, (2) number of
interface interactions, and (3) perceived difficulty rating.

A. Overall performance

The primary metric for evaluating participants’ overall
performance is the final game score for each experimental
condition. Participants were asked to maximize final game
score — a predefined summation of the number of lives
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Fig. 4. Game performance results. Final game score, a formula provided to participants prior to data collection, is a summation of the number of treasures
collected and three times the number of leftover lives. The novices perform better when more assistance is provided (A) while shared coverage control
modestly improves game performance in experts (B). The asterisk indicates statistical significance (∗p < 0.05) from pairwise t-tests with a Tukey correction.

remaining and treasures (score = 3Nlives + Ntreasures) —
which was explicitly provided to them.

The statistical analyses reveal that expertise is a statistically
significant factor (χ2(4) = 7.00, p = 8.12e−3) with experts
scoring higher than novices. There is an interaction effect
between control paradigm and expertise (χ2(4) = 8.82,
p = 1.73e−2) indicating that control paradigm affects
experienced and novice participants differently. Therefore, we
separate experienced and novice participants.

Novice Participants. Novices perform worse using shared
coverage control than either user coverage control or
autonomous coverage control but without significant difference
(Figure 4A). However, they scored significantly better
using autonomous coverage control than waypoint control
(p = 4.15e−2). Control paradigm does not significantly affect
game performance (χ2(4) = 7.24, p = 1.24e−1).

Experienced Participants. Experienced Participants have
modest performance improvement using shared coverage con-
trol (Figure 4B). Control paradigm has a marginally significant
effect on game performance (χ2(4) = 8.59, p = 7.19e−2).

B. Number of Interface Interactions
Control paradigm has a statistically significant effect on the

number of commands provided by participants during the five
minute trial (F (2, 26) = 15.59, p = 3.55e−5). The post-hoc
pairwise t-test shows the greatest number of commands are
given during control paradigms in which the drones solely rely
on information from the user (Figure 5), with shared coverage
control having significantly lower input count compared to
both user coverage control (p = 1.59e−2) and waypoint
control (p = 1.45e−6). The difference between the number
of inputs during waypoint control and user coverage control
trials is marginally significant (p = 5.13e−2) with participants
providing more inputs during the waypoint control.
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Fig. 5. Interface interactions results. Average number of commands given
by users (n=16) during a five minute trial. The asterisks indicate statistical
significance with ∗p < 0.05 and ∗∗∗p < 0.01.

Since there is no significant interaction effect between
expertise and control paradigm (F (2, 26) = 0.206, p =
8.52e−1), we present data for all participants combined.
Experienced participants provide marginally more commands
than novices (F (1, 13) = 3.94, p = 6.84e−2). The waypoint
control paradigm trials include an additional three commands,
one given to each drone, before the start of the trial. This is
not necessary for the user and shared coverage control trials
because the drones began each trial by following a uniform
distribution.

C. Perceived Difficulty Rating

After completion of each experimental trial, participants in-
dependently rated the trial’s difficulty. Trials were numerically
ordered as “Trial 1,” “Trial 2,”...“Trial 10” and scored on a
scale from 1 to 10 with 1 indicating the trial is difficult and
10 indicating the trial is easy. Given that perceived difficulty



rating trend holds for both novice and experienced participants,
the results are combined. While the coverage trials are overall
perceived easier to use (Figure 6), only the shared coverage
control is significantly easier (p = 1.59e−2) compared to
the no swarm experimental condition based on the Wilcoxon
Signed Rank Sum Test. Furthermore, the Friedman test showed
that control paradigm is statistically significant (χ2(4) = 9.84,
p = 4.31e−2) for the high building density and marginally
significant (χ2(4) = 9.15, p = 5.73e−2) for the low building
density environment.
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Fig. 6. Participants perceived coverage control trials as easier. Partic-
ipants rated the trial’s difficulty on a scale 1 − 10, with increase in score
corresponding to decrease in difficulty. Error bars indicate standard error.
Asterisks indicate statistical significance with ∗p ≤ 0.05.

Our post-experiment survey results on control methods
indicates that participants overwhelmingly (93.3%) preferred
specifying control commands on the table via area shading —
an essential component of the user and shared ergodic control
paradigms. Only one novice (6.7%) preferred task ergodic trial
instances that required no control input at all.

VI. DISCUSSION

A. Benefits of Shared Coverage Control

Directing the swarm’s response by distribution specification
in ergodic coverage control paradigms enables scalability – a
single user input is sufficient to generate trajectories for a
swarm of arbitrary size [41]. In contrast, waypoint control
commands grow proportional to the swarm size. These dif-
ferences are reflected in the interaction results (Figure 5) with
further implication for quality of commands and higher density
of information conveyed through coverage control. Shared
coverage control further reduces the number of instructions
necessary to operate the swarm compared to user coverage
control, indicating participants are relying on the autonomy.

Regardless of whether the user is providing swarm com-
mands at a given moment, the autonomy side of the shared
control is persistently updating the swarm’s exploration goals
in response to evolving task conditions. This characteristic of
ergodic coverage, as demonstrated in previous field tests [14],

allows the operator to fully allocate their resources to a
more pressing task at hand (e.g., running away from an
adversary) without hindering swarm exploration. Thus, the
swarm continuously provides the operator with information
about the environment based on aerial coverage.

Continuous support is reflected in interface interaction re-
sults (Figure 5) showing that participants provide fewer swarm
commands using the shared control paradigm. By relying on
the autonomy, experts exploit the incorporation of autonomous
knowledge in shared coverage control to supplement swarm
commands. Thus, participants can shift their focus from oper-
ating the interface to more strategically important aspects of
the game requiring critical thinking (e.g., obtaining treasures),
consequently affecting team performance.

A final benefit of shared coverage control is that it enables
the human and the autonomy to both contribute to the robots’
exploration goals. Participants often choose to specify the
desired regions of exploration as areas between themselves and
their goal (i.e., the treasure). The autonomy does not know the
participant’s goal nor does it have any information about the
participant’s future path but can quickly generate a distribution
that prioritizes locations close to the operator and focuses
on people detection. The target distribution during shared
coverage control leverages both the human and autonomy’s
knowledge about where to find relevant information, possibly
explaining improved game performance in experts.

B. Perspective on Novice Participants

Regardless of their exposure to video games, all participants
received the same training and exposure to the experimental
setup. However, many video games require players to quickly
reason about the uncertain information and autonomous char-
acter behaviour under pressure. Prior experience may be
relevant to the experimental task, translating to a better under-
standing of how to maneuver in the game-like environment.
It is not clear how much novices’ performance using shared
coverage control would improve with additional practice as
well as deeper understanding of autonomy’s role.

VII. CONCLUSIONS AND FUTURE WORK

This work evaluates multiple approaches to generating
swarm control that incorporate user input and task specifica-
tion against the baseline — no task assistance. A stressful,
dynamically-changing and time-sensitive experimental task
was designed to capture characteristics of real-world situations
an operator may face. The results of the human subject
study demonstrate that the importance of interaction type
in a human-robot systems is skill dependant. In particular,
modest performance benefits arise for expert participants from
expressing task specific intent via distributions in a shared
control setting that provides persistent autonomous assistance
towards goal completion. The novice participants with less
video games experience perform better in a fully autonomous
control setting. For both expert and novice participants, shared
coverage control requires significantly fewer swarm instruc-



tions from the operator than waypoint control, and is preferred
method for command control specification for nearly all.

Further research questions in human-swarm teaming are
apparent and now attainable. While the initial results are
encouraging, a greater number of participants would allow us
to understand effects of control paradigms with more certainty.
Expanding both training and testing period over multiple
session could reveal effects of autonomy levels, particularly
for novice users with little to no prior task related experience.
Lastly, evaluating how cognitively expensive different swarm
control paradigms are on the user’s mental state could be used
to quantify their operational cost.
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