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Learning from Sparse Demonstrations

Wanxin Jin, Todd D. Murphey, Dana Kuli¢, Neta Ezer, Shaoshuai Mou

Abstract—This paper develops the method of Continuous Pon-
tryagin Differentiable Programming (Continuous PDP), which
enables a robot to learn an objective function from a few
sparsely demonstrated keyframes. The keyframes, labeled with
some time stamps, are the desired task-space outputs, which a
robot is expected to follow sequentially. The time stamps of the
keyframes can be different from the time of the robot’s actual
execution. The method jointly finds an objective function and a
time-warping function such that the robot’s resulting trajectory
sequentially follows the keyframes with minimal discrepancy
loss. The Continuous PDP minimizes the discrepancy loss using
projected gradient descent, by efficiently solving the gradient of
the robot trajectory with respect to the unknown parameters.
The method is first evaluated on a simulated robot arm and
then applied to a 6-DoF quadrotor to learn an objective function
for motion planning in unmodeled environments. The results
show the efficiency of the method, its ability to handle time
misalignment between keyframes and robot execution, and the
generalization of objective learning into unseen motion condi-
tions.

Index Terms—Learning from demonstrations, Pontryagin Dif-
ferentiable Programming (PDP), inverse reinforcement learning,
inverse optimal control, motion planning, optimal control.

I. INTRODUCTION

HE appeal of learning from demonstrations (LfD) lies in

its capability to facilitate robot programming by simply
providing demonstrations. It circumvents the need for expertise
of modeling and control design, empowering non-experts to
program robots as needed [1]. LfD has been successfully ap-
plied manufacturing [2], assistive robots [3], and autonomous
vehicles [4].

LfD can be broadly categorized into two classes based on
what to learn from demonstrations. The first branch of LfD
focuses on learning policies [5]-[9], which maps directly from
robot states, environment, or raw observation data to robot ac-
tions. While effective in many situations, policy learning typ-
ically requires a considerable amount of demonstration data,
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We allow the demonstrated keyframe time ¢; to be different from robot execution time.

Fig. 1: Illustration of learning from sparsely demonstrated
keyframes. Each keyframe is a desired output with a time
stamp. We aim to learn an objective function from keyframes
such that the robot motion (blue line) follows these keyframes.
At first glance, it may seem a problem of ‘curve fitting’ (i.e.,
finding a kinematic path). However, a key difference of our
problem is that learning an objective function enables a robot
to generalize new motion in unseen situations, such as given a
new initial condition (green dashed line). A key feature of the
proposed method is that in addition to learning an objective
function, we jointly learn a time-warping function to account
for the misalignment between the keyframe time ¢; and robot
actual execution time (due to dynamics constraint).

and the learned policy may generalize poorly to unseen tasks
[1]. To alleviate this, the second line of LfD focuses on learn-
ing an objective (cost or reward) function from demonstrations
[10], from which the policies or trajectories are derived. These
methods assume the optimality of demonstrations and use
inverse reinforcement learning (IRL) [11] or inverse optimal
control (IOC) [12] to estimate objective functions. Since an
objective function is a compact and high-level representation
of a task and control principle, learning objective functions has
shown an advantage over policy imitation in terms of better
generalization [13] and relatively lower data complexity [10].
Despite appealing, objective learning based LfD inherits some
limitations from existing IOC/IRL methods ' [14]-[19].
First, existing IOC/IRL methods cannot handle the time
misalignment between demonstrations and actual execution of
a robot [20]. For instance, the speed of demonstrations maybe
not be achievable by a robot, as the robot is actuated by weak
motors and cannot move as fast as the demonstrations. Second,
existing methods usually require the demonstrations of com-
plete motion trajectories or at least a continuous segment of
states-inputs, making it challenging in data collection for high-
dimensional and long-horizon tasks. Third, existing IOC/IRL
may not be efficient when handling high-dimensional contin-

IThe literature review here mainly focuses on model-based IRL methods.
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uous systems/tasks or learning complex objective functions,
such as deep neural network objective functions.

This paper develops the Continuous Pontryagin Differen-
tiable Programming method, abbreviated as the Continuous
PDP, to address the existing challenges. The method requires
only a few keyframes demonstrated at sparse time instances,
and it learns both an objective function and a time-warping
function, which accounts for the time misalignment between
demonstration and robot actual execution. The Continuous
PDP minimizes a discrepancy loss between the robot re-
produced motion and the given keyframes via the projected
gradient descent. This is done by efficiently computing the
analytical gradient of the robot trajectory with respect to tun-
able parameters in the objective and time-warping functions.
The highlights of the Continuous PDP are listed as follows.

(1) It requires as input the keyframe demonstrations, defined
as a small number of sparse desired task-space outputs,
which the robot is expected to follow sequentially, as in
Fig. 1.

As the time stamp of each keyframe may not correctly
reflect the time of robot execution, in addition to learning
an objective function, the method jointly searches for
a time-warping function, which accounts for the time
misalignment between keyframes and robot execution.
The method can efficiently handle continuous-time high-
dimensional systems and accepts any differentiable pa-
rameterization of objective functions.

(i)

(iii)

A. Related Work

Since the theme of this paper belongs to the category of
objective learning, in the following we mainly review IOC/IRL
methods. For other types of LfD, e.g., learning policies, please
refer to the recent surveys [1], [21].

1) Classic Strategies in IOC/IRL: Existing IOC/IRL meth-
ods can be categorized into two classes. The first class adopts a
bi-level framework, where an objective function is updated on
an outer level while the corresponding reinforcement learning
(or optimal control) problem is solved on an inner level. Dif-
ferent methods in this class use different strategies to update
an objective function. Representative work includes feature-
matching IRL [10], where an objective function is updated to
match the feature values of the reproduced trajectory with the
ones of the demonstrations, max-margin IRL [14], [22], where
an objective function is updated by maximizing the margin
between the objective value of the reproduced trajectory and
that of demonstrations, and max-entropy IRL [15], which
finds an objective function such that the trajectory distribution
has maximum entropy while subject to the empirical feature
values. The second class of IOC/IRL [17]-[19], [23], [24]
directly solves for objective function parameters by establish-
ing the optimality conditions, such as KKT conditions [25] or
Pontryagin’s Maximum Principle [26], [27]. The key idea is
that a demonstration is assumed to be optimal and thus must
satisfy the optimality condition. By directly minimizing the
violation of the optimality conditions by demonstration data,
one can compute the objective function parameters.

2) 10C with Trajectory Loss: One type of bi-level IOC/IRL
formulation also uses a trajectory loss as its learning criterion.
A trajectory loss is to evaluate the discrepancy between the
demonstrations and the robot motion reproduced by the ob-
jective function estimate. For example, [16] and [28] develop
a bi-level IOC approach which learns an objective function
from human locomotion data. In their work, the trajectory loss
is minimized via a derivative-free technique [29], where the
key is to approximate the loss using a quadratic function. The
approach requires solving optimal control problems multiple
times at each update, thus is computationally expensive. Fur-
ther, the derivative-free methods are known to be challenging
for the problem of large size [30]. In [31], the authors
convert a bi-level IOC to a plain optimization by replacing
the lower-level optimal control problem with its optimality
conditions (the Pontryagin’s Maximum Principle). Although
the converted plain optimization can be solved by an off-
the-shelf nonlinear optimization solver, the decision variables
of the plain optimization include both objective parameters
and system trajectory (and dual variables); thus dramatically
increasing the size of the optimization. Besides, both lines of
methods have not considered the time misalignment between
demonstrations and robot execution.

Compared to the derivative-free methods in [16], [28], the
proposed Continuous PDP solves IOC/IRL by directly com-
puting the analytical gradient of a trajectory loss with respect
to tunable parameters in an objective function and a time-
warping function, thus is capable of solving high-dimensional
continuous tasks. Compared to [31], the Continuous PDP
maintains the bi-level hierarchy of the problem and solves
I0C by differentiating through the inner-level optimal control
system. Maintaining a bi-level structure enables us to treat
the outer and inner level subproblems separately, avoiding the
mixed treatment that can lead to a dramatic increase in the size
of optimization. In Section V-E3, we provide the comparison
between the Continuous PDP and [31].

3) IOC/IRL via differentiable through inner-level optimiza-
tion: The recent work focuses on solving bi-level IOC/IRL
by differentiating through inner-level optimization. E.g., [32]
learns a cost function from visual demonstrations by differenti-
ating through the inner-level MPC. Specifically, those methods
treat the inner-level optimization as an unrolling computational
graph of repetitively applying gradient descent, such that the
automatic differentiation [33] can be applied. However, as
shown in [34] and [35], auto-differentiating an ‘unrolling’
graph has the following drawback: (i) it needs to store all
intermediate results along with the graph, thus is memory-
expensive; and (ii) the accuracy of the unrolling differentiation
depends on the length of the ‘unrolled’ graph, thus facing a
trade-off between complexity and accuracy. In contrast, the
Continuous PDP computes the gradient directly on the optimal
trajectory produced from the inner level, without memorizing
how this inner-level solution is obtained. Thus, there are no
above challenges for the proposed method.

4) Time-warping: Using time-warping functions to model
the time misalignment between two temporal sequences has
been extensively studied in signal processing [36] and pattern
recognition [37]. In [38], [39], time-warping is used in LfD
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for learning and producing robot trajectories. In [20], a time-
warping function between robot and demonstrator is learned
for optimal tracking. All the above methods focus on learning
policy or trajectory models instead of objective functions. For
time-misalignment in IOC/IRL, a main technical challenge is
how to incorporate the search of a time-warping function into
the objective learning process. The Continuous PDP addresses
this challenge by finding an objective function and a time-
warping function simultaneously using gradient descent.

5) Incomplete Trajectory or Sparse Waypoints: Some meth-
ods focus on learning from incomplete trajectories. In [23],
[40], the authors develop a method to solve IOC with trajectory
segments. It requires the length of a segment to satisfy a re-
covery condition and cannot directly learn from sparse points.
[41], [42] consider learning from a set of sparse waypoints, but
they learn a kinematic model instead of an objective function.
Compared to those methods, the proposed method learns an
objective function and a time-warping function from a small
set of time-stamped sparse keyframes, i.e., a few desired task-
space outputs. In Section V-E1, we will provide a comparison
with [41].

6) Sensitivity Analysis and Continuous PDP: The idea of
the Continuous PDP is similar to the well-known sensitivity
analysis [43], [44] in nonlinear optimization, where the KKT
conditions are differentiated to obtain the gradient of a solution
with respect to the objective function parameters. In sensitivity
analysis, it requires to compute the inverse of the Hessian
matrix in order to apply the well-known implicit function
theorem [45]. If trying to apply the sensitivity analysis to a
continuous-time optimal control problem in our formulation,
we may face the following challenge. Since the optimality
condition of a continuous-time optimal control problem is
Pontryagin’s Maximum Principle [26], which is a set of ODE
equations. To apply the sensitivity analysis, one would need
to first discretize the continuous-time system, and this will
lead to a Hessian matrix of the size at least A% X Alt (T is
the time horizon, and At is the discretization interval); this
will cause huge computation cost when taking its inverse (the
complexity is at least O((Z;)?)). The reason why we do not
formulate the problem in discrete-time in the first place is that
otherwise, learning a discrete time-warping function will lead
the problem to a mixed-integer optimization, which becomes
more challenging to attack.

Compared to sensitivity analysis, the Continuous PDP has
the following new technical aspects. First, it directly differen-
tiates the ODE equations in Pontryagin’s Maximum Principle
[26], producing Differential Pontryagin’s Maximum Principle;
and second, importantly, it develops Riccati-type equations
to solve the Differential Pontryagin’s Maximum Principle to
obtain the trajectory gradient (Lemma 1). The complexity of
this process is only O(T'). The Continuous PDP is an extension
of our previous work Pontryagin Differentiable Programming
(PDP) [34], [46] into the continuous-time systems. For a more
detailed comparison between PDP and the sensitivity analysis,
we refer the reader to [34], [46].

The following paper is organized as follows: Section II sets
up the problem. Section III reformulates the problem using
time-warping techniques. Section IV proposes the Continuous

PDP method. Experiments are given in Sections V and VI.
Section VII presents discussion, and Section VIII draws con-
clusions.

II. PROBLEM FORMULATION

Consider a robot with the following continuous dynamics:
&(t) = f((t), u(t)) (1)

where x(t) € R™ is the robot state; u(t) € R™ is the control
input; vector function f : R™ x R™ +— R" is assumed to be
twice-differentiable, and ¢ € [0, 00) is time. Suppose the robot
motion over a time horizon ¢y > 0 is controlled by minimizing
the following parameterized cost function:

with  2(0),

ty
Ip) = [ clalt) ult).p)it + halty).p) @
0
where c(x,u,p) and h(x,p) are the running and final costs,
respectively, both of which are assumed twice-differentiable;
and p € R" is a tunable parameter vector. For a fixed choice
of p, the robot produces a trajectory of states and inputs

§p ={&p(1) [0 <t <t} with &,(t) = {ap(t), up(t)}. (3)

which minimizes (2) subject to (1). The subscript in Ep means
that the trajectory implicitly depends on p.

The goal of learning from demonstrations is to estimate
the cost function parameter p from the given demonstrations
by a user (usually a human). Suppose that a user provides
demonstrations in a task space (e.g., Cartesian space or vision
measurement), which is a known differentiable mapping of the
robot state-input pair:

4)

where g : R" x R™ — R defines a mapping from the robot
state-input to a task output y € R°. The user’s demonstrations
include (i) an expected time horizon 7', and (ii) a number of
N keyframes, each of which is a desired output labeled with
an expected time stamp 7;, denoted as

y=g(z,u),

&)

Here, y*(7;) is the ith keyframe demonstrated by the user,
and 7; is the expected time stamp at which the user wants the
robot to reach y*(7;). The keyframe time {7y, 72,..., 7x } can
be sparsely located within range [0, 7. As the user can freely
choose IV and 7; relative to the expected horizon 7', we call D
as keyframes. As shown later in experiments, N can be small.

Note that both the expected horizon 7' and the expected
time stamps 7; are in the time axis of the user’s demonstration.
This demonstration time axis may not be identical to the actual
time axis of robot execution; in other words, 7' and 7; may
not be achievable by the robot. For example, when the robot is
actuated by a weak servo motor, its motion inherently cannot
meet 7;. To accommodate the time misalignment between the
robot execution and keyframes, we introduce a time warping
function:

D={y*(n)|m €[0,T),i=1,2,--- ,N}.

t=w(r), (6)
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which maps from keyframe time 7 to robot time ¢. We make
the following reasonable assumption: w is strictly increasing
in the range [0, T'], continuously differentiable, and w(0) = 0.

Given the keyframes D, the problem of interest is to find
cost function parameter p and a time-warping function w(-)
such that the task discrepancy loss is minimized:

min Y 1 (), (€, (w(r)))). )

where [(a, b) is a given differentiable scalar function defined
in the task space which quantifies a distance metric between
vectors a and b, e.g., [(a,b) = |la — b||?>. Minimizing (7)
means that we want the robot to find cost function parameter
p and a time-warping function w(+), such that its reproduced
trajectory gets as close to the given keyframes as possible.

III. PROBLEM REFORMULATION BASED ON
TIME-WARPING TECHNIQUES

In this section, we re-formulate the problem of interest using
the time-warping techniques.

A. Parametric Time Warping Function

To facilitate learning of an unknown time-warping function,
we first parameterize the time-warping function. Recall that a
differentiable time-warping function w(7) satisfies w(0) = 0
and is strictly increasing in the range [0, 7], i.e

(1) = dl:;(:)

for all 7 € [0, T]. We use a polynomial time-warping function:

t=wp(r) =Y B ©)

where B = [B1, 52, -+ ,Bs]" € R* is the coefficient vector.
Since wg(0) = 0, there is no constant (zero-order) term in (9)
(i-e., Bo = 0). Due to the requirement of dwg/dr = vg(r) > 0
for all 7 € [0, T, one can obtain a feasible set, denoted as (g,
such that ddeT(T) > 0 for all 7 € [0,T] if B € Qg. The choice
of polynomial degree s will decide the representation power
of (8): larger s means that wg(7) can represent more complex
time warping curves. Note that although we use a polynomial
time-warping function, the method in this paper allows for
more general parameterization of a time-warping function, as
long as it is differentiable. This paper uses polynomial time-
warping functions due to the simplicity for implementation.

>0 ®)

B. Equivalent Formulation by Time Warping

Substituting the parametric time-warping function wg in (9)
into both the robot dynamics (1) and cost function (2), we
obtain the following time-warped dynamics

d d .
= = S8 f(w(wp(r), ulwp(r)  with 2(0),  (10)
and the time-warped cost function
T
d
TpB) = | GPep(alwa(r))ulws(r)dr

Here, the left side of (10) is due to chain rule: (T = :cd—, and
the time horizon satisfies ¢; = wg(T") (note that T is specified

by the demonstrator). For notation simplicity, we write dwﬁ =

vp(7), 2(w(7)) = (1), w(w(r)) = u(r), and G2 = fi:( )-
Then, the above time-warped dynamics (10) and time-warped
cost function (11) are rewritten as:

(1) = va(7) f (2(7), u(r))

with x(0) (12a)

and

T
J(p, B)= / vp(r)e(@(r), u(r), p)dr + h(z(T),p), (12b)

respectively. We pack the tunable cost parameter p and time-
warping parameter 3 together as

0=[p".a8""
For a fixed 0, the optimal trajectory from solving the above
time-warped optimal control system (12) is rewritten as

Eog={&e(7) |0<T<T},
with &€4(7) = {ze(7), us

now be defined as

e R, (13)

(14)

(7)}. The discrepancy loss (7) can

N
=2 v
Minimizing (15) over 0 is a process of simultaneously search-
ing for a cost function J(p) and time-warping function wg(7).

In sum, the problem of interest is now reformulated as the
following optimization

in L D
min L(&, D)
s.t. &g is from the optimal control system (12).

Here © defines a feasible set of 8, ® = R" x Qg. (16) is a
bi-level optimization, where the upper level is to minimize a
discrepancy loss between the keyframes D and the reproduced
time-warped trajectory &g, and the inner level is to generate
such &, by solving the optimal control problem (12). In
the next section, we will develop the Continuous Pontryagin
Differentiable Programming to efficiently solve (16).

Eea

L9(&e(m)). as)

(16)

IV. CONTINUOUS PONTRYAGIN DIFFERENTIABLE
PROGRAMMING

A. Algorithm Overview

To solve the optimization (16), we start with an arbitrary
initial guess Oy € O, and apply the gradient descent

dL ) (17

where k is the iteration index; 7y is the step size (or learning
rate); Projg is a projection operator to enforce the feasibility
of 8, in O, e.g., Projg(0) = argmin,ce||@— z||; and 4k ie
denotes the gradient of the loss (15) directly with respect to
0 evaluated at 0. Applying the chain rule, we have

Z 9o (i)
850 i) o, (1) 00

0111 = Projg (9k —Mk—p

; (18)

0
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where % is the gradient of the single keyframe

€ek(7i)

(v (7). 9(&s(r)

time-7; trajectory point £, (7;), evaluated at value &g, (7;), and

086 (7i)
a0

loss [ = ) in (15) with respect to the

g, is the gradient of the time-7; trajectory point £g (12),
with respect to @, evaluated at value 6. From (17) and (18),
we can draw the computational diagram in Fig. 2. Fig. 2 shows
that at each iteration k, the update of 6}, includes the following
three steps:

Step 1: Obtain the optimal trajectory &g, by solving the
optimal control (trajectory optimization) problem (12)

with current 0},;

Step 2: Compute the gradient

0€q (T i) 1€a, ()’
. nr 08e(Ti) | .
Step 3: Compute the gradient =55~ 0,
dée(m)
a6 Differential Pontryagin’s o dl

Maximum Principle (Lemma 1)

d&e(7)

trajectory I L6 D) ]

Loss

Chain rule

o _dL Optimal control system in (12)
[9"“ =y (9" KT |ek ) parameterized by 6

Update 6

Fig. 2: Computational diagram of the Continuous Pontryagin
Differentiable Programming.

The interpretation of the above procedure is straightforward.
At each update k, the first step is to use the current parameter
0}, to compute the current optimal trajectory £g, by solving
the optimal control problem (12). In Step 2 and Step 3,
the gradient of the loss with respect to the trajectory point,

ot 0, (1)’ and the gradient of the trajectory point with

359 (73)
respect to parameters, dgggl) , are computed, respectively.

In Step 4, the total gradient ofk the loss with respect to the
parameter, d9 ‘9 , is assembled via chain rule (18), and then
used to update 0, by the projected gradient descent (17).

In Step 1, the optimal trajectory &g, can be solved by
available optimal control (trajectory optimization) solvers such
as iLQR [47], DDP [48], Casadi [49], GPOPS [50], etc.
In Step 2, the gradient 5%~ can be readily computed by
directly differentiating the glven loss (15). The main challenge,
however, lies in Step 3, i.e., computing %9 ] 0.’ the gradient
of the optimal trajectory &£, with respect to the parameter 0
of the optimal control system (12). In what follows, we will
efficiently solve it by proposing the technique of Differential
Pontryagin’s Maximum Principle. For notation simplicity, we
suppress the iteration index k below.

B. Differential Pontryagin’s Maximum Principle

In this section, we focus on efficiently solving the analytical
gradient of a trajectory of a continuous-time optimal control
system with respect to the system parameter. We assume that
the resulting optimal trajectory &g in (14) is differentiable with
respect to the system parameter 6. This assumption is satisfied

if &y satisfies the second-order sufficient condition, that is, 8
is a locally unique optimal trajectory (see Lemma 1 in [46]).
Both our later experiments and previous empirical results [34],
[51] show that the differentiability condition is very mild. For
more detailed results about the differentiability for a general
optimal control system with respect to system parameters, we
refer the reader to [46].

Consider an optimal trajectory &g in (14) produced by an
optimal control system (12) with a fixed 8. The Pontryagin’s
Maximum Principle [26] states a set of ODE conditions that £,
must satisfy. To present the Pontryagin’s Maximum Principle,
define the Hamiltonian [52]:

H(7) = va(7)cp(x(T), u(T))
+ )\(T)Tvg('r)f(:c(T), u(7)), (19)

where A(7) € R is called the costate, 0 < 7 < T'. According

to the Pontryagin’s Maximum Principle [26], there exists
{Xeo(T)|0<T<T}, (20)

associated with the optimal trajectory &4 in (14), such that the
following ODE equations hold [26]:

o(r) = 23 (wo(r). o(r): Aa(), el
“o(r) = T (mo(r), wo(r). Ao(r)), Q1)
0= 2 (o (r), uo(7), Aolr)), a1
2o(T) = 22 (y(1)) and wo(0) = 2(0).  1a)

Here, (21a) is the dynamics; (21b) is the costate ODE; (21c¢)
is the input ODE, and (21d) is the boundary conditions. Given
&y, one can always solve the corresponding {Ag(7) |0 < 7 <
T} by integrating the costate ODE in (21b) backward in time
with the boundary condition in (21d).

Recall that our technical challenge is to obtain the gradient
65" . Towards this goal, we differentiate the above Pontryagin’s
Max1mum Principle in (21) on both sides with respect to
the system parameter 6, yielding the following Differential
Pontryagin’s Maximum Principle:

0% - P22 LoD B, o)

P () 220 1, () 2
+ F( )T% + Hge(T), (22b)

0 = Huu(r) o0+ Ho(r)
PGP+ Huelr), (220

O T) = HaaT) 52 + Hoe(T)
and %(O) =0. (224d)
The coefficient matrices in the above (22) are defined as

E (T):afzgxg’ :af:gm’ T):aige’ (230
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O*H O*H O*H
sz(ﬂ-m: HM(T)_amgaug’ Hze(T)—m, (23b)
0°H 0°H
—_g’ _ _
Hyu (T)=H o (7), Huu(r)—(aue)Q, ue(r)—aueae, (23¢)
_ 9%h, _ 9h,
HM(T)_W7 Hoo(T)= 2. (23d)

Once we obtain the optimal trajectory &£, and the associated
costate trajectory {Ag(7)|0 < 7 < T} in (20), all the above
coefficient matrices in (23) are known and their computation is
straightforward. Given the Differential Pontryagin’s Maximum
Principle in (22), one can observe that these ODEs have a
similar form to the original Pontryagin’s Maximum Principle
in (21). Thus, if one thinks of 86” as a new state variable, 83"09
as a new control variable, and %‘9" as a new costate variable,
then the Differential Pontryagin’s Maximum Principle in (22)
can be thought of as the Pontryagin’s Maximum Principle of
a new LQR system, as investigated in [34], [46]. By deriving
the equivalent Raccati-type equations, the lemma below gives
an efficient way to compute the trajectory gradient %éﬂ
0 <7 <T, from the above (22).

bl

Lemma 1. If H,,(7) in (23c) is invertible for all 0 < 7 < T,
define the following differential equations for matrix variables
P(r) € R"™™ and W(r) € R"*(r+e);

—P =Q(7)+ A(r)TP + PA(r) — PR(1)P, (24a)
W = PR(r)W — A(r)"W — PM(7) — N(7),  (24b)
with P(T) = H,,(T) and W(T) = H,.(T). Here,

A(1) = F = G(Hyu) ' Hua, (25a)

R(r) = G(Hy.)'G, (25b)

M(r) = E — G(Hyu) ™' Hye, (25¢)

Q(7) = Hyw — Hpu(Hu) ™ Hug, (25d)

N(7) = Hye — Hyu(Huu) ™" Hue, (25¢)

are all known given (23). The gradient of the optimal trajec-
tory &g, denoted as

98o(T) _ Oz Oue

is obtained by integrating the following ODEs up to T:
8“0 _ -1 awg
67_ - (H’U«U(T)) (Hux(T)%(T) + Hue(T)

FGETW() + G PO T2 ), T

d 8:139

— | —= |=F

dr ( 00 )
with 05”9" (0) = 0 in (22d). Here, the matrices P(T) and W (1)
are solutions to (24a) and (24b), respectively.

a’u,g

g G(r) g (7) + (7). (27b)

(1) S () +

The proof of Lemma 1 is given in Appendix. Lemma 1 states
that for the optimal control system (12), the gradient of its
optimal trajectory £ with respect to the system parameter 6
can be obtained in two steps: first, integrate (24) backward in
time to obtain P(7) and W (r) for 0 < 7 < T'; and second,
obtain %%(T) by integrating (27) forward in time. Based on

the Differential Pontryagin’s Maximum Principle, Lemma 1
gives an efficient way to compute the gradient of an optimal
trajectory with respect to the parameter in an optimal control
system. By Lemma 1, one can obtain the derivative of the
trajectory point £¢(7), at any time 0 < 7 < T, with respect
to the system parameter 0, i.c., %(T).

Additionally, we have the following comments on Lemma 1.
First, (24) are Riccati-type equations, which are derived from
Differential Pontryagin’s Maximum Principle in (22). Second,
Lemma 1 requires the matrix Hu.(7)=gz24,- in (23¢) to be
invertible, this is in fact a necessary condition [46] for the
differentiability of £5. As we have mentioned at the beginning
of this subsection, if &, satisfies the second-order sufficient
condition (i.e., is a locally unique optimal trajectory) for
the optimal control problem (12), then &, is differentiable
in @ and H,,(7) is automatically invertible (see [46] for
the details and proofs). A similar invertiblility requirement
is common in sensitivity analysis methods [43], [44], where
they analogously requires the Hessian matrix to be invertible
in order to apply the implicit function theorem [45]. Both our
later experiments and other related existing work [34], [35],
[46] have empirically shown that the invertibility of Hy,,(7)
is a mild condition and could be easily satisfied. With Lemma
1, we summarize the overall algorithm of the Continuous PDP
in Algorithm 1.

Algorithm 1: Learning from sparse demonstrations.

Input: keyframes D in (5) and learning rate {7 }.

Initialization: initial parameter guess 6o,

for k=0,1,2,--- do

Obtain the optimal trajectory ﬁek by solving the optimal
control problem in (12) with current 6y;

Obtain the costate trajectory {Ag, (7)} by integrating
(21b) given (21d);

Compute aggi‘(gn) o, using Lemma 1 for¢ =1,2,--- N;
al .
Compute (1) €0, (1) from (15);

Obtain %‘% using the chain rule (18);

Update 041 < Projg (Ok - nk%bk);
end

V. NUMERICAL EXPERIMENTS

In this section, we evaluate different aspects of the proposed
method using a two-link robot arm performing reaching tasks.
The dynamics of a robot arm (moving horizontally) is [53]

M(q)q +c(q,q) =T, (28)

where M (q) € R?*? is the inertia matrix, c(q, ¢) € R? is the
Coriolis term; ¢ = [q1,¢2]7 € R? is the joint angle vector,
and T = |11, 7»]" € R? is the joint toque vector. The physical
parameters for the dynamics are: m;=2kg and my=1kg for
the mass of each link; /;=1m and /;=1m for the length of each
link (assume mass is evenly distributed). The state and control
vectors are = = [g,q]" € R* and u = 7 € R?, respectively.
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For the task of reaching to a goal state ¢ = [}, ¢5,0,0]" €
R*, we set the cost function (2) as

c(z,u,p) =p1(q1 — ¢f)* + pa(ga — ¢5)*+
P3di +pads +0.5]ul?, (29a)
h(z,p) =p1(q1—a5)*+p2(g2—a5)* + p3 43 +pads. (29b)

with the tunable parameter p = [p1, p2, p3,pa]’ € R*. Note
that (29) is a weighted distance-to-goal function with a fixed
weight to ||u||?, because otherwise, learning all weights will
lead to scaling ambiguity [23]. We set the goal state & =
[2,0,0,0]", and the initial state @(0) = [-Z, 3%, —5 3]T.
For parametric time-warping function (9), we simply use

t =wg(T) = B, (30)

with Qg = {8 |5 > 0} (more complex time-warping functions
will be used later). The overall parameter to be tuned is 8 =
[p", B]T € R5. The task-space mapping (4) is

meaning that the keyframe only includes the position infor-
mation. For the discrepancy loss (15), we use the squared [,
norm:

Lo D) =Y 0" (m) —g(&a(m) > (2

In the following experiments, we evaluate different aspects of
the method and provide analysis for each evaluation.

A. Different Number of Keyframes

First, we evaluate the performance of the proposed method
for learning from different numbers of keyframes. D is gener-
ated from known/true cost and time-warping functions. Given

0" =1[3,3,3,3,5]", (33)

the robot optimal trajectory is computed by solving the optimal
control problem (12), shown in Fig. 3. Then, we select some
points (red dots) from Fig. 3 as our keyframes D, listed in
Table 1. We evaluate the performance of the proposed method
to recover 8™ given different numbers of the keyframes. The
learning rate is 77 = 0.1, and the initial ¢ is randomly given.
For each evaluation case, we have run the experiment for 10
trials with different random seeds for 6.

Generation of keyframes

a?

az

0.00 0.25 050 0.75 1.00
T

Fig. 3: Generating keyframes (marked as red dots) from an
optimal trajectory with ™. The gray dashed lines label the
goal pose for each joint, i.e., [¢},q5]" = [7/2,0].

We choose different numbers of keyframes from Table I to
learn the time-warping and cost functions, and the results are

TABLE I: Keyframes D generated in Fig. 3

No. Time stamp 7; (T = 1) Keyframe y*(7;)

#1 71 = 0.067s a*(m1) = [-2.497,2.301]
#2 T2 =0.2s q*(m2) = [—1.71,1.353]
43 3 = 0.267s q*(r3) = [~1.142,0.924]
#4 74 = 0.333s a* (1) = [-0.629, 0.606]
45 5 = 0.467s a*(75) = [0.201, 0.25]

#6 76 = 0.65 q*(76) = [0.791, 0.108]
7 77 = 0.8s q*(r7) = [1.319,0.049]
48 75 = 0.933s a* (7s) = [1.512, 0.043]

in Fig. 4. The left panel of Fig. 4 shows the loss (32) versus
iteration, and the right shows the parameter error || — 6|2
versus iteration.

— 1 keyframe — 2 keyframes — 3 keyframes — 4 keyframes — 8 keyframes
100 10!
1076 = 10
— s 10
o)
-1
L\:‘f 10-18 | 10
R
1072 T 1072
0 250 500 750 1000 0 250 500 750 1000
Iteration Iteration

Fig. 4: Learning from different numbers of keyframes. The
left panel shows the loss (32) versus iteration, the right shows
the parameter error ||@; — 8"™¢||? versus iteration. The solid
line and shaded area denote the mean and standard derivation
over all 10 trials.

Fig. 4 shows that when the number of keyframes N > 3
(blue, green, and red lines), the loss L(£9k7D) and parameter
error ||, — 6™||? converge to zeros, indicating that both
the cost and time-warping functions are successfully learned.
When N < 2, while the loss converges to zero, 8 does
not converge to "¢ (orange and purple lines in the right
panel). This indicates when N < 2, there are multiple cost
and time-warping functions, besides 8", that lead to the given
keyframes. In other words, with fewer keyframes, we cannot
uniquely determine the cost and time-warping functions, as
they are over-parameterized relative to given keyframes. Intu-
itively, to uniquely determine 8", the number of constraints
imposed by the given keyframes, oN (recall o is the dimension
of g()), should be no less than the number of all unknown
parameters, r+s, that is, N > ’"—Jgs Please refer to Section
VII-A for more analysis.

From the right panel of Fig. 4, we also observe that different
numbers of keyframes (N > 3) also influence the converge
rate. For instance, the convergence rate with 8 keyframes (red
line) is faster than that of 4 keyframes (blue line). Since the
proposed method updates the cost and time-warping functions
by finding the deepest descent direction of loss, thus, the more
keyframes are given, the better informed the gradient direction
will be, making the convergence to the true parameters faster.

Lastly, we test the generalization of the learned cost and
time-warping functions, by setting the robot arm to new initial
state «(0) = [—%,0,0,0]" and new horizon T=2 (both are
very different from the ones in learning). The generated motion
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using the learned @ (mean value over all trials) is shown in
Fig. 5, where we have also plotted the trajectory of 6™
for reference. To compare the generalization performance,
we compute the distance between the final state x(7T") of
the generalized motion and the goal state & = [%,0,0,0]",
and list the results in Table II. Both Fig. 5 and Table II
show that the learned 0 enables to generate new motion in
unseen conditions. Further, Table II shows that the increasing
keyframes could lead to better generalization. Notably, we
see that although the learned 6s from 1 or 2 keyframes are
different from "¢, they can still obtain fair generalization.
This could be due to the formulation of the distance-to-goal
features (29). Although the learned weight vector @ is different
from 0", the distance-to-goal features largely contributes to
a similar performance. We will show later in Section V-D
that when (29) is replaced with a neural cost function, fewer
keyframes will lead to poor generalization. Thus, for the same
number of keyframes, different cost function formulations
could lead to different generalization abilities. But as we will
see in Section V-D, a common observation is that the more
keyframes are given, the better the generalization will be for
the learned cost function.

— 1 keyframe — 2 keyframes — 3 keyframes = 4 keyframes — 8 keyframes

g g
1.5{ === qi 0.0 az
1.0
-0.1
- 05

Qq2

0.0 -0.2

-0.5

-0.3

0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0
T T

Fig. 5: Generalization of the learned cost function given new
initial condition «(0) and new horizon 7. The gray dashed
lines mark the goal for each joint [¢f, ¢5]" = [7/2,0]T.

TABLE II: Distance between the final state x(7") of the

generalized motion and the goal x8, i.e., |x(T) — =¥

The learned 6 (mean value) from  ||&(T) — 8|

1 keyframe 0.00581

2 keyframes 0.00580

3 keyframes 0.00392

4 keyframes 0.00382

8 keyframes 0.00358

True 6" 0.00346

B. Non-optimal Keyframes

Next, we evaluate the performance of the proposed method
given non-optimal keyframes. This emulates the situation
where a demonstration could be polluted by biased sensing
error, noise, hardware error, etc. We select keyframes D by
corrupting each keyframe in Fig. 4 with a biased error, as
shown in the first column (red dots) of Fig. 6. We evaluate the
performance of the method given such biased keyframes. The
other experiment settings follow the previous experiment. We
have run each experiment for 10 trials with different random
seeds for the initial 6.

— —’—
I 4
- etrue

== |earned 6

0 e
o
SHIND #62.2

Learned 6

|
L(§e, D)
a2

©

~

[p)
I . o
|
[ ]
I/ e o]
o
o
L] g
||6_9true”2
@

0.0 0.5 1.0 0 50
T Iteration T

Fig. 6: Learning from non-optimal keyframes. The first column
shows the given keyframes (red dots), which deviate from the
optimal trajectory (black lines), and the reproduced trajectory
(orange lines) from the learned 6 (mean value over all 10
trials). The second column shows the loss and parameter error
versus iteration; the solid line and shaded area denote the
mean and standard derivation over all 10 trials. The third
column shows the generalization of the learned 8 to new initial
condition x(0) and new time horizon 7'. The gray dashed lines
in the first and third columns mark the goal for each joint
[q},d5]" = [7/2,0]". As calculated in Table II, ||z(T") — =8|
for the generalized motion in the third column is 0.107.

In Fig. 6, the loss and parameter error versus iteration are
shown in the top and bottom panels of the second column,
respectively. The solid line and shaded area denote the mean
and standard derivation over all 10 trials. We use the learned
6 to reproduce the optimal trajectory of the robot, which is
shown in the first column (orange lines). In the third column,
we test the generalization of the learned @ to the new initial
condition z(0) = [~Z,0,0,0]" and new horizon T = 2. Here,
we also compare with the trajectory of ™ (dashed black
lines). From Fig. 6, we have the following comments.

Since the keyframes in the first column are non-optimal,
there does not exist a @ that exactly corresponds to those non-
optimal keyframes. Thus, the loss in the second column does
not converge to zero. Despite those, the method still finds a 6
such that its produced trajectory is closest to the keyframes, as
shown by orange lines in the first column. The second column
shows that the learned @ is different from ™.

The generalization in the third column shows that given the
new initial condition and horizon, the generalized motion still
approaches the goal, and the final distance of the generalized
motion to the goal is ||x(T) — x&|| = 0.107, which is larger
compared to the one in Table II.

C. Different Time-Warping Functions

In this set of experiments, we test the learning performance
of using polynomial time-warping functions of different com-
plexity. The keyframes D are the red dots in the first column
of Fig. 6. For each polynomial time-warping function, we have
run the experiment for 10 trials with different random seeds for
initial 8. Other experiment settings follow the previous one.
The results are summarized in Table III. Here, the first column
shows the learned time-warping functions; the second column
is the final converged losses, and the statistics (mean+standard
deviation) are over 10 trials. We have the following comments.
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TABLE III: Learning with different time-warping functions

Learned time-warping function min L(&g, D) (mean-tstd)

\__

L(§6, D)
L(Ee, D)
L(&e, D)

t = 2.557 1.017 £+ 0.014
t =2.90T — 0.5572 0.876 £ 0.008
t = 2.947 + 0.2872 — 0.8873 0.831 £ 0.006
t =2.897 4+ 0.5372 — 0.497% — 0.607*  0.822 + 0.002

Table III shows that a higher order of polynomial time-
warping function leads to the lower final loss. This is because
a higher degree polynomial introduces additional degrees
of freedom, which enable to represent more complex time
mapping and contribute to further decreasing the loss. Mean-
while, Table III shows that (i) the first-order terms in all
learned time-warping polynomials are similar, (ii) the higher-
order terms are relatively small compared to the first-order
term, and (iii) adding higher-order terms to the time-warping
polynomial only decreases a small amount of final loss. All
those observations indicate that the first-order term dominates
the final performance. We may conclude that in practice, it is
preferable to start with a simplified time-warping function. The
subsequent experiments will use the first-order time-warping
function for simplicity.

D. Learning Neural Cost Functions

In this session, we test the ability of the proposed method to
learn neural-network cost functions. This is useful if a weight-
feature cost function formulation cannot be specified due to
the lack of prior knowledge. We set the cost function (29) with
the following neural-network cost function,

c(x,u,p) = ¢ () p,(x) + 0.05]ull?,
Wz, p) = ¢p(x) b, (),

where ¢, () is a 4-8 fully-connected neural network [54] (i.e.,
4-neuron input layer and 8-neuron output layer), and p € R*°
is the parameter of the neural network, i.e., all weight matrices
and bias vectors. Note that (34) uses dot product in the output
layer of the neural network to guarantee the positiveness of the
cost function. The time-warping polynomial has the degree of
one. We use the keyframes in Fig. 3 (also in Table I). Other
experiment settings are the same as the previous ones. In each
evaluation case below, we have run the experiment for 10 trials
with different random seeds for the initial 6.

We plot the learning and generalization results in Fig. 7.
We test with three cases of the keyframes shown in red dots
in the second row, and the corresponding results are shown in
each column. In each case, the first row shows the loss versus
iteration; and second and third rows show the reproduced
trajectories (orange lines) by the learned cost and time-warping
functions; and the fourth and fifth rows show the generalization
(blue lines) of the learned cost function to new initial state
x(0) = [-%,0,0,0]" and new horizon 7" = 2. The motion
(dashed black lines) of 8™ is also plotted for reference. In
Table IV, we compute the distance between x(T") of the gen-
eralized motion and the goal z¢ = [7, 0,0, 0]" to measure the
generalization performance. We have the following comments.

(34)

0 100 200 0 100 200 0 100 200
Iteration Iteration Iteration
0.0 0.0 L - *
S o® s » s %0 <*
® ® ®
258 =25 2.5
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
T T T
L ® L]
2 ® Keyframes 2 ® Keyframes 2 ® Keyframes
& L} Reproduced ol L} Reproduced & '. Reproduced
®. ® [
0 | ——— 0 e - [ E— - PP,
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
2 s 2 T 2 T
—_——— T ———
o s - s - )/
T ,/ —_ ) (S // = 6 (neural) Ty v == 6 (neural)
— gtue - gtrue - gtrue
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4
o \ o ,’ S /
W/ - —02
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(a) Case 1 (b) Case 2 (c) Case 3

Fig. 7: Learning neural cost functions from keyframes. Three
cases of keyframes are used, shown in the red dots in each
column. In each case, the first row shows loss versus iteration
(the solid line and shaded area denote the mean and standard
derivation over all 10 trials). The second and third rows show
the reproduced trajectories (orange lines) of the learned 6. The
fourth and fifth rows show the generalization (blue lines) of
the learned 6 to new initial state and horizon, and the motion
(dashed black lines) of 8™ is also plotted for reference. In
second-fifth rows, the gray dashed lines mark the goal for each
joint [Cﬁ’ qg]T = [r/2, O]T'

TABLE IV: Distance of (T") of the generalized motion (in
the fourth and fifth rows in Fig. 7) to goal =¢ = [%,0,0,0]".

The learned @ (mean value over all trials)  ||&(T") — x8||
Case 1 1.638

Case 2 0.717

Case 3 0.388

True 6" 0.00346

First, compared to the distance-to-goal cost (29), the neural
cost (34) is goal-blind, meaning that the goal q* = [7, 0] is
not encoded in the neural cost function before training. Thus, it
is crucial for the robot to learn a goal-encoded neural cost for
the success of the task. Case 1 and Case 2 use four keyframes
to learn a cost function. The results in fourth and fifth rows
of Fig. 7 and in Table IV indicate that Case 2 has a better
generalization than Case 1 does: Case 2 has a final distance
|le(T) — 8||=0.717, while Case 1 has ||x(T) — &||=1.638.
This is because the keyframes in Case 1 are mainly clustered
at the beginning of motion, and thus cannot provide sufficient
information about the final goal. In contrast, Case 2 has a
keyframe at the goal, and thus the learned neural cost function
captures such goal information.

Second, we add more keyframes in Case 3. It shows that
more keyframes lead to better generalization of the learned
neural cost function: the final distance is ||x(T")—x#|| = 0.388,
which is better than those in Case 2 and Case 1.
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Lastly, the learned neural cost function in Case 2 or Case
3, while controlling the robot to approach the goal, has a
trajectory that is different from the true one (black dashed
lines). This manifests the generalizability of learning cost func-
tions. We also note that the neural cost function (34) is over-
parameterized, relative to the fewer given keyframes. Despite
this, the learned neural cost still shows a fair generalization to
new motion conditions, given a proper selection of keyframes.

E. Comparison with Related Methods

In this session, we compare the proposed method with the
related work. For all comparisons below, the learning process
uses the keyframe data in Fig. 3 (Table I). The generalization
is tested by setting the robot to a new initial condition x(0) =
[—%,0,0,0]" and a new time horizon 7" = 2. Other settings
follow the previous experiments if not explicitly stated.

1) Comparison with Kinematic Learning [41]: Following
[41], we fit the keyframes in Table I with a fifth-order spline,
as shown in the brown lines in Fig. 8a. The fitted spline is then
used to generalize the robot motion in the new condition (i.e., a
new initial condition and a new horizon). To do this, following
the idea of [41], we compare which given keyframe is closest
to the new «x(0), then from which we perform extrapolation
based on the fitted spline to generate the new trajectory over
the new horizon 1" = 2. The generated trajectories are plotted
in Fig. 8b. For comparison, we also plot the generalized motion
of the previously learned weighted cost (29) and neural cost
(34) in Fig. 8c. We have the following comments on the results.

== Neural
= Weighted

0.0
~-0.1
o

-0.2

(a) Spline fitting to the (b) Generalization of (c) Generalization for
keyframes [41] the fitted spline [41] the proposed method

Fig. 8: Comparison between [41] and the proposed method. (a)
is the spline model fitted to keyframes; (b) is the generalization
of the fitted spline in new motion condition (new x(0) and
new T'); and (c) is the generalization of the learned weighted
cost function (29) and learned neural cost function (34) in the
previous experiments. The gray dashed lines mark the goal of
each joint [qf, ¢5]" = [r/2,0]". The final distance ||z (7T")—z¢||
of the generalized motion is 33.670 for the fitted spline in (b),
0.388 for the learned neural cost function in (c¢), and 0.00358
for the learned weighted cost function in (c).

First, the spline function fits well to the keyframes (red dots
in Fig. 8a). However, the generalization of the obtained spline
model is poor: the generalized motion has a final distance
of 33.670 to the goal. The poor performance is because the
spline is only a local kinematic model, and it cannot generalize
motion that is far away from the keyframes.

Second, given the same number of keyframes, learning cost
functions shows evident advantage in generalization. As in Fig.
8c, both the learned weighted cost function and neural cost
function can successfully control the robot to reach the goal in
new conditions. The reason why cost functions have superior
performance is that a cost function is a compact representation
of robot motion, and it represents a space of motion trajectories
parameterized by different initial conditions and time horizons.
Previous work [1] had the same conclusion.

2) Comparison with Numerical Differentiation: Recall that
a key technique of the Continuous PDP is Differential Pon-
tryagin’s Maximum Principle, which efficiently computes the
analytic gradient of the trajectory of a continuous-time optimal
control system with respect to system parameters. An alterna-
tive is numerical differentiation, that is, one uses numerical
differentiation to obtain %. The experiments below compare
those two options. Other experiment settings are the same as
the previous ones.

Consider the neural cost function in (34). We vary the size
of the neural network, i.e., the dimension of p, and the system
time horizon 7. We compare the computation time needed to
compute ‘Zl—g by Continuous PDP and numerical differentiation.
The results are in Fig. 9, based on which we have the following
comments.

EN

'UG B Numerical gradient || o mm Numerical gradient
(9] o " () a f
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(a) Varying parameter dimension  (b) Varying system horizon

Fig. 9: Comparison of computation time between numerical
differentiation and Continuous PDP.

Fig. 9a shows an exponential increase of computational time
of numerical differentiation when the number of system pa-
rameters (dimension of @) increases. This is because numerical
differentiation requires evaluating the loss by perturbing the
parameter vector in each dimension. Each perturbation and
evaluation require solving an optimal control problem once,
thus causing high-computational cost for high-dimensional 6.
In contrast, the Continuous PDP solves analytical gradients by
performing the Riccati-type iteration (Lemma 1). Since there is
no need to repetitively solve optimal control problems during
the differentiation, the proposed method can handle the large-
scale optimization problem, such as 8 € R'%° in Fig. 9a.

Fig. 9b shows the comparison results given different system
horizons. One observation is that the complexity of Continuous
PDP is approximately linear to the system horizon 7. This is
because the numerical integration of the Riccati-type equations
in Lemma 1 is linear to the horizon 7.

3) Comparison with [31]: In this part, we compare the

proposed method with [31]. As discussed in the related work,
[31] formulates a problem similar to (16) which also mini-
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mizes a trajectory discrepancy loss (32), but the authors solve
it by replacing the inner optimal control problem with the
Pontryagin’s Maximum Principle conditions, thus turning a
bi-level optimization into a plain constrained optimization. We
compare their method with the Continuous PDP in terms of
convergence, sensitivity to different initialization, and gener-
alization.
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(a) The method in [31]. (b) The proposed method.

Fig. 10: Comparison between the method in [31] (a) and
the proposed method (b). Each method has three trials using
different initial guesses 0y, and at each trial, both methods
start from the same 6. Different trials are shown in different
color. The first and second rows show the loss and parameter
error versus iteration, respectively. The third and fourth rows
show the reproduced trajectory of the learned 6. For [31], the
converted plain optimization is solved by IPOPT [55]. Gray
dashed lines mark the goal of each joint [¢f, ¢5]T = [7/2,0]T.

Both methods use the same keyframes shown in the third
and fourth rows in Fig. 10, first-order polynomial time-warping
function (30), and the cost function parameterization (29).
Other experiment settings are the same as the previous exper-
iments unless explicitly stated. Fig. 10 presents the results of
[31] (left) and the proposed method (right). Here, each method
has three trials from different initial guesses 0y (i.e., using
different random seeds). Different trials are shown in different
colors. The first and second rows plot the loss and parameter
error versus iteration, respectively. The third and fourth rows
show the reproduced trajectories with the learned 8. We have
the following comments.

First, following [31], the converted plain optimization has
504 constraint equations and 509 decision variables. This is
large-scale and non-convex optimization, and we used IPOPT
[55] to solve it. But IPOPT is very likely to get stuck to local
optima for this problem. This has been illustrated by Fig. 10a:
the loss has converged to a small value, but the learned 6 is far

away from 6", Also, in the third and fourth rows, although
the produced trajectories are close to the keyframes (red dots),
they are very different from the ground truth in Fig. 3.

The proneness of [31] to get stuck to bad solutions could be
due to two main reasons. First, since Pontryagin’s Maximum
Principle is just a necessary condition, the solutions that
satisfy this condition may include the saddle points, which
might not necessarily be the solution to the original optimal
control problem. Thus, such a problem reformulation is not
equivalent to the original bi-level problem in general. Second,
the converted plain optimization can be large-scale and highly
nonlinear. If not properly initialized, it would easily get stuck
into a local solution.

In contrast, the proposed method solves the problem by
maintaining the bi-level structure. This bi-level treatment leads
to more numerical tractability. The lower-level optimal control
problem can be solved by many available trajectory optimiza-
tion methods such as iLQR [47], DDP [48], and the upper level
uses gradient-descent. Also, the bi-level treatment can lead to
better performance in finding good (if not global) solutions. As
empirically shown in Fig. 10b, with various random guesses
s, the proposed method all converges to the true ™.

Finally, we need to mention that in the Continuous PDP,
Pontryagin’s Maximum Principle is only used for differentiat-
ing the trajectory of the optimal control system, not replacing
the optimal control system. In other words, the trajectory has
to be computed on the lower level before its differentiation
can be done. Therefore, the proposed method in this paper is
fundamentally different from [31].

VI. LEARNING FROM KEYFRAMES FOR PLANNING IN
UNKNOWN ENVIRONMENTS

This section presents an application scenario of the proposed
method: a robot learns a motion planner from demonstrated
keyframes to navigate through an unknown environment. A
user provides a few keyframes in the vicinity of obstacles in
an environment, and a robot learns a cost function from those
keyframes such that its produced motion can avoid the obsta-
cles. Experiments in this section are based on a 6-DoF quadro-
tor. The code can be accessed at https://github.com/wanxinjin/
Learning-from-Sparse-Demonstrations. A real-world demon-
stration is given at https://youtu.be/BYAsqMxW5Z4.

A. 6-DoF Quadrotor Setup

The equation of motion of a quadrotor flying in SE(3) (full
position and attitude) space is given by

’I"‘[: vy, (353)
mv; =mg;+ fy, (35b)

. 1
dp/1 = §Q(WB>QB/D (35¢)
JB(.;JB:TB—OJBXJBWB. (35(1)

Here, the subscripts g and ; denote a quantity expressed in
the body and world coordinate frames, respectively; m is the
quadrotor mass; 77 = [ry, 7y, 7.]7 € R® and v; € R? are the
quadrotor’s position and velocity, respectively; Jp € R3*3
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is the moment of inertia; wp € R3 is the angular velocity;
dp/r € R?* is the unit quaternion [56] describing the attitude
of the quadrotor with respect to the world frame; (35c) is
the quaternion calculus, and Q(wp) is the matrix of wpg for
quaternion multiplication [56]; 75 € R? is the torque vector
applied to the quadrotor; and f; € R? is the total force vector.
The net force magnitude ||f;|| = f € R (along the z-axis of
the body frame) and torque 75 = [7,, T, T,] are generated by
thrust [T7, 1%, T3, Ty] of four propellers via

]
f 1 1 1

1 T
Te| 0 —lw/2 0 lw/2( | T2
Wl T -2 0 w2 o | |m| GO
Ts K —K K —K Ty

with [, the wing length of the quadrotor and x a fixed
constant. In our experiment, the gravity constant is 10m/s?
and all other dynamics parameters are units. The state vector
is x = [r}v}q;/l,wgr € R'3 and the control vector is
u = [Ty, Ty, T3, T4]" € R%

To achieve S E(3) maneuvering, we need to carefully design
the attitude error. Following [57], we define the attitude error
between the current attitude g and goal g® as

e(q,q,) = 1trace(I — R"(¢®)R(q)), 37

2

where R(q) € R3*3 is the rotation matrix corresponding to
quaternion q (see [56] for more details). For the cost function
formulation (2), we use a generic polynomial function:

c(x, u, p)=p17; +P2T§ + p3rZ + pary + 5Ty + Per
+ prraty + Psrars + Poryrs + 0.1]|ul?, (38a)
h(@)=10]|r—r$[* + 5]|vr[|*+

100e(qp/1: 4%,,) + Sllws?, (38b)

where r; = [rz,ry,rz]T is the quadrotor’s position, and we
have fixed the final cost h(x) since the quadrotor is always
expected to land near a goal position 7§ with goal attitude
qu Nt and the goal velocities here are zeros. The cost function
parameter p = [p1,p2,Ps, P4, D5, Pe; P, Dss po]' € R will
determine how the quadrotor reaches the goal (i.e., the specific
flying trajectory of the quadrotor).

As shown in Fig. 11, we aim the quadrotor to fly from the
left initial position r7(0) with v7(0), gg,;(0), and wp(0),
sequentially pass through two gates (from left to right gates),
and finally land near the goal position 7§ with goal attitude
qu /1 00 the right. With a random cost function, the quadrotor
trajectory (blue line) does not meet the task requirement.

B. Learning from Keyframes

TABLE V: Keyframes D for the quadrotor.

Keyframe #  Time stamp 7; Keyframe y* (7;)
#1 71 =0.1s rr(m) =[—4,—6,3]
#2 7o = 0.2 rr(m2) =[1,—6,3]
#3 5 = 0.4s ri(rs) = [1,-1,4]
#4 T4 = 0.6s rr(ra) = [-1,1,5]
#5 T5 =0.8s T‘](T5)= [2,3,4}

horizon T' = 1s

Top view

X(m)

Fig. 11: Quadrotor flying in an environment with obstacles.
The goal is to let the quadrotor to fly from the left, go through
the two gates (from left to right), and finally land near the goal
position on the right with goal attitude. The plotted trajectory
is a planned motion with a random cost function, which fails
to achieve the goal.

We arbitrarily choose five keyframes near the two gates,
listed in Table V. Here, ‘arbitrarily’ means that we do not
know whether these keyframes are realizable by an exact cost
function. Without much deliberation, we assign a time stamp to
each keyframe, such that they are (almost) evenly spaced in the
time horizon [0, T] (later we will also test the method given the
random assignment of the time stamps). We also do not know
whether 7; and T' are achievable for the quadrotor dynamics.
The keyframes here contain only position information, i.e.,

rr=y=g(u) (39)
The time-warping function is the first-order polynomial func-
tion (30), and loss L(&g, D) is in (32). The learning rate is
n=10"2. The quadrotor’s initial state is 7 (0) = [-8, —8, 5]T,
qp/1(0) = [1,0,0,0]", v7(0) = [15,5,—10]", and wp(0) =
0. The goal position is 5 = [8,8,0]" and the goal attitude
q% = [1,0,0,0]" (recall the goal velocities here are zeros).

6 40

4 ][
.Z;zu S 50
3
2 10 25
0

o
0 50 100 150 200 0 50 100 150 200 0 50
Iteration Iteration
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(d) Loss for Fig. 13d (e) Loss for Fig. 13e (f) Loss for Fig. 13f

Fig. 12: Loss versus iteration, corresponding to different cases
in Fig. 13. In each case, the solid line and shaded area
denote the mean and standard derivation over 10 trial of the
experiment, respectively. The final loss (mean+std) for each
case is: 0.20340.035 in (a), 0.62540.470 in (b), 3.819+0.805
in (c), 8.548£0.880 in (d), 8.647+2.022 in (e), 21.777£6.608
for p € R* and 130.902 & 0.006 for p > 0 in (f).
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Fig. 13: Learning from keyframes given in Table V. (13a)-(13d) show the reproduced trajectories by the cost functions learned
from different number of keyframes. (13e) shows the case where we randomize the time stamp 7; of each keyframe in Table
V. (13f) shows the reproduced motion of the learned distance-to-obstacle cost function (40); here the green line corresponds to
the unconstrained weights subcase, i.e., p € R%, and the orange to the constrained weights subcase, i.e., p > 0. Corresponding
to each of the above-mentioned figures, the loss versus iteration is given in Fig. 12.

1) Varying Number of Keyframes: Fig. 12a-12d and Fig.
13a-13d show different cases where we learn a cost function
from different numbers of keyframes. In each case, we have
run each experiment case for 10 trials, with each trial using
different random seeds for the initial 6y. Fig. 12a-12d plot
the loss L(&y, D) versus iteration, and Fig. 13a-13d show the
reproduced trajectory using the learned cost and time-warping
functions. We have the following comments on the results.

Fig. 13a-13d show that given keyframes in different loca-
tions, the proposed method always finds a cost function and
a time-warping function such that the quadrotor’s reproduced
motion can get close to the keyframes. Fig. 13a-13d also show
that by increasing the number of keyframes and putting the
keyframes around the gates, the quadrotor can successfully
learn a cost function to fly through the two gates. Since
the keyframes are arbitrarily placed and exact cost and time-
warping functions (in the parameterization) may not exist, the
final losses are not zeros as in Fig. 12a-12d. Recall that we
only make the path cost tunable, while the final cost given
and fixed. Different placement of keyframes leads to different
learned path costs and thus different motion trajectories. This
cost formulation can be useful for learning how to move
instead of where to move.

2) Random Time Stamps: In Fig. 13e and Fig. 12e, we
randomize the time stamp 7; of each keyframe in Table V
(drawn from a uniform distribution), and the cost function
is learned from the randomly-timed keyframes. The other
settings follow the previous experiment. Fig. 12e plots the loss
versus iteration, and Fig. 13e show the reproduced trajectory
from the learned cost and time-warping functions.

Comparing Fig. 13d and Fig. 13e with Fig. 12d and Fig.

12e, respectively, we can see that the choice of time stamps of
keyframes does not affect too much the learning: the final loss
(mean+std) is 8.548+0.880 for Fig. 13d and 8.647+2.022 for
Fig. 13e. This result is understandable because whatever the
keyframe time is, the proposed method always learns a time-
warping function, which maps demonstration time to the robot
dynamics time; thus performance of robot execution will not
change significantly. The results show the importance of using
a time-warping function in general LfD problems. The ability
to handle the time misalignment is one of the key features of
the proposed method.

3) Distance-to-Obstacle Cost Parameterization: In Fig. 13f
and Fig. 12f, we replace the polynomial cost function (38a)
with the following distance-to-obstacle cost function:

4
c(x,u,p)=— > _pillrr —oil]> +0.1ul?  (40)
i=1

where the given o; is the obstacle i’s position, which is the
position of the left and right pillars of the two gates, shown
in Fig. 11; and p € R* are the weights for each to-obstacle
distance || — 0;]|?. We learn (40) from the five keyframes in
Table V. Other experiment settings follow the previous session.
We further divide the experiment into two subcases: In the first
subcase (green line), we treat the weights p as unconstrained
variables (i.e., it could be p < 0, the obstacles could have
an ‘attracting’ effect on quadrotor motion); and in the second
subcase (orange line), we force p > 0. The loss for those two
subcases are plotted in Fig. 12f, and the reproduced trajectories
of the learned cost functions are in Fig. 13f, where the green
line corresponds to the unconstrained weights subcase while

the orange to the constrained weights subcase.
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In the unconstrained weights subcase in Fig. 13f, one
observation is that the motion (green line) is similar to the
motion in Fig. 13d and Fig. 13e. In fact, the learned weights
are p=[—0.806, —1.406, —2.578, —2.246]" <0. This indicates
that each obstacle has an attracting effect on the quadrotor’s
motion. Considering the distance-to-obstacle cost in (40) is
a second-order polynomial function in 77, similar to (38a),
the results in Fig. 13f could explain those in Fig. 13d and
Fig. 13e. Specifically, one can intuitively think of learning a
general polynomial cost function (38a) as a process of finding
some ‘virtual attracting points’ in the unknown environment,
and both their locations and attracting weights will be encoded
in the learned polynomial coefficients.

We also note that the reproduced motion (green line) in
the unconstrained weights subcase in Fig. 13f has a larger
distance to the keyframes than the motion in 13d. This has
been quantitatively shown by their final loss values in Fig.
12: the former has a final loss 21.777 + 6.608 while the latter
8.548 + 0.880. This is because the formulation (38a) has p €
RY, while (40) only has p € R*. Learning (38a) allows us to
optimize both weights and locations of the ‘virtual attracting
points’, while learning (40) allows us to only optimize the
weights as the location of the obstacle o; are given.

In the non-negative weights subcase (the orange line) in Fig.
13f, since we always force p > 0, the obstacles only have a
‘repelling’ effect on the quadrotor motion, and thus the final
quadrotor motion avoids all obstacles, as in Fig. 13f. Also, Fig.
12f shows that the final loss of this subcase is 130.90240.006
is higher than 21.777 £ 6.608 of the subcase of unconstrained
weights. This is because the search space {p|p > 0} in the
former is only part of that {p|p € R*} of the latter subcase.

In summary of all experiments in this subsection, we
conclude: (i) the proposed method can learn a cost function
(and a time-warping function) from sparse keyframes for
motion planning in an unmodeled environment; (ii) since the
method jointly learns a time-warping function, the time stamps
of keyframes do not significantly influence the performance;
and (iii) learning a generic (e.g., polynomial or neural) cost
function can be intuitively thought of finding some virfual
attracting points in the unknown environment, whose locations
and weights will be encoded in the learned cost function.

C. Generalization of Learned Cost Functions

In this session, we will test the generalization of the cost
functions learned in the previous session. We will set the
quadrotor with a new initial condition, a new landing goal,
and new placement of obstacles. Given these new conditions,
we use the learned cost and time-warping functions to plan the
motion of the quadrotor, respectively. We check if the motion
plan can successfully achieve the task goal: flying through
the gates and landing near the goal position. Quantitatively,
we evaluate the generalization performance by calculating
the averaged distance between the generalized motion and
keyframes and the averaged distance between the generalized
motion and the centers of obstacles (gates).

1) New Initial Conditions: In Fig. 14a-Fig. 14c, we test the
generalization of the cost function learned in Fig. 13d to new

initial conditions (the landing position is the same as the one
in the learning stage in the previous session). Here, we use
the following new initial conditions, as also visualized in Fig.
14a-Fig. 14c, respectively,

New initial condition I: position 71(0)=[—8, —10,1]T, atti-
tude quaternion g ,;(0)=[0.88, —0.42,0.19,0.14]T, velocity
v7(0)=[15,0,0]T, and angular velocity w(0)=[0,0,0]".

New initial condition 2: position r(0)=[6, —8, 2]T, attitude
quaternion g ,;(0)=[0.88, —0.45, —0.05, —0.15]", velocity
v7(0)=[10,0,0]", and angular velocity wp(0)=[0,0,0]".

New initial condition 3: position r;(0)=[-8,5,1]T, atti-
tude quaternion qp,;(0) = [0.88,0.14,0.14,0.43]", velocity
v7(0)=[10, —20,0]", and angular velocity wz(0)=[0,0,0]".

Note that the above new initial conditions are very different
from the ones used in learning stage (Fig. 13). For each
new initial condition, the generalized motion is shown in Fig.
14a-Fig. 14c, respectively. Fig. 14c also plots the generalized
motion (cyan color) of the kinematic learning method [41] as a
comparison. In Fig. 14e, we plot the generalized motion from
the learned distance-to-obstacle cost function (40) in Fig. 13f.
Here, the green line corresponds to the unconstrained weights
subcase and the orange to the constrained weights subcase.
The quantitative measures for all generalized motion in Fig.
14 are in Table VL

TABLE VI: Measure of the generalized motion.

Fig. Avg. distance to keyframes Avg. distance to center of gate

14a 1.460 0.863

14b 1.014 1.187

l4c 1.7 }5 (the~ propoged) 1.0;0 (thq propoged)
3.428 (kinematic learning [41])  3.660 (kinematic learning [41])

14d 1.841 1.492

l4e 1.641 (unconstrgined W.eights) 1.423 (unconstr.ained w;ights)

7.580 (constrained weights) 7.950 (constrained weights)
14f 1.902 (dist.-to-obstacle cost) 1.617 (dist.-to-obstacle cost)

1.514 (polynomial cost) 3.186 (polynomial cost)

A keyframe’s distance to a trajectory is the distance between this keyframe
and its nearest point on the trajectory, and we average the distance over
all keyframes.

2) New Landing Goal: Fig. 14d tests the generalization of
the cost function learned in Fig. 13d to a new landing goal. The
initial condition is as follows: position 7;(0)=[-8, —8,2|T,
attitude quaternion g ,;(0)=[0.88, —0.42,0.19, 0.14], veloc-
ity v7(0)=[15, 5, —2], and angular velocity w5 (0)=[0, 0, 0]".
We set the new landing goal to r§ = [—8,8,2]" and as =
[0.97,0,0,0.25]T. The quantitative measure for the generalized
motion is in Table VL.

3) New Placement of Obstacles: Fig. 14f tests the gener-
alization of the learned cost functions under new placement
of obstacles. We change the positions of two gates and then
use the learned cost functions to generate new motion in the
new environment. The initial condition is the same as the one
in Fig. 14d and the landing goal as that in Fig. 14a. Fig.
14f shows the generalized motion of the distance-to-obstacle
cost function (40) (unconstrained weights, learned in Fig. 13f)
and the polynomial cost function (38a) (learned in Fig. 13e).
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tion comparison between the polynomial cost
(38a) and distance-to-obstacle cost (40).

Fig. 14: Generalization test of the cost functions learned in Fig. 13. (a)-(c) are the generalized motion of the polynomial cost
function (learned in Fig. 13e) given different new initial conditions. In (c), we also compare with the generalized motion of the
kinematic learning method [41] (discussed in Section V-E1). (d) shows the generalized motion of the polynomial cost function
(learned in Fig. 13e) given a new landing goal. (e) is the generalized motion of the distance-to-obstacle cost function (learned in
Fig. 13f) given new initial condition 2; here, green and orange colors correspond to the unconstrained and constrained weights
subcases, respectively. (f) is the generalization of the polynomial cost function (learned in Fig. 13e) and the distance-to-obstacle
cost function (learned in Fig. 13f) given new placement of obstacles. All quantitative measures are in Table VI.

Note that in the generalization of the distance-to-obstacle cost
(40), o; is set as the obstacle’s new location. The quantitative
measure for the generalized motion is in Table VL

4) Result Analysis: With the new initial conditions and new
landing goal, Fig. 14a- 14d show that the generalized motion
can still follow the keyframes, pass through the gates, and land
near the goal. Fig. 14c also shows that the generalization of the
kinematic learning [41] fails to fly through both gates. As dis-
cussed in Section V-El1, since [41] focuses on learning a low-
level kinematic representation, it has limited generalizability
particularly when the new conditions are very different from
ones in learning. In contrast, a learned cost function can be
shared across different motion conditions. Thus, learning cost
functions shows better generalizability. Fig. 14e also shows
that the generalization of the distance-to-obstacle cost function
(40) (unconstrained weights) is comparable to that in Fig. 14b.

The special attention should be paid to Fig. 14b and Fig.
l4e (unconstrained weights), where the quadrotor seems to
have ignored the first two keyframes (and hence the left gate).
This could be explained by Bellman’s principle of optimality
[58]. Specifically, the motion in Fig. 14b can be interpreted as
the final segment of the ‘complete’ trajectory in Fig. 13e, i.e.,
it can be viewed as the solution to a sub-problem, for which
the initial condition starts from a middle point of a ‘complete’
trajectory and minimizes the remaining cost-to-go. In other
words, if a complete trajectory from the initial start to a goal

is optimal with respect to a cost function, the sub-trajectory
of this complete trajectory from any middle point to the goal
is also optimal with respect to the same cost function. Thus,
the quadrotor motion in Fig. 14b and Fig. 14e is continuing
to finish the rest optimal motion instead of flying back to pass
through the first gate.

Fig. 14f shows the generalization of the learned distance-to-
obstacle cost function (40) versus that of the learned generic
polynomial cost function (38a) in a varying environment.
With Fig. 14f and Table VI, one can conclude that the
polynomial cost function generalizes poorly to new place-
ment of obstacles, compared to the distance-to-obstacle cost
function. Specifically, the generalized motion of the learned
polynomial cost function still tries to follow the original
keyframes instead of going through the new gates: its distance
to the keyframes is 1.514 versus the distance-to-obstacle cost
function’s 1.902, while its distance to the centers of gates
is 3.186 versus the distance-to-obstacle cost’s 1.617. This is
understandable because the learned polynomial cost function
only ‘remembers’ the representation of the keyframes in the
original environment and is unaware of the obstacle changes in
the new environment. On the contrary, the distance-to-obstacle
cost function (40) is defined on the locations of obstacles, and
can be updated with the new locations of obstacles. Hence,
in the new environment in Fig. 14f, the generalized motion of
the distance-to-obstacle cost tries to go through the new gates.
As indicated in Table VI, the generalization of the distance-
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to-obstacle cost function has a smaller distance (1.617) to
the new gates than the polynomial cost does (3.186). This
can also be visualized in Fig. 14f, where the motion of the
distance-to-obstacle cost is attempting to reach the left gate
(although it is not successfully passing through it). The above
results suggest that an environment-dependent formulation of
cost functions, such as a cost function that is defined on both
robot state and environment features, could generalize better in
a varying environment. But one also needs to note that such a
formulation additionally requires the knowledge/model of the
environment features. More discussion of the cost formulations
is given in Section VII-B.

In summary of all the above experiments and analyses,
we conclude that (i) the proposed method can learn a cost
function from a small number of keyframes; (ii) the learned
cost function shows good generalization to unseen motion
conditions; and (iii) to generalize to varying environments, an
environment-informed formulation of cost functions would be
needed, such as the cost function formulation which depends
on both robot’s state and environment features.

VII. DISCUSSION

This section further provides discussion on some aspects of
the proposed method.

A. Why Do Keyframes Suffice?

We provide one explanation for why sparse keyframes can
suffice to recover a cost function. Consider problem (16). For
trajectory &, produced by optimal control system (12), since
we are only interested in the trajectory points &4(7;) at the
time stamps 7; (1 < ¢ < N), we discretize the optimal control
system at these time steps, yielding [50]

dynamics: ;1 = f(x;,w;,0), xo=x(0), (41a)
N-1

objective: J(0) = é(x;, u;,0) + h(zy,un, ), (41b)
=0

where we denote x; = x(7;), and discrete-time f satisfies

2ist = Flaws,w,0) = @, + / " () f(@(r), u(r))dr,

7

and the discrete version of the cost function satisfies

o(x;,u;, 0) = /T%H va(7)ep(x(7), u(T))dr,

i

— T
h(mfv?ﬁzvﬁ):/ va(7)ep(@(7), u(r))dr + hp(2(T)).

N

Here, the new input @; € R? in f may not necessarily have
the same dimension as u(7) € R™ in the original f, e.g., u;
contains all possible controls over time range [7;,7;41] [50].

The solution {xg. v, @o.v } to the discrete-time optimal control
system (41) satisfies the KKT conditions:

ziy1 = f(xi,u;,0), i=0,---N—1,
Ai_aajﬁgf;)\m, i=1, N -1,
0= ;; +(;JZ>\1:+1, i=0,---N—1, (2
AN:%a (%LN:O i=N.

The output of the discrete-time system (41) can be overloaded
by y(7;) = g(x;,u;). To simplify analysis, we assume that
keyframes D are realizable by a 6. Then,

Yy (1i) = g(zi, u;). (43)

Given the keyframes D in (5), recovering a cost function can
be viewed as a problem of solving a set of non-linear equations
in (42) and (43), where unknowns are {&1.n, Wo. N, AN, 0} €
R2N7+(N+1)d+(r+s) © and the total number of constraints
(equations) are 2Nn + (N + 1)d + No. Here, (r + s) is the
dimension of @ and o is the dimension of y. A necessary con-
dition to uniquely determine {x1.n,@o. N, A1.n, 0]} requires
the number of constraints to be no less than the number of

unknowns, yielding

N2T+S.
0

On the other hand, if (44) is not fulfilled or given D is less in-
formative, the unknowns then cannot be uniquely determined,
which means that there might exist multiple 8s such that all
resulting trajectories pass the same sparse keyframes. This case
has been shown in Section V-A (Fig. 4).

Note that the above discussion uses a perspective different
from the development of this paper. It should be noted that
the above explanation fails to explain the case where the given
keyframes are not realizable: ming L(£4,D) > 0, e.g., sub-
optimal data as in Section V-B. We leave its further exploration
as one future direction of this work.

(44)

B. Cost Function Formulation

In general, there are two types of cost function formulations,
as discussed below.

1) Cost Depending Purely on Robot States: The first type
of cost function formulation can be written as cp(x,u),
which only depends on robot state and input (x,w). The
polynomial cost function (38a) in Section VI belongs to this
type. This formulation type can generalize well to different
motion conditions, e.g., new initial condition and new goals,
as shown in Fig. 14a - Fig. 14e. However, it cannot generalize
to varying environments as in Fig. 14f, as the environment
information is not explicitly captured in this cost formulation.

2) Cost Depending on Robot States and Environment Fea-
tures: The second type of cost formulations can be written
as cp(x,u,0), which depends on both the robot state-input
(x, u) and the environment features o. Here, o should be given
for the environment where the robot is trained. Demonstrations
from different environments can also be used as the training
data. The cost functions in (29) and (40) belong to this type.
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One advantage of this formulation is that it has the ability to
generalize to a new environment given its environment features
o. Section VI-C3 has shown such an advantage by comparing
with the first type of cost formulation. At the same time, one
should note that the second type of cost formulation requires
the knowledge of environment features o, which may need
additional modeling effort.

3) Running Cost and Final Cost: The cost function in (2)
includes two terms: a running cost term ¢(-) and a final cost
term h(-). If no knowledge about the task goal is available,
one can use a (deep) neural network to represent both costs, as
shown in Section V-D. Since a neural cost function is usually
goal-blind, the training data needs to include a keyframe at the
goal. If the task goal is known, such as in motion planning in
Section VI, the final cost h(-) can be set to the distance-to-
goal cost, and the running cost ¢(-) is to be tuned. Tuning a
running cost will determine how the robot moves to the goal.
This has been shown in Section VI.

4) Limitation: We should note that whatever a cost for-
mulation is, the proposed method requires all functions to
be differentiable. This can be a limitation of the proposed
method, compared to some existing feature-based IRL meth-
ods such as max-entropy IRL [15], which permits non-
differentiable features. How to extend the proposed method
to non-differentiable systems is a topic for our future work.

C. Convergence and Numerical Integration Error

1) Algorithm Convergence: The proposed Continuous PDP
solves a bi-level optimization problem (16) using gradient
descent. It treats the trajectory &, of the inner-level optimal
control system simply as an ‘implicit’ differentiable function
of the system parameter 6. Generally, bi-level optimization
is known to be strongly NP-hard [59], [60]. Under certain as-
sumptions, one can prove that the gradient-descent method can
converge to a stationary point [61]. With further assumptions
on the outer-level and inner-level problems, such as convexity
and smoothness, [62] shows that the gradient-descent method
could converge to the global solution. However, in our case,
the requirement of convexity is too restricted to optimal control
systems (12). As a future direction of this work, we will try
to explore the milder conditions for its convergence.

2) Numerical Integration Error: Another issue that might
arise is the numerical integration error in solving the gradient
of the inner-level trajectory using Lemma 1, as it requires in-
tegrating several ODEs in both backward and forward passes.
However, our previous experimental experience shows that
due to the side effect of a time-warping function, numerical
integration error/stability can be potentially mitigated. A sim-
ilar process has also been successfully used in some optimal
control software such as [50].

A side effect of using a time-warping function ¢ = w(r) is
that one can scale a long-horizon integration into a smaller
horizon problem by time-warping transformation, then re-
scale the solution back after integration (some refinement can
be done afterwards). For example, f(f Te(x(t),u(t))dt in (2)
over [0,ty] can be transformed to fOT d“;—(:)c(;c(r),u(r))dT
in (12b) over the new horizon [0, 7], using the time-warping

function ¢ty = w(T). In our problem of interest, since T
is given, one can manually pick a relatively small horizon
T < ty and a small integration step size to mitigate the
error of numerical integration. In our previous experiments,
we set the keyframe horizon as 7' = 1 for good numerical
integration accuracy. This time-warping trick has been suc-
cessfully adopted by some optimal control software such as
[50] for numerical stability. One important caveat is that by
using the time-warping transformation ¢ = w(7), as shown
from (2) to (12b), we have changed the original integrand
c(x(t),u(t)) to the new digf) c(x(7),u(T)). Hence, if one
wants to significantly decrease the horizon, ie., T' < ty,

dl;i(:) would be very large, which may increase the stiffness of

d’fl—(:)c(m(ﬂ,u(T)), causing numerical instability. Although
we have rarely encountered such numerical issues in our
previous experiments with 7" = 1s, one might be cautious
when handling stiff ODEs/systems.

D. Model-free versus Model-based

The formulation in this paper assumes robot dynamics to be
known. We would point out that the proposed Continuous PDP
is also able to solve model-free IOC/IRL, i.e., jointly learning
a dynamics model and a cost function from keyframes. To do
that, one needs to replace the known dynamics (1) with a pa-
rameterized dynamics model, which should be differentiable.
The Continuous PDP can update all parameters (including both
dynamics and objective parameters) using gradient descent.
We refer the reviewer to our previous work Pontryagin Dif-
ferentiable Programming (PDP) [34], [46] (discrete-time) for
the model-free IOC/IRL formulation and experiments.

In fact, after the problem reformulation in Section IIL.B, as
shown in (12a), the parameter of the time-warping function
has been absorbed into the dynamics model and becomes the
unknown parameter in the dynamics. Thus, the Continuous
PDP has already shown its ability to jointly update the
parameters in both the dynamics model and cost function.

VIII. CONCLUSIONS

This paper proposes the method of Continuous Pontryagin
Differentiable Programming (Continuous PDP) to enable a
robot to learn an objective function from a small set of demon-
strated keyframes. As the given time stamps of the keyframes
may not be achievable in the robot’s actual execution, the
Continuous PDP jointly finds an objective function and a time-
warping function such that the robot’s final motion attains the
minimal discrepancy loss to the keyframes. The Continuous
PDP minimizes the discrepancy loss using projected gradient
descent, by efficiently computing the gradient of the optimal
trajectory with respect to the tunable function parameters in
the system. The efficacy and capability of the Continuous PDP
are demonstrated in robot arm and 6-DoF quadrotor planning
tasks.
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APPENDIX
PROOF OF LEMMA 1

We consider the equation of Differential Pontryagin’s Max-
imum Principle in (22). Suppose that H,,(7) in (23c) is
invertible for all 0 < 7 < T'. We can solve 8”9 from (22c¢):

100

+Hue(7)
6 >(45)

Substituting (45) into both (22a) and (22b) and combining the
definition of matrices in (25), we have

Oug Oxg

T =~ () (Hua (1) g +G )

d a$9 o 83:9 a)\B
E(W)*A( )%*R( )W+M( T),  (46a)
_d 9 Oz ;0
(80) Q(T)W'FA()W‘FN() (46b)
Motivated by (22d), we assume
3)\9 o amg
W*P( )WJFW() “47)
with P(7) € R™ " and W(7) € R™(+7), 0 < 7 < T, are

two time-varying matrices. Of course, the above (47) holds for
7 = T because of (22d), if
P(1)=H.(T) and W(7)

= Hoo(T).  (48)

Substituting (47) to (46a) and (46b), respectively, to elimi-

nate %, we obtain the following
d 8:1:9 8
=(A— RP)—— — M 4
P d (a‘”") (Q+P+A"P )8—+(A’W+N+W) (49b)
00 00
where P = dZ(T) W= dW(T) , and we here have suppressed

the dependence of 7 for all tlme -varying matrices. By mul-
tiplying (—P) on both sides of (49a), and equaling the left
sides of (49a) and (49b), we have

(—PA+ PRP)% + (PRW — PM)
=(Q+P+ATP)% + (AW +N+W).  (50)
The above equation holds if
—PA+PRP=Q+P+A"P, (51a)
PRW —PM =A"W + N + W, (51b)

which directly are (24). Substituting (47) into (45) yields (27a),
and (27b) directly results from (22a). This completes the proof.
O
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