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In [10], the authors introduced tiered trees to define combinatorial objects counting
absolutely indecomposable representations of certain quivers and torus orbits on
certain homogeneous varieties. In this paper, we use Theta operators, introduced in [6],
to give a symmetric function formula that enumerates these trees. We then formulate
a general conjecture that extends this result, a special case of which might give some

insight about how to formulate a unified Delta conjecture [20].

1 Introduction

Tiered trees were first defined in [10] as trees on vertices labelled 1,...,n with an
integer-valued level function Iv on the vertices such that vertices labelled i and j with
i < j may be adjacent only if Iv(i) < Iv(j). They are a generalisation of intransitive
trees [26], which are tiered trees with only two levels. The notion is related to spanning
trees of inversion graphs (Remark 3.14) and has connections to the abelian sandpile
model on such graphs [12]. We slightly extend the definition of tiered trees to allow
for non-distinct labels (see Definition 3.8). Tiered trees naturally arise as counting both
absolutely irreducible representations of certain supernova quivers and certain torus
orbits on partial flag varieties of type A [10, 16]. The former geometric interpretation

will be of special interest to us.
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The Theta operators ©, for any symmetric function f, were first defined in
[6]. They were instrumental in the formulation and proof of the compositional Delta
conjecture [7], a refinement of the famous (rise) Delta conjecture [20].

In this paper, we will use the combinatorics of tiered trees to provide a

conjectural combinatorial formula for the symmetric function ® Our main result

exel’t=1'

is the proof of the case » = 1" of our conjecture: a formula for ® in terms of

en € |t:1
rooted, fully tiered trees (Theorem 4.5). We also show how this special case implies a
formula for the “Hilbert series” (O, € |t=1 ,ein+1) (Theorem 4.6). The g-exponent in all
our formulas is given by the number of x-inversions of the tiered tree as a spanning tree
of its compatibility graph, a notion that first appeared in [15], which we generalised to
fit our non-distinct label setting.

The proof of our main result relies on the link between Kac polynomials Ary, (@
of certain complete bipartite supernova quivers and a certain sum of Tutte polynomials
of inversion graphs at x = 1,y = q, provided in [16]. In that paper, the authors define
a certain multivariate generating function A (X,...,X}; q) via Equation (1) and show
that A, (@) = (A, hz). We prove that ©, e, }t=1 = A,.1(X;q), by showing that they
both satisfy an invertible relation coming from Equation (1). Furthermore, it is shown
in [16] that Ary, (q@) also equals a certain sum of Tutte polynomials of inversion graphs
at x = 1,y = q. Our result will then follow from the fact [15] that the number of
k-inversions of spanning trees of a graph is distributed in the same way as its external
activity (see Proposition 3.7 for a more precise statement).

The paper is organised in the following way. In Section 2, we introduce the
symmetric functions background that is needed to understand the algebra used in this
paper. In Section 3, we give the main combinatorial definitions, the most important ones
being tiered trees and statistics on them. In Section 4, we show how our g-enumerator of
trees is, in fact, the Tutte polynomial of a certain graph, which allows us to relate these
results to Kac polynomials of dandelion quivers. In Section 5, we prove a new identity
involving Macdonald polynomials and Theta operators, which allows us to prove that
our symmetric function coincides with the expected combinatorial enumerator. In
Section 6, we state some more general conjectures, of which our results prove the special
case corresponding to the column partition, or equivalently, the equality of the “Hilbert
series” of the general conjectures. Finally, in Section 7, we show how our results can
give a new interpretation of the “Hilbert series” of the shuffle theorem, and suggest a
way to unify the two versions of the Delta conjecture (rise version, now a theorem, and
valley version, still open). We also give a bijection between the combinatorics for the

two-part case of our conjecture and labelled parallelogram polyominoes. Via a bijection
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Tiered Trees and Theta Operators 3

to recurrent configurations of the sandpile model on certain inversion graphs, we prove
that our symmetric functions is also a g-enumerator for polyominoes with respect to

the area.

2 Symmetric Functions

For all the undefined notations and the unproven identities, we refer to [4, Section 1],
where definitions, proofs, and/or references can be found.

We denote by A the graded algebra of symmetric functions with coefficients
in Q(q,t), and by (,) the Hall scalar product on A, defined by declaring that the
Schur functions form an orthonormal basis. Define the perp operator + : A — A
to be the adjoint of multiplication with respect to this scalar product, that is,
(fg.h) = (g.f*h).

The standard bases of the symmetric functions that will appear in our calcula-
tions are the monomial {m, },, complete {h,},, elementary {e, },, power {p,},, and Schur
{s,}, bases.

For a partition u + n, we denote by

H, =H,(XI=H,X;q.0=> K,@0s,
Abn

the (modified) Macdonald polynomials, where

E)\./,L = I?)L/,L(q! ) = K)\/,L(Qr 1/t)tn(ﬂ)

are the (modified) Kostka coefficients (see [17, Chapter 2] for more details).

Macdonald polynomials form a basis of the ring of symmetric functions A. This
is a modification of the basis introduced by Macdonald [24].

If we identify the partition p with its Ferrer diagram, that is, with the collection
ofcells {(i,j) |1 <1 < mjrl = J < £(n)} (rows are enumerated from bottom to top, like
for the composition in Figure 5), then for each cell ¢ € u we refer to the arm, leg, co-
arm and co-leg (denoted respectively as aﬂ(c),l# (c),a;L(c),l;L(c)) as the number of cells
in p that are strictly to the right, above, to the left, and below c in u, respectively (see

Figure 1).
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4 M. D'Adderio et al.
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Fig. 1. Limbs and co-limbs of a cell in a partition.

Let M := (1 — q)(1 — t). For every partition u, we define the following constants:

. ’ v
BM — Bu(qr t) — an“(c)t/‘(C),

Ccen

I'IM = Hu(q’t) — H - qaﬂ(c)tlﬂ(C)),
cen/(1)

WM — Wﬂ(q: t) — H(qaﬂ(c) _ tlﬂ(C)+1)(tlu(C) _ an(C)-‘rl)‘
cen

We will make extensive use of the plethystic notation (cf. [17, Chapter 1 page 19]).
We will use the standard shorthand f* = f [ |.
We define the star scalar product by setting for every f,g € A

f, 9), = (fIX], wglMX]).

It is well known that for any two partitions u, v we have

We also need several linear operators on A.

Definition 2.1 ([1, 3.11]). We define the linear operator V: A — A on the eigenbasis of

Macdonald polynomials as

VHM — e|ﬂ|[B;,L]H;L — qn(ﬂ)tn(M)HM.
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Tiered Trees and Theta Operators 5

Definition 2.2. We define the linear operator Il: A — A on the eigenbasis of

Macdonald polynomials as

II =1I1,H,

where we conventionally set T, = 1.

Definition 2.3. For f € A, we define the linear operators Af,A}: A — A on the

eigenbasis of Macdonald polynomials as

Afﬁu = fIB,1H,, A}fIM = fIB, — 11H,.

Observe that on the vector space of symmetric functions homogeneous of degree
n, denoted by A", the operator V equals Ag - Notice also that V, Af and II are all

self-adjoint with respect to the star scalar product.

Definition 2.4 ([6] (28)). For any symmetric function f € A" we define the Theta

operators on A in the following way: for every F € A™, we set

0 ifn>1landm=0
OpF =1 f-F ifn=0andm=0 ,
N(f[£] M 'F) otherwise

and we extend by linearity the definition to any f, F € A.

It is clear that (~)f is linear, and moreover, if f is homogeneous of degree k, then

so is ®f, that is,
OpA © AR for fe A®,
Finally, we define the Pieri coefficients as follows.
1
Definition 2.5. For k € N and f € A®), we define the Pieri coefficients cl,,, &, by

FIXIE, X = Y oA, X,

VCrr

FIXE, X = > d,H,Ix],

WDV

2202 1890100 1z U0 1s8nb AQ €21 | | 29/8GZOBUI/UIWI/EE0 L "0 | /I0P/]01IB-80UBAPE/UIWI/WOD dNO"OIWSpeI.//:Sd)y WO} PapEojumo(



6 M. D'Adderio et al.

where f1 denotes the adjoint of the multiplication by f, and v C; « means thatv C u
and |u| — |v| = k.

We can immediately derive that
L ~ ~ ~ X |~ o
w,chy = (FHH, X1, B,1X]) = <HM[X],wf [M} Hv[X]> = w, d;EM
* *

so these two families of coefficients determine each other. It is convenient to introduce

the lighter notations
hJ_ *
b = cuk and df) = dik.

3 Combinatorial Definitions

Definition 3.1. In this work, a graph G will be a pair (V,E), with V a finite set of
vertices and E C (g) a set of edges (hence no loops nor multiple edges). We say that
i,j € V are neighbours in G if {i,j} € E. We use the usual notions of paths, closed paths,
circuits, connected components, distance between two vertices, and so on. A rooted
graph is a graph (V,E) with a distinguished vertex r € V, which we call its root.

A tree is a connected graph with no circuits. A spanning tree of a graph G is
a subgraph of G that is a tree containing all the vertices of G. We denote by ST(G) the
set of spanning trees of a graph G. Notice that a spanning tree of a rooted graph G is

naturally a rooted tree by taking the same root as G.

Definition 3.2. Let T be a rooted tree (V,E) with root r € V. For a vertex i € V, we
define the height of i as the distance ht(i) from i to r. We define the parent of i # r as
the unique neighbour p(i) of i such that ht(p(i)) < ht(i), and we say that i is a child of
p(i). We say that j is a descendant of i (and i is an ancestor of j) if there exists k > 0
such that i = p*(j) = p(p(---p() - ).

T

Definition 3.3. A labelling of a (rooted) graph G = (V,E) is a function w : V. — N . A
labelled (rooted) graph is a pair (G, w), where G is a (rooted) graph and w is a labelling
of G. To any such labelled (rooted) graph we associate the monomial x% := [];cy X, ;- A
labelling is said to be standard if w(V) ={1,...,#V}.
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Tiered Trees and Theta Operators 7

Fig. 2. The standardisation of the tree in Figure 3.

Fig. 3. A (4,2,2)-tree.

An example of rooted tree with a standard labelling is shown in Figure 2 (the
root is the dark vertex labelled by 2).
The following is a statistic on spanning trees of standardly labelled graphs

originally defined in [15]. We will later extend this definition to any labelling.

Definition 3.4. An inversion of a standardly labelled rooted tree T is a pair of vertices

(i,J) such that j is a descendant of i and w(j) < w(i). If T is a spanning tree of a rooted
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8 M. D'Adderio et al.

graph G = (V,E) then an inversion (i,j) is called a «-inversion if i is not the root of T

and {p(i),j} € E. The number of x-inversions of a spanning tree T is denoted by inv, (T).

In the rooted labelled tree in Figure 2, the pairs (w (i), w(j)) where (i,j) is an

inversion are
{(2,1),(9,6),(9,8),(7,5),(7,3),(7,1), (3, 1)}.

In Figure 4 (A), a labelled graph is shown, with a spanning tree highlighted with
red edges: if the graph (and hence its spanning tree) is rooted in the vertex labelled 5,
then the pairs (w (i), w(j)) where (i,j) is an inversion are {(5, 2), (5, 1), (5,4), (5, 3),(2,1)},
and among those the only «-inversion is the one corresponding to (2, 1).

The following classical definition first appeared in [27].

Definition 3.5. Given a graph G = (V,E), a total order <5 on its edges, and T a

spanning tree of G, we say that

e ¢ € Tisinternally active if it is the minimal edge, according to <z, in the set
of edges of G connecting the two connected components of T \ {e}.
e e e G\Tisexternally active if it is the minimal edge, according to <g, in the

unique circuit of T U {e}.

We denote by int(T) (respectively ext(T)) the internal (resp. external) activity of T, that
is, the number of its internally (resp. externally) active edges (notice that these notions

depend on the total order <z). We define the Tutte polynomial of G as

TG(X, y) — Z Xlnt(T)yeXt(T).
TeST(G)

In Figure 4 (A), if the edges of the graph are ordered lexicographically with
respect to the labels, that is,

1,2) < (1,4) <(1,5) < (2,4) <(2,5) < (3,4) < (3,5 < (3,6),

then the edges internally active to the red spanning tree are (1, 2), (1,4), and (3, 6), while
there are no externally active edges.
A noteworthy classical result is that the Tutte polynomial is independent of the

choice of the ordering on the edges.
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5

(a) Inversion graph of 452163 with a spanning tree.

; (®)

O z

: (®)

o 1

1 (®)

O :
(b) Fully tiered rooted tree corresponding to the (c) Standard tiered rooted tree corresponding to the
spanning tree shown in (a). spanning tree shown in (a).

Fig. 4. Link between inversion graphs and tiered rooted trees.

One sometimes encounters a statistic on spanning trees of a graph that is not
an exterior activity with respect to some global ordering on the edges, but that does

distribute the same as any exterior activity.

Definition 3.6. Given a graph G, a statistic stat : ST(G) — N is said to be (exterior)
Tutte descriptive if

L= Y g,
TeST(G)

We need a result of Gessel.
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10 M. D'Adderio et al.

Proposition 3.7 ([15, Theorem 11]). For any standardly labelled graph, the statistic inv,

on its spanning trees is Tutte descriptive.

Tiered trees were first defined in [10] as a generalisation of the intransitive (i.e.,
two-tiered) trees in [26]. We extend the definition to trees with non-standard labellings,

which require an extra condition.

Definition 3.8. A tiered tree is a tree T = (V, E) with a level function Ilv: ¥V — N and a
labelling w: V — N, such that

1. if {i,j} € E, then Iv(i) # Iv(j),

2. if {i,j} € E and Iv(i) < Iv(j), then w(i) < w(j),

3. if p(i) = p(j) and Iv(i) = Iv(j), then w(i) # w(j).

A tiered tree is said to be standard if its labelling is standard.

Definition 3.9. A tiered rooted tree is a tiered tree that is rooted at a vertex r and such
that Iv=1(0) = {r}, that is, the root is the only vertex that has level 0.

An example of tiered rooted tree is shown in Figure 3: the horizontal lines denote

the levels, which are numbered on the left. A standard one is shown in Figure 2.

Definition 3.10. Let o = (&, y,...) be a composition. An «-tree is a tiered tree such
that #{v € V | Iv(v) = i} = «; for every i > 1. We denote by TT(«) the set of a-trees.
We say that a tree is fully tiered if « = (1,1,...,1). A rooted a-tree is an «-tree with an
extra 0-level containing only its root. We denote the set of such trees by RTT(«). We will
denote by stTT(«x) and stRTT(«) the set of standard «-trees and standard rooted «-trees

respectively.

An example of rooted (4, 2, 2)-tree is shown in Figure 3. A fully tiered rooted tree

is shown in Figure 4 (B).

Definition 3.11. For any tiered tree T, two vertices i,j are said to be compatible if
either Iv(i) < IV(j) A w(@) < w(j) or V(i) > IV(j) A w(i@) > w(j).

For example, in the tiered tree in Figure 2, other than the vertices joined by an
edge which are all compatible, the pairs {w (i), w(j)} with i,j compatible (but not joined

by an edge) are

{1,7},{1,8},(1,9},{2,3},{2,5},{2,6},{2, 8}, {2, 9}, {3, 8}, {4, 7}, {4, 8}, {5, 8}, {5, 9}, {6, 7}.
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Tiered Trees and Theta Operators 11

Definition 3.12. The compatibility graph G of a tiered tree T is the graph obtained
from T by connecting all the pairs of compatible vertices with an edge. Clearly, T is a

spanning tree of G.

This motivates the following definition, which extends the notion of x-inversion

(see Definition 3.4) to trees with repeated labels.

Definition 3.13. For any tiered rooted tree T, we define inv(T) as the number of pairs

(i,J) of vertices i,j € V \ {r} such that

1. jis a descendant of i,
2. jis compatible with p(i),
3. either w(j) < w(i) or w(j) = w(@) A IV(j) > Iv(i).

For example, in the tiered rooted tree T in Figure 2, the pairs (w (i), w(j)) such
that (i,j) contributes to inv(T) are (9, 8), (7,3),(7,5), and (3,1) so that inv(T) = 4.

Remark 3.14. Notice that the compatibility graph of any standard tiered tree on n
vertices is the inversion graph (see Definition 4.2) of the word o such that o,,,;) = n—Iv().
For example the word o for the standard tiered tree in Figure 2 is ¢ = 897888667: it is
easy to check that the inversions of this word are precisely the compatible pairs, as
stated.

The following proposition follows directly from the definitions.

Proposition 3.15. Let T be a standard tiered rooted tree and G its compatibility graph.

Then inv(T) is the number of «-inversions of T as a spanning tree of G.

We now introduce a reading word, which will allow us to treat only standard

objects.

Definition 3.16. Given a tiered rooted tree T, we define an ordering < on V by saying
that i 5 j if:

1. Iv(@i) < Iv(j), or

2. Iv(@) = Iv(j) and ht@@) > ht(j), or

3. Iv(@) = Iv(j), ht(@) = ht(j), and p(i) < p(j), or

4. V@) = Iv(), ht@) = ht(), p(@) = p(), and w(i@) < w(j).
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12 M. D'Adderio et al.

Definition 3.8 (3), ensures that < is a total order on V.

Definition 3.17. If T is a tiered rooted tree, we define its reading word o (T) as the

word defined by its labels, read according to <.
For example the reading word of the tree in Figure 3 is 131224244.

Definition 3.18. We define the standardisation of a tiered rooted tree T as the unique
standard tiered rooted tree obtained by replacing multiple occurrences of the same
label with sequences of distinct labels, so that they appear in decreasing order in o (T),

preserving any relative inequality in T.

For example, the standardisation of the tree in Figure 3 is the tree in Figure 2.
Notice that the reading word of the standardisation is obtained from the reading word
of the original tree by scanning it from right to left and replacing each occurrence of the
minimal label by 1,2,...,r, then scanning again from right to left and replacing each
occurrence of the minimal of the remaining labels by r+ 1,7+ 2, ..., and so on. So for
example, the reading word of the tree in Figure 3 is 131224244 hence the reading word
of its standardisation in Figure 2 is 261549387.

Remark 3.19. Itis easy to check thatinv(T) is defined in such a way that it is preserved
by this operation, that is, the pairs contributing to the inv of a rooted tiered tree are
the same as the ones contributing to the inv of its standardisation. This can be easily

checked in the tree in Figure 3 whose standardisation appears in Figure 2.

In this paper, we will be interested in the g, x-enumerator

Z g . 4T,

TeRTT(a)

where xT = [licv(r) Xw) and V(T) is the set of vertices of T.
Thanks to Remark 3.19 and the paragraph before it, we can use Gessel's
fundamental quasi-symmetric functions to rewrite this in terms of standard objects,

namely

inv(T T inv(T
> d™x"= 3 d™P - Qespevio ) jalr
TeRTT(x) TestTT(x)
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Tiered Trees and Theta Operators 13

where for a permutation v = 7,7, --- 7, rev(r) = t,7,_; - - - 7;, ides(r) is the descent set
of 7!, and for S € {1,2,...,n — 1} the Gessel’'s fundamental quasi-symmetric function

Qg ,, is defined as

OS,TZ = 2 Xi1Xi2 . Xln
1<i)<ip<<ip
ij<ijy for jeS

4 Tutte Polynomials and Quivers

In this section, we show how our symmetric function ®elne1, when evaluated at t =1,
gives an explicit formula for the g, x-enumerator of labelled tiered trees, and we tie it to

certain Kac polynomials of the dandelion quivers.

4.1 Kac polynomials of dandelion quivers
For the undefined notation in this section, we refer to [16].

In [16, Section 5], the authors define the multivariate generating function
A (X, ..., Xy @ via the identity

(U/(qs— D) )

US
DA, X @) = (@ Dlog | D R(Xy) - Ry(Xp) ,

s>1 $>0

where R (X) are the Rogers-Szégo symmetric functions, which coincide with row-
partition Macdonald polynomials; that is, Ry (X) = ﬁ<s) [x1.
If we specialise k = 1 (so X; = X) and take the derivative with respect to U,

we get

N = (U/(g-D)* = (U/(q— 1)
2 A | | 2o g | = 2 e sy

s>1 s>0 s>1

and equating the coefficients of U™ we get the identity

n

~ n -
Hppny =2, (k) (@ = D" Hyy Ay 11 (X; ).
k=0

In Section 5, we will show in Theorem 5.7 that the same identity holds if we
replace A, _;,;(X;q) with ®eln—kel|t=1' Then, since the relation is invertible, we can

deduce the following.
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14 M. D'Adderio et al.

Proposition 4.1. For n > 0, we have
AX: @) =0, e,

For any nonempty partition u set u= = (&g, ..., Ky()- Let I, = I' be the
dandelion quiver with |u| short legs and a long leg of length ¢(u). From [16, Theorem
5.2], we know that, if A, _(q) is the Kac polynomial of I' with dimension vector v -,

'
then AF,VM— (q) = (A“/v" h/t)'

Definition 4.2. Let u € N". We define the inversion graph of u as the graph with
V=Inl={1,2,...,n}, the vertex i is labelled u;, and E = {{i,j} | i < j, u; > uj}.

In the same paper [16], for a given word u, the authors define R, (q) = Tk, (1,9),
where Tx(x,y) is the Tutte polynomial of the graph K, and K, is the inversion graph of
u. If, for a composition «, we define S, as the set of permutations that are «-shuffles
(For « a composition of n, an «-shuffle is a permutation ¢ of S,, such that the increasing
sequences (1,...,ay),(o¢; +1,...,0;+ay),... are sub-sequences of (oy,...,0,).), then [16,
Theorem 3.14] states that

Ary, @ =D R, (@

o€eS,

We anticipate here the following consequence of Theorem 5.7.

Theorem 4.3.

@i, = 2 Fu@x"

ueN”n
Proof. From [16, Theorem 3.14] and [16, Theorem 5.2], for © + n, we have
that (A, h,) = 2,cs,Rs(q). Combining it with Theorem 5.7, we have that
<®en 181’

functions are dual, and the standardisation (The standardisation of a word u € N"

h,) = = 2 ses, Ry (q). Now, the homogeneous and the monomial symmetric

with «; occurrences of the letter i is the permutation obtained from u by replacing its
i's with the sequence >; ;o; + 1,2 ;o +2,..., 2 ;& + o, from left to right. Thus,
the standardisation is an «-shuffle.) of a word with u; occurrences of the letter i is
a permutation, which is a u-shuffle, and has the same inversion graph. The thesis
follows. |
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Tiered Trees and Theta Operators 15

Lemma 4.4. For all compositions «, we have

Z R, (@ = Z qinv(T) and Z R,(q) = Z qinv(T).

ues, TeRTT(1l%1-1) ueS(1,a) TestRTT ()
xT=xo
Proof. Let n = |«|. Let us first show the former identity. Fix some u € S, and let

@t be the unique word with u; occurrences of the letter i that standardises to u. Let
K, = (In],E) be the inversion graph of u. Define a level function Iv: [n] — N such that
Iv(u;) = n —i. Next, define a relabelling function w: [n] — N, such that w(u;) = u;.
Any rooted tiered tree on the vertices [n] with level function v and labelling w has
compatibility graph K, and so these trees correspond exactly to spanning trees of K,.

For example, if u = 452163 € S; ,3), then u = 332132. Figure 4 (A) represents
the inversion graph of u with some spanning tree, Figure 4 (B) shows the corresponding
fully tiered tree.

Under this correspondence the number of «-inversions of the spanning tree of
the inversion graph equals the number of inversions of the rooted fully tiered tree. Since,

by Proposition 3.7, we have

T, (1,9 =Ry, (@ = >, ¢™®,
TeST(Ky)

summing over all possible u € S, gives the desired result.

For the second identity, let T be an element of RTT(1!%l) such that xT = x; -x%, and
let Iv, w be its level and label functions, respectively. We construct a tiered tree T’ from T
as follows: for each vertex i of T, place a vertex labelled Iv(i)+1 in tier w(i)—1, conserving
the edges. Since T is fully tiered, T” is standardly labelled. Since T has exactly one label
equal to 1 and «; labels equal to i, T is rooted and «-tiered. The second identity now
follows from the first one and the symmetric roles played by the level and label function
in the definition of the inv (Definition 3.13). Figure 4 (C) shows the T’ corresponding to
the T in Figure 4 (B). |

Theorem 4.5. For n € N, we have

Ocper]_ = X g™
t=
TeRTT(1")
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16 M. D’Adderio et al.
Proof. Using the first identity of Lemma 4.4, we can restate Theorem 4.3 as

ener k)| = > g™ @

TeRTT(1™)

xT=xH

Then the thesis follows immediately since the complete homogeneous symmetric

functions are dual to the monomial symmetric functions. |

If we instead consider the composition (1,u), using the second identity of

Lemma 4.4, we get the following.

Theorem 4.6.

<®eu ey, eqjul+1) ;

B — Z qlnv(T)_

TestRTT (1)

Proof. We have the following symmetric function identity:

*
(Oc, €1 7,1) = (O €1,€,1)
= (MTIlejn, e;l)

*

= (Mne;ll ’ e’{n>*
= (O, €1, €fn),

- (@eﬂel, eln>.
The thesis now follows from Equation (2) and Lemma 4.4. |

Using Theta operators, we can also give an algebraic proof of the identity

DR et > g

TeTT(m,n) TeTT(m-1,n-1,1)

where wt, the weight, is yet another Tutte-descriptive statistic on standard tiered trees,
where the ordering on the edges is lexicographical by the labels of the endpoints. This
identity appears in [16], [10], and [9]. By Theorem 4.3, we have

— Wi(T)
<®81w7161'hﬂ>’t=1 - Z q ’
TeTT(w)
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Tiered Trees and Theta Operators 17

In fact, we prove the following, stronger result.

Proposition 4.7.

<®elm+n—l er Rimmy) = <®elm+n—2 e him-1,n-1,1))-

Proof. We have

(Oc rin 1 €10 hmny) = (M€ min, By, )
= (MT1€lmin, €1 €p),
= (€]mn, MIley, ep),
= (€]min, O, MIley),
= (e*l‘mw_l,ef@emMHeZ)*

[8, Lemma 6.7] = (€]min_1, MII€0, 1 5 11))s

= (MHeTern—lIe?m_lyn_lyl))*
= (®elm+n,2 el'ezﬁmfl,nfl,l))*

= (O¢ 110 e hm—1n-11))

as desired. [ ]

Note that this is slightly more general as the two terms are polynomials in
both g and ¢, while the original identity involves polynomials in g only, which are the

specialisations of our polynomials when t = 1.

5 An Identity for Theta Operators

The goal of this section is to prove a new identity involving Macdonald polynomials and

Theta operators, that is,

n

Ao =2 () =" (00,001 -

k=0
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18 M. D'Adderio et al.
5.1 A combinatorial formula for @elnfk e; whent=1

It is convenient to define the following family of symmetric functions.

Definition 5.1. We define ﬁi = (q; Q;h; [IXTq] forieN, and h, = Hﬁxi for A - n.
Notice that these symmetric functions are just the Macdonald polynomials
evaluated at t = 1, that is, ﬁﬂ = ﬁﬂ[x; q, 1] (see [14], (92)).

Finally, we will need the following new statistic on standard Young tableaux.

Definition 5.2. Given A F n, let SYT(1) be the set of standard Young tableaux of shape
1. Given T € SYT()), let T* be the tableau obtained from T by only considering the entries
1,...,i, and let A! be its shape. Let r be the unique integer such that Ai > Ai‘l.

We define the shifted leg length of i with respect to T as

Ly(i) = #{j | 271 =2

if A1 > 0, and 1 otherwise.
We define the total shifted leg length of T as L(T) = Hisn Lp(D).

Equivalently, if i is not in the first column, then L (i) is the number of entries of
T smaller than i in the column immediately to the left of the cell containing i, and in a
row weakly above i. If i is in the first column, L, (i) = 1.

We want to prove the following expansion of (®eln kel)‘ . in the ’ﬁ” basis.
- t

Lemma 5.3.

(0, )| _ = > 0w -ni@-0- (Y LD |k,

t=1
nFn—k+1 TeSYT(w)

Proof. First, we explicitly compute the Macdonald expansion of @elﬁv, via the
. ~ H,
coefficients (®, H, W—;)*.

We have

~ X 1= ~ w ~
c - 2 lg1g - O-17 — W -1
Oele_l'[el[ ]1‘1 H,=> m,dN)n'H, = > m,c)—L0H,.
nDI1v no1v v
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Tiered Trees and Theta Operators 19

Forv C; pu, let R be the sets of cells in the co-arm and the co-leg of u/v

w/vr Cu/v
respectively. We have (see [13])

ay(@)+1 _ +£,(a) Lu(@)+1 _ Hau(a)
o H qr tou tou qr
nv a,L(a) _ tlﬂ(a) téﬂ(a) _ qaﬂ(a)
QGRM/V aec;/./v
and so
a,(a)+1 £, (a) l(a)+1 _ Hau(a)
= T 1 oo
w, au(a) — tlula) tlu(a) _ qau(a)

acRup aeCyuy
[Tge, (@@ — th @+ gh(@ — gav@+)
Hae (qa“(a) — thu@F1) (gbu(@ — q“u(a)Jrl)

ag(a)+1 _ tﬁu(a) (qau(a)—l _ tﬁu(a)+l)(tﬁu(a) _ qaﬂ(a))

q
H a,t(a) _ teﬂ(“) (qau(a) _ tZM(a)-i-l)(tEM(a) _ qa,t(a)+l)

aeR,L/v aERM/v

téu(a)Jrl _ qaﬂ(a)

< |l e 1l

(qau(a) _ tl#(a))(tl#(a)fl _ qau(a)Jrl)

(qau(“) _ tZ,L(a)Jrl)(téu(a) _ qau(a)Jrl)

aeCu/,, aecu/v
1
X ——————————————————————————
1-tH1 -9
1 (qaﬂ(a)—l _ tlﬂ(a)-H) (téﬂ(a)—l _ qa,t(a)—i-l)
=1 _ _ (@) _ +a(@)+1 (@) _ sap@+1y
1-q@1 -1 2Ry, (g thu ) 2Cn ((ad g )
Now, as I'IMI'IU‘1 =1 — g*Rurt*Curv, we have
o n,w, _ 1 — g* R t#Cuv (qu@-1 _ tlu(@+1y (tn@-1 _ gau(@+1)
nv _ _ a,(a) _ +0,(a)+1 l(a) _ pau(a)+1y
H w, 1-qg1 -1 aeRpn (g thu ) 2o (tt» q )

If RWU = @ (that is, u = (v, 1)), evaluating at t = 1, we get

(C(l) H#WM) = 1 — g = #Coupo = —t0),
v mw, J|,_, 1-qg(1—-1) 1 1—gqg q—1
otherwise, we have

( w Huw, ) _1- q"Ru 1 1 — thu@+1 _ ¢,(a)+1

where a is the left neighbour of /v in u, and so (@) +1=#{1=< <L) |y, = #R 0}
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20 M. D’Adderio et al.

213|7
5/6(819
11]4

Fig. 5. A row-strict tableau of shape (2,4, 3).

If we apply O, iteratively starting from ﬁ(l) = e;, the sequence of cells that we

add one by one defines a standard Young tableau T, say of shape u. To get the coefficient,

(1) Wy

wpt=t Iy w i

we have to multiply the subsequent values of |c ; we get a factor

t=1
(g — 1)¥ ", then every time we add a cell to the leftmost column we have to multiply by

—2(u*~1) (so in the end we will get (—1)¢W=1(¢(u) — 1)1), and every time we add a cell
somewhere else we have to multiply by #{1 <j < ¢(u'™ 1) | ujl._l = #R,i/,i—1}, which is
exactly L (7).

Putting everything together, we get

— L(u)—-1 k— -
(Oc,e)|_ = > e -nig-vEr (> wn |k,
nFn—k+1 TeSYT(w)
which is exactly what we wanted. |

5.2 Row-strict tableaux

Now we want to simplify the identity we just proved by getting rid of the weights, which

we will do by replacing standard Young tableaux with row-strict tableaux.

Definition 5.4. Let o be a composition of n, which we denote « F n. We define a row-
strict composition tableau (starting with 1) of shape « as a filling with the numbers
from 1 to n of a diagram consisting of n boxes such that there are «; boxes in the i-th
row, the entries are strictly increasing along the rows, and 1 is in the bottom-left box.
An example is shown in Figure 5.

We define RST, («) the set of row-strict composition tableaux (starting with 1)
with shape «, and RST, (n) = U,,,RST, ().
We define A(x) to be the partition of n obtained by sorting the parts of « in

decreasing order, and set Ea = h\x(a)-
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237 56
51689 o [2]4]8
1[4 1379

Fig. 6. An example of the map ¢.

Lemma 5.5. Let A F n, and let ¢: U ()=2 RST,(e) — SYT()), where ¢(T) is defined

by sorting the entries of the columns of T in increasing order, and then shifting the

columns to the bottom, so that the image is a standard Young tableau (cf. Figure 6)).
Then #¢~1(T) = (£(A) — 1)! -L(T).

Proof. We prove this by induction on n. For n = 1 we only have one row-strict tableau,
which is also a standard Young tableau, and it is fixed by ¢; (£((1)) — 1)! oL() =1 and
so the thesis holds.

Suppose the thesis holds for n — 1, let T be a standard Young tableau of shape
A+ n, and let T = T" 1. We consider two cases: whether n is in the first column of
T or not.

If it is, any element of ¢~ 1(T) can be obtained injectively from an element in
¢~ 1(T") by adding n in a new row, and this can be done in £(A\""!) = ¢(1) — 1 ways.
Moreover, as Ly(n) = 1, then L(T) = L(T"). It follows that

#07H(T) = (L) — 1) x #¢~H(T) = (L) — DA™ — DI-L(T) = (£(0) — 1! -L(T)

as we wanted.

If n is not in the first column of T, assume that it is in a row of length r. Any
element of ¢~!(T) can be obtained injectively from an element in ¢~!(T”) by adding n
in any row of length r — 1, and by definition there are exactly Ly(n) of them. Moreover,
L\ = L1, 1t follows that

#9 HN(T) = Lp(n) x #¢~ (T = €1 — D! -Le(m)L(T') = (L) — )!-L(T)

as desired. The thesis follows. [ |

We can now restate Lemma 5.3 as follows.
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22 M. D’Adderio et al.

Lemma 5.6.

(CHY ‘t:I = O[hnz_;,m(—l)‘“a)‘l (@ — D "#RST, (@)h,.

Proof. From Lemma 5.5, for any A - n, we have

> #RST (@) = () — D! > L(D).

Aa)=n TeSYT()
Now the thesis follows immediately from Lemma 5.3. |

5.3 The main identity

We are now ready to prove the main identity.

Theorem 5.7.

n

ﬁ(n—i—l) = z (Z) @- 1)"*"]?[(]{) (®eln-k el) ’t:l )

k=0
Proof. Using Lemma 5.6, we can restate the theorem as

n

P n\~ _~
Boi1 = (k)hk > (=D THRST, (@),

k=0 aFn—k+1

We consider the right-hand side of the equality. For k > 0, the binomial
coefficient can be thought of as a choice of a nonempty subset S C {2,...,n + 1} of
size k. The number #RST, («¢) can be thought of as a choice of a tableau C € RST, (),
but instead of filling its cells with the numbers {1,...,n — k + 1}, we use the indices in
S¢=1{1,...,n+ 1} \ S. To any such pair we can injectively associate an element C W S in
#RST,; (n+1) by adding an extra row to the top of C consisting of the entries in S written
in increasing order.

The element CW S also appears in the sum when k = 0, with the same symmetric
function (’ﬁk is multiplicative, so Eaﬁk = Ea,k) but with opposite sign, as £(«, k) = €(a)+1.
It follows that all these terms cancel, except for the row-strict composition tableaux
that cannot be expressed as C W S for some C, S. But any tableau with at least two rows

can be expressed as CW S for some C, S simply by taking S as the set of entries in the
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topmost row, and C as the tableau minus the topmost row. The only remaining tableau

is the row of length n + 1, and the thesis follows. [ |

6 Conjectures and Open Problems

In an attempt to generalise Theorem 4.5, we state the following conjecture, checked by

computer up to |a| =7.

Conjecture 1 (Theta trees Conjecture). For any composition «,

_ inv(T) ., T
GeW)el’t:l - TEF;F( )q o
o

Remark 6.1. This conjecture would imply that the right hand side of this identity does
not depend on the order of the parts of « (as the left hand side does not). We do not know
how to show this fact in general but from [9, Theorem 1.3], it follows that this fact holds

for the Hilbert series.

Notice that Theorem 4.6 proves that the Hilbert series of the two sides of
Conjecture 1 are, in fact, equal.

If « = 1", we can, in some sense, refine Conjecture 1 even further.

Conjecture 2. Forl <j<n,

. . n _ inv(T)
(0,180,0,1 ey, ) ‘t: - > q
TeRTT;(17+1)

where R'I'Tj(ln“) denotes the set of standard fully tiered rooted trees on n + 1 vertices

whose root is labelled j.

This is suggested by the symmetric function identity (deduced iterating
[8, Theorem 4.3]

n
L — ; .
e Ocne; = Z@e,l_lAel @e?_,el,
j=1

which, in some sense, splits the symmetric function Ocne; in pieces according to the

label assigned to the root.
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24 M. D’'Adderio et al.

With this refinement in mind, we can now guess a way to specify the subset
of trees where the root is assigned the lowest, unique label. Thus, we are lead to the
statement of a similar conjecture, that allows us to disregard the root (and so to think of
the objects as rooted forests). Let RTT,(«) be the set of o-trees, except we conventionally

assign label 0 to the root and set x; = 1. Then we claim the following.

Conjecture 3 (Symmetric Theta Conjecture). For any composition «,

Do MI(e; o)), = D, ¢™Px".
TeRTTo(a)

This conjecture is of note because it gives us a remarkable symmetry in the
combinatorics. In fact, once the root does not interact with the labels anymore, the
labels and the tiers play a dual role: they are essentially two interchangeable values
assigned to each vertex, such that we can only have edges between vertices in which
these two values both increase or both decrease. This combinatorial symmetry is

explained by the easy symmetric function identity
(A, MI(e;*),h,) = (A, MI(e,*), h;).

Finally, in the same fashion as the shuffle conjecture and the similar statements

in algebraic combinatorics, it is natural to ask the following question.

Problem 6.2. Find a t-statistic tstat: RTT(«) — N such that the identities

inv(T) ststat(T) |, T
TeRTT(x)
and
inv(T) ststat(T) ,, T
AelMHeBt(a) — Z qInV( )tsa( )X
TeRTTy(x)
hold.

7 The Unified Delta Conjecture and Parallelogram Polyominoes

Our main conjecture (Conjecture 1) has connections to other conjectures and theorems

in algebraic combinatorics, such as the shuffle theorem ([18], proved in [2]), the Delta
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conjecture in both the rise version (now a theorem [7]) and the valley version, and
the polyominoes conjecture [4, Conjecture 2.6]. In this section, we will go through all

these links.

7.1 Parking functions

The Catalan case (-,e, ;) of Conjecture 1 when « = 1" is intimately related to the

Hilbert series of Ve,,. In fact, we have the following symmetric function identity.

Proposition 7.1. Forn >0,
<®e?9119n+1) = (Ve,, el).
Proof. We have

(®e'fel ' en+1) =

[6, Lemma 6.1] = <Ae1 G)e?_lel,en)

(using [14], (70)) = (VA,, @e;z—l e h,)
= (VA,, MII€},, hy)

= (VA, MIleTn, €)

*

*

= (en, VA, MTley)
(using [14, Theorem 3.4]) = (ejx, Ve,,),

= (ejn, Vey)
as desired. [ |

On the combinatorial side, taking the scalar product with e, corresponds to
selecting the trees such that, for 1 < i < n+ 1, Iv(i) = w(i) (i.e., the labels increase
bottom to top); it is slightly more natural to consider the equivalent formulation
(Ael®e?_1e1,en) = (A, MIlej,, ey,), that is, 0 < i < n instead. This means we are
essentially considering spanning trees of the complete graph K, ,. See [19] for a
bijection between spanning trees of the complete graph and parking functions, which
translates the g, t-bi-statistic (dinv,area) on parking functions of the famous Shuffle

Theorem.
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It is a classical result (see [22]) that the g-enumerator of spanning trees of the
complete graph with respect to «-inversions is the same as the g-enumerator of parking
functions with respect to the area. This result has been later extended to spanning trees
of a graph G and G-parking functions [25, Theorem 3]. This might suggest a way to
derive a t-statistic for tiered trees that matches the whole g, t-enumerator; however, the
authors are not aware of any g, t-enumeration for G-parking functions (when G is not

complete).

7.2 Decorated Dyck paths

Using symmetric function identities, we can relate our conjecture to the unified Delta
conjecture [6, Conjecture 9.1]. In particular, the case k = 1 of [8, Theorem 8.2] is of

interest for us. We state that case here.

Theorem 7.2. Forj,m,n € N, we have

h; ©,,, 0,6, =0, O, Ve | +0O 0, Ve,

m—j em—j+1 en—j 7]

+0,, O, . Ve+O, O, Ve,

This identity suggests that there should be a bijection between certain subsets

of two-tiered trees (e.g., with j occurrences of the 0 label) and labelled Dyck paths of
size m+n +j+ 1 with m —j + 1 decorated rises and n — j + 1 decorated valleys, where
the first step can host either or both decoration types. Such a bijection might suggest
how to derive a t-statistic for Conjecture 1 from the ones we already have for the Delta

theorem.

7.3 Parallelogram polyominoes

It is worth mentioning that, if Conjecture 1 holds, then a special case of the symmetric
function also enumerates parallelogram polyominoes with labels on both the horizontal
and vertical steps, with respect to a labelled version of the area. We can show the result

for the Hilbert series.

Definition 7.3. A parallelogram polyomino of size m x n is a pair of lattice paths from
(0,0) to (m,n) using only north and east steps, such that the first one (the red path)
always lies strictly above the second one (the green path), except when they meet in

the extremal points. A labelled parallelogram polyomino is a parallelogram polyomino
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Fig. 7. A 11 x 7 labelled parallelogram polyomino.

where we place positive integers in the squares of the grid containing either a vertical
step of the red path and/or a horizontal step of the green path in such a way that the
labels appearing in each column are strictly increasing from bottom to top, and the
labels appearing in each row are strictly decreasing from left to right. See Figure 7 for
an example.

We distinguish three types of labels: the black label is the label in the unique
square containing both a vertical red step and a horizontal green step (i.e., the bottom
left square). The remaining labels are referred to as either red labels or green labels
depending on the colour of the path in its square.

We denote the set of labelled parallelogram polyominoes of size m x n by
LPP(m,n). An element of LPP(m, n) is said to be standardly labelled if its labels are
exactly [m 4+ n — 1]. The set of such polyominoes will be denoted by stLPP(m, n).

We can show that the numbers are correct via an explicit bijection.

Proposition 7.4. There is a combinatorial bijection

:LPPm+1,n+1)— RTT(m,1,n)

where the trees in the image are rooted at the unique vertex in tier 2.
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Fig. 8. The (6,1, 10)-tiered tree corresponding to the polyomino in Figure 7.

Proof. LetP e LPP(m+ 1,n+ 1). To construct the tiers of ¢(P), we proceed as follows:
the labels assigned to the vertices in tier 1 will be the m green labels; analogously, the
labels assigned to vertices in tier 3 will be the n red labels; finally, the label assigned to
the one vertex in tier 2 is the black label (in the bottom-left corner of P).

Now that we have a 1-to-1 correspondence between vertices of ¢(P) and labels
appearing in P, we simply connect two vertices in distinct tiers if the corresponding
labels lie in the same row or column of P. The structure of the polyomino, having exactly
one green or black label in each column and exactly one red or black label in each row,
ensures that the resulting graph is connected and it has no cycles.

It is clear that this map is bijective: to construct the inverse, given
T € RTT(m,1,n) proceed as follows. Start from the vertex in tier 2 and assign the
corresponding label to the bottom-left cell of the grid. Then, for each edge going to tier
3, simply stack the corresponding labels on top of the bottom-left one, in increasing
order; similarly, for each edge going to tier 1, stack the corresponding labels to the right
of the bottom-left one, in decreasing order. Then, repeat the procedure for the newly
visited vertices, first in first out, each time putting the labels in the same row/column
(depending if you start from a tier 3 vertex or a tier 1 vertex, respectively) and in the
first unoccupied column/row. Then ¢ ~!(T) is the unique polyomino whose labels appear

in the position they have been assigned. |
We have a natural statistic on parallelogram polyominoes, namely the area.

Definition 7.5. The area of a labelled parallelogram polyomino is the number of cells
between the two paths that do not contain any label, and such that the label to their left
is strictly greater than the label below them.
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For example, the area of the polyomino in Figure 7 is 10, as the cells with
coordinates (4,4) and (5,4) do not contribute.

The goal of the rest of this section is to prove that the area is distributed on
polyominoes in accordance with our symmetric function. In other words, we will show

the following.

Theorem 7.6. For m,n € N, we have

€n—1

(CHNC

el 12 elm+n—1 >

— area(P)
D DR

N PestLPP(m,n)

In order to prove this result, we follow techniques developed in [11], which uses
the abelian sandpile model on a graph. We refer to [21] for the basic theory of the

sandpile model (also known as chip-firing game).

Definition 7.7. Take G = (V, s, E) a graph with a distinguished vertex s called the sink.
A configuration on G is a map ¢ : V — N. We interpret this as c(i) grains of sand lying
on each vertex i. A vertex i is said to be unstable if c(i) > deg(i). A configuration is said
to be stable if none of its vertices, with the possible exception of the sink, are unstable.
When there is an unstable vertex, it may be toppled, which gives a new configuration ¢’

on G defined as

c'(i) = c(i) — deg(i)
cdH=ch)+1 ifj#iand (i,j) €E .
() = cQ) ifj#iand (i,)) ¢ E

In other words, i gives one grain of sand to each of its neighbours. We denote this
toppling process by ¢ LN c’. A configuration c is said to be recurrent if c(s) = deg(s)
and there exists a sequence i,...,i; such that ¢ 5S¢ i> i c. We denote the set of
recurrent configurations on G by Rec(G). Finally, the level of a recurrent configuration
is defined as level(c) = > ;. c(i) — #E.

Remark 7.8. It is one of the fundamental results of the sandpile model that topplings
commute, hence the adjective abelian. Thus, the recurrent configurations are the ones
that return to themselves after toppling the sink and can be informally described as the

configurations to which the model stabilises when there is a large number of grains.
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Following [11], we will construct a bijective map between the set of polyominoes
whose corresponding tree has a given compatibility graph G and recurrent configura-
tions of the sandpile model. This bijection will send the area of the polyomino into the
level of the configuration. Then, Theorem 7.6 can be deduced from the following fact,

which was first shown in [23] and then bijectively in [3].

Remark 7.9. 1In [12], the authors also provide a bijection between tiered trees and
recurrent configurations on a permutation graph. They define an order on the edges of
the graph such that the level of the configuration corresponds to the exterior activity of
the tree. We note here that their exterior activity is not equal to the area nor the inv of

this paper.

Proposition 7.10. We have

Te(L,g= >, ¢%.
ceRec(G)

Let w = (my, 7y, w3) be an ordered set partition of [m + n — 1] with #7;, = m -1,
#m, = 1 and #my = n — 1. Let stLPP(wr) € stLPP(m — 1,1,n — 1) be the set of standardly
labelled parallelogram polyominoes such that its green, black, and red labels are given
by m,,m,, and g, respectively. Notice that for all P € stLPP(x), {(P) has the same
compatibility graph: it is the graph with edges {i,j} with i < j where i is green or black
and j red, or i is green and j black. Call this graph G, and fix the black label to be

its sink.

Proposition 7.11. There exists a bijection
a : stLPP(r) — Rec(G,)

such that for all P € stLPP(x), area(P) = level(a(P)).

Proof. We recommend that the reader looks at Example 7.12 and Figure 9 while
reading this proof. Take P € stLPP(x). To each square of the m x n-grid (except
the bottom left one), we may associate a unique pair of labels (i,j): take i to be the
black/green label in its column and j the black/red label in its row. We distinguish two
types of squares: white squares are such that i < j and grey squares are the rest (we

disregard the square in the bottom left corner). Thus, the white squares of P correspond
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Fig. 9. Polyomino to sandpile bijection.

exactly to the edges of G,. The map « is defined as follows:

a(P)(@) =

#white squares above the square containing i if i is green

#white squares to the right of the square containing i if i is red

#white squares to the right of or above the square containing i if i is black.

We need to show a few things about this map.

It is well defined that is, for all P € stLPP(x), «(P) € Rec(G,,). We will define
a toppling sequence of «(P) that starts by toppling the sink and returns to
itself.

Define the bounce path of P as follows: draw a path starting at the coordinate
(0,1) going east. When it hits the endpoint of a vertical step of the green path
it turns north. When it hits the endpoint of a horizontal step of the red path
it turns east again and so on. Thus, the path ends up at (m,n). In Figure 9,
the bounce path is represented by the dotted line.

Now project onto the horizontal steps of the bounce path the black/green
label contained in its column and onto the vertical steps the red label
contained in its row. Reading these projected labels from the beginning to
the end of the bounce path defines the canonical toppling order.

Notice that in the correspondence between white squares of the grid and
edges of G, described above, the edges incident to a green (respectively red)
label are exactly the white squares in its column (respectively row). If s is the

black label, that is, the sink of G, its incident edges are exactly the number
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of white squares above or to the right of s so we have «(P)(s) = deg(s). In the
canonical toppling order, s is the first element. We claim that when toppling
the vertices of G, in our canonical order, the next vertex to topple is always
unstable. Indeed for each green label i, its degree is visualised by the number
of white squares in its column. At the start, i had as many grains as squares
above it. The black/red labels in the same row of the squares below i or
containing it appear before i in the canonical toppling order. Thus, when
arriving at i in the toppling order, it has at least as many grains as its degree.
An analogous argument may be made for red labels.

During our canonical toppling process, each vertex i will receive one grain
from each of its neighbours and lose deg(i) grains by toppling, so after this
process it will have as many grains as it started with. Thus «(P) is a recurrent
configuration on G, .

It is a bijection. We describe its inverse. Given a recurrent configuration c

on G_, its sink is the label in the bottom left corner. We can recover the

oy
canonical toppling order as follows. We will keep track of unstable green
and red vertices in two ordered lists. Since c is stable, these lists start out by
being empty. At each toppling we add the newly unstable vertices to the end
of our lists, in decreasing order for green labels and increasing order for red

labels.
1. Start by toppling the sink.

2. Then topple the elements of the list of green unstable vertices in order
until it is empty.

3. Then topple the elements of the list of red unstable vertices in order
until it is empty.

4. Return to step 2.

From this toppling process, we can recover the polyomino as follows: the
green (respectively red) labels that become unstable after the toppling of the
sink are the labels in the first row (respectively column) of the polyomino.
Then for each green (respectively red) label i, the labels that become unstable
upon its toppling must be the labels that are in the same column (respectively
row) as i.

It sends area to level. In determining the number of grains on each vertex,
each white square gets counted exactly once, except the white squares that

are both above a green label and to the right of a red label, who get counted
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twice. Those are exactly the area squares. Thus the number of grains minus
the number of edges of G, (= the number of white squares) gives the number

of area squares. -

Example 7.12. For P the path in Figure 9, we have

i 8112 9 10 6|3 11 5 4 1 7 2

aP)(@ (9|7 5 5 34 0 3 3 2 01

The canonical toppling order of «(P) is (8,3,12,9,10,11,5,4,1,7,2,6).
We now describe a~!. Take «a(P) as the initial configuration and apply the
toppling process in Table 1. This table tells us everything we need to know to reconstruct

the polyomino:

e when toppling the sink, 3 and 12 become unstable, so the only green label in
the first row is 3 and the only red label in the first column is 12;

e when toppling 3, the vertices that become unstable are 9 and 10 so these are
the red labels in the second column;

e when toppling 12, the vertices that become unstable are 11, 5, and 4 so these
are the green labels in the second row;

e cetc.

From Proposition 7.11 and Proposition 7.10, we may conclude that

Te, L= D ¢"P.

PestLPP ()
Now, summing over all possible 7=, Theorem 7.6 follows from Theorem 4.3.

Indeed, €ynim-1 = hynim-1 and the h, are dual to m, so taking (-, ejnim-1) leaves the
g-enumerator of the standard objects.

Of course, Theorem 7.6 raises a natural question.

Problem 7.13. Find a t-statistic tstat: LPP(m, n) — N such that the identity

® ® e, = Z qarea(P) ttstat(P) XP

€m—-1 ~ €n-1
PelLPP(m,n)

holds.
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TABLE 1 The canonical toppling of «(P) for P in Figure 9

Vertices 8 12 9 10 6 3 11 56 4 1 7 2

Degree 9 8 7 7 5 1 5 5 5 4 5 Unstablegreens Unstable reds
Initial configuration 9 7 5 5 3 4 0 3 3 2 0 1 None None
Topple 8 0 8 6 6 35 0 4 4 31 2 3 12
Topple 3 1 9 7 7 40 0 4 4 31 2 None 12,9,10
Topple 12 2 1 7 7 41 1 55 4 2 3 11,5,4 9,10
Topple 9 3 1 0 7 42 1 665 3 4 11,5,4,1 10
Topple 10 4 1 0 0 4 3 1 7 7 6 4 5 11,5,4,1,7,2 None
Topple 11 4 2 0 0 4 3 0 7 7 6 4 5 54,1,7,2 None
Topple 5 5 3 1 1 53 0 2 7 6 45 4,1,7,2 6
Topple 4 6 4 2 2 6 3 0 2 2 6 4 5 1,7,2 6
Topple 1 7 5 3 3 73 0 2 21465 7,2 6
Topple 7 8 6 4 4 7 3 0 2 2 1 05 2 6
Topple 2 9 7 5 5 83 0 2 2100 None 6
Topple 6 9 7 5 5 3 4 0 3 3 2 01 None None

We have some indication about what such a t-statistic should look like. For
C) C)
suggests that the pmaj statistic from [4], on polyominoes where only the top path is

example, the fact that e’

1 e; — Ay, e, appears to be Schur-positive,

€m—1 " €en—1

labelled, should extend to the general case and coincide with the previous one when the
bottom path is labelled with labels 1,2,...,m — 1 appearing from right to left. Further
evidence is provided by the identity

<®em,1 ®en,1 € hkem+nfk71) = <Ahm,1en' hkenfk)'

which is expected as in both cases the combinatorial counterparts of the symmetric
functions should g, t-enumerate polyominoes with k decorated peaks (i.e., vertical
steps followed by horizontal steps) of the top path. Other special cases, such as the

(- hjhyem n_j_r—1) case, are discussed in [5].
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