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In [10], the authors introduced tiered trees to define combinatorial objects counting

absolutely indecomposable representations of certain quivers and torus orbits on

certain homogeneous varieties. In this paper, we use Theta operators, introduced in [6],

to give a symmetric function formula that enumerates these trees. We then formulate

a general conjecture that extends this result, a special case of which might give some

insight about how to formulate a unified Delta conjecture [20].

1 Introduction

Tiered trees were first defined in [10] as trees on vertices labelled 1, . . . , n with an

integer-valued level function lv on the vertices such that vertices labelled i and j with

i < j may be adjacent only if lv(i) < lv(j). They are a generalisation of intransitive

trees [26], which are tiered trees with only two levels. The notion is related to spanning

trees of inversion graphs (Remark 3.14) and has connections to the abelian sandpile

model on such graphs [12]. We slightly extend the definition of tiered trees to allow

for non-distinct labels (see Definition 3.8). Tiered trees naturally arise as counting both

absolutely irreducible representations of certain supernova quivers and certain torus

orbits on partial flag varieties of type A [10, 16]. The former geometric interpretation

will be of special interest to us.
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2 M. D’Adderio et al.

The Theta operators !f , for any symmetric function f , were first defined in

[6]. They were instrumental in the formulation and proof of the compositional Delta

conjecture [7], a refinement of the famous (rise) Delta conjecture [20].

In this paper, we will use the combinatorics of tiered trees to provide a

conjectural combinatorial formula for the symmetric function !eλ
e1

∣∣
t=1. Our main result

is the proof of the case λ = 1n of our conjecture: a formula for !e1n e1
∣∣
t=1 in terms of

rooted, fully tiered trees (Theorem 4.5). We also show how this special case implies a

formula for the “Hilbert series” 〈!eλ
e1

∣∣
t=1 , e1|λ|+1〉 (Theorem 4.6). The q-exponent in all

our formulas is given by the number of κ-inversions of the tiered tree as a spanning tree

of its compatibility graph, a notion that first appeared in [15], which we generalised to

fit our non-distinct label setting.

The proof of our main result relies on the link between Kac polynomials A$,vµ
(q)

of certain complete bipartite supernova quivers and a certain sum of Tutte polynomials

of inversion graphs at x = 1, y = q, provided in [16]. In that paper, the authors define

a certain multivariate generating function As(X1, . . . , Xk; q) via Equation (1) and show

that A$,vµ
(q) = 〈A|µ̃|, hµ̃〉. We prove that !e1n e1

∣∣
t=1 = An+1(X; q), by showing that they

both satisfy an invertible relation coming from Equation (1). Furthermore, it is shown

in [16] that A$,vµ
(q) also equals a certain sum of Tutte polynomials of inversion graphs

at x = 1, y = q. Our result will then follow from the fact [15] that the number of

κ-inversions of spanning trees of a graph is distributed in the same way as its external

activity (see Proposition 3.7 for a more precise statement).

The paper is organised in the following way. In Section 2, we introduce the

symmetric functions background that is needed to understand the algebra used in this

paper. In Section 3, we give the main combinatorial definitions, the most important ones

being tiered trees and statistics on them. In Section 4, we show how our q-enumerator of

trees is, in fact, the Tutte polynomial of a certain graph, which allows us to relate these

results to Kac polynomials of dandelion quivers. In Section 5, we prove a new identity

involving Macdonald polynomials and Theta operators, which allows us to prove that

our symmetric function coincides with the expected combinatorial enumerator. In

Section 6, we state some more general conjectures, of which our results prove the special

case corresponding to the column partition, or equivalently, the equality of the “Hilbert

series” of the general conjectures. Finally, in Section 7, we show how our results can

give a new interpretation of the “Hilbert series” of the shuffle theorem, and suggest a

way to unify the two versions of the Delta conjecture (rise version, now a theorem, and

valley version, still open). We also give a bijection between the combinatorics for the

two-part case of our conjecture and labelled parallelogram polyominoes. Via a bijection
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Tiered Trees and Theta Operators 3

to recurrent configurations of the sandpile model on certain inversion graphs, we prove

that our symmetric functions is also a q-enumerator for polyominoes with respect to

the area.

2 Symmetric Functions

For all the undefined notations and the unproven identities, we refer to [4, Section 1],

where definitions, proofs, and/or references can be found.

We denote by % the graded algebra of symmetric functions with coefficients

in Q(q, t), and by 〈 , 〉 the Hall scalar product on %, defined by declaring that the

Schur functions form an orthonormal basis. Define the perp operator ⊥ : % → %

to be the adjoint of multiplication with respect to this scalar product, that is,

〈fg, h〉 = 〈g, f ⊥h〉.
The standard bases of the symmetric functions that will appear in our calcula-

tions are the monomial {mλ}λ, complete {hλ}λ, elementary {eλ}λ, power {pλ}λ, and Schur

{sλ}λ bases.

For a partition µ & n, we denote by

H̃µ := H̃µ[X] = H̃µ[X; q, t] =
∑

λ&n

K̃λµ(q, t)sλ

the (modified) Macdonald polynomials, where

K̃λµ := K̃λµ(q, t) = Kλµ(q, 1/t)tn(µ)

are the (modified) Kostka coefficients (see [17, Chapter 2] for more details).

Macdonald polynomials form a basis of the ring of symmetric functions %. This

is a modification of the basis introduced by Macdonald [24].

If we identify the partition µ with its Ferrer diagram, that is, with the collection

of cells {(i, j) | 1 ≤ i ≤ µj, 1 ≤ j ≤ &(µ)} (rows are enumerated from bottom to top, like

for the composition in Figure 5), then for each cell c ∈ µ we refer to the arm, leg, co-

arm and co-leg (denoted respectively as aµ(c), lµ(c), a′
µ(c), l′µ(c)) as the number of cells

in µ that are strictly to the right, above, to the left, and below c in µ, respectively (see

Figure 1).
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4 M. D’Adderio et al.

Fig. 1. Limbs and co-limbs of a cell in a partition.

Let M := (1 − q)(1 − t). For every partition µ, we define the following constants:

Bµ := Bµ(q, t) =
∑

c∈µ

qa′
µ(c)tl′µ(c),

'µ := 'µ(q, t) =
∏

c∈µ/(1)

(1 − qa′
µ(c)tl′µ(c)),

wµ := wµ(q, t) =
∏

c∈µ

(qaµ(c) − tlµ(c)+1)(tlµ(c) − qaµ(c)+1).

We will make extensive use of the plethystic notation (cf. [17, Chapter 1 page 19]).

We will use the standard shorthand f ∗ = f
[ X

M

]
.

We define the star scalar product by setting for every f , g ∈ %

〈f , g〉∗ := 〈f [X], ωg[MX]〉.

It is well known that for any two partitions µ, ν we have

〈H̃µ, H̃ν〉∗ = δµ,νwµ.

We also need several linear operators on %.

Definition 2.1 ([1, 3.11]). We define the linear operator ∇ : % → % on the eigenbasis of

Macdonald polynomials as

∇H̃µ = e|µ|[Bµ]H̃µ = qn(µ′)tn(µ)H̃µ.
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Tiered Trees and Theta Operators 5

Definition 2.2. We define the linear operator ! : % → % on the eigenbasis of

Macdonald polynomials as

!H̃µ = 'µH̃µ

where we conventionally set '∅ := 1.

Definition 2.3. For f ∈ %, we define the linear operators +f , +′
f : % → % on the

eigenbasis of Macdonald polynomials as

+f H̃µ = f [Bµ]H̃µ, +′
f H̃µ = f [Bµ − 1]H̃µ.

Observe that on the vector space of symmetric functions homogeneous of degree

n, denoted by %(n), the operator ∇ equals +en
. Notice also that ∇, +f and ! are all

self-adjoint with respect to the star scalar product.

Definition 2.4 ([6] (28)). For any symmetric function f ∈ %(n) we define the Theta

operators on % in the following way: for every F ∈ %(m), we set

!f F :=






0 if n ≥ 1 and m = 0

f · F if n = 0 and m = 0

!(f
[ X

M

]
· !−1F) otherwise

,

and we extend by linearity the definition to any f , F ∈ %.

It is clear that !f is linear, and moreover, if f is homogeneous of degree k, then

so is !f , that is,

!f %
(n) ⊆ %(n+k) for f ∈ %(k).

Finally, we define the Pieri coefficients as follows.

Definition 2.5. For k ∈ N and f ∈ %(k), we define the Pieri coefficients cf ⊥
µν , df

µν by

f [X]⊥H̃µ[X] =
∑

ν⊂kµ

cf ⊥
µν H̃ν [X],

f [X]H̃ν [X] =
∑

µ⊃kν

df
µνH̃µ[X],
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6 M. D’Adderio et al.

where f ⊥ denotes the adjoint of the multiplication by f , and ν ⊂k µ means that ν ⊂ µ

and |µ| − |ν| = k.

We can immediately derive that

wνcf ⊥
µν =

〈
f ⊥H̃µ[X], H̃ν [X]

〉

∗
=

〈
H̃µ[X], ωf

[
X
M

]
H̃ν [X]

〉

∗
= wµdωf [X/M]

µν

so these two families of coefficients determine each other. It is convenient to introduce

the lighter notations

c(k)
µν := c

h⊥
k

µν and d(k)
µν := d

e∗
k

µν .

3 Combinatorial Definitions

Definition 3.1. In this work, a graph G will be a pair (V, E), with V a finite set of

vertices and E ⊆
(V

2

)
a set of edges (hence no loops nor multiple edges). We say that

i, j ∈ V are neighbours in G if {i, j} ∈ E. We use the usual notions of paths, closed paths,

circuits, connected components, distance between two vertices, and so on. A rooted

graph is a graph (V, E) with a distinguished vertex r ∈ V, which we call its root.

A tree is a connected graph with no circuits. A spanning tree of a graph G is

a subgraph of G that is a tree containing all the vertices of G. We denote by ST(G) the

set of spanning trees of a graph G. Notice that a spanning tree of a rooted graph G is

naturally a rooted tree by taking the same root as G.

Definition 3.2. Let T be a rooted tree (V, E) with root r ∈ V. For a vertex i ∈ V, we

define the height of i as the distance ht(i) from i to r. We define the parent of i 0= r as

the unique neighbour p(i) of i such that ht(p(i)) < ht(i), and we say that i is a child of

p(i). We say that j is a descendant of i (and i is an ancestor of j) if there exists k > 0

such that i = pk(j) := p(p(· · · p︸ ︷︷ ︸
k

(j) · · · )).

Definition 3.3. A labelling of a (rooted) graph G = (V, E) is a function w : V → N+. A

labelled (rooted) graph is a pair (G, w), where G is a (rooted) graph and w is a labelling

of G. To any such labelled (rooted) graph we associate the monomial xG := ∏
i∈V xw(i). A

labelling is said to be standard if w(V) = {1, . . . , #V}.
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Tiered Trees and Theta Operators 7

Fig. 2. The standardisation of the tree in Figure 3.

Fig. 3. A (4, 2, 2)-tree.

An example of rooted tree with a standard labelling is shown in Figure 2 (the

root is the dark vertex labelled by 2).

The following is a statistic on spanning trees of standardly labelled graphs

originally defined in [15]. We will later extend this definition to any labelling.

Definition 3.4. An inversion of a standardly labelled rooted tree T is a pair of vertices

(i, j) such that j is a descendant of i and w(j) < w(i). If T is a spanning tree of a rooted
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8 M. D’Adderio et al.

graph G = (V, E) then an inversion (i, j) is called a κ-inversion if i is not the root of T

and {p(i), j} ∈ E. The number of κ-inversions of a spanning tree T is denoted by invκ(T).

In the rooted labelled tree in Figure 2, the pairs (w(i), w(j)) where (i, j) is an

inversion are

{(2, 1), (9, 6), (9, 8), (7, 5), (7, 3), (7, 1), (3, 1)}.

In Figure 4 (A), a labelled graph is shown, with a spanning tree highlighted with

red edges: if the graph (and hence its spanning tree) is rooted in the vertex labelled 5,

then the pairs (w(i), w(j)) where (i, j) is an inversion are {(5, 2), (5, 1), (5, 4), (5, 3), (2, 1)},
and among those the only κ-inversion is the one corresponding to (2, 1).

The following classical definition first appeared in [27].

Definition 3.5. Given a graph G = (V, E), a total order ≺E on its edges, and T a

spanning tree of G, we say that

• e ∈ T is internally active if it is the minimal edge, according to ≺E , in the set

of edges of G connecting the two connected components of T \ {e}.
• e ∈ G \ T is externally active if it is the minimal edge, according to ≺E , in the

unique circuit of T ∪ {e}.

We denote by int(T) (respectively ext(T)) the internal (resp. external) activity of T, that

is, the number of its internally (resp. externally) active edges (notice that these notions

depend on the total order ≺E ). We define the Tutte polynomial of G as

TG(x, y) :=
∑

T∈ST(G)

xint(T)yext(T).

In Figure 4 (A), if the edges of the graph are ordered lexicographically with

respect to the labels, that is,

(1, 2) < (1, 4) < (1, 5) < (2, 4) < (2, 5) < (3, 4) < (3, 5) < (3, 6),

then the edges internally active to the red spanning tree are (1, 2), (1, 4), and (3, 6), while

there are no externally active edges.

A noteworthy classical result is that the Tutte polynomial is independent of the

choice of the ordering on the edges.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/im

rn
/rn

a
c
2
5
8
/6

7
1
1
1
2
3
 b

y
 g

u
e
s
t o

n
 2

1
 O

c
to

b
e
r 2

0
2
2



Tiered Trees and Theta Operators 9

Fig. 4. Link between inversion graphs and tiered rooted trees.

One sometimes encounters a statistic on spanning trees of a graph that is not

an exterior activity with respect to some global ordering on the edges, but that does

distribute the same as any exterior activity.

Definition 3.6. Given a graph G, a statistic stat : ST(G) → N is said to be (exterior)

Tutte descriptive if

TG(1, q) =
∑

T∈ST(G)

qstat(T).

We need a result of Gessel.
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10 M. D’Adderio et al.

Proposition 3.7 ([15, Theorem 11]). For any standardly labelled graph, the statistic invκ

on its spanning trees is Tutte descriptive.

Tiered trees were first defined in [10] as a generalisation of the intransitive (i.e.,

two-tiered) trees in [26]. We extend the definition to trees with non-standard labellings,

which require an extra condition.

Definition 3.8. A tiered tree is a tree T = (V, E) with a level function lv : V → N and a

labelling w : V → N+ such that

1. if {i, j} ∈ E, then lv(i) 0= lv(j),

2. if {i, j} ∈ E and lv(i) < lv(j), then w(i) < w(j),

3. if p(i) = p(j) and lv(i) = lv(j), then w(i) 0= w(j).

A tiered tree is said to be standard if its labelling is standard.

Definition 3.9. A tiered rooted tree is a tiered tree that is rooted at a vertex r and such

that lv−1(0) = {r}, that is, the root is the only vertex that has level 0.

An example of tiered rooted tree is shown in Figure 3: the horizontal lines denote

the levels, which are numbered on the left. A standard one is shown in Figure 2.

Definition 3.10. Let α = (α1, α2, . . . ) be a composition. An α-tree is a tiered tree such

that #{v ∈ V | lv(v) = i} = αi for every i ≥ 1. We denote by TT(α) the set of α-trees.

We say that a tree is fully tiered if α = (1, 1, . . . , 1). A rooted α-tree is an α-tree with an

extra 0-level containing only its root. We denote the set of such trees by RTT(α). We will

denote by stTT(α) and stRTT(α) the set of standard α-trees and standard rooted α-trees

respectively.

An example of rooted (4, 2, 2)-tree is shown in Figure 3. A fully tiered rooted tree

is shown in Figure 4 (B).

Definition 3.11. For any tiered tree T, two vertices i, j are said to be compatible if

either lv(i) < lv(j) ∧ w(i) < w(j) or lv(i) > lv(j) ∧ w(i) > w(j).

For example, in the tiered tree in Figure 2, other than the vertices joined by an

edge which are all compatible, the pairs {w(i), w(j)} with i, j compatible (but not joined

by an edge) are

{1, 7}, {1, 8}, {1, 9}, {2, 3}, {2, 5}, {2, 6}, {2, 8}, {2, 9}, {3, 8}, {4, 7}, {4, 8}, {5, 8}, {5, 9}, {6, 7}.
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Tiered Trees and Theta Operators 11

Definition 3.12. The compatibility graph G of a tiered tree T is the graph obtained

from T by connecting all the pairs of compatible vertices with an edge. Clearly, T is a

spanning tree of G.

This motivates the following definition, which extends the notion of κ-inversion

(see Definition 3.4) to trees with repeated labels.

Definition 3.13. For any tiered rooted tree T, we define inv(T) as the number of pairs

(i, j) of vertices i, j ∈ V \ {r} such that

1. j is a descendant of i,

2. j is compatible with p(i),

3. either w(j) < w(i) or w(j) = w(i) ∧ lv(j) > lv(i).

For example, in the tiered rooted tree T in Figure 2, the pairs (w(i), w(j)) such

that (i, j) contributes to inv(T) are (9, 8), (7, 3), (7, 5), and (3, 1) so that inv(T) = 4.

Remark 3.14. Notice that the compatibility graph of any standard tiered tree on n

vertices is the inversion graph (see Definition 4.2) of the word σ such that σw(i) = n−lv(i).
For example the word σ for the standard tiered tree in Figure 2 is σ = 897888667: it is

easy to check that the inversions of this word are precisely the compatible pairs, as

stated.

The following proposition follows directly from the definitions.

Proposition 3.15. Let T be a standard tiered rooted tree and G its compatibility graph.

Then inv(T) is the number of κ-inversions of T as a spanning tree of G.

We now introduce a reading word, which will allow us to treat only standard

objects.

Definition 3.16. Given a tiered rooted tree T, we define an ordering ! on V by saying

that i ! j if:

1. lv(i) < lv(j), or

2. lv(i) = lv(j) and ht(i) > ht(j), or

3. lv(i) = lv(j), ht(i) = ht(j), and p(i) ! p(j), or

4. lv(i) = lv(j), ht(i) = ht(j), p(i) = p(j), and w(i) < w(j).
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12 M. D’Adderio et al.

Definition 3.8 (3), ensures that ! is a total order on V.

Definition 3.17. If T is a tiered rooted tree, we define its reading word σ (T) as the

word defined by its labels, read according to !.

For example the reading word of the tree in Figure 3 is 131224244.

Definition 3.18. We define the standardisation of a tiered rooted tree T as the unique

standard tiered rooted tree obtained by replacing multiple occurrences of the same

label with sequences of distinct labels, so that they appear in decreasing order in σ (T),

preserving any relative inequality in T.

For example, the standardisation of the tree in Figure 3 is the tree in Figure 2.

Notice that the reading word of the standardisation is obtained from the reading word

of the original tree by scanning it from right to left and replacing each occurrence of the

minimal label by 1, 2, . . . , r, then scanning again from right to left and replacing each

occurrence of the minimal of the remaining labels by r + 1, r + 2, . . . , and so on. So for

example, the reading word of the tree in Figure 3 is 131224244 hence the reading word

of its standardisation in Figure 2 is 261549387.

Remark 3.19. It is easy to check that inv(T) is defined in such a way that it is preserved

by this operation, that is, the pairs contributing to the inv of a rooted tiered tree are

the same as the ones contributing to the inv of its standardisation. This can be easily

checked in the tree in Figure 3 whose standardisation appears in Figure 2.

In this paper, we will be interested in the q, x-enumerator

∑

T∈RTT(α)

qinv(T) · xT ,

where xT := ∏
i∈V(T) xw(i) and V(T) is the set of vertices of T.

Thanks to Remark 3.19 and the paragraph before it, we can use Gessel’s

fundamental quasi-symmetric functions to rewrite this in terms of standard objects,

namely

∑

T∈RTT(α)

qinv(T) · xT =
∑

T∈stTT(α)

qinv(T) · Qides(rev(σ (T))),|α|,
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Tiered Trees and Theta Operators 13

where for a permutation τ = τ1τ2 · · · τn, rev(τ ) = τnτn−1 · · · τ1, ides(τ ) is the descent set

of τ−1, and for S ⊆ {1, 2, . . . , n − 1} the Gessel’s fundamental quasi-symmetric function

QS,n is defined as

QS,n :=
∑

1≤i1≤i2≤···≤in
ij<ij+1 for j∈S

xi1xi2 · · · xin .

4 Tutte Polynomials and Quivers

In this section, we show how our symmetric function !e1n e1, when evaluated at t = 1,

gives an explicit formula for the q, x-enumerator of labelled tiered trees, and we tie it to

certain Kac polynomials of the dandelion quivers.

4.1 Kac polynomials of dandelion quivers

For the undefined notation in this section, we refer to [16].

In [16, Section 5], the authors define the multivariate generating function

As(X1, . . . , Xk; q) via the identity

∑

s≥1

As(X1, . . . , Xk; q)
Us

s!
= (q − 1) log




∑

s≥0

Rs(X1) · · · Rs(Xk)
(U/(q − 1))s

s!



 (1)

where Rs(X) are the Rogers–Szëgo symmetric functions, which coincide with row-

partition Macdonald polynomials; that is, Rs(X) = H̃(s)[X].

If we specialise k = 1 (so X1 = X) and take the derivative with respect to U,

we get




∑

s≥1

As(X; q)
Us−1

(s − 1)!








∑

s≥0

H̃(s)
(U/(q − 1))s

s!



 =
∑

s≥1

H̃(s)
(U/(q − 1))s−1

(s − 1)!

and equating the coefficients of Un we get the identity

H̃(n+1) =
n∑

k=0

(
n
k

)
(q − 1)n−kH̃(k)An−k+1(X; q).

In Section 5, we will show in Theorem 5.7 that the same identity holds if we

replace An−k+1(X; q) with !e1n−k
e1

∣∣
t=1. Then, since the relation is invertible, we can

deduce the following.
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14 M. D’Adderio et al.

Proposition 4.1. For n > 0, we have

An(X; q) = !e1n−1
e1

∣∣
t=1.

For any nonempty partition µ set µ− = (µ2, . . . , µ&(µ)). Let $|µ| = $ be the

dandelion quiver with |µ| short legs and a long leg of length &(µ). From [16, Theorem

5.2], we know that, if A$,vµ− (q) is the Kac polynomial of $ with dimension vector vµ− ,

then A$,vµ− (q) = 〈A|µ|, hµ〉.

Definition 4.2. Let u ∈ Nn. We define the inversion graph of u as the graph with

V = [n] := {1, 2, . . . , n}, the vertex i is labelled ui, and E = {{i, j} | i < j, ui > uj}.

In the same paper [16], for a given word u, the authors define Ru(q) := TKu
(1, q),

where TK(x, y) is the Tutte polynomial of the graph K, and Ku is the inversion graph of

u. If, for a composition α, we define Sα as the set of permutations that are α-shuffles

(For α a composition of n, an α-shuffle is a permutation σ of Sn such that the increasing

sequences (1, . . . , α1), (α1 +1, . . . , α1 +α2), . . . are sub-sequences of (σ1, . . . , σn).), then [16,

Theorem 3.14] states that

A$,vµ− (q) =
∑

σ∈Sµ

Rσ (q).

We anticipate here the following consequence of Theorem 5.7.

Theorem 4.3.

!e1n−1
e1

∣∣∣
t=1

=
∑

u∈Nn

Ru(q)xu

Proof. From [16, Theorem 3.14] and [16, Theorem 5.2], for µ & n, we have

that 〈An, hµ〉 = ∑
σ∈Sµ

Rσ (q). Combining it with Theorem 5.7, we have that

〈!e1n−1
e1, hµ〉

∣∣∣
t=1

= ∑
σ∈Sµ

Rσ (q). Now, the homogeneous and the monomial symmetric

functions are dual, and the standardisation (The standardisation of a word u ∈ Nn

with αi occurrences of the letter i is the permutation obtained from u by replacing its

i’s with the sequence
∑

j<i αj + 1,
∑

j<i αj + 2, . . . ,
∑

j<i αj + αi, from left to right. Thus,

the standardisation is an α-shuffle.) of a word with µi occurrences of the letter i is

a permutation, which is a µ-shuffle, and has the same inversion graph. The thesis

follows. "
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Tiered Trees and Theta Operators 15

Lemma 4.4. For all compositions α, we have

∑

u∈Sα

Ru(q) =
∑

T∈RTT(1|α|−1)

xT=xα

qinv(T) and
∑

u∈S(1,α)

Ru(q) =
∑

T∈stRTT(α)

qinv(T).

Proof. Let n = |α|. Let us first show the former identity. Fix some u ∈ Sα and let

ũ be the unique word with ui occurrences of the letter i that standardises to u. Let

Ku = ([n], E) be the inversion graph of u. Define a level function lv : [n] → N such that

lv(ui) = n − i. Next, define a relabelling function w : [n] → N0 such that w(ui) = ũi.

Any rooted tiered tree on the vertices [n] with level function lv and labelling w has

compatibility graph Ku and so these trees correspond exactly to spanning trees of Ku.

For example, if u = 452163 ∈ S(1,2,3), then ũ = 332132. Figure 4 (A) represents

the inversion graph of u with some spanning tree, Figure 4 (B) shows the corresponding

fully tiered tree.

Under this correspondence the number of κ-inversions of the spanning tree of

the inversion graph equals the number of inversions of the rooted fully tiered tree. Since,

by Proposition 3.7, we have

TKu
(1, q) = Ru(q) =

∑

T∈ST(Ku)

qinvκ (T),

summing over all possible u ∈ Sα gives the desired result.

For the second identity, let T be an element of RTT(1|α|) such that xT = x1 ·xα, and

let lv, w be its level and label functions, respectively. We construct a tiered tree T ′ from T

as follows: for each vertex i of T, place a vertex labelled lv(i)+1 in tier w(i)−1, conserving

the edges. Since T is fully tiered, T ′ is standardly labelled. Since T has exactly one label

equal to 1 and αi labels equal to i, T ′ is rooted and α-tiered. The second identity now

follows from the first one and the symmetric roles played by the level and label function

in the definition of the inv (Definition 3.13). Figure 4 (C) shows the T ′ corresponding to

the T in Figure 4 (B). "

Theorem 4.5. For n ∈ N, we have

!e1n e1

∣∣∣
t=1

=
∑

T∈RTT(1n)

qinv(T)xT .
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16 M. D’Adderio et al.

Proof. Using the first identity of Lemma 4.4, we can restate Theorem 4.3 as

〈!e1n e1, hµ〉
∣∣∣
t=1

=
∑

T∈RTT(1n)

xT=xµ

qinv(T). (2)

Then the thesis follows immediately since the complete homogeneous symmetric

functions are dual to the monomial symmetric functions. "

If we instead consider the composition (1, µ), using the second identity of

Lemma 4.4, we get the following.

Theorem 4.6.

〈!eµ
e1, e1|µ|+1〉

∣∣∣
t=1

=
∑

T∈stRTT(µ)

qinv(T).

Proof. We have the following symmetric function identity:

〈!e1n−1
e1, hµ,1〉 = 〈!e1n−1

e1, e∗
µ,1〉∗

= 〈M'e∗
1n , e∗

µ,1〉∗
= 〈M'e∗

µ,1, e∗
1n〉∗

= 〈!eµ
e1, e∗

1n〉∗
= 〈!eµ

e1, e1n〉.

The thesis now follows from Equation (2) and Lemma 4.4. "

Using Theta operators, we can also give an algebraic proof of the identity

∑

T∈TT(m,n)

qwt(T) =
∑

T∈TT(m−1,n−1,1)

qwt(T)

where wt, the weight, is yet another Tutte-descriptive statistic on standard tiered trees,

where the ordering on the edges is lexicographical by the labels of the endpoints. This

identity appears in [16], [10], and [9]. By Theorem 4.3, we have

〈!e1|µ|−1
e1, hµ〉

∣∣∣
t=1

=
∑

T∈TT(µ)

qwt(T).
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Tiered Trees and Theta Operators 17

In fact, we prove the following, stronger result.

Proposition 4.7.

〈!e1m+n−1
e1, h(m,n)〉 = 〈!e1m+n−2

e1, h(m−1,n−1,1)〉.

Proof. We have

〈!e1m+n−1
e1, h(m,n)〉 = 〈M'e∗

1m+n , h(m,n)〉

= 〈M'e∗
1m+n , e∗

me∗
n〉∗

= 〈e∗
1m+n , M'e∗

me∗
n〉∗

= 〈e∗
1m+n , !em

M'e∗
n〉∗

= 〈e∗
1m+n−1 , e⊥

1 !em
M'e∗

n〉∗
[8, Lemma 6.7] = 〈e∗

1m+n−1 , M'e∗
(m−1,n−1,1)〉∗

= 〈M'e∗
1m+n−1 , e∗

(m−1,n−1,1)〉∗
= 〈!e1m+n−2

e1, e∗
(m−1,n−1,1)〉∗

= 〈!e1m+n−2
e1, h(m−1,n−1,1)〉

as desired. "

Note that this is slightly more general as the two terms are polynomials in

both q and t, while the original identity involves polynomials in q only, which are the

specialisations of our polynomials when t = 1.

5 An Identity for Theta Operators

The goal of this section is to prove a new identity involving Macdonald polynomials and

Theta operators, that is,

H̃(n+1) =
n∑

k=0

(
n
k

)
(q − 1)n−kH̃(k) ·

(
!e1n−k

e1

)∣∣∣
t=1

.
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18 M. D’Adderio et al.

5.1 A combinatorial formula for !e1n−k e1 when t = 1

It is convenient to define the following family of symmetric functions.

Definition 5.1. We define ĥi := (q; q)ihi

[
X

1−q

]
for i ∈ N, and ĥλ := ∏

ĥλi
for λ & n.

Notice that these symmetric functions are just the Macdonald polynomials

evaluated at t = 1, that is, ĥµ = H̃µ[x; q, 1] (see [14], (92)).

Finally, we will need the following new statistic on standard Young tableaux.

Definition 5.2. Given λ & n, let SYT(λ) be the set of standard Young tableaux of shape

λ. Given T ∈ SYT(λ), let Ti be the tableau obtained from T by only considering the entries

1, . . . , i, and let λi be its shape. Let r be the unique integer such that λi
r > λi−1

r .

We define the shifted leg length of i with respect to T as

LT(i) := #{j | λi−1
j = λi−1

r }

if λi−1
r > 0, and 1 otherwise.

We define the total shifted leg length of T as L(T) := ∏
i≤n LT(i).

Equivalently, if i is not in the first column, then LT(i) is the number of entries of

T smaller than i in the column immediately to the left of the cell containing i, and in a

row weakly above i. If i is in the first column, LT(i) = 1.

We want to prove the following expansion of
(
!e1n−k

e1

)∣∣∣
t=1

in the ĥµ basis.

Lemma 5.3.

(
!e1n−k

e1

)∣∣∣
t=1

=
∑

µ&n−k+1

(−1)&(µ)−1(&(µ) − 1)! (q − 1)k−n




∑

T∈SYT(µ)

L(T)



 ĥµ.

Proof. First, we explicitly compute the Macdonald expansion of !e1
H̃ν , via the

coefficients 〈!e1
H̃ν , H̃µ

wµ
〉∗.

We have

!e1
H̃ν = !e1

[
X
M

]
!−1H̃ν =

∑

µ⊃1ν

'µd(1)
µν '−1

ν H̃µ =
∑

µ⊃1ν

'µc(1)
µν

wµ

wν

'−1
ν H̃µ.
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Tiered Trees and Theta Operators 19

For ν ⊆1 µ, let Rµ/ν , Cµ/ν be the sets of cells in the co-arm and the co-leg of µ/ν

respectively. We have (see [13])

c(1)
µν =

∏

a∈Rµ/ν

qaµ(a)+1 − t&µ(a)

qaµ(a) − t&µ(a)

∏

a∈Cµ/ν

t&µ(a)+1 − qaµ(a)

t&µ(a) − qaµ(a)

and so

c(1)
µν

wµ

wν

=
∏

a∈Rµ/ν

qaµ(a)+1 − t&µ(a)

qaµ(a) − t&µ(a)

∏

a∈Cµ/ν

t&µ(a)+1 − qaµ(a)

t&µ(a) − qaµ(a)

×
∏

a∈ν(q
aν (a) − t&ν (a)+1)(t&ν (a) − qaν (a)+1)

∏
a∈µ(qaµ(a) − t&µ(a)+1)(t&µ(a) − qaµ(a)+1)

=
∏

a∈Rµ/ν

qaµ(a)+1 − t&µ(a)

qaµ(a) − t&µ(a)

∏

a∈Rµ/ν

(qaµ(a)−1 − t&µ(a)+1)(t&µ(a) − qaµ(a))

(qaµ(a) − t&µ(a)+1)(t&µ(a) − qaµ(a)+1)

×
∏

a∈Cµ/ν

t&µ(a)+1 − qaµ(a)

t&µ(a) − qaµ(a)

∏

a∈Cµ/ν

(qaµ(a) − t&µ(a))(t&µ(a)−1 − qaµ(a)+1)

(qaµ(a) − t&µ(a)+1)(t&µ(a) − qaµ(a)+1)

× 1
(1 − t)(1 − q)

= 1
(1 − q)(1 − t)

∏

a∈Rµ/ν

(qaµ(a)−1 − t&µ(a)+1)

(qaµ(a) − t&µ(a)+1)

∏

a∈Cµ/ν

(t&µ(a)−1 − qaµ(a)+1)

(t&µ(a) − qaµ(a)+1)
.

Now, as 'µ'−1
ν = 1 − q#Rµ/ν t#Cµ/ν , we have

c(1)
µν

'µwµ

'νwν

= 1 − q#Rµ/ν t#Cµ/ν

(1 − q)(1 − t)

∏

a∈Rµ/ν

(qaµ(a)−1 − t&µ(a)+1)

(qaµ(a) − t&µ(a)+1)

∏

a∈Cµ/ν

(t&µ(a)−1 − qaµ(a)+1)

(t&µ(a) − qaµ(a)+1)
.

If Rµ/ν = ∅ (that is, µ = (ν, 1)), evaluating at t = 1, we get

(
c(1)
µν

'µwµ

'νwν

)∣∣∣∣
t=1

= 1 − t#Cµ/ν

(1 − q)(1 − t)

∣∣∣∣∣
t=1

=
#Cµ/ν

1 − q
= −&(ν)

q − 1
;

otherwise, we have

(
c(1)
µν

'µwµ

'νwν

)∣∣∣∣
t=1

= 1 − q#Rµ/ν

1 − q
1

q#Rµ/ν − 1

1 − t&µ(a)+1

1 − t

∣∣∣∣∣
t=1

=
&µ(a) + 1

q − 1

where a is the left neighbour of µ/ν in µ, and so &µ(a) + 1 = #{1 ≤ i ≤ &(ν) | νi = #Rµ/ν}.
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20 M. D’Adderio et al.

Fig. 5. A row-strict tableau of shape (2, 4, 3).

If we apply !e1
iteratively starting from H̃(1) = e1, the sequence of cells that we

add one by one defines a standard Young tableau T, say of shape µ. To get the coefficient,

we have to multiply the subsequent values of
(

c(1)

µiµi−1

'
µi wµi

'
µi−1 w

µi−1

)∣∣∣∣
t=1

; we get a factor

(q − 1)k−n, then every time we add a cell to the leftmost column we have to multiply by

−&(µi−1) (so in the end we will get (−1)&(µ)−1(&(µ) − 1)!), and every time we add a cell

somewhere else we have to multiply by #{1 ≤ j ≤ &(µi−1) | µi−1
j = #Rµi/µi−1}, which is

exactly LT(i).

Putting everything together, we get

(
!e1n−k

e1

)∣∣∣
t=1

=
∑

µ&n−k+1

(−1)&(µ)−1(&(µ) − 1)! (q − 1)k−n




∑

T∈SYT(µ)

L(T)



 ĥµ

which is exactly what we wanted. "

5.2 Row-strict tableaux

Now we want to simplify the identity we just proved by getting rid of the weights, which

we will do by replacing standard Young tableaux with row-strict tableaux.

Definition 5.4. Let α be a composition of n, which we denote α # n. We define a row-

strict composition tableau (starting with 1) of shape α as a filling with the numbers

from 1 to n of a diagram consisting of n boxes such that there are αi boxes in the i-th

row, the entries are strictly increasing along the rows, and 1 is in the bottom-left box.

An example is shown in Figure 5.

We define RST1(α) the set of row-strict composition tableaux (starting with 1)

with shape α, and RST1(n) = ∪α!nRST1(α).

We define λ(α) to be the partition of n obtained by sorting the parts of α in

decreasing order, and set ĥα = ĥλ(α).
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Tiered Trees and Theta Operators 21

Fig. 6. An example of the map φ.

Lemma 5.5. Let λ & n, and let φ : ∪λ(α)=λ RST1(α) → SYT(λ), where φ(T) is defined

by sorting the entries of the columns of T in increasing order, and then shifting the

columns to the bottom, so that the image is a standard Young tableau (cf. Figure 6)).

Then #φ−1(T) = (&(λ) − 1)! ·L(T).

Proof. We prove this by induction on n. For n = 1 we only have one row-strict tableau,

which is also a standard Young tableau, and it is fixed by φ; (&((1)) − 1)! ·L( 1 ) = 1 and

so the thesis holds.

Suppose the thesis holds for n − 1, let T be a standard Young tableau of shape

λ & n, and let T ′ = Tn−1. We consider two cases: whether n is in the first column of

T or not.

If it is, any element of φ−1(T) can be obtained injectively from an element in

φ−1(T ′) by adding n in a new row, and this can be done in &(λn−1) = &(λ) − 1 ways.

Moreover, as LT(n) = 1, then L(T) = L(T ′). It follows that

#φ−1(T) = (&(λ) − 1) × #φ−1(T ′) = (&(λ) − 1)(&(λn−1) − 1)! ·L(T ′) = (&(λ) − 1)! ·L(T)

as we wanted.

If n is not in the first column of T, assume that it is in a row of length r. Any

element of φ−1(T) can be obtained injectively from an element in φ−1(T ′) by adding n

in any row of length r − 1, and by definition there are exactly LT(n) of them. Moreover,

&(λ) = &(λn−1). It follows that

#φ−1(T) = LT(n) × #φ−1(T ′) = (&(λn−1) − 1)! ·LT(n)L(T ′) = (&(λ) − 1)! ·L(T)

as desired. The thesis follows. "

We can now restate Lemma 5.3 as follows.
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22 M. D’Adderio et al.

Lemma 5.6.

(
!e1n−k

e1

)∣∣∣
t=1

=
∑

α!n−k+1

(−1)&(α)−1(q − 1)k−n#RST1(α)̂hα.

Proof. From Lemma 5.5, for any λ & n, we have

∑

λ(α)=λ

#RST1(α) = (&(λ) − 1)! ·
∑

T∈SYT(λ)

L(T).

Now the thesis follows immediately from Lemma 5.3. "

5.3 The main identity

We are now ready to prove the main identity.

Theorem 5.7.

H̃(n+1) =
n∑

k=0

(
n
k

)
(q − 1)n−kH̃(k)

(
!e1n−k

e1

)∣∣∣
t=1

.

Proof. Using Lemma 5.6, we can restate the theorem as

ĥn+1 =
n∑

k=0

(
n
k

)
ĥk

∑

α!n−k+1

(−1)&(α)−1#RST1(α)̂hα.

We consider the right-hand side of the equality. For k > 0, the binomial

coefficient can be thought of as a choice of a nonempty subset S ⊂ {2, . . . , n + 1} of

size k. The number #RST1(α) can be thought of as a choice of a tableau C ∈ RST1(α),

but instead of filling its cells with the numbers {1, . . . , n − k + 1}, we use the indices in

Sc = {1, . . . , n + 1} \ S. To any such pair we can injectively associate an element C 5 S in

#RST1(n+1) by adding an extra row to the top of C consisting of the entries in S written

in increasing order.

The element C 5 S also appears in the sum when k = 0, with the same symmetric

function (̂hλ is multiplicative, so ĥαĥk = ĥα,k) but with opposite sign, as &(α, k) = &(α)+1.

It follows that all these terms cancel, except for the row-strict composition tableaux

that cannot be expressed as C 5 S for some C, S. But any tableau with at least two rows

can be expressed as C 5 S for some C, S simply by taking S as the set of entries in the
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topmost row, and C as the tableau minus the topmost row. The only remaining tableau

is the row of length n + 1, and the thesis follows. "

6 Conjectures and Open Problems

In an attempt to generalise Theorem 4.5, we state the following conjecture, checked by

computer up to |α| = 7.

Conjecture 1 (Theta trees Conjecture). For any composition α,

!eλ(α)
e1

∣∣∣
t=1

=
∑

T∈RTT(α)

qinv(T)xT .

Remark 6.1. This conjecture would imply that the right hand side of this identity does

not depend on the order of the parts of α (as the left hand side does not). We do not know

how to show this fact in general but from [9, Theorem 1.3], it follows that this fact holds

for the Hilbert series.

Notice that Theorem 4.6 proves that the Hilbert series of the two sides of

Conjecture 1 are, in fact, equal.

If α = 1n, we can, in some sense, refine Conjecture 1 even further.

Conjecture 2. For 1 ≤ j ≤ n,

〈!
ej−1

1
+e1

!
en−j

1
e1, en

1 〉
∣∣∣
t=1

=
∑

T∈RTTj(1n+1)

qinv(T)

where RTTj(1
n+1) denotes the set of standard fully tiered rooted trees on n + 1 vertices

whose root is labelled j.

This is suggested by the symmetric function identity (deduced iterating

[8, Theorem 4.3]

e⊥
1 !en

1
e1 =

n∑

j=1

!
ej−1

1
+e1

!
en−j

1
e1,

which, in some sense, splits the symmetric function !en
1
e1 in pieces according to the

label assigned to the root.
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24 M. D’Adderio et al.

With this refinement in mind, we can now guess a way to specify the subset

of trees where the root is assigned the lowest, unique label. Thus, we are lead to the

statement of a similar conjecture, that allows us to disregard the root (and so to think of

the objects as rooted forests). Let RTT0(α) be the set of α-trees, except we conventionally

assign label 0 to the root and set x0 = 1. Then we claim the following.

Conjecture 3 (Symmetric Theta Conjecture). For any composition α,

+e1
M!(eλ(α)

∗)
∣∣
t=1 =

∑

T∈RTT0(α)

qinv(T)xT .

This conjecture is of note because it gives us a remarkable symmetry in the

combinatorics. In fact, once the root does not interact with the labels anymore, the

labels and the tiers play a dual role: they are essentially two interchangeable values

assigned to each vertex, such that we can only have edges between vertices in which

these two values both increase or both decrease. This combinatorial symmetry is

explained by the easy symmetric function identity

〈+e1
M!(eλ

∗), hµ〉 = 〈+e1
M!(eµ

∗), hλ〉.

Finally, in the same fashion as the shuffle conjecture and the similar statements

in algebraic combinatorics, it is natural to ask the following question.

Problem 6.2. Find a t-statistic tstat : RTT(α) → N such that the identities

!eλ(α)
e1 =

∑

T∈RTT(α)

qinv(T)ttstat(T)xT

and

+e1
M!e∗

λ(α) =
∑

T∈RTT0(α)

qinv(T)ttstat(T)xT

hold.

7 The Unified Delta Conjecture and Parallelogram Polyominoes

Our main conjecture (Conjecture 1) has connections to other conjectures and theorems

in algebraic combinatorics, such as the shuffle theorem ([18], proved in [2]), the Delta
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Tiered Trees and Theta Operators 25

conjecture in both the rise version (now a theorem [7]) and the valley version, and

the polyominoes conjecture [4, Conjecture 2.6]. In this section, we will go through all

these links.

7.1 Parking functions

The Catalan case 〈· , en+1〉 of Conjecture 1 when α = 1n is intimately related to the

Hilbert series of ∇en. In fact, we have the following symmetric function identity.

Proposition 7.1. For n ≥ 0,

〈!en
1
e1, en+1〉 = 〈∇en, en

1 〉.

Proof. We have

〈!en
1
e1, en+1〉 =

[6, Lemma 6.1] = 〈+e1
!en−1

1
e1, en〉

(using [14], (70)) = 〈∇+e1
!en−1

1
e1, hn〉

= 〈∇+e1
M!e∗

1n , hn〉

= 〈∇+e1
M!e∗

1n , e∗
n〉∗

= 〈e∗
1n , ∇+e1

M!e∗
n〉∗

(using [14, Theorem 3.4]) = 〈e∗
1n , ∇en〉∗

= 〈e1n , ∇en〉

as desired. "

On the combinatorial side, taking the scalar product with en+1 corresponds to

selecting the trees such that, for 1 ≤ i ≤ n + 1, lv(i) = w(i) (i.e., the labels increase

bottom to top); it is slightly more natural to consider the equivalent formulation

〈+e1
!en−1

1
e1, en〉 = 〈+e1

M!e∗
1n , en〉, that is, 0 ≤ i ≤ n instead. This means we are

essentially considering spanning trees of the complete graph Kn+1. See [19] for a

bijection between spanning trees of the complete graph and parking functions, which

translates the q, t-bi-statistic (dinv,area) on parking functions of the famous Shuffle

Theorem.
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26 M. D’Adderio et al.

It is a classical result (see [22]) that the q-enumerator of spanning trees of the

complete graph with respect to κ-inversions is the same as the q-enumerator of parking

functions with respect to the area. This result has been later extended to spanning trees

of a graph G and G-parking functions [25, Theorem 3]. This might suggest a way to

derive a t-statistic for tiered trees that matches the whole q, t-enumerator; however, the

authors are not aware of any q, t-enumeration for G-parking functions (when G is not

complete).

7.2 Decorated Dyck paths

Using symmetric function identities, we can relate our conjecture to the unified Delta

conjecture [6, Conjecture 9.1]. In particular, the case k = 1 of [8, Theorem 8.2] is of

interest for us. We state that case here.

Theorem 7.2. For j, m, n ∈ N, we have

h⊥
j !em

!en
e1 = !em−j

!en−j
∇ej+1 + !em−j+1

!en−j
∇ej

+ !em−j
!en−j+1

∇ej + !em−j+1
!en−j+1

∇ej−1.

This identity suggests that there should be a bijection between certain subsets

of two-tiered trees (e.g., with j occurrences of the 0 label) and labelled Dyck paths of

size m + n + j + 1 with m − j + 1 decorated rises and n − j + 1 decorated valleys, where

the first step can host either or both decoration types. Such a bijection might suggest

how to derive a t-statistic for Conjecture 1 from the ones we already have for the Delta

theorem.

7.3 Parallelogram polyominoes

It is worth mentioning that, if Conjecture 1 holds, then a special case of the symmetric

function also enumerates parallelogram polyominoes with labels on both the horizontal

and vertical steps, with respect to a labelled version of the area. We can show the result

for the Hilbert series.

Definition 7.3. A parallelogram polyomino of size m×n is a pair of lattice paths from

(0, 0) to (m, n) using only north and east steps, such that the first one (the red path)

always lies strictly above the second one (the green path), except when they meet in

the extremal points. A labelled parallelogram polyomino is a parallelogram polyomino
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Tiered Trees and Theta Operators 27

Fig. 7. A 11 × 7 labelled parallelogram polyomino.

where we place positive integers in the squares of the grid containing either a vertical

step of the red path and/or a horizontal step of the green path in such a way that the

labels appearing in each column are strictly increasing from bottom to top, and the

labels appearing in each row are strictly decreasing from left to right. See Figure 7 for

an example.

We distinguish three types of labels: the black label is the label in the unique

square containing both a vertical red step and a horizontal green step (i.e., the bottom

left square). The remaining labels are referred to as either red labels or green labels

depending on the colour of the path in its square.

We denote the set of labelled parallelogram polyominoes of size m × n by

LPP(m, n). An element of LPP(m, n) is said to be standardly labelled if its labels are

exactly [m + n − 1]. The set of such polyominoes will be denoted by stLPP(m, n).

We can show that the numbers are correct via an explicit bijection.

Proposition 7.4. There is a combinatorial bijection

ζ : LPP(m + 1, n + 1) → RTT(m, 1, n)

where the trees in the image are rooted at the unique vertex in tier 2.
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28 M. D’Adderio et al.

Fig. 8. The (6, 1, 10)-tiered tree corresponding to the polyomino in Figure 7.

Proof. Let P ∈ LPP(m + 1, n + 1). To construct the tiers of ζ(P), we proceed as follows:

the labels assigned to the vertices in tier 1 will be the m green labels; analogously, the

labels assigned to vertices in tier 3 will be the n red labels; finally, the label assigned to

the one vertex in tier 2 is the black label (in the bottom-left corner of P).

Now that we have a 1-to-1 correspondence between vertices of ζ(P) and labels

appearing in P, we simply connect two vertices in distinct tiers if the corresponding

labels lie in the same row or column of P. The structure of the polyomino, having exactly

one green or black label in each column and exactly one red or black label in each row,

ensures that the resulting graph is connected and it has no cycles.

It is clear that this map is bijective: to construct the inverse, given

T ∈ RTT(m, 1, n) proceed as follows. Start from the vertex in tier 2 and assign the

corresponding label to the bottom-left cell of the grid. Then, for each edge going to tier

3, simply stack the corresponding labels on top of the bottom-left one, in increasing

order; similarly, for each edge going to tier 1, stack the corresponding labels to the right

of the bottom-left one, in decreasing order. Then, repeat the procedure for the newly

visited vertices, first in first out, each time putting the labels in the same row/column

(depending if you start from a tier 3 vertex or a tier 1 vertex, respectively) and in the

first unoccupied column/row. Then ζ−1(T) is the unique polyomino whose labels appear

in the position they have been assigned. "

We have a natural statistic on parallelogram polyominoes, namely the area.

Definition 7.5. The area of a labelled parallelogram polyomino is the number of cells

between the two paths that do not contain any label, and such that the label to their left

is strictly greater than the label below them.
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Tiered Trees and Theta Operators 29

For example, the area of the polyomino in Figure 7 is 10, as the cells with

coordinates (4, 4) and (5, 4) do not contribute.

The goal of the rest of this section is to prove that the area is distributed on

polyominoes in accordance with our symmetric function. In other words, we will show

the following.

Theorem 7.6. For m, n ∈ N+, we have

〈
!em−1

!en−1
e1, e1m+n−1

〉∣∣∣
t=1

=
∑

P∈stLPP(m,n)

qarea(P).

In order to prove this result, we follow techniques developed in [11], which uses

the abelian sandpile model on a graph. We refer to [21] for the basic theory of the

sandpile model (also known as chip-firing game).

Definition 7.7. Take G = (V, s, E) a graph with a distinguished vertex s called the sink.

A configuration on G is a map c : V → N. We interpret this as c(i) grains of sand lying

on each vertex i. A vertex i is said to be unstable if c(i) ≥ deg(i). A configuration is said

to be stable if none of its vertices, with the possible exception of the sink, are unstable.

When there is an unstable vertex, it may be toppled, which gives a new configuration c′

on G defined as






c′(i) = c(i) − deg(i)

c′(j) = c(j) + 1 if j 0= i and (i, j) ∈ E

c′(j) = c(j) if j 0= i and (i, j) 0∈ E

.

In other words, i gives one grain of sand to each of its neighbours. We denote this

toppling process by c
i−→ c′. A configuration c is said to be recurrent if c(s) = deg(s)

and there exists a sequence i1, . . . , ik such that c
s−→ c′ i1−→ · · · ik−→ c. We denote the set of

recurrent configurations on G by Rec(G). Finally, the level of a recurrent configuration

is defined as level(c) = ∑
i∈V c(i) − #E.

Remark 7.8. It is one of the fundamental results of the sandpile model that topplings

commute, hence the adjective abelian. Thus, the recurrent configurations are the ones

that return to themselves after toppling the sink and can be informally described as the

configurations to which the model stabilises when there is a large number of grains.
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30 M. D’Adderio et al.

Following [11], we will construct a bijective map between the set of polyominoes

whose corresponding tree has a given compatibility graph G and recurrent configura-

tions of the sandpile model. This bijection will send the area of the polyomino into the

level of the configuration. Then, Theorem 7.6 can be deduced from the following fact,

which was first shown in [23] and then bijectively in [3].

Remark 7.9. In [12], the authors also provide a bijection between tiered trees and

recurrent configurations on a permutation graph. They define an order on the edges of

the graph such that the level of the configuration corresponds to the exterior activity of

the tree. We note here that their exterior activity is not equal to the area nor the inv of

this paper.

Proposition 7.10. We have

TG(1, q) =
∑

c∈Rec(G)

qlevel(c).

Let π = (π1, π2, π3) be an ordered set partition of [m + n − 1] with #π1 = m − 1,

#π2 = 1 and #π3 = n − 1. Let stLPP(π) ⊆ stLPP(m − 1, 1, n − 1) be the set of standardly

labelled parallelogram polyominoes such that its green, black, and red labels are given

by π1, π2, and π3, respectively. Notice that for all P ∈ stLPP(π), ζ(P) has the same

compatibility graph: it is the graph with edges {i, j} with i < j where i is green or black

and j red, or i is green and j black. Call this graph Gπ and fix the black label to be

its sink.

Proposition 7.11. There exists a bijection

α : stLPP(π) → Rec(Gπ )

such that for all P ∈ stLPP(π), area(P) = level(α(P)).

Proof. We recommend that the reader looks at Example 7.12 and Figure 9 while

reading this proof. Take P ∈ stLPP(π). To each square of the m × n-grid (except

the bottom left one), we may associate a unique pair of labels (i, j): take i to be the

black/green label in its column and j the black/red label in its row. We distinguish two

types of squares: white squares are such that i < j and grey squares are the rest (we

disregard the square in the bottom left corner). Thus, the white squares of P correspond
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Fig. 9. Polyomino to sandpile bijection.

exactly to the edges of Gπ . The map α is defined as follows:

α(P)(i) =






#white squares above the square containing i if i is green

#white squares to the right of the square containing i if i is red

#white squares to the right of or above the square containing i if i is black.

We need to show a few things about this map.

• It is well defined that is, for all P ∈ stLPP(π), α(P) ∈ Rec(Gπ ). We will define

a toppling sequence of α(P) that starts by toppling the sink and returns to

itself.

Define the bounce path of P as follows: draw a path starting at the coordinate

(0, 1) going east. When it hits the endpoint of a vertical step of the green path

it turns north. When it hits the endpoint of a horizontal step of the red path

it turns east again and so on. Thus, the path ends up at (m, n). In Figure 9,

the bounce path is represented by the dotted line.

Now project onto the horizontal steps of the bounce path the black/green

label contained in its column and onto the vertical steps the red label

contained in its row. Reading these projected labels from the beginning to

the end of the bounce path defines the canonical toppling order.

Notice that in the correspondence between white squares of the grid and

edges of Gπ described above, the edges incident to a green (respectively red)

label are exactly the white squares in its column (respectively row). If s is the

black label, that is, the sink of Gπ , its incident edges are exactly the number
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of white squares above or to the right of s so we have α(P)(s) = deg(s). In the

canonical toppling order, s is the first element. We claim that when toppling

the vertices of Gπ in our canonical order, the next vertex to topple is always

unstable. Indeed for each green label i, its degree is visualised by the number

of white squares in its column. At the start, i had as many grains as squares

above it. The black/red labels in the same row of the squares below i or

containing it appear before i in the canonical toppling order. Thus, when

arriving at i in the toppling order, it has at least as many grains as its degree.

An analogous argument may be made for red labels.

During our canonical toppling process, each vertex i will receive one grain

from each of its neighbours and lose deg(i) grains by toppling, so after this

process it will have as many grains as it started with. Thus α(P) is a recurrent

configuration on Gπ .

• It is a bijection. We describe its inverse. Given a recurrent configuration c

on Gπ , its sink is the label in the bottom left corner. We can recover the

canonical toppling order as follows. We will keep track of unstable green

and red vertices in two ordered lists. Since c is stable, these lists start out by

being empty. At each toppling we add the newly unstable vertices to the end

of our lists, in decreasing order for green labels and increasing order for red

labels.

1. Start by toppling the sink.

2. Then topple the elements of the list of green unstable vertices in order

until it is empty.

3. Then topple the elements of the list of red unstable vertices in order

until it is empty.

4. Return to step 2.

From this toppling process, we can recover the polyomino as follows: the

green (respectively red) labels that become unstable after the toppling of the

sink are the labels in the first row (respectively column) of the polyomino.

Then for each green (respectively red) label i, the labels that become unstable

upon its toppling must be the labels that are in the same column (respectively

row) as i.

• It sends area to level. In determining the number of grains on each vertex,

each white square gets counted exactly once, except the white squares that

are both above a green label and to the right of a red label, who get counted
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twice. Those are exactly the area squares. Thus the number of grains minus

the number of edges of Gπ (= the number of white squares) gives the number

of area squares. "

Example 7.12. For P the path in Figure 9, we have

i 8 12 9 10 6 3 11 5 4 1 7 2

α(P)(i) 9 7 5 5 3 4 0 3 3 2 0 1

The canonical toppling order of α(P) is (8, 3, 12, 9, 10, 11, 5, 4, 1, 7, 2, 6).

We now describe α−1. Take α(P) as the initial configuration and apply the

toppling process in Table 1. This table tells us everything we need to know to reconstruct

the polyomino:

• when toppling the sink, 3 and 12 become unstable, so the only green label in

the first row is 3 and the only red label in the first column is 12;

• when toppling 3, the vertices that become unstable are 9 and 10 so these are

the red labels in the second column;

• when toppling 12, the vertices that become unstable are 11, 5, and 4 so these

are the green labels in the second row;

• etc.

From Proposition 7.11 and Proposition 7.10, we may conclude that

TGπ
(1, q) =

∑

P∈stLPP(π)

qarea(P).

Now, summing over all possible π , Theorem 7.6 follows from Theorem 4.3.

Indeed, e1n+m−1 = h1n+m−1 and the hµ are dual to mµ so taking 〈·, e1n+m−1〉 leaves the

q-enumerator of the standard objects.

Of course, Theorem 7.6 raises a natural question.

Problem 7.13. Find a t-statistic tstat : LPP(m, n) → N such that the identity

!em−1
!en−1

e1 =
∑

P∈LPP(m,n)

qarea(P)ttstat(P)xP

holds.
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34 M. D’Adderio et al.

TABLE 1 The canonical toppling of α(P) for P in Figure 9

Vertices 8 12 9 10 6 3 11 5 4 1 7 2

Degree 9 8 7 7 5 5 1 5 5 5 4 5 Unstable greens Unstable reds

Initial configuration 9 7 5 5 3 4 0 3 3 2 0 1 None None

Topple 8 0 8 6 6 3 5 0 4 4 3 1 2 3 12

Topple 3 1 9 7 7 4 0 0 4 4 3 1 2 None 12, 9, 10

Topple 12 2 1 7 7 4 1 1 5 5 4 2 3 11, 5, 4 9, 10

Topple 9 3 1 0 7 4 2 1 6 6 5 3 4 11, 5, 4, 1 10

Topple 10 4 1 0 0 4 3 1 7 7 6 4 5 11, 5, 4, 1, 7, 2 None

Topple 11 4 2 0 0 4 3 0 7 7 6 4 5 5, 4, 1, 7, 2 None

Topple 5 5 3 1 1 5 3 0 2 7 6 4 5 4, 1, 7, 2 6

Topple 4 6 4 2 2 6 3 0 2 2 6 4 5 1, 7, 2 6

Topple 1 7 5 3 3 7 3 0 2 2 1 4 5 7, 2 6

Topple 7 8 6 4 4 7 3 0 2 2 1 0 5 2 6

Topple 2 9 7 5 5 8 3 0 2 2 1 0 0 None 6

Topple 6 9 7 5 5 3 4 0 3 3 2 0 1 None None

We have some indication about what such a t-statistic should look like. For

example, the fact that e⊥
m−1!em−1

!en−1
e1 − +hm−1

en appears to be Schur-positive,

suggests that the pmaj statistic from [4], on polyominoes where only the top path is

labelled, should extend to the general case and coincide with the previous one when the

bottom path is labelled with labels 1, 2, . . . , m − 1 appearing from right to left. Further

evidence is provided by the identity

〈!em−1
!en−1

e1, hkem+n−k−1〉 = 〈+hm−1
en, hken−k〉,

which is expected as in both cases the combinatorial counterparts of the symmetric

functions should q, t-enumerate polyominoes with k decorated peaks (i.e., vertical

steps followed by horizontal steps) of the top path. Other special cases, such as the

〈·, hjhkem+n−j−k−1〉 case, are discussed in [5].
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