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Abstract

Tropical cyclones impact estuaries via a variety of mechanisms including storm surge,
flooding from precipitation, high winds, and strong wave action. Prior studies have documented
disturbances caused by tropical cyclones, including prolonged periods of depressed salinity from
high freshwater discharge and increased or decreased dissolved oxygen concentrations from
increased loading of organic matter and/or nutrients. However, most studies of disturbance and
recovery in estuaries have been limited to one or a few locations or storm events, limiting
generalizations about tropical cyclone impacts and characteristic patterns of ecosystem response
and recovery. We analyzed responses to 59 tropical cyclones across 19 estuaries in the eastern
United States by applying a new method for detecting disturbance and recovery to long-term and
high-frequency measurements of salinity and dissolved oxygen from NOAA’s National
Estuarine Research Reserve System. We quantified disturbance occurrence, timing, recovery
time, and severity. Salinity disturbances generally started earlier and lasted longer than dissolved
oxygen disturbances. Estuaries usually recovered within days, but some disturbances lasted
weeks or months. Recovery time was positively correlated with disturbance severity for both
variables. Tropical cyclone properties (especially precipitation) and location characteristics were
both related to disturbance characteristics. Our findings demonstrate the power of high-
frequency, long-term, and cross-system data, when combined with appropriate statistical
methods, for analyzing hurricanes across many estuaries to quantify disturbances. Estuaries are
resilient to hurricanes for the variables and time periods considered. However, persistent impacts
can potentially damage resources provided by estuaries, eroding future resilience if hurricanes

become more frequent and severe.
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Introduction

Tropical cyclones (TCs) are large and severe meteorological events that have substantial
impacts on coastal populations, communities, and ecosystems, as well as social-ecological
systems (Parker et al. 2013, Crosswell et al. 2014, Danielson et al. 2017, Congdon et al. 2019,
Armitage al. 2020). Given these impacts as well as the observed and projected increase in
severity and geographic extent of TCs with climate changes (Knutson et al. 2010, Sobel et al.
2016, Balaguru et al. 2022), there have been calls for systematic and coordinated study (Bortone
2006, Pruitt et al. 2019, Hogan et al. 2020). For estuarine ecosystems, understanding the effects
of tropical cyclones is complicated by the variety and complexity of alterations in physical,
chemical, and biological processes. Detailed studies of tropical cyclones have documented
impacts for specific estuaries and storms (e.g., Paerl et al. 2001, Wetz and Paerl 2008, Patrick et
al. 2020), but few studies have evaluated numerous storms and sites. One notable exception is
Sanger et al. (2002), who examined high frequency water quality measurements from 18

estuaries in the eastern United Sates impacted by 24 TCs from 1995 —2000. They found that
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more intense storms were associated with stronger water temperature cooling prior to storm
passage, and that most other water quality changes were short-lasting, though salinity declines
occasionally persisted for months. More recently, Patrick et al. (2022) synthesized multiple
response variables across multiple storms and sites. They determined that the relative resistance
to disturbance was inversely related to recovery and demonstrated the potential for testing
tropical cyclone impacts across many variables and storms to arrive at generalizations.

Quantifying the degree of disturbance and period of recovery is crucial to developing a
generalized, and ideally predictive, understanding of tropical cyclone impacts on estuaries
(Verdonschot et al. 2013). Such an understanding could inform management actions; for
example, knowing the likely duration and severity of low salinity after TCs could be used with
metapopulation modeling (Munroe et al. 2013) to choose locations for oyster restoration.
Identifying disturbance and recovery requires separating event-driven changes from natural
variability (Walter et al. 2022). However, doing so for tropical cyclone impacts on estuaries is
challenging, because estuaries are inherently variable through time and space. At a given
location within an estuary, what constitutes “normal” values of a variable is determined by
interacting processes such as tidal, diel, and seasonal cycles, and weather, as well as local
characteristics such hydrologic position, depth, and watershed land use (Tomasko et al. 2006,
Wetz and Yoskowitz 2013, Perales-Valdivia et al. 2018, Scanes et al. 2020). The influence of
these and other factors changes within and among estuaries (Sanger et al. 2002). As such,
establishing baseline conditions requires either a strong understanding of what processes
dominate at a given location or extensive prior data.

Despite the many difficulties that limit cross-system and cross-storm examination of

disturbances, the data to do so are increasingly available for many estuaries and ecosystem
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variables (Gaiser et al 2020, Mills et al. 2008). Long-term monitoring data have provided the
opportunity to synthesize ecosystem responses across multiple storms. For example, in
Apalachicola Bay, Florida, USA, Edmiston et al. (2008) also used a two-decade record of TC
impacts to document contrasting or absent impacts to water depth, water quality, coastal erosion,
sea turtle nest loss, and SAV and oyster populations, depending on storm size, speed, severity,
landfall, surge height, and precipitation. Paerl at al. (2018) used two decades of monitoring data
to distinguish how different storm types (wet vs. dry, windy vs. calm) led to different
biogeochemical and phytoplankton responses in the Neuse River Estuary and Pamlico Sound in
North Carolina, USA.

In addition to long-term data, developments in sensor technology and remote sensing
platforms have made it possible to measure some variables at high frequency. In aquatic
ecosystems, in-sifu sensors can measure temperature, salinity, turbidity, pH, dissolved oxygen,
phytoplankton pigment fluorescence, and nutrient concentrations on the scale of seconds to
minutes (Glasgow et al. 2004, Fries et al. 2008). Satellite remote sensing can be used to infer
shellfish and submerged aquatic vegetation (SAV) coverage (Nieuwhof et al. 2015, Wang et al.
2007), as well as the distribution of turbid waters (Doxaran et al 2006) and phytoplankton (Jiang
et al 2020). For some locations, high-frequency, long-term measurements have been collected by
monitoring programs like NOAA’s National Estuarine Research Reserve System (NERRS;

https://coast.noaa.gov/nerrs/). Data from this program as well as extensive weather data related

to tropical cyclones are openly available.
While having high frequency and long-term data is a helpful first step to understanding
patterns and controls of disturbances, appropriate statistical approaches are also required for

generating insights from those data. Methods to objectively quantify and compare disturbance
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timing, disturbance magnitude and time to recovery are required. For example, Patrick et al.
(2022) developed response ratios for variables and scaled them by storm features (maximum
winds and precipitation) to enable comparison of disturbance magnitudes. Systematic approaches
coupled with sufficient data offer the potential to overcome the inherent spatial and temporal
variability and heterogenous responses to tropical cyclones that have limited comprehensive
study of the patterns and controls on disturbance and recovery (Pruitt et al. 2019, Hogan et al.
2020, Patrick et al. 2022).

Here, we present a synthesis of disturbance and recovery measurements for tropical
cyclones in estuaries monitored by the National Estuarine Reserve System (NERRS) of the U.S.
National Oceanographic and Atmospheric Administration (NOAA) by taking advantage of their
long-term data and the known tracks of many storms. We apply a new disturbance detection
method designed to quantify the timing and magnitude of the disturbance and the length of
recovery in high frequency data (Walter et al. 2022). We apply this method to continuous
measures of salinity and dissolved oxygen where long-term observations provide a rich baseline
for comparing “normal” variability to storm conditions. Based on hundreds of station-tropical
cyclone-variable time series, we ask: 1) What are the characteristics (occurrence, timing,
duration, severity) of tropical cyclone disturbances in estuaries? 2) What storm and site
properties are associated with changes in disturbance characteristics? and 3) How are estuary

resilience and resistance to tropical cyclone disturbances related?

Methods

Study Sites and Data — High frequency time series of water quality parameters from the

NOAA’s NERRS program were analyzed to identify disturbance events associated with tropical
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storms. NERRS is composed of 29 U.S. estuaries, with each site containing several monitoring
stations that collect water temperature, chemistry, nutrient, and pigment data along with
meteorology. For this study, we focus on measures of salinity and dissolved oxygen percent
saturation (DO % sat) collected by automated sensors at high frequency (15 minutes since 2007,
30 minutes prior) at 19 Atlantic NERRS sites from 2000 to 2018 (Figure 1, Appendix S1 Table
S1). Salinity is a critical determinant of habitat suitability for aquatic organisms, varies across
most NERRS sites from coastal to inland stations, and is controlled entirely by physical
processes. DO % sat is also a critical determinant of habitat suitability. DO % sat (as opposed to
concentration) accounts for the effect of water temperature on oxygen solubility and is driven by
biological (i.e., primary production and respiration) and physical-chemical processes (e.g.,
atmospheric exchange, chemical oxidation reactions). Data were obtained from the NERRS
Central Data Management Office’s Advanced Query System (http://www.nerrsdata.org) and all

measurements with data quality flags were removed prior to analysis.

Storm Identification — We considered tropical cyclones (TCs) that potentially impacted
salinity and oxygen at each NERRS. A two-step process was used to identify TCs and sites for
analysis to limit the computationally intensive analyses to cases where TC disturbances were
plausible. First, TCs that passed within 250 km of a specific NERRS site were identified using
storm tracks from the hurricaneexposure and hurricaneexposuredata R packages (Anderson et
al. 2020a, Anderson et al. 2020b). Second, for each identified TC, potential impacts were
determined by visually inspecting plots of salinity and DO % saturation from 30 days prior to 60
days after the date the TC passed closest to the NERRS site. If any variable at any station within
a NERRS site appeared to be affected by the TC (defined as an increase or decrease in the mean

or variability relative to the 30 day pre-TC passage period), all stations and parameters for that
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site and TC were classified as potentially impacted and included in further analyses. While the
second step is subjective, including some TCs with minor impacts and possibly missing others
with subtle impacts, we aimed to be inclusive in classifying potentially impacted sites/storms to
allow the disturbance detection algorithm to quantitatively distinguish events that fell outside the
range of historic variability (see below). Alternative methods for identifying TCs that potentially
impacted water quality at sites were explored, such as thresholds in meteorological variables
(high wind speed, heavy precipitation, drops in barometric pressure). However, the many
potential mechanisms by which estuarine salinity and DO can be impacted by TCs (e.g., storm
surge, wind driven waves, local precipitation, increased discharge from the watershed) as well as
frequent missing meteorological data during TCs precluded the use of such a method.
Ultimately, tropical cyclone-associated disturbances were not observed for over 60% of the 955
station-TC-variable combinations analyzed (see Results). Non-detection was expected given the
minor impacts of weaker hurricanes and the expected decline in realized TC impacts with
distance from the storm track. Our method identified TC impacts on salinity and dissolved
oxygen in 38% of the cases and these detections were not limited to only events that caused

widespread and severe disturbances.

Disturbance Detection — After potentially impacted NERRS sites for each TC were
determined, individual stations within each site with sufficient data were identified for
disturbance detection analysis. Station-TC-variable combinations with more than 25% total
missing data or a 5 day or longer gap in measurements during the period from 14 days prior to 60
days after the TC was closest were excluded from further analysis, as were combinations with
fewer than 8 other years of data to use as reference data (see below) during the same date range

meeting the same gap length and total missing data requirements.
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We applied a recently developed disturbance detection method designed for use with high
frequency data (Walter et al. 2022). The method is implemented in an R package available on

GitHub (https://github.com/jonathan-walter/disturbhf). It compares the distribution of a variable

for rolling windows of the time series within a test period to a reference period using the
empirical cumulative distribution function (ECDF). The analysis consists of three steps. First, the

difference statistic time series d. () is calculated for each window within the test period:

N
duw(®) = ) |ECDF (¥rem () = ECDF Gtrepw (8)]  dx

i=1

where x5, w(?) are the variable values within a rolling window of width W centered at time t
within the test period (Figure 2A), x.;w(t) are the variable values in a reference period, N is the
number of intervals at which to evaluate the EDCFs (here we use 1000) over the range of
observed values in the test and reference windows, and dx is the width of those intervals (equal
to (Xmax — Xmin) / N; Figure 2B,C). x,r can be defined to be either fixed (all values within the
reference period are used) or adaptive, where rolling windows of a specified width within the
reference period are used to account for seasonal trends. As tropical cyclones occur from
summer into late fall when seasonal changes in water quality might be expected, we use an
adaptive reference period so rolling windows within the test period are compared to windows

centered at the same day of year in the reference years.

In the second step, the d,, time series is rescaled based on the variability observed in the
reference period. This is done by calculating d, s as above, but xzs, w(?)is instead defined by
rolling windows of observations within the reference period. The mean (uaw,-s) and standard

deviation (Gdw,ref) Of dy,rer are used to rescale dw(t) as a z-score (Figure 2D):
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2(t) = (dw(®) - paw.ref) | (Gaw.ref)

Finally, user-specified thresholds in z(?) that define disturbance (threshais;) and recovery
(threshyecov) are applied to identify the timing of disturbance events (initiation and conclusion).
Short disturbances and recoveries can optionally be combined or removed using minimum
disturbance and recovery lengths. We used a test window width of 3 days and a reference
window width of 6 days as a balance between the ability to detect shorter disturbances vs. power
to accurately characterize variable distributions based on initial exploration of cases with obvious
TC impacts . We also required that disturbances and recoveries last for at least 24 hours and set
threshrecoy = 0.5* threshais:. Based on a disturbance threshold sensitivity analysis (Appendix S1,
Figure S1) we used threshaiss = 2. Choice of threshaist 1s subjective; our goal in using a single
value was to allow for comparison across many TC-station-variable combinations that limited
disturbances to those that were likely caused by storms. In studies focused on a smaller number
of disturbances, site- or storm-specific values of threshgist and test and reference window widths
could be used. Lower threshaist values will lead to more disturbances detected and generally
longer durations (and vice versa). Narrower window widths are more likely to detect short

disturbances but can lead to false detections due to low sample size.

The detection algorithm was iterated through the rolling window time steps from 14 days
before TC passage to 60 days after. The shorter analysis window compared to the Storm
Identification window was chosen to limit these computationally intensive calculations to only
time periods when a disturbance was potentially caused by TC impacts; additionally, the longer
pre-TC window was not needed because a minimum 8 years of data were used for the reference
window. If a disturbance was detected in the initial analysis but no recovery occurred within 60

days, the post-TC window was extended for 60 additional days until a recovery was detected.

10
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Disturbance Event Characteristics and Drivers — After setting the algorithm parameters
and identifying disturbance events, we quantified disturbance characteristics and explored
potential relationships with station and TC variables. Disturbance event characteristics included
disturbance occurrence, timing relative to when the center of the TC was closest, length of time
between disturbance initiation and recovery, and severity (peak z(?) during the disturbance).
Disturbance events were limited to first occurring disturbances starting from 3 days before to 30
days after each TC was closest to each NERRS site. Thirty days after TC passage was chosen to
attempt to capture all disturbances initiated by a storm, accounting for potential disturbance
delays such as hydrologic lags and biological feedbacks. Following disturbance and recovery
detection, mean salinity and dissolved oxygen during the disturbance were calculated and

compared to means during the same date range in all other years of available data.

Potentially explanatory station variables included mean salinity and depth as proxies for
relative location within the estuary (oceanic vs. inland), mean tidal range as a proxy for tidal
influence, and standard deviation of salinity as a proxy for variability in the contribution of
upstream vs. ocean water sources. Tropical cyclone traits included closest TC distance to the
NERRS site, maximum wind gust speed, duration of wind gusts over 20 m s™, total TC
precipitation, and storm surge height. TC distance and winds were determined from the
hurricaneexposure R package (Anderson et al. 2020a); winds were from the population-weighted
center of the closest county. This source of wind data was chosen because it provides
consistently-modeled wind speeds across all TCs and locations in this study; while actual
measurements at each location would be preferable, not all stations had meteorological data and
often data were lost during TC impacts. Total TC precipitation was obtained from the PRISM

reanalysis product (PRISM Climate Group 2021); daily precipitation totals from 3 days before to

11
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7 days after the TC passed closest to the NERRS site were summed. Storm surge height was
calculated from depth observations at each station as the difference between the maximum depth
observed from 3 days before to 7 days after TC passage and the maximum depth from the
preceding two weeks. While imperfect due to not accounting for whether storm surge occurred at
high or low tide, or for longer period tidal cycles, the storm surge metric provides an indicator of
how high water got at each location within an estuary. Total precipitation was square-root
transformed and peak severity was log transformed prior to regressions to increase normality.
Relationships between disturbance characteristics (occurrence, timing, length, and severity) and
potential driver variables (TC precipitation, station mean tidal range, etc.) were assessed using
multiple logistic and multiple linear regression; separate models were computed for each
combination of disturbance characteristic (occurrence, timing, length, or severity) and ecosystem
variable (salinity or dissolved oxygen) and the best model for each disturbance characteristic —
ecosystem variable combination was determined using AIC and stepwise model selection

(Venables and Ripley 2002).

Results

Disturbance Examples - The disturbance detection method identified different types and
durations of anomalous salinity and oxygen conditions in the periods near TC passage. For
example, Hurricane Florence in 2018 caused significant declines in salinity at North Inlet-
Winyah Bay NERR’s Debidue Creek station from over 35 to 1-2 psu, and it took 39 days to
return to normal values (Figure 3A, Table 1). At Jacques Cousteau NERR, there was a sharp but
short (~ 2 days) increase in salinity from 15-20 to 29 psu in response to storm surge from
Hurricane Sandy (2012), after which salinity was lower than before the storm but still within the

range of normal variability (Figure 3B). The distribution difference statistic also increased in
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response to storms that impacted variability more strongly than mean values; at Great Bay
NERR'’s Squamscott River station, Hurricane Hanna in 2008 significantly decreased the
amplitude of dissolved oxygen oscillations but the mean remained near 85% saturation (Figure
3C). The normalized distribution difference statistic (z-score) increased to ~ 1.4 over this period,
but not enough to trigger a disturbance event for a threshold of 2. A more severe disturbance in
dissolved oxygen occurred at Rookery Bay NERR’s Lower Henderson Creek station, where
Hurricane Irma caused a crash in dissolved oxygen to near 0% saturation (Figure 3D). The z-
score for this disturbance peaked at nearly 8 standard deviations above the reference period
mean, indicating a highly anomalous event for the location.

Disturbance Event Characteristics — A wide range of disturbance timing, length, and
severities were observed. Disturbances were detected for 40% of salinity cases and 37% of
dissolved oxygen cases. Over 50% of detected disturbances began within 2.5 days (salinity) and
5.1 days (dissolved oxygen) of when the eye of a tropical cyclone passed closest to each NERRS
site (Figure 4). Initiation of disturbances peaked for salinity from 0.5 to 1.5 days after TC
passage, with the cluster of most frequently observed times from 3 days before to 4.5 days after
(Figure 4A). For dissolved oxygen, disturbances most frequently began from 2.5 to 3.5 days after
TC passage; the cluster of most frequent times peaked much lower and was wider relative to
salinity (Figure 4B).

The majority of disturbances lasted less than a week (median of 6.3 days for salinity, 4.6
days for DO % sat; Figure 5), but the distribution of disturbance lengths had a long tail, with
disturbances > 50 day seen for both DO% sat and salinity (Figure SA, B). Salinity disturbances
between 1 and 8 days accounted for 61% of salinity disturbances, with a large drop in the

number of observed disturbances longer than 14 days (Figure SA). The cluster of most common
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disturbance lengths for dissolved oxygen was shifted to slightly lower values; the most common
disturbance lengths was 1 — 6 days and a drop in observed disturbance lengths occurred after 12
days (Figure 5B). Of the 24 disturbances that lasted longer than 30 days, 20 were salinity
disturbances (max = 98 days) and 4 were dissolved oxygen disturbances (max = 59 days; Table
1).

TC disturbances tended to decreased salinity and DO % values, though the relative
proportion differed by variable. Only 8% of salinity disturbances had a higher mean value during
the disturbance than in reference years, while 92% had a lower mean (Figure 6). For dissolved
oxygen, 37% had a higher mean value during the disturbance and 63% were lower. Only 16.5%
of all the dissolved oxygen disturbances had a mean DO % value greater than 100% (Figure 6).

There was a wide range in the peak severity value of each disturbance, with peak severity
z-scores between 2 and 5 being most common (80% of cases for salinity, 84% for dissolved
oxygen) and several values between 5 and 15 occurring for each variable (Figure 7). There was a
significant, positive relationship between log-transformed peak severity and log-transformed
disturbance length for both salinity and DO % saturation (Figure 7), with very similar correlation
coefficients (r = 0.51 and 0.62 for salinity and oxygen, respectively, p < 0.001 for both
variables).

Potential disturbance drivers — At least one potential driver was identified for all
disturbance event characteristics for both dissolved oxygen and salinity based on regression
analysis (Table 2; model coefficients are in Tables S2 — S9). Higher precipitation and mean
salinity were associated with increased occurrence of salinity disturbances, while increases in
tidal range were associated with lower salinity disturbance occurrence. For dissolved oxygen,

TCs with higher precipitation and stations with greater depths had more disturbances, while
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stations with larger tidal ranges had fewer disturbances. TCs with longer duration of wind gusts
over 20 m/s were associated with later occurring salinity disturbances; increased precipitation led
to earlier occurring salinity disturbances. For dissolved oxygen disturbance timing, stations with
higher salinity had later starting disturbances while TCs with more precipitation that passed
closer to the NERSS site had earlier disturbances. Longer salinity disturbances were positively
correlated with tidal range, depth, wind gust duration, and maximum wind speed, and negatively
correlated with mean station salinity and storm surge height. Longer dissolved oxygen
disturbances were positively correlated with TC precipitation and station salinity variability, and
negatively correlated with station mean salinity and TC wind gust duration. Several TC and
station variables were positively and negatively related to peak severity for salinity disturbance
(Table 2), while the only driver variable that had a significant relationship with peak disturbance
severity for DO % sat was maximum storm surge height.

The mean magnitudes of change associated with regression model variables can be
readily estimated for ranges typically associated with TCs. For example, the simplest model is
for the severity of DO % sat (Table S9) which changes as a z-score from 4.2 to 6.8 standard
deviations above the mean for storm surges of 1 and 4 meters, respectively. As a second
example, TC precipitation often falls in the range of 100 to 300 mm (Table 1) but was as high as
680 mm in our data set. Assuming an estuary with a mean salinity of 20 psu and a salinity
standard deviation of 2 psu, the predicted mean length of a DO disturbance would be 1.6 days for
a storm precipitation of 100 mm, 2 days for a precipitation of 300 mm, and 2.4 days for a

precipitation of 700 mm based on the model (Table S7).

Discussion
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We identified and characterized tropical cyclone-associated disturbances across 19
estuaries and 59 different TCs in the eastern United States utilizing high-frequency, long-term
data. The disturbance detection method distinguished diverse disturbance types for two important
ecosystem state variables (Figure 3). In relation to our first question about disturbance
characteristics, there was a wide range of disturbance timing, length, and severity (Figures 4, 5,
7). For our second question, both TC (especially precipitation) and site properties were
associated with changes in disturbance characteristics (Table 2).

Across all TC-estuary combinations analyzed, dissolved oxygen saturation and salinity
had a similar number of disturbances detected, though there were slightly more disturbances
detected for salinity (40% vs. 37%). The lower number of disturbances detected prior to TCs for
salinity relative to DO % saturation (Figure S1) suggests that disturbances in this variable are
more closely tied to TC events, while additional mechanisms beyond TCs are also important
generators of anomalous DO % saturation values. The roughly 60% of cases without detected
disturbances highlight the importance of considering instances when TCs both do and do not
cause impacts to provide a complete understanding. The common case study approach may
present a bias towards the perception that TCs usually have large impacts, when in fact often
they do not, at least for the variables we consider in this study.

Both increases and decreases in salinity due to TCs have been widely documented, but
our findings indicate that freshwater inputs from precipitation and increased river/stream
discharge is the dominant mechanism of salinity disturbance as opposed to storm surge (91%
decreases vs. 9% increases; Figure 6). Biological processes that alter oxygen concentrations (i.e.,
respiration and primary production) are highly dynamic in time and related to several

environmental drivers (e.g., nutrient loading, hydrology, temperature, solar radiation, and
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salinity; Caffrey et al. 2014, Murrell et al. 2018, Tassone and Bukaveckas 2019), and are a likely
explanation for the observation of oxygen anomalies not associated with TCs (Figure S1;).
Biological mechanisms could also explain the observed lag in dissolved oxygen disturbance
initiation relative to salinity. Dissolved oxygen disturbances were generally shorter in duration
than salinity disturbances. While salinity and oxygen share many of the physical processes that
promote recovery (e.g., stream and river discharge, tidal exchange), equilibration with
atmospheric oxygen concentrations, especially under vigorous mixing in estuaries, could explain
the faster recovery of DO % sat. relative to salinity (Kremer et al. 2003). While we were unable
to assess water column mixing in this study because almost all NERRS stations have only a
single, near-bottom sensor, future work looking at surface vs. bottom disturbances could provide
important insights, especially for locations where increased freshwater inputs following TCs can
lead to vertical salinity gradients and stratification (Mallin et al. 2002, Wetz and Y oskowitz
2013).

While short disturbances (< 7 days) were most frequent for both variables, longer
disturbances were also common. Forty-seven percent of salinity disturbances lasted longer than 7
days, as did 28% of dissolved oxygen disturbances. For many organisms that inhabit estuaries,
these disturbances likely represent prolonged periods of stress and require substantial movement
for mobile species. Low oxygen can cause fish and shellfish die-offs as documented for some
hurricanes (Paerl et al. 1998, Paerl et al. 2001, Parker et al. 2013). While many estuarine species
tolerate relatively large salinity ranges, extreme salinity fluctuations associated with TC
disturbances may exceed tolerances (Du et al. 2021). Though rare, we also found several cases
where disturbances persisted for more than 30 days (Table 1). The extremely slow recovery rates

for these events could arise from different mechanisms. Long duration, low salinity disturbances
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can result from high freshwater discharge (Paerl et al. 2001, Du et al. 2019). For dissolved
oxygen disturbances, extreme loading of organic matter from the watershed into estuaries can
stimulate high respiration that draws down oxygen concentrations (Paerl et al. 2018).
Alternatively, TCs can increase nutrient loading from internal or external sources, leading to
algal blooms that increase oxygen concentrations (Shen et al. 2008). Though nutrient
concentrations often decline quickly following hurricanes, recycling can maintain primary
producer biomass (Peierls et al. 2003). The number of higher and lower dissolved oxygen
concentrations during disturbances (39% and 61%, respectively; Figure 5) suggests that both
organic matter driven respiration inputs and nutrient driven production can be important drivers
of oxygen disturbances, but that oxygen consumption is usually greater than production during
TC disturbances. Increased phytoplankton biomass, which has often been observed following
TCs (Wetz and Paerl 2008, Herbeck et al. 2011, Phlips et al. 2020) would be expected to cause
DO saturation values over 100% during severe blooms , but such cases were relatively rare in
our data set. TCs can also cause declines in phytoplankton due to light-limitation from high
concentrations of suspended matter and organic carbon as well as losses from high flushing rates
(Paerl et al. 1998, Malin et al. 2002, Paerl et al. 2018).

Our findings also offer insights into the overall time scales of TC disturbances at
estuaries. NERR sites experienced from 1 to 18 TCs over the period of record considered in this
study (Table S1). As an intermediate example, Apalachicola Bay had 9 TCs from 2000 to 2018.
Assuming median disturbance lengths for each storm, this amounts to 57 and 41 days
respectively of extreme conditions (greater than two standard deviations departure from means)
for salinity and oxygen, respectively. These disturbance days are less than 1% of the 19-year

record. Even if some rare, long-duration disturbances also occurred, this simple calculation
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indicates estuaries are only impacted by TCs a small amount of the time in a cumulative sense.
However, disturbances in salinity and dissolved oxygen may influence other processes (e.g.,
reproduction of longer-lived organisms, slow biogeochemical processes) that have lasting
impacts. Thus, continued study of storm impacts is warranted, especially interactions that might
ramify from short-term changes in easily measured physical-chemical variables considered in
this study, such as salinity, dissolved oxygen, and turbidity impacts on benthic organisms, SAV,
and fish populations (Paerl et al. 1998, Mallin et al. 1999, Mallin et al. 2002, Carlson et al.
2010). The topic gains significance if TCs increase in severity and/or geographic range with
climate change as projected (Knutson et al. 2010, Sobel et al. 2016, Balaguru et al. 2022).

For our third question on the relationship between resilience and resistance, we found a
positive relationship between disturbance length and disturbance severity. These two disturbance
characteristics quantify metrics of ecosystem stability and recovery; resistance and resilience
have taken several definitions and received considerable attention in ecology and other fields.
Using the definitions of Pimm (1984), disturbance length is inversely related to resilience (longer
disturbance lengths correspond to lower resilience) and quantifies the ability and speed of a
system to recover after a perturbation, while disturbance severity is inversely related to
ecosystem resistance (higher severity corresponding to low resistance) and measures a system's
ability to oppose change. In an analysis of coastal ecosystem response to Hurricane Harvey in
2017 using similar definitions, Patrick et al. (2020) found a negative relationship between
resilience and resistance for several types of estuary variables (hydrology, hydrography,
biogeochemistry, biota) in the response of estuaries in Texas to Hurricane Harvey. Our
disturbance length metric is similar to the return times Patrick et al. (2020) observed, though the

resistance measures are not directly comparable (log response ratio vs. peak z-score). Another
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recent synthesis of response to TCs for thousands of time series from 26 TCs in the Northern
Hemisphere (Patrick et al. 2022) across different ecosystem and variable types also found a
negative relationship between resistance and resilience using definitions that consider
disturbance driver and system response magnitudes. Applying similar definitions to our results
(resistance = -1* In(peak z-score / TC precipitation), resilience = In(peak z-score / disturbance
duration)), we find weak negative correlations between resilience and resistance for salinity and
dissolved oxygen salinity (r = -0.14 and -0.23 for salinity and oxygen, respectively). Taken
together, our findings and other recent studies suggest that the relationship between resistance
and resilience is likely dependent on the variable considered, the geographic scale (e.g.,
within/among estuaries), and ecosystem type; as well as the specific quantitative definition used
for resistance and resilience.

By analyzing the impact of many tropical cyclones on several estuaries, we were able to
examine the role that TC and site properties play in determining disturbance characteristics. Both
TC and site properties were important. Total precipitation was the most common TC variable
related to disturbance responses, with higher precipitation associated with more likely, earlier
starting, longer, and more severe disturbances. This finding is important given the projected
increase in tropical cyclone severity and precipitation amounts due to climate change (Patricola
and Wehner 2018). Mean salinity was the most common station property associated with
disturbance responses. Locations with higher salinity had more severe and earlier salinity
disturbances, as well as later dissolved oxygen disturbances. TCs with higher maximum and
longer duration wind speeds had earlier and longer lasting disturbances. These general patterns
are a first step to developing a predictive understanding of disturbance characteristics and

demonstrate the disturbance detection algorithm’s ability to quantitatively characterize
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disturbances across different locations, storms, and variables. However, additional storm and site
(see below) and interactions between them are undoubtedly needed to explain the highly variable
disturbance characteristics observed in this study. Identifying drivers of disturbances is important
to identify current estuarine locations that are highly susceptible to disturbance and how future
climate change may impact responses. Insights may offer ways to increase ecosystem resilience
through management of infrastructure (e.g., water retention/release), habitat restoration to
promote refuges and portfolio effects (Schindler et al. 2015), and watershed land-management to
limit run-off during extreme storms.

While the disturbance detection method identified and characterized disturbances, it also
has limitations. The method quantifies any difference between the distribution of values in the
test and reference periods but does not distinguish between different types/directions of
disturbances (e.g., if a change is to higher or lower values, or increased/decreased variability).
There also is not a direct correspondence between the disturbance statistics (d. or z-score) and
physically meaningful ecosystem state values or thresholds (e.g., oxygen or salinity
concentrations at which organisms are harmed). These issues can be addressed by first using the
method to demarcate disturbances, then to compare differences in the mean, variance, etc. of the
test and reference years within those periods (Figure 6). Finally, the method requires both high
frequency and long-term measurements to identify disturbances, which limits the variables and
locations to which it can be applied. However, these types of data are increasingly available from
sensors that can measure important ecosystem state variables (Porter et al. 2012). The data from
NOAA'’s National Estuarine Research Reserve System illustrates the immense value of long-
term programs measuring the same variables at different sites, especially for events that are

unpredictable but have large consequences like tropical cyclones.
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Despite these limitations, our findings represent an advance in the study of patterns and
drivers of disturbance at broad spatial and temporal scales in estuaries. By detecting disturbances
that cause diverse deviations from baseline variability and quantifying several important
disturbance characteristics, our method overcomes many of the constraints that have previously
limited studies to one or a few TCs and/or locations (Pruitt et al. 2019). The approach fits
naturally within proposed frameworks for understanding disturbance in ecological and socio-
economic systems (Gaiser et al. 2020). For TCs specifically, Hogan et al. (2020) recently
provided a framework for evaluating ecosystem component response to disturbances including a
detailed conceptual diagram (see their Figure 2). This study includes many of the framework
components and applies them to provide quantitative generalization across many locations and
storms: disturbances to salinity and dissolved oxygen in estuaries generally start soon after
tropical cyclones pass and typically recover within days, though weeks and months long
disturbances do occur. Most (~90%) salinity disturbances cause declines in mean salinity driven
by precipitation and discharge as opposed to increases from storm surge. In contrast, dissolved
oxygen disturbances were more evenly split between increases and decreases. Properties of both
tropical cyclones and the locations they impact are related to disturbance response. Future work
could extend our findings to additional drivers and mechanisms including the role of upstream
land use, antecedent conditions, estuary or habitat type, and hydrodynamics; the effect of
disturbance impacts on specific biota; and other variables besides salinity and dissolved oxygen.
For these and other ecosystem variables where measurements can be collected by sensors and
analyzed in near-real time, knowledge that a disturbance is starting also offers the exciting
possibility of quickly directing additional data collection and management actions to minimize

impacts.
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Table 1. Tropical cyclone and station characteristics (calculated from all available years) of disturbance events lasting longer than 30

days.
Duration | Precip | Depth M.ea.n
NERRS Reserve Station Storm Var. Salinity
@ays) | (mm) | ) |

Ashepoo Combahee Edisto Basin | Mosquito Creek Andrea-2013 Sal 98.4 72.4 4 18.2
Chesapeake Bay Virginia Taskinas Creek Michael-2018 Sal 71.1 91.5 1.6 10.6
Guana Tolomato Mantanzas San Sebastian Irma-2017 Sal 58.9 266.8 5.1 33.8
Weeks Bay Middle Bay Ida-2009 DO 58.6 89.2 1.4 9.5
NorthInlet-Winyah Bay Thousand Acre Florence-2018 Sal 58.4 316.6 2.5 8
Weeks Bay Weeks Bay Lee-2011 DO 51.5 230.6 1.2 10
NorthlInlet-Winyah Bay Clambank Florence-2018 Sal 50 316.6 2 32.7
Ashepoo Combahee Edisto Basin | Fishing Creek Andrea-2013 Sal 46.9 72.4 2.7 9.4
Delaware Blackbird Landing Irene-2011 Sal 43.3 212.4 1.7 1.9
Weeks Bay Magnolia River Bill-2003 Sal 42.6 262.2 1.8 9.2
Weeks Bay Middle Bay Bill-2003 Sal 40.6 262.2 1.4 9.5
Great Bay Lamprey River Hanna-2008 Sal 39.4 146.8 2.2 12.1
Rookery Bay gliifile Blackwater Irma-2017 DO | 388 | 2555 | 1 30.6
NorthInlet-Winyah Bay Debidue Creek Florence-2018 Sal 38.7 316.6 2.5 32.1
North Carolina Zeke's Basin Florence-2018 Sal 37.7 680.2 0.7 22
Great Bay Lamprey River Charley-2004 DO 353 131 2.2 12.1
Guana Tolomato Mantanzas Pine Island Irma-2017 Sal 33.5 266.8 4.2 28.5




Sapelo Island Cabretta Creek Tammy-2005 Sal 32.5 307.2 3.1 31.8
Chesapeake Bay Virginia Claybank Isabel-2003 Sal 31.8 117.3 1.2 16.1
Chesapeake Bay Virginia Goodwin Islands Irene-2011 Sal 31.2 258.6 1 19.6
Delaware Scotton Landing Irene-2011 Sal 30.7 2124 1.7 10.8
Jacques Cousteau Chestnut Neck Irene-2011 Sal 30.4 157.7 2.4 14.9
Chesapeake Bay Virginia Taskinas Creek Isabel-2003 Sal 30.3 117.3 1.6 10.6
Apalachicola Bay Dry Bar Dennis-2005 Sal 30.1 5.7 1.8 21.8
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Table 2. Tropical cyclone (TC) and station variables related disturbance characteristics:
occurrence/non-occurrence, timing (days after TC passage), length (days), and peak severity (z-
score). TC characteristics are highlighted in blue; site/station characteristics are highlighted in
green. Drivers are separated into positive and negative significant relationships with each

disturbance event characteristic. * denotes 0.05 < p < 0.1; other variable p-values are < 0.05. See

tables S2 — S9 in the Supplemental Information for coefficient values and standard errors.

relative to TC

Negative: precipitation

Disturbance
Salinit DO % saturation
Characteristic y °
Positive: precipitation, Positive: precipitation, depth, TC
Occurrence mean(salinity) distance™
Negative: tidal range Negative: ftidal range
Timing Positive: wind gust duration*® Positive: Hg(Elinib)

Negative: precipitation,
TC distance

Positive: tidal range, depth wind
gust duration, wind gust max

Positive: precipitation, sd(salinity)*

Negative: sd(salinity)

Length Negative: mean(salinity), storm Negative:

surge height

Positive: mean(salinity), e :
Peak Severity | precipitation Positive: storm surge height

Negative:
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Figure 1. Location and site codes of NERRS sites analyzed for tropical cyclone impacts. Point
size indicates the number of tropical cyclones analyzed.
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Hurricane Hanna (2008)
Wells Reserve, Skinner Mill Station
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Figure 2. Illustration of the disturbance detection algorithm. A) Observations of salinity before
and after Hurricane Hanna impacted the Wells Reserve (Maine, USA) in 2008. Shaded periods
are example three-day test periods before (blue) and after (red) tropical cyclone passage. B)
Empirical cumulative distributions (ECDF) for the before-impact example test period (blue) and
corresponding reference periods in other years (black). The area of the shaded region
corresponds to dw, the distribution difference statistic. C) ECDFs for the after-impact example
test period (red) and corresponding reference periods in other years (black). D) Time series of the
normalized (z-score) distribution difference test statistic.
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Hurricane Florence (2018)

Hurricane Sandy (2012)
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Figure 3. Example time series showing hurricane impacts and performance of the normalized
distribution difference statistic. Black lines are observations of salinity (A, B) and dissolved
oxygen percent saturation (C, D). Blue lines are the normalized distribution difference statistic
for thee-day wide rolling windows. Red shaded areas represent disturbances identified with z-
score a disturbance threshold of 2 and recovery threshold of 1. Note different x and y axis scales.
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Disturbance Timing
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Figure 4. Histograms (A: dissolved oxygen, B: salinity) and empirical cumulative distribution
curves (C) showing the timing of disturbance start relative to when the tropical cyclone was
closest to each NERRS site.
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Disturbance Length
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Figure 5. Histograms (A: dissolved oxygen, B: salinity) and empirical cumulative distribution
curves (C) showing the length of time between disturbance initiation and recovery.
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Figure 6. Mean salinity (A) and dissolved oxygen (B) during TC-associated disturbances vs.

0
Reference Mean

during the same periods in all other years. The black line is the 1:1 line, indicating no difference

between the means during the disturbance and reference periods.
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Figure 7. Relationship between disturbance length and peak disturbance severity for dissolved
oxygen (A) and salinity (B).
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