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Abstract 19 

Tropical cyclones impact estuaries via a variety of mechanisms including storm surge, 20 

flooding from precipitation, high winds, and strong wave action. Prior studies have documented 21 

disturbances caused by tropical cyclones, including prolonged periods of depressed salinity from 22 

high freshwater discharge and increased or decreased dissolved oxygen concentrations from 23 

increased loading of organic matter and/or nutrients. However, most studies of disturbance and 24 

recovery in estuaries have been limited to one or a few locations or storm events, limiting 25 

generalizations about tropical cyclone impacts and characteristic patterns of ecosystem response 26 

and recovery. We analyzed responses to 59 tropical cyclones across 19 estuaries in the eastern 27 

United States by applying a new method for detecting disturbance and recovery to long-term and 28 

high-frequency measurements of salinity and dissolved oxygen from NOAA’s National 29 

Estuarine Research Reserve System. We quantified disturbance occurrence, timing, recovery 30 

time, and severity. Salinity disturbances generally started earlier and lasted longer than dissolved 31 

oxygen disturbances. Estuaries usually recovered within days, but some disturbances lasted 32 

weeks or months. Recovery time was positively correlated with disturbance severity for both 33 

variables. Tropical cyclone properties (especially precipitation) and location characteristics were 34 

both related to disturbance characteristics. Our findings demonstrate the power of high-35 

frequency, long-term, and cross-system data, when combined with appropriate statistical 36 

methods, for analyzing hurricanes across many estuaries to quantify disturbances. Estuaries are 37 

resilient to hurricanes for the variables and time periods considered. However, persistent impacts 38 

can potentially damage resources provided by estuaries, eroding future resilience if hurricanes 39 

become more frequent and severe. 40 

 41 
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 50 

Introduction 51 

Tropical cyclones (TCs) are large and severe meteorological events that have substantial 52 

impacts on coastal populations, communities, and ecosystems, as well as social-ecological 53 

systems (Parker et al. 2013, Crosswell et al. 2014, Danielson et al. 2017, Congdon et al. 2019, 54 

Armitage al. 2020). Given these impacts as well as the observed and projected increase in 55 

severity and geographic extent of TCs with climate changes (Knutson et al. 2010, Sobel et al. 56 

2016, Balaguru et al. 2022), there have been calls for systematic and coordinated study (Bortone 57 

2006, Pruitt et al. 2019, Hogan et al. 2020). For estuarine ecosystems, understanding the effects 58 

of tropical cyclones is complicated by the variety and complexity of alterations in physical, 59 

chemical, and biological processes. Detailed studies of tropical cyclones have documented 60 

impacts for specific estuaries and storms (e.g., Paerl et al. 2001, Wetz and Paerl 2008, Patrick et 61 

al. 2020), but few studies have evaluated numerous storms and sites. One notable exception is 62 

Sanger et al. (2002), who examined high frequency water quality measurements from 18 63 

estuaries in the eastern United Sates impacted by 24 TCs from 1995 – 2000. They found that 64 
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more intense storms were associated with stronger water temperature cooling prior to storm 65 

passage, and that most other water quality changes were short-lasting, though salinity declines 66 

occasionally persisted for months. More recently, Patrick et al. (2022) synthesized multiple 67 

response variables across multiple storms and sites. They determined that the relative resistance 68 

to disturbance was inversely related to recovery and demonstrated the potential for testing 69 

tropical cyclone impacts across many variables and storms to arrive at generalizations.    70 

Quantifying the degree of disturbance and period of recovery is crucial to developing a 71 

generalized, and ideally predictive, understanding of tropical cyclone impacts on estuaries 72 

(Verdonschot et al. 2013). Such an understanding could inform management actions; for 73 

example, knowing the likely duration and severity of low salinity after TCs could be used with 74 

metapopulation modeling (Munroe et al. 2013) to choose locations for oyster restoration.  75 

Identifying disturbance and recovery requires separating event-driven changes from natural 76 

variability (Walter et al. 2022). However, doing so for tropical cyclone impacts on estuaries is 77 

challenging, because estuaries are inherently variable through time and space. At a given 78 

location within an estuary, what constitutes “normal” values of a variable is determined by 79 

interacting processes such as tidal, diel, and seasonal cycles, and weather, as well as local 80 

characteristics such hydrologic position, depth, and watershed land use (Tomasko et al. 2006, 81 

Wetz and Yoskowitz 2013, Perales-Valdivia et al. 2018, Scanes et al. 2020). The influence of 82 

these and other factors changes within and among estuaries (Sanger et al. 2002). As such, 83 

establishing baseline conditions requires either a strong understanding of what processes 84 

dominate at a given location or extensive prior data. 85 

Despite the many difficulties that limit cross-system and cross-storm examination of 86 

disturbances, the data to do so are increasingly available for many estuaries and ecosystem 87 
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variables (Gaiser et al 2020, Mills et al. 2008). Long-term monitoring data have provided the 88 

opportunity to synthesize ecosystem responses across multiple storms. For example, in 89 

Apalachicola Bay, Florida, USA, Edmiston et al. (2008) also used a two-decade record of TC 90 

impacts to document contrasting or absent impacts to water depth, water quality, coastal erosion, 91 

sea turtle nest loss, and SAV and oyster populations, depending on storm size, speed, severity, 92 

landfall, surge height, and precipitation. Paerl at al. (2018) used two decades of monitoring data 93 

to distinguish how different storm types (wet vs. dry, windy vs. calm) led to different 94 

biogeochemical and phytoplankton responses in the Neuse River Estuary and Pamlico Sound in 95 

North Carolina, USA.  96 

In addition to long-term data, developments in sensor technology and remote sensing 97 

platforms have made it possible to measure some variables at high frequency. In aquatic 98 

ecosystems, in-situ sensors can measure temperature, salinity, turbidity, pH, dissolved oxygen, 99 

phytoplankton pigment fluorescence, and nutrient concentrations on the scale of seconds to 100 

minutes (Glasgow et al. 2004, Fries et al. 2008). Satellite remote sensing can be used to infer 101 

shellfish and submerged aquatic vegetation (SAV) coverage (Nieuwhof et al. 2015, Wang et al. 102 

2007), as well as the distribution of turbid waters (Doxaran et al 2006) and phytoplankton (Jiang 103 

et al 2020). For some locations, high-frequency, long-term measurements have been collected by 104 

monitoring programs like NOAA’s National Estuarine Research Reserve System (NERRS; 105 

https://coast.noaa.gov/nerrs/). Data from this program as well as extensive weather data related 106 

to tropical cyclones are openly available. 107 

While having high frequency and long-term data is a helpful first step to understanding 108 

patterns and controls of disturbances, appropriate statistical approaches are also required for 109 

generating insights from those data. Methods to objectively quantify and compare disturbance 110 

https://coast.noaa.gov/nerrs/
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timing, disturbance magnitude and time to recovery are required. For example, Patrick et al. 111 

(2022) developed response ratios for variables and scaled them by storm features (maximum 112 

winds and precipitation) to enable comparison of disturbance magnitudes. Systematic approaches 113 

coupled with sufficient data offer the potential to overcome the inherent spatial and temporal 114 

variability and heterogenous responses to tropical cyclones that have limited comprehensive 115 

study of the patterns and controls on disturbance and recovery (Pruitt et al. 2019, Hogan et al. 116 

2020, Patrick et al. 2022).   117 

Here, we present a synthesis of disturbance and recovery measurements for tropical 118 

cyclones in estuaries monitored by the National Estuarine Reserve System (NERRS) of the U.S. 119 

National Oceanographic and Atmospheric Administration (NOAA) by taking advantage of their 120 

long-term data and the known tracks of many storms. We apply a new disturbance detection 121 

method designed to quantify the timing and magnitude of the disturbance and the length of 122 

recovery in high frequency data (Walter et al. 2022). We apply this method to continuous 123 

measures of salinity and dissolved oxygen where long-term observations provide a rich baseline 124 

for comparing “normal” variability to storm conditions. Based on hundreds of station-tropical 125 

cyclone-variable time series, we ask: 1) What are the characteristics (occurrence, timing, 126 

duration, severity) of tropical cyclone disturbances in estuaries? 2) What storm and site 127 

properties are associated with changes in disturbance characteristics? and 3) How are estuary 128 

resilience and resistance to tropical cyclone disturbances related? 129 

 130 

Methods 131 

Study Sites and Data – High frequency time series of water quality parameters from the 132 

NOAA’s NERRS program were analyzed to identify disturbance events associated with tropical 133 



7 
 

storms. NERRS is composed of 29 U.S. estuaries, with each site containing several monitoring 134 

stations that collect water temperature, chemistry, nutrient, and pigment data along with 135 

meteorology. For this study, we focus on measures of salinity and dissolved oxygen percent 136 

saturation (DO % sat) collected by automated sensors at high frequency (15 minutes since 2007, 137 

30 minutes prior) at 19 Atlantic NERRS sites from 2000 to 2018 (Figure 1, Appendix S1 Table 138 

S1). Salinity is a critical determinant of habitat suitability for aquatic organisms, varies across 139 

most NERRS sites from coastal to inland stations, and is controlled entirely by physical 140 

processes. DO % sat is also a critical determinant of habitat suitability. DO % sat (as opposed to 141 

concentration) accounts for the effect of water temperature on oxygen solubility and is driven by 142 

biological (i.e., primary production and respiration) and physical-chemical processes (e.g., 143 

atmospheric exchange, chemical oxidation reactions). Data were obtained from the NERRS 144 

Central Data Management Office’s Advanced Query System (http://www.nerrsdata.org) and all 145 

measurements with data quality flags were removed prior to analysis. 146 

Storm Identification – We considered tropical cyclones (TCs) that potentially impacted 147 

salinity and oxygen at each NERRS. A two-step process was used to identify TCs and sites for 148 

analysis to limit the computationally intensive analyses to cases where TC disturbances were 149 

plausible. First, TCs that passed within 250 km of a specific NERRS site were identified using 150 

storm tracks from the hurricaneexposure and hurricaneexposuredata R packages (Anderson et 151 

al. 2020a, Anderson et al. 2020b). Second, for each identified TC, potential impacts were 152 

determined by visually inspecting plots of salinity and DO % saturation from 30 days prior to 60 153 

days after the date the TC passed closest to the NERRS site. If any variable at any station within 154 

a NERRS site appeared to be affected by the TC (defined as an increase or decrease in the mean 155 

or variability relative to the 30 day pre-TC passage period), all stations and parameters for that 156 
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site and TC were classified as potentially impacted and included in further analyses. While the 157 

second step is subjective, including some TCs with minor impacts and possibly missing others 158 

with subtle impacts, we aimed to be inclusive in classifying potentially impacted sites/storms to 159 

allow the disturbance detection algorithm to quantitatively distinguish events that fell outside the 160 

range of historic variability (see below). Alternative methods for identifying TCs that potentially 161 

impacted water quality at sites were explored, such as thresholds in meteorological variables 162 

(high wind speed, heavy precipitation, drops in barometric pressure). However, the many 163 

potential mechanisms by which estuarine salinity and DO can be impacted by TCs (e.g., storm 164 

surge, wind driven waves, local precipitation, increased discharge from the watershed) as well as 165 

frequent missing meteorological data during TCs precluded the use of such a method. 166 

Ultimately, tropical cyclone-associated disturbances were not observed for over 60% of the 955 167 

station-TC-variable combinations analyzed (see Results). Non-detection was expected given the 168 

minor impacts of weaker hurricanes and the expected decline in realized TC impacts with 169 

distance from the storm track. Our method identified TC impacts on salinity and dissolved 170 

oxygen in 38% of the cases and these detections were not limited to only events that caused 171 

widespread and severe disturbances. 172 

Disturbance Detection – After potentially impacted NERRS sites for each TC were 173 

determined, individual stations within each site with sufficient data were identified for 174 

disturbance detection analysis. Station-TC-variable combinations with more than 25% total 175 

missing data or a 5 day or longer gap in measurements during the period from 14 days prior to 60 176 

days after the TC was closest were excluded from further analysis, as were combinations with 177 

fewer than 8 other years of data to use as reference data (see below) during the same date range 178 

meeting the same gap length and total missing data requirements. 179 
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We applied a recently developed disturbance detection method designed for use with high 180 

frequency data (Walter et al. 2022). The method is implemented in an R package available on 181 

GitHub (https://github.com/jonathan-walter/disturbhf). It compares the distribution of a variable 182 

for rolling windows of the time series within a test period to a reference period using the 183 

empirical cumulative distribution function (ECDF). The analysis consists of three steps. First, the 184 

difference statistic time series dw(t) is calculated for each window within the test period: 185 

𝑑𝑤(𝑡) =  ∑ |𝐸𝐶𝐷𝐹 (𝑥𝑡𝑒𝑠𝑡,𝑊(𝑡)) − 𝐸𝐶𝐷𝐹(𝑥𝑟𝑒𝑓,𝑊(𝑡)|
𝑖

∗ 𝑑𝑥

𝑁

𝑖=1

 186 

where xtest,W(t) are the variable values within a rolling window of width W centered at time t 187 

within the test period (Figure 2A), xref,W(t) are the variable values in a reference period, N is the 188 

number of intervals at which to evaluate the EDCFs (here we use 1000) over the range of 189 

observed values in the test and reference windows, and dx is the width of those intervals (equal 190 

to (xmax – xmin) / N; Figure 2B,C). xref can be defined to be either fixed (all values within the 191 

reference period are used) or adaptive, where rolling windows of a specified width within the 192 

reference period are used to account for seasonal trends. As tropical cyclones occur from 193 

summer into late fall when seasonal changes in water quality might be expected, we use an 194 

adaptive reference period so rolling windows within the test period are compared to windows 195 

centered at the same day of year in the reference years. 196 

In the second step, the dw time series is rescaled based on the variability observed in the 197 

reference period. This is done by calculating dw,ref as above, but xtest,W(t)is instead defined by 198 

rolling windows of observations within the reference period. The mean (µdw,ref) and standard 199 

deviation (σdw,ref) of dw,ref are used to rescale dw(t) as a z-score (Figure 2D): 200 

https://github.com/jonathan-walter/disturbhf
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z(t) = (dw(t) - µdw,ref) / (σdw,ref) 201 

Finally, user-specified thresholds in z(t) that define disturbance (threshdist) and recovery 202 

(threshrecov) are applied to identify the timing of disturbance events (initiation and conclusion). 203 

Short disturbances and recoveries can optionally be combined or removed using minimum 204 

disturbance and recovery lengths. We used a test window width of 3 days and a reference 205 

window width of 6 days as a balance between the ability to detect shorter disturbances vs. power 206 

to accurately characterize variable distributions based on initial exploration of cases with obvious 207 

TC impacts . We also required that disturbances and recoveries last for at least 24 hours and set 208 

threshrecov = 0.5* threshdist. Based on a disturbance threshold sensitivity analysis (Appendix S1, 209 

Figure S1) we used threshdist = 2. Choice of threshdist is subjective; our goal in using a single 210 

value was to allow for comparison across many TC-station-variable combinations that limited 211 

disturbances to those that were likely caused by storms. In studies focused on a smaller number 212 

of disturbances, site- or storm-specific values of threshdist and test and reference window widths 213 

could be used. Lower threshdist values will lead to more disturbances detected and generally 214 

longer durations (and vice versa). Narrower window widths are more likely to detect short 215 

disturbances but can lead to false detections due to low sample size. 216 

The detection algorithm was iterated through the rolling window time steps from 14 days 217 

before TC passage to 60 days after. The shorter analysis window compared to the Storm 218 

Identification window was chosen to limit these computationally intensive calculations to only 219 

time periods when a disturbance was potentially caused by TC impacts; additionally, the longer 220 

pre-TC window was not needed because a minimum 8 years of data were used for the reference 221 

window. If a disturbance was detected in the initial analysis but no recovery occurred within 60 222 

days, the post-TC window was extended for 60 additional days until a recovery was detected. 223 
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Disturbance Event Characteristics and Drivers – After setting the algorithm parameters 224 

and identifying disturbance events, we quantified disturbance characteristics and explored 225 

potential relationships with station and TC variables. Disturbance event characteristics included 226 

disturbance occurrence, timing relative to when the center of the TC was closest, length of time 227 

between disturbance initiation and recovery, and severity (peak z(t) during the disturbance). 228 

Disturbance events were limited to first occurring disturbances starting from 3 days before to 30 229 

days after each TC was closest to each NERRS site. Thirty days after TC passage was chosen to 230 

attempt to capture all disturbances initiated by a storm, accounting for potential disturbance 231 

delays such as hydrologic lags and biological feedbacks. Following disturbance and recovery 232 

detection, mean salinity and dissolved oxygen during the disturbance were calculated and 233 

compared to means during the same date range in all other years of available data. 234 

Potentially explanatory station variables included mean salinity and depth as proxies for 235 

relative location within the estuary (oceanic vs. inland), mean tidal range as a proxy for tidal 236 

influence, and standard deviation of salinity as a proxy for variability in the contribution of 237 

upstream vs. ocean water sources. Tropical cyclone traits included closest TC distance to the 238 

NERRS site, maximum wind gust speed, duration of wind gusts over 20 m s-1, total TC 239 

precipitation, and storm surge height. TC distance and winds were determined from the 240 

hurricaneexposure R package (Anderson et al. 2020a); winds were from the population-weighted 241 

center of the closest county. This source of wind data was chosen because it provides 242 

consistently-modeled wind speeds across all TCs and locations in this study; while actual 243 

measurements at each location would be preferable, not all stations had meteorological data and 244 

often data were lost during TC impacts. Total TC precipitation was obtained from the PRISM 245 

reanalysis product (PRISM Climate Group 2021); daily precipitation totals from 3 days before to 246 
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7 days after the TC passed closest to the NERRS site were summed. Storm surge height was 247 

calculated from depth observations at each station as the difference between the maximum depth 248 

observed from 3 days before to 7 days after TC passage and the maximum depth from the 249 

preceding two weeks. While imperfect due to not accounting for whether storm surge occurred at 250 

high or low tide, or for longer period tidal cycles, the storm surge metric provides an indicator of 251 

how high water got at each location within an estuary. Total precipitation was square-root 252 

transformed and peak severity was log transformed prior to regressions to increase normality. 253 

Relationships between disturbance characteristics (occurrence, timing, length, and severity) and 254 

potential driver variables (TC precipitation, station mean tidal range, etc.)  were assessed using 255 

multiple logistic and multiple linear regression; separate models were computed for each 256 

combination of disturbance characteristic (occurrence, timing, length, or severity) and ecosystem 257 

variable (salinity or dissolved oxygen) and the best model for each disturbance characteristic – 258 

ecosystem variable combination was determined using AIC and stepwise model selection 259 

(Venables and Ripley 2002). 260 

Results 261 

 Disturbance Examples - The disturbance detection method identified different types and 262 

durations of anomalous salinity and oxygen conditions in the periods near TC passage. For 263 

example, Hurricane Florence in 2018 caused significant declines in salinity at North Inlet-264 

Winyah Bay NERR’s Debidue Creek station from over 35 to 1-2 psu, and it took 39 days to 265 

return to normal values (Figure 3A, Table 1). At Jacques Cousteau NERR, there was a sharp but 266 

short (~ 2 days) increase in salinity from 15-20 to 29 psu in response to storm surge from 267 

Hurricane Sandy (2012), after which salinity was lower than before the storm but still within the 268 

range of normal variability (Figure 3B). The distribution difference statistic also increased in 269 
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response to storms that impacted variability more strongly than mean values; at Great Bay 270 

NERR’s Squamscott River station, Hurricane Hanna in 2008 significantly decreased the 271 

amplitude of dissolved oxygen oscillations but the mean remained near 85% saturation (Figure 272 

3C). The normalized distribution difference statistic (z-score) increased to ~ 1.4 over this period, 273 

but not enough to trigger a disturbance event for a threshold of 2. A more severe disturbance in 274 

dissolved oxygen occurred at Rookery Bay NERR’s Lower Henderson Creek station, where 275 

Hurricane Irma caused a crash in dissolved oxygen to near 0% saturation (Figure 3D). The z-276 

score for this disturbance peaked at nearly 8 standard deviations above the reference period 277 

mean, indicating a highly anomalous event for the location. 278 

Disturbance Event Characteristics – A wide range of disturbance timing, length, and 279 

severities were observed. Disturbances were detected for 40% of salinity cases and 37% of 280 

dissolved oxygen cases. Over 50% of detected disturbances began within 2.5 days (salinity) and 281 

5.1 days (dissolved oxygen) of when the eye of a tropical cyclone passed closest to each NERRS 282 

site (Figure 4). Initiation of disturbances peaked for salinity from 0.5 to 1.5 days after TC 283 

passage, with the cluster of most frequently observed times from 3 days before to 4.5 days after 284 

(Figure 4A). For dissolved oxygen, disturbances most frequently began from 2.5 to 3.5 days after 285 

TC passage; the cluster of most frequent times peaked much lower and was wider relative to 286 

salinity (Figure 4B).  287 

The majority of disturbances lasted less than a week (median of 6.3 days for salinity, 4.6 288 

days for DO % sat; Figure 5), but the distribution of disturbance lengths had a long tail, with 289 

disturbances > 50 day seen for both DO% sat and salinity (Figure 5A, B). Salinity disturbances 290 

between 1 and 8 days accounted for 61% of salinity disturbances, with a large drop in the 291 

number of observed disturbances longer than 14 days (Figure 5A). The cluster of most common 292 
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disturbance lengths for dissolved oxygen was shifted to slightly lower values; the most common 293 

disturbance lengths was 1 – 6 days and a drop in observed disturbance lengths occurred after 12 294 

days (Figure 5B). Of the 24 disturbances that lasted longer than 30 days, 20 were salinity 295 

disturbances (max = 98 days) and 4 were dissolved oxygen disturbances (max = 59 days; Table 296 

1). 297 

 TC disturbances tended to decreased salinity and DO % values, though the relative 298 

proportion differed by variable. Only 8% of salinity disturbances had a higher mean value during 299 

the disturbance than in reference years, while 92% had a lower mean (Figure 6). For dissolved 300 

oxygen, 37% had a higher mean value during the disturbance and 63% were lower. Only 16.5% 301 

of all the dissolved oxygen disturbances had a mean DO % value greater than 100% (Figure 6). 302 

 There was a wide range in the peak severity value of each disturbance, with peak severity 303 

z-scores between 2 and 5 being most common (80% of cases for salinity, 84% for dissolved 304 

oxygen) and several values between 5 and 15 occurring for each variable (Figure 7). There was a 305 

significant, positive relationship between log-transformed peak severity and log-transformed 306 

disturbance length for both salinity and DO % saturation (Figure 7), with very similar correlation 307 

coefficients (r = 0.51 and 0.62 for salinity and oxygen, respectively, p < 0.001 for both 308 

variables). 309 

Potential disturbance drivers – At least one potential driver was identified for all 310 

disturbance event characteristics for both dissolved oxygen and salinity based on regression 311 

analysis (Table 2; model coefficients are in Tables S2 – S9). Higher precipitation and mean 312 

salinity were associated with increased occurrence of salinity disturbances, while increases in 313 

tidal range were associated with lower salinity disturbance occurrence. For dissolved oxygen, 314 

TCs with higher precipitation and stations with greater depths had more disturbances, while 315 
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stations with larger tidal ranges had fewer disturbances. TCs with longer duration of wind gusts 316 

over 20 m/s were associated with later occurring salinity disturbances; increased precipitation led 317 

to earlier occurring salinity disturbances. For dissolved oxygen disturbance timing, stations with 318 

higher salinity had later starting disturbances while TCs with more precipitation that passed 319 

closer to the NERSS site had earlier disturbances. Longer salinity disturbances were positively 320 

correlated with tidal range, depth, wind gust duration, and maximum wind speed, and negatively 321 

correlated with mean station salinity and storm surge height. Longer dissolved oxygen 322 

disturbances were positively correlated with TC precipitation and station salinity variability, and 323 

negatively correlated with station mean salinity and TC wind gust duration. Several TC and 324 

station variables were positively and negatively related to peak severity for salinity disturbance 325 

(Table 2), while the only driver variable that had a significant relationship with peak disturbance 326 

severity for DO % sat was maximum storm surge height. 327 

The mean magnitudes of change associated with regression model variables can be 328 

readily estimated for ranges typically associated with TCs. For example, the simplest model is 329 

for the severity of DO % sat (Table S9) which changes as a z-score from 4.2 to 6.8 standard 330 

deviations above the mean for storm surges of 1 and 4 meters, respectively. As a second 331 

example, TC precipitation often falls in the range of 100 to 300 mm (Table 1) but was as high as 332 

680 mm in our data set. Assuming an estuary with a mean salinity of 20 psu and a salinity 333 

standard deviation of 2 psu, the predicted mean length of a DO disturbance would be 1.6 days for 334 

a storm precipitation of 100 mm, 2 days for a precipitation of 300 mm, and 2.4 days for a 335 

precipitation of 700 mm based on the model (Table S7).     336 

 337 

Discussion 338 
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We identified and characterized tropical cyclone-associated disturbances across 19 339 

estuaries and 59 different TCs in the eastern United States utilizing high-frequency, long-term 340 

data. The disturbance detection method distinguished diverse disturbance types for two important 341 

ecosystem state variables (Figure 3). In relation to our first question about disturbance 342 

characteristics, there was a wide range of disturbance timing, length, and severity (Figures 4, 5, 343 

7). For our second question, both TC (especially precipitation) and site properties were 344 

associated with changes in disturbance characteristics (Table 2). 345 

Across all TC-estuary combinations analyzed, dissolved oxygen saturation and salinity 346 

had a similar number of disturbances detected, though there were slightly more disturbances 347 

detected for salinity (40% vs. 37%). The lower number of disturbances detected prior to TCs for 348 

salinity relative to DO % saturation (Figure S1) suggests that disturbances in this variable are 349 

more closely tied to TC events, while additional mechanisms beyond TCs are also important 350 

generators of anomalous DO % saturation values. The roughly 60% of cases without detected 351 

disturbances highlight the importance of considering instances when TCs both do and do not 352 

cause impacts to provide a complete understanding. The common case study approach may 353 

present a bias towards the perception that TCs usually have large impacts, when in fact often 354 

they do not, at least for the variables we consider in this study. 355 

Both increases and decreases in salinity due to TCs have been widely documented, but  356 

our findings indicate that freshwater inputs from precipitation and increased river/stream 357 

discharge is the dominant mechanism of salinity disturbance as opposed to storm surge (91% 358 

decreases vs. 9% increases; Figure 6). Biological processes that alter oxygen concentrations (i.e., 359 

respiration and primary production) are highly dynamic in time and related to several 360 

environmental drivers (e.g., nutrient loading, hydrology, temperature, solar radiation, and 361 
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salinity; Caffrey et al. 2014, Murrell et al. 2018, Tassone and Bukaveckas 2019), and are a likely 362 

explanation for the observation of oxygen anomalies not associated with TCs (Figure S1;). 363 

Biological mechanisms could also explain the observed lag in dissolved oxygen disturbance 364 

initiation relative to salinity. Dissolved oxygen disturbances were generally shorter in duration 365 

than salinity disturbances. While salinity and oxygen share many of the physical processes that 366 

promote recovery (e.g., stream and river discharge, tidal exchange), equilibration with 367 

atmospheric oxygen concentrations, especially under vigorous mixing in estuaries, could explain 368 

the faster recovery of DO % sat. relative to salinity (Kremer et al. 2003). While we were unable 369 

to assess water column mixing in this study because almost all NERRS stations have only a 370 

single, near-bottom sensor, future work looking at surface vs. bottom disturbances could provide 371 

important insights, especially for locations where increased freshwater inputs following TCs can 372 

lead to vertical salinity gradients and stratification (Mallin et al. 2002, Wetz and Yoskowitz 373 

2013). 374 

While short disturbances (< 7 days) were most frequent for both variables, longer 375 

disturbances were also common. Forty-seven percent of salinity disturbances lasted longer than 7 376 

days, as did 28% of dissolved oxygen disturbances. For many organisms that inhabit estuaries, 377 

these disturbances likely represent prolonged periods of stress and require substantial movement 378 

for mobile species. Low oxygen can cause fish and shellfish die-offs as documented for some 379 

hurricanes (Paerl et al. 1998, Paerl et al. 2001, Parker et al. 2013). While many estuarine species 380 

tolerate relatively large salinity ranges, extreme salinity fluctuations associated with TC 381 

disturbances may exceed tolerances (Du et al. 2021). Though rare, we also found several cases 382 

where disturbances persisted for more than 30 days (Table 1). The extremely slow recovery rates 383 

for these events could arise from different mechanisms. Long duration, low salinity disturbances 384 
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can result from high freshwater discharge (Paerl et al. 2001, Du et al. 2019). For dissolved 385 

oxygen disturbances, extreme loading of organic matter from the watershed into estuaries can 386 

stimulate high respiration that draws down oxygen concentrations (Paerl et al. 2018). 387 

Alternatively, TCs can increase nutrient loading from internal or external sources, leading to 388 

algal blooms that increase oxygen concentrations (Shen et al. 2008). Though nutrient 389 

concentrations often decline quickly following hurricanes, recycling can maintain primary 390 

producer biomass (Peierls et al. 2003). The number of higher and lower dissolved oxygen 391 

concentrations during disturbances (39% and 61%, respectively; Figure 5) suggests that both 392 

organic matter driven respiration inputs and nutrient driven production can be important drivers 393 

of oxygen disturbances, but that oxygen consumption is usually greater than production during 394 

TC disturbances. Increased phytoplankton biomass, which has often been observed following 395 

TCs (Wetz and Paerl 2008, Herbeck et al. 2011, Phlips et al. 2020) would be expected to cause 396 

DO saturation values over 100% during severe blooms , but such cases were relatively rare in 397 

our data set. TCs can also cause declines in phytoplankton due to light-limitation from high 398 

concentrations of suspended matter and organic carbon as well as losses from high flushing rates 399 

(Paerl et al. 1998, Malin et al. 2002, Paerl et al. 2018). 400 

Our findings also offer insights into the overall time scales of TC disturbances at 401 

estuaries. NERR sites experienced from 1 to 18 TCs over the period of record considered in this 402 

study (Table S1). As an intermediate example, Apalachicola Bay had 9 TCs from 2000 to 2018. 403 

Assuming median disturbance lengths for each storm, this amounts to 57 and 41 days 404 

respectively of extreme conditions (greater than two standard deviations departure from means) 405 

for salinity and oxygen, respectively. These disturbance days are less than 1% of the 19-year 406 

record. Even if some rare, long-duration disturbances also occurred, this simple calculation 407 
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indicates estuaries are only impacted by TCs a small amount of the time in a cumulative sense. 408 

However, disturbances in salinity and dissolved oxygen may influence other processes (e.g., 409 

reproduction of longer-lived organisms, slow biogeochemical processes) that have lasting 410 

impacts. Thus, continued study of storm impacts is warranted, especially interactions that might 411 

ramify from short-term changes in easily measured physical-chemical variables considered in 412 

this study, such as salinity, dissolved oxygen, and turbidity impacts on benthic organisms, SAV, 413 

and fish populations (Paerl et al. 1998, Mallin et al. 1999, Mallin et al. 2002, Carlson et al. 414 

2010). The topic gains significance if TCs increase in severity and/or geographic range with 415 

climate change as projected (Knutson et al. 2010, Sobel et al. 2016, Balaguru et al. 2022). 416 

For our third question on the relationship between resilience and resistance, we found a 417 

positive relationship between disturbance length and disturbance severity. These two disturbance 418 

characteristics quantify metrics of ecosystem stability and recovery; resistance and resilience 419 

have taken several definitions and received considerable attention in ecology and other fields. 420 

Using the definitions of Pimm (1984), disturbance length is inversely related to resilience (longer 421 

disturbance lengths correspond to lower resilience) and quantifies the ability and speed of a 422 

system to recover after a perturbation, while disturbance severity is inversely related to 423 

ecosystem resistance (higher severity corresponding to low resistance) and measures a system's 424 

ability to oppose change. In an analysis of coastal ecosystem response to Hurricane Harvey in 425 

2017 using similar definitions, Patrick et al. (2020) found a negative relationship between 426 

resilience and resistance for several types of estuary variables (hydrology, hydrography, 427 

biogeochemistry, biota) in the response of estuaries in Texas to Hurricane Harvey. Our 428 

disturbance length metric is similar to the return times Patrick et al. (2020) observed, though the 429 

resistance measures are not directly comparable (log response ratio vs. peak z-score). Another 430 
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recent synthesis of response to TCs for thousands of time series from 26 TCs in the Northern 431 

Hemisphere (Patrick et al. 2022) across different ecosystem and variable types also found a 432 

negative relationship between resistance and resilience using definitions that consider 433 

disturbance driver and system response magnitudes. Applying similar definitions to our results 434 

(resistance = -1* ln(peak z-score / TC precipitation), resilience = ln(peak z-score / disturbance 435 

duration)), we find weak negative correlations between resilience and resistance for salinity and 436 

dissolved oxygen salinity (r = -0.14 and -0.23 for salinity and oxygen, respectively). Taken 437 

together, our findings and other recent studies suggest that the relationship between resistance 438 

and resilience is likely dependent on the variable considered, the geographic scale (e.g., 439 

within/among estuaries), and ecosystem type; as well as the specific quantitative definition used 440 

for resistance and resilience. 441 

By analyzing the impact of many tropical cyclones on several estuaries, we were able to 442 

examine the role that TC and site properties play in determining disturbance characteristics. Both 443 

TC and site properties were important. Total precipitation was the most common TC variable 444 

related to disturbance responses, with higher precipitation associated with more likely, earlier 445 

starting, longer, and more severe disturbances. This finding is important given the projected 446 

increase in tropical cyclone severity and precipitation amounts due to climate change (Patricola 447 

and Wehner 2018). Mean salinity was the most common station property associated with 448 

disturbance responses. Locations with higher salinity had more severe and earlier salinity 449 

disturbances, as well as later dissolved oxygen disturbances. TCs with higher maximum and 450 

longer duration wind speeds had earlier and longer lasting disturbances. These general patterns 451 

are a first step to developing a predictive understanding of disturbance characteristics and 452 

demonstrate the disturbance detection algorithm’s ability to quantitatively characterize 453 
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disturbances across different locations, storms, and variables. However, additional storm and site 454 

(see below) and interactions between them are undoubtedly needed to explain the highly variable 455 

disturbance characteristics observed in this study. Identifying drivers of disturbances is important 456 

to identify current estuarine locations that are highly susceptible to disturbance and how future 457 

climate change may impact responses. Insights may offer ways to increase ecosystem resilience 458 

through management of infrastructure (e.g., water retention/release), habitat restoration to 459 

promote refuges and portfolio effects (Schindler et al. 2015), and watershed land-management to 460 

limit run-off during extreme storms. 461 

While the disturbance detection method identified and characterized disturbances, it also 462 

has limitations. The method quantifies any difference between the distribution of values in the 463 

test and reference periods but does not distinguish between different types/directions of 464 

disturbances (e.g., if a change is to higher or lower values, or increased/decreased variability). 465 

There also is not a direct correspondence between the disturbance statistics (dw or z-score) and 466 

physically meaningful ecosystem state values or thresholds (e.g., oxygen or salinity 467 

concentrations at which organisms are harmed). These issues can be addressed by first using the 468 

method to demarcate disturbances, then to compare differences in the mean, variance, etc. of the 469 

test and reference years within those periods (Figure 6). Finally, the method requires both high 470 

frequency and long-term measurements to identify disturbances, which limits the variables and 471 

locations to which it can be applied. However, these types of data are increasingly available from 472 

sensors that can measure important ecosystem state variables (Porter et al. 2012). The data from 473 

NOAA’s National Estuarine Research Reserve System illustrates the immense value of long-474 

term programs measuring the same variables at different sites, especially for events that are 475 

unpredictable but have large consequences like tropical cyclones. 476 
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Despite these limitations, our findings represent an advance in the study of patterns and 477 

drivers of disturbance at broad spatial and temporal scales in estuaries. By detecting disturbances 478 

that cause diverse deviations from baseline variability and quantifying several important 479 

disturbance characteristics, our method overcomes many of the constraints that have previously 480 

limited studies to one or a few TCs and/or locations (Pruitt et al. 2019). The approach fits 481 

naturally within proposed frameworks for understanding disturbance in ecological and socio-482 

economic systems (Gaiser et al. 2020). For TCs specifically, Hogan et al. (2020) recently 483 

provided a framework for evaluating ecosystem component response to disturbances including a 484 

detailed conceptual diagram (see their Figure 2). This study includes many of the framework 485 

components and applies them to provide quantitative generalization across many locations and 486 

storms: disturbances to salinity and dissolved oxygen in estuaries generally start soon after 487 

tropical cyclones pass and typically recover within days, though weeks and months long 488 

disturbances do occur. Most (~90%) salinity disturbances cause declines in mean salinity driven 489 

by precipitation and discharge as opposed to increases from storm surge. In contrast, dissolved 490 

oxygen disturbances were more evenly split between increases and decreases. Properties of both 491 

tropical cyclones and the locations they impact are related to disturbance response. Future work 492 

could extend our findings to additional drivers and mechanisms including the role of upstream 493 

land use, antecedent conditions, estuary or habitat type, and hydrodynamics; the effect of 494 

disturbance impacts on specific biota; and other variables besides salinity and dissolved oxygen. 495 

For these and other ecosystem variables where measurements can be collected by sensors and 496 

analyzed in near-real time, knowledge that a disturbance is starting also offers the exciting 497 

possibility of quickly directing additional data collection and management actions to minimize 498 

impacts. 499 
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Table 1. Tropical cyclone and station characteristics (calculated from all available years) of disturbance events lasting longer than 30 

days. 

NERRS Reserve Station Storm Var. 
Duration 

(days) 

Precip 

(mm) 

Depth 

(m) 

Mean 

Salinity 

(psu) 

Ashepoo Combahee Edisto Basin Mosquito Creek Andrea-2013 Sal 98.4 72.4 4 18.2 

Chesapeake Bay Virginia Taskinas Creek Michael-2018 Sal 71.1 91.5 1.6 10.6 

Guana Tolomato Mantanzas San Sebastian Irma-2017 Sal 58.9 266.8 5.1 33.8 

Weeks Bay Middle Bay Ida-2009 DO 58.6 89.2 1.4 9.5 

NorthInlet-Winyah Bay Thousand Acre Florence-2018 Sal 58.4 316.6 2.5 8 

Weeks Bay Weeks Bay Lee-2011 DO 51.5 230.6 1.2 10 

NorthInlet-Winyah Bay Clambank Florence-2018 Sal 50 316.6 2 32.7 

Ashepoo Combahee Edisto Basin Fishing Creek Andrea-2013 Sal 46.9 72.4 2.7 9.4 

Delaware Blackbird Landing Irene-2011 Sal 43.3 212.4 1.7 1.9 

Weeks Bay Magnolia River Bill-2003 Sal 42.6 262.2 1.8 9.2 

Weeks Bay Middle Bay Bill-2003 Sal 40.6 262.2 1.4 9.5 

Great Bay Lamprey River Hanna-2008 Sal 39.4 146.8 2.2 12.1 

Rookery Bay 
Middle Blackwater 

River 
Irma-2017 DO 38.8 255.5 1 30.6 

NorthInlet-Winyah Bay Debidue Creek Florence-2018 Sal 38.7 316.6 2.5 32.1 

North Carolina Zeke's Basin Florence-2018 Sal 37.7 680.2 0.7 22 

Great Bay Lamprey River Charley-2004 DO 35.3 131 2.2 12.1 

Guana Tolomato Mantanzas Pine Island Irma-2017 Sal 33.5 266.8 4.2 28.5 
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Sapelo Island Cabretta Creek Tammy-2005 Sal 32.5 307.2 3.1 31.8 

Chesapeake Bay Virginia Claybank Isabel-2003 Sal 31.8 117.3 1.2 16.1 

Chesapeake Bay Virginia Goodwin Islands Irene-2011 Sal 31.2 258.6 1 19.6 

Delaware Scotton Landing Irene-2011 Sal 30.7 212.4 1.7 10.8 

Jacques Cousteau Chestnut Neck Irene-2011 Sal 30.4 157.7 2.4 14.9 

Chesapeake Bay Virginia Taskinas Creek Isabel-2003 Sal 30.3 117.3 1.6 10.6 

Apalachicola Bay Dry Bar Dennis-2005 Sal 30.1 5.7 1.8 21.8 

 



Table 2. Tropical cyclone (TC) and station variables related disturbance characteristics: 

occurrence/non-occurrence, timing (days after TC passage), length (days), and peak severity (z-

score). TC characteristics are highlighted in blue; site/station characteristics are highlighted in 

green. Drivers are separated into positive and negative significant relationships with each 

disturbance event characteristic. * denotes 0.05 ≤ p ≤ 0.1; other variable p-values are < 0.05. See 

tables S2 – S9 in the Supplemental Information for coefficient values and standard errors. 

Disturbance 

Characteristic 
Salinity DO % saturation 

Occurrence 

Positive: precipitation, 

mean(salinity) 

Negative: tidal range 

Positive: precipitation, depth, TC 

distance* 

Negative: tidal range 

Timing 

relative to TC 

Positive: wind gust duration* 

Negative: precipitation 

Positive: mean(salinity) 

Negative: precipitation,  

TC distance 

Length 

Positive: tidal range,  depth  wind 

gust duration, wind gust max 

Negative: mean(salinity), storm 

surge height 

Positive: precipitation, sd(salinity)* 

Negative:  

Peak Severity 

Positive: mean(salinity), 

precipitation 

Negative: sd(salinity) 

Positive: storm surge height 

Negative: 
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Figure 1. Location and site codes of NERRS sites analyzed for tropical cyclone impacts. Point 

size indicates the number of tropical cyclones analyzed. 
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Figure 2. Illustration of the disturbance detection algorithm. A) Observations of salinity before 

and after Hurricane Hanna impacted the Wells Reserve (Maine, USA) in 2008. Shaded periods 

are example three-day test periods before (blue) and after (red) tropical cyclone passage. B) 

Empirical cumulative distributions (ECDF) for the before-impact example test period (blue) and 

corresponding reference periods in other years (black). The area of the shaded region 

corresponds to dw, the distribution difference statistic. C) ECDFs for the after-impact example 

test period (red) and corresponding reference periods in other years (black). D) Time series of the 

normalized (z-score) distribution difference test statistic.
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Figure 3. Example time series showing hurricane impacts and performance of the normalized 

distribution difference statistic. Black lines are observations of salinity (A, B) and dissolved 

oxygen percent saturation (C, D). Blue lines are the normalized distribution difference statistic 

for thee-day wide rolling windows. Red shaded areas represent disturbances identified with z-

score a disturbance threshold of 2 and recovery threshold of 1. Note different x and y axis scales. 
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Figure 4. Histograms (A: dissolved oxygen, B: salinity) and empirical cumulative distribution 

curves (C) showing the timing of disturbance start relative to when the tropical cyclone was 

closest to each NERRS site. 
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Figure 5. Histograms (A: dissolved oxygen, B: salinity) and empirical cumulative distribution 

curves (C) showing the length of time between disturbance initiation and recovery. 
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Figure 6. Mean salinity (A) and dissolved oxygen (B) during TC-associated disturbances vs. 

during the same periods in all other years. The black line is the 1:1 line, indicating no difference 

between the means during the disturbance and reference periods. 
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Figure 7. Relationship between disturbance length and peak disturbance severity for dissolved 

oxygen (A) and salinity (B). 

 


