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Abstract. We study the problem of maximizing payoff generated over a period of time in
a general class of closed queueing networks with a finite, fixed number of supply units that
circulate in the system. Demand arrives stochastically, and serving a demand unit (cus-
tomer) causes a supply unit to relocate from the “origin” to the “destination” of the cus-
tomer. The key challenge is to manage the distribution of supply in the network. We
consider general controls including customer entry control, pricing, and assignment. Moti-
vating applications include shared transportation platforms and scrip systems. Inspired by
the mirror descent algorithm for optimization and the backpressure policy for network
control, we introduce a rich family of mirror backpressure (MBP) control policies. The MBP
policies are simple and practical and crucially do not need any statistical knowledge of the
demand (customer) arrival rates (these rates are permitted to vary in time). Under mild
conditions, we propose MBP policies that are provably near optimal. Specifically, our poli-
cies lose at most O(X+1+ /1K) payoff per customer relative to the optimal policy that
knows the demand arrival rates, where K is the number of supply units, T is the total num-
ber of customers over the time horizon, and 7 is the demand process’ average rate of
change per customer arrival. An adaptation of MBP is found to perform well in numerical
experiments based on data from NYC Cab.
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1. Introduction

The control of complex systems with circulating re-
sources such as shared transportation platforms and scrip
systems has been heavily studied in recent years. The
hallmark of such systems is that serving a demand unit
causes a (reusable) supply unit to be relocated. Closed
queueing networks (i.e., networks where a fixed number
of supply units circulate in the system) provide a power-
ful abstraction for these applications (Braverman et al.
2019, Banerjee et al. 2021). The key challenge is managing
the distribution of supply in the network. A widely adopted
approach for this problem is to solve the deterministic
optimization problem that arises in the continuum limit
(often called the static planning problem) and show that the
resulting control policy is near optimal in a certain
asymptotic regime. However, this approach only works
under the restrictive assumption that the system parameters
(demand arrival rates) are precisely known, and most existing
works assume time invariant parameters.

In this paper, we relax both assumptions. We propose
a family of simple control policies that are blind in that
they use no prior knowledge of demand arrival rates
and prove strong transient and steady-state perfor-
mance guarantees for these policies for time-varying
demand arrival rates. Strong performance in simula-
tions backs up our theoretical findings.

1.1. Informal Description of Our Model

Our main setting is one where the control levers include
entry control and flexible assignment of resources, with
time-varying demand arrival rates. Later we allow dy-
namic pricing control and show that our machinery and
guarantees extend seamlessly. For simplicity, we intro-
duce here the special case of our main model with entry
control only. We consider a closed queueing network
that consists of a set of nodes (locations) V, and a fixed
number K of supply units that circulate in the system.
Demand units with different origin-destination pairs (j, k)
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arrive stochastically over slotted time with some time-
varying arrival rates which are unknown to the control-
ler. The controller dynamically decides whether to admit
each incoming demand unit. Each control decision to
admit a demand unit has two effects: It generates a cer-
tain payoff w; depending on the origin-destination pair
of the demand unit, and it causes a supply unit to relocate
from the origin j to the destination k instantaneously.
The goal of the system is to maximize the collected pay-
off over a period of time.

Notably, the greedy policy, which admits a demand
unit if a supply unit is available in its pick-up neigh-
borhood, is generically far from optimal: Even as
K — oo, the optimality gap per demand unit of this
policy is €)(1) even in steady state; see Online Appen-
dix H.1. The intuition is that some nodes have no
available supply an ()(1) fraction of the time in steady
state under the greedy policy. Furthermore, if demand
arrival rates are imperfectly known, any state inde-
pendent policy (such as that of Banerjee et al. 2021)
generically suffers a steady-state optimality gap per
demand unit of Q)(1) (Banerjee et al. 2018, proposition
4;2021).

1.2. Our Control Policy

The system state at time ¢ is the vector of queue lengths
qlt] = [ql[t],...,q|v|[t]]T, which sums up to the total
supply 17q[t] = K; we work with a normalized queue
length vector q satisfying 17q[t] =1. Our proposed
mirror backpressure (MBP) policy makes entry control
decisions according to the following simple rule: Admit
a demand unit with origin node j and destination node

k if and only if the score wy +f(1ﬁj[t]) —f(q,[t]) >0 and
q,[t]>0. Here, f(-) £ —+m-g;” is a suitably chosen
congestion function, a monotone increasing function that
causes the policy to be generous in allowing use of sup-
ply from long queues while protecting supply in near-
empty queues. See Figures 1 and 2 for illustrations. The
MBP policy is agnostic to demand arrival rates.

Figure 1. Our MBP Policy Admits a Demand with Origin j
and Destination k if and Only if the Previously Ilustrated
Score Is Nonnonnegative and j Has at Least One Supply Unit

wir + f(@) — f(@)
payoff of
accepting

congestion cost  congestion cost
at origin j at destination k
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~- 1000
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Figure 2. Example of a Congestion Function (a Mapping
from Queue Lengths to Congestion Costs) That Aggressively
Protects Supply Units in Near-Empty Queues
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1.3. Performance Guarantee

We show that, under a mild connectivity assump-
tion on the network, the MBP policy is near optimal.
Specifically, we show that our policies lose payoff (per

demand unit) at most O((K/ T)+(1/K) + \/rTI() rela-

tive to the optimal policy that knows the demand
arrival rates, where K is the number of supply units, T
is the number of demand units that arrive during the
period of interest, and 1 is the demand process” average
rate of change per customer arrival. Our result is nona-
symptotic, that is, our performance guarantee holds for
finite K and T and thus covers both transient and steady
state performance. In particular, for stationary demand
arrivals, taking T — oo, we obtain a steady-state opti-
mality gap of O(1/K). Our bound further provides a
guarantee on transient performance: The horizon-
dependent term K/ T in our bound on optimality gap is
small if the total number of arrivals T over the horizon
is large compared with the number of supply units K.
Our policies retain their good performance if the
demand arrival rate’s average rate of change over K
periods, that is, the term 1K, is small. We find that our
bound is invariant to system size in a relevant scaling
regime (the large market regime) where the number of
supply units K increases proportionally to the demand
arrival rates (see the discussion after Theorem 1). In this
regime, Treal & T/K is an invariant as K — oo, which
can be interpreted as the time horizon measured in
physical time. Let £ 7K be the average rate of change
of demand with respect to physical time. We can
rewrite our bound on the optimality gap as
1 1 K—oo 1
O<W+E+ ﬁ) =3 O<m+ \/€>

1.4. Motivation for Our Control Policy

Our control approach is inspired by the celebrated
backpressure methodology of Tassiulas and Ephre-
mides (1992) for the control of queueing networks.
Backpressure simply uses queue lengths as congestion
costs (the shadow prices to the flow constraints; the
flow constraint for each queue is that the inflow must
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be equal to the outflow in the long run) and chooses a
control decision at each time that maximizes the myo-
pic payoff inclusive of congestion costs. Concretely, in
the special case where entry control is the only lever-
age, backpressure admits a demand if and only if the
payoff of serving the demand plus the origin queue
length exceeds the destination queue length. This sim-
ple approach has been used very effectively in a range
of settings arising in cloud computing, networking,
and so on (Georgiadis et al. 2006). Backpressure is prov-
ably near optimal (in the large market limit) in many
settings where payoffs accrue from serving jobs be-
cause it has the property of executing dual stochastic
gradient descent (SGD) on the controller’s determinis-
tic (continuum limit) optimization problem. However,
this property breaks down when the so-called “no-
underflow constraint” binds, making it challenging to
use backpressure in our setting.

The no-underflow constraint is that each decision to
admit a demand unit needs to be backed by an avail-
able supply unit at the pick-up node of the demand.
This constraint binds in our setting under backpressure
because we model nonzero payoffs from serving a cus-
tomer, as a result of which the congestion-adjusted
myopic payoff can be positive even if the origin queue
is empty (see Online Appendix H.2 for a discussion).
Moreover, several popular workarounds to this issue
fail in our setting (see Section 1.7).

Our Mirror Backpressure (MBP) policy generalizes the
celebrated backpressure (BP) policy. Whereas BP uses the
queue lengths as congestion costs, MBP employs a flexi-
bly chosen congestion function f(-) to translate from queue
lengths to congestion costs. The mirror map can be flexi-
bly chosen to fit the problem geometry arising from the
no-underflow constraints. Roughly, we find better per-
formance with congestion functions which are steep for
small queue lengths, the intuition being that this makes
MBP more aggressive in protecting the shortest queues
(and hence preventing underflow). In case of finite buf-
fers, we use congestion functions which moreover in-
crease steeply as the queue length approaches buffer
capacity, to prevent buffer overflow (Section 5.1).

1.5. Analytical Approach

We show that MBP has the property that it executes
dual stochastic mirror descent (Nemirovsky and Yudin
1983, Beck and Teboulle 2003) on the platform’s contin-
uum limit optimization problem, which generalizes the
SGD property of backpressure. We develop a general
machinery to prove performance guarantees for MBP:
We use the antiderivative of the chosen congestion func-
tion as the Lyapunov function in our analysis and adapt
the Lyapunov drift method from the network control lit-
erature to obtain sharp bounds on the suboptimality
caused by the no-underflow constraint. Our analysis
exploits the structure of the platform’s continuum limit

optimization problem (see Section 4). Our work fits into
the broad literature on the control of stochastic proces-
sing networks (Harrison 2003).

1.6. Applications

Our models include a number of ingredients that are
central in many applications. We illustrate its versatil-
ity by discussing the application to shared transporta-
tion systems (Section 6) and the application to scrip
systems (Online Appendix G). These applications and
the relevant settings in the paper are summarized in
Table 1.

Shared transportation systems include ride-hailing
and bike sharing systems. Here the nodes in our model
correspond to geographical locations, while supply
units and demand units correspond to vehicles and
customers, respectively. Bike sharing systems dynami-
cally incentivize certain trips using point systems to
minimize out-of-bike and out-of-dock events caused by
demand imbalance. Our pricing setting is relevant for
the design of a dynamic incentive program for bike
sharing; in particular, it allows for a limited number of
docks. Ride-hailing platforms make dynamic decisions
to optimize their objectives (e.g., revenue, welfare). For
ride-hailing, our joint pricing-assignment (JPA) model
is relevant in regions such as North America, and our
entry-assignment control model is relevant in regions
where dynamic pricing is undesirable like in China. We
perform simulations of ride-hailing and find that our
MBP policy, suitably adapted to account for positive
travel times, performs well (Section 6.1).

A scrip system is a nonmonetary trade economy
where agents use scrips (tokens, coupons, artificial
currency) to exchange services (because monetary
transfer is undesirable or impractical), for example,
for babysitting or kidney exchange. A key challenge
in these markets is the design of the admission-and-
provider-selection rule: If an agent is running low on
scrip balance, should the agent be allowed to request
services? If yes, and if there are several possible provi-
ders for a trade, who should be selected as the service
provider? In Online Appendix G, we show that a natu-
ral model of a scrip system is a special case of our
entry-assignment control setting, yielding a near opti-
mal admission-and-provider-selection control rule.

1.7. Literature Review

1.7.1. MaxWeight/Backpressure Policy. Backpressure
(also known as MaxWeight; Tassiulas and Ephremides
1992, Georgiadis et al. 2006) are well-studied dynamic
control policies in constrained queueing networks for
workload minimization (Stolyar 2004, Dai and Lin 2008),
queue length minimization (Eryilmaz and Srikant 2012),
utility maximization (Eryilmaz and Srikant 2007), and
so on. Attractive features of MaxWeight/backpressure
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Table 1. Summary of Applications of Our Model

Application

Control lever

Corresponding setting in this paper

Ride-hailing in the United States and Europe  Pricing and dispatch
Admission and dispatch
Reward points
Admission and provider selection  Joint entry-assignment

Ride-hailing in China
Bike sharing
Scrip systems

Joint pricing-assignment
Joint entry-assignment
Pricing (finite buffer queues)

policies include their simplicity and provably good per-
formance and that arrival/service rate information is
not required beforehand.

The main challenge in using backpressure in set-
tings with payoffs is the no-underflow constraints, as
described earlier. Several works make strong assump-
tions to ensure the constraint does not bind: For exam-
ple, Dai and Lin (2005) assume that the network satisfies
a so-called extreme allocation available (EAA) condition;
Stolyar (2005) assumes that payoffs are generated only
by the source nodes, which have infinite queue lengths.
Huang and Neely (2011) consider networks where the
no-underflow constraint does bind, but the payoffs are
generated only by the output nodes. In our setting, pay-
offs are essential (there is value generated by serving a
customer) and can be generated by any node. Therefore,
the no-underflow constraint binds, and none of the
aforementioned assumptions hold for our network.
Another workaround is a machinery that introduces vir-
tual queues (Jiang and Walrand 2009). The idea is to intro-
duce a “fake” supply unit into the network each time the
constraint binds to preserve the SGD property of back-
pressure. However, in open queueing networks, these
fake supply units eventually leave the system and there-
fore have a small effect (under appropriate assumptions).
In our closed network setting, these fake supply units,
once created, never leave and therefore would build up
in the system, irreparably damaging performance.

Most of this literature considers the open queueing
networks setting, where packets/jobs enter and leave,
and there is much less work on closed networks. An
exception is a recent paper on assignment control of
closed networks by Banerjee et al. (2018), which shows
the large deviations optimality of “scaled” MaxWeight
policies.

Similar to MBP, several works use nonlinear functions
of queue lengths for decision making to improve on the
performance of Backpressure in a variety of contexts.
Walton (2015) proposes concave switching policies that
generalize backpressure to address a weakness of back-
pressure in fixed route multihop networks, namely, that
the number of queues it needs to maintain grows rapidly
in network size. Neely (2006) uses exponential functions
of queue length as congestion functions to achieve the
optimal delay-utility tradeoff. Gupta and Radovanovi¢
(2020) use nonlinear functions of the state variables in
the context of online stochastic bin-packing to obtain

distribution-oblivious algorithms with sublinear addi-
tive suboptimality. Gupta and Radovanovi¢ (2020) also
identify the connection to mirror descent as we do for
MBP.

1.7.2. Mirror Descent. Mirror descent (MD) is a gener-
alization of the gradient descent algorithm for optimiza-
tion (Nemirovsky and Yudin 1983, Beck and Teboulle
2003). Recently, there have been several works that use
online MD to solve other online decision-making pro-
blems, including the k-server problem (Bubeck et al.
2018) and various online packing and covering problems
(Agrawal and Devanur 2014, Gupta and Molinaro 2016).

1.7.3. Applications: Shared Transportation, Scrip Sys-
tems. Most of the ride-hailing literature studied controls
that require the exact knowledge of system parameters:
Ozkan and Ward (2020) studied payoff maximizing
assignment control in an open queueing network model,
Braverman et al. (2019) derived the optimal state inde-
pendent routing policy that sends empty vehicles to
under-supplied locations, and Banerjee et al. (2021)
adopted the Gordon-Newell closed queueing network
model and considered various controls that maximize
throughput, welfare, or revenue. Balseiro et al. (2021)
considered a dynamic programming-based approach
for dynamic pricing for a specific network of star struc-
ture. Ma et al. (2019) studied the somewhat different
issue of ensuring that drivers have the incentive to
accept dispatches by setting prices that are sufficiently
smooth in space and time in a model with no demand
stochasticity. Banerjee et al. (2018), who assume a near
balance condition' on demands and equal pickup costs,
may be the only paper in this space that does not
require knowledge of system parameters. Compared
with Banerjee et al. (2021), who obtain a steady-state
optimality gap of O() (in the absence of travel times)
assuming perfect knowledge of demand arrival rates that
are assumed to be stationary, our control policy achieves
the same steady-state optimality gap with no knowledge
of demand arrival rates and further achieves a transient
optimality gap under time-varying demand arrival rates
of O((K/T)+ (1/K) + /1K) for a finite number of arri-
vals T and average changes of up to 1 per arrival in
demand arrival rates. Some of these papers are able to
formally handle travel delays: Braverman et al. (2019)
and Banerjee et al. (2018, 2021) prove theoretical results



Downloaded from informs.org by [128.59.177.150] on 31 October 2023, at 09:09 . For personal use only, all rights reserved.

Kanoria and Qian: Blind Dynamic Resource Allocation via Mirror Backpressure

Management Science, Articles in Advance, pp. 1-18, © 2023 INFORMS

for the setting with independent and identically distrib-
uted (ii.d.) geometric/exponential travel delays; Ma
et al. (2019) consider deterministic travel delays. Con-
versely, Balseiro et al. (2021) ignores travel delays in
their theory and later heuristically adapt their policy to
accommodate travel delay (the present paper follows a
similar approach). Ozkan and Ward (2020) is the only
paper among these that (like the present paper) allows
time-varying demand.

Our model can be applied to the design of dynamic
incentive programs for bike sharing systems (Chung
et al. 2018) and service provider rules for scrip systems
(Johnson et al. 2014, Agarwal et al. 2019). For example,
the “minimum scrip selection rule” proposed in John-
son et al. (2014) is a special case of our policy, and our
methodology leads to control rules in much more gen-
eral settings as described in Online Appendix G.

1.7.4. Other Related Work. A related stream of re-
search studies online stochastic bipartite matching (Cal-
dentey et al. 2009, Adan and Weiss 2012, Busi¢ and
Meyn 2015, Mairesse and Moyal 2016); the main differ-
ence between their setting and ours is that we study a
closed system where supply units never enter or leave
the system. Network revenue management is a classical
set of (open network) dynamic resource allocation pro-
blems (Gallego and Van Ryzin 1994, Talluri and Van
Ryzin 2006, Bumpensanti and Wang 2020). Jordan and
Graves (1995), Désir et al. (2016), Shi et al. (2019), and
others study how process flexibility can facilitate im-
proved performance, analogous to our use of assign-
ment control to maximize payoff (when all pickup costs
are equal), but the focus there is more on network design
than on control policies. Again, this is an open network
setting in that each supply unit can be used only once.

1.8. Organization of the Paper

The remainder of our paper is organized as follows.
Section 2 presents our main model of joint entry-
assignment control with time-varying demand arrival
rates and the platform objective. Section 3 introduces
the MBP policy and presents our main theoretical
result, that is, a performance guarantee for the MBP
policies. Section 4 outlines the proof of our main result.
In Section 5, we provide MBP policies for the joint
pricing-assignment control setting, demonstrating the
versatility of our approach. In Section 6, we discuss the
applications to shared transportation systems.

1.8.1. Notation. All vectors are column vectors if not
specified otherwise. The transpose of vector or matrix x
is denoted as x'. We use R’} to denote the nonnegative
orthant, and R’} , to denote the positive orthant. We use
e; to denote the ith unit column vector with the ith coor-
dinate being one and all other coordinates being zero,

and 1 (0) to denote the all one (zero) column vector,
where the dimension of the vector will be indicated in
the superscript when it is not clear from the context.

2. Model: Joint Entry-Assignment Control
In this section, we formally define our model of joint
entry-assignment control in closed queueing networks.
We consider a finite-state Markov chain model with slot-
ted time t=0,1,2,..., where a fixed number (denoted
by K) of identical supply units circulate among a set of
nodes V (locations), with m £ |V| > 1. In our model, ¢
will capture the number of demand units (customers)
who have arrived thus far.

2.1. Queues (System State)

At each node je V, there is an infinite-buffer queue
of supply units. (Section 5.1 shows how to seamlessly
incorporate finite-buffer queues.) The system state is the
vector of queue lengths at time ¢, which we denote by
qlt] = [qlt].-- -, Gm [t]]". Denote the state space of queue
lengths by Qx £ {q:q€Z7,1"q =K}, and the normal-
ized state spaceby Q £ {q: q€ R}, 17q =1}.

2.2. Demand Types and Time-Varying
Arrival Process

We assume exactly one demand unit (customer) arrives
at each period t and denote its abstract type by 7[t] € T,
and the type for the demand unit is drawn from distri-
bution ¢' = (qbi)TeT, independent of demands in earlier
periods.” The demand arrival rate (i.e., type distribution)
can be time varying. Importantly, the system can ob-
serve the type of the arriving demand at the beginning
of each time slot, but the probabilities (arrival rates) ¢' are
not known. Thus, we substantially relax the assumption
in previous works that the system has exact knowledge
of demand arrival rates (Ozkan and Ward 2020, Balseiro
etal. 2021, Banerjee et al. 2021).

Each demand type t € 7 has a pick-up neighborhood
P(t)cV,P(1) # 0 and drop-off neighborhood D(7) C
V,D(1) # 0. The sets (P(7)),ey and (D(7)),ey are model
primitives. (In shared transportation systems, each de-
mand type T may correspond to an (origin, destination)
pair in V2, with P(t) being nodes close to the origin and
D(t) being nodes close to the destination.)

2.3. Temporal Uncertainty of Demand

Arrival Rates
We define the following notion of n-slowly varying demand
that characterizes the average amount of change of de-
mand arrival rates over a finite time horizon.

Definition 1. We say that demand arrival rates vary

n-slowly over a finite horizon T if

1 ™
mz ™" — &'l <.
=1
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2.4. Control and Payoff
At time ¢, after observing the demand type 7[t] = 1, the
system makes a decision

(ek[t])jep(o), kep(r) €{0.1} PP

such that Z xj[t] < 1. (1)
j€P(1),keD(1)

Here x;ji[t] = 1 stands for the platform choosing pick-
up node j € P(1) and drop-off node k € D(7), causing a
supply unit to be relocated from j to k. The constraint in
(1) captures that each demand unit is either served by
one supply unit or not served. With x;[t] =1, the sys-
tem collects payoff v[t] = w;. Without loss of general-
ity, we assume the scaling max.cr, jep(c), ken(r) | Wjek| = 1.
Because the queue lengths are nonnegative by defini-
tion, we require the following no-underflow constraint to
be met at any ¢:

%] =0 if gi[t] =0. @)

As a convention, let x;, = 0if 7" # 7.

A feasible policy specifies, for each time t € {1,2,...},
a mapping from the history thus far of demand types
(t[t'])p<; and states (q[t'])y<; to a decision xj[t] €

{0,1}/P@I-1P] satisfying (2), where © = 7[t] as above.

We allow x;j[t] to be randomized, although our pro-
posed policies will be deterministic. The set of feasible
policies is denoted by /.

2.5. System Dynamics and Objective
The dynamics of system state q[¢] is as follows:

qlt +1] =qt] + Y. (—eredyaltl, )

€7, jeP(1), keD(1)

that is, a supply unit is relocated from j to k. We use
v"[t] to denote the payoff collected at time f under con-
trol policy m. Let Wi denote the average payoff per
period (i.e., per customer) collected by policy 7 in the
first T periods, and let W} denote the optimal payoff
per period in the first T periods over all admissible poli-
cies. Mathematically, they are defined, respectively, as’

Wi £ min - ZE[U 1lal0] =q],

Wy £ E[o™[t 4
7 £ sup max Z [fllqf0]=ql. )
Define the infinite-horizon per period payoff W™ col-
lected by policy 7= and the optimal per period payoff
over all admissible policies W*, respectively, as

Wr & lim inf W, W2 limsup Wr.  (5)

—® T—oo

We measure the performance of a control policy m by
its finite- and infinite-horizon per-customer optimality

gap (“loss”), defined, respectively, as
LT = Wy — Wf and L"=W'-W". (6)

We consider the worst-case initial system state when
evaluating a given policy and the best initial state for
the optimal benchmark; see (4). Such a definition of
optimality gap provides a conservative bound on pol-
icy performance and avoids the (unilluminating) dis-
cussion of the dependence of performance on initial
state.

We make the following mild connectivity assump-
tion on the primitives ({¢'},.7, P, D).

Condition 1 (Strong Connectivity of ({¢'},<r, P, D)). For
any demand arrival rates ¢, define the connectedness of tri-
ple (p, P, D) as

A
a(éP,D) & min Z,l ¢ (@)
TeP~(S)NDH(V\S)

Here P~1(S) £ {t € T : P(t) N S # 0} is the set of demand
types for which nodes S can serve as a pickup node, and
DY() is defined similarly. We assume that for any 1 <t <
T, (¢',P,D) is strongly connected, namely, that a(d', P,
D) > 0.

The strong connectivity of (¢, P, D) is equivalent to
requiring that with (stationary) demand arrival rates ¢,
for every ordered pair of nodes (j, k), there is a sequence
of demand types with positive arrival rates and corre-
sponding pick-up and drop-off nodes that would take
a supply unit from j eventually to k.

We conclude this section with the observation that
the main assumption of Banerjee et al. (2018) is auto-
matically violated in our setting.

Remark 1. The complete resource pooling (CRP) con-
dition imposed in Banerjee et al. (2018, assumption 3)
is automatically violated in the following subclass of
our model. Consider our setup including Condition 1,
where each demand type 7= (i,j) corresponds to an
origin-destination pair and that P(,j) = {i}, D(i,}) =
{j}. The CRP condition can be stated as follows: for
each subset of nodes SCV,S # 0, the “net demand”

Hs £ YiesD jev\s; is less than the “net supply” As £
D ie\s 2ies ;i that is, p1g <As. Clearly, any demand
arrival rates ¢ violate CRP, because if ug<As for
some SCV,S+#0, then this means that s > Ans
(given that y1y\ g = As and Ay = i by definition), that
is, CRP is violated.

3. MBP Policies and Main Result

In this section, we propose a family of blind online con-
trol policies and state our main result for these policies,
which provides a strong transient and steady-state per-
formance guarantee for finite systems.
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3.1. MBP Policies
We propose a family of online control policies that we
call MBP policies. Each member of the MBP family is
specified by a mapping of normalized queue lengths
(which we will define later) f(q) : Q — R"™, where f(q)
2[f(q,).-.-.f(7,)]" and f is a monotone increasing
function.* We will refer to f(-) as the congestion function,
which maps each (normalized) queue length to a con-
gestion cost at that node, based on which MBP will
make its decisions.

In this section we will state our main result for the
congestion function:

f@) & —Nm-7.%, ®)

and postpone the results for other choices of congestion
functions to Online Appendix D (see also Remark 2).
We will later clarify the precise role of the congestion
function and show that it is related to the mirror map
in mirror descent (Beck and Teboulle 2003). Similar to
the design of effective mirror descent algorithms, the
choice of congestion function should depend on the
constraints of the setting, leading to an interesting inter-
play between problem geometry and policy design. For
instance, we use a different congestion function for the
setting in Section 5.1 where there are additional buffer
capacity constraints.

For technical reasons, we need to keep q in the inte-
rior of the normalized state space Q); that is, we need to
ensure that all normalized queue lengths remain posi-
tive. This is achieved by defining the normalized queue
lengths q as

_‘é Qi+5K

. % for 6x 2 VK and K2 K+mbk. (9)

This definition leads to 17q = 1 and therefore q € Q.

Our proposed MBP policy for the joint entry-
assignment control problem is given in Algorithm 1.
MBP serves a demand of type 7 using a supply unit at
j* and relocate it to k" if and only if

(", k) = arg max wjy +f(qj) — (@), (10)

j€P(1),keD(1)

and that wj +f(7;.) — f(q.) is nonnegative, and the ori-
gin node j* has at least one supply unit (see Figure 1 for
illustration of the score in Section 1). The score in (10) is
nonnegative if and only if the payoff w; of serving the
demand outweighs the difference of congestion costs
(given by f(7,) and f(7,)) between the dropoff node k
and the pickup node j. Roughly speaking, MBP is more
willing to take a supply unit from a long queue and
add it to a short queue than vice versa (Figures 1 and 2).
The policy is not only completely blind but also semilo-
cal; that is, it only uses the queue lengths at the origin
and destination. The congestion cost (8) increases with
queue length (as required) and furthermore decreases

sharply as queue length approaches zero. Observe that
such a choice of congestion function makes MBP very
reluctant to take supply units from short queues and
helps to enforce no-underflow Constraint (2).

Algorithm 1 (MBP Policy for Joint Entry-Assignment Control)
At the start of period t, the system observes demand

type t[t] =
(" k) « arg MaAXep(r), kep(r) Witk +f(ﬁ][t]) —f@[t])

if Wy e +f(ﬁ]-*[t]) —f(@[t]) = 0 and g;[t] > 0 then
Xjo-[t] <1, that is, serve the incoming demand
using a supply unit from j* and relocate it to k*;

else
‘ Xje ok [f] « 0, that is, drop the incoming demand;

end
The queue lengths update as q[t+1]=q[¢] —%xm;@
[](ef —ex).

3.2. Performance Guarantee for MBP Policies

We now formally state the main performance guaran-
tee of our paper for the joint entry-assignment control
model introduced in Section 2. We will outline the
proof in Section 4 and extend the result to the dynamic
pricing setting in Section 5.

Theorem 1. Consider a set of m nodes and any sequence
of demand arrival rates {¢p'},r that satisfy Condition 1
and vary n-slowly (Definition 1). Define oumin £ minj<ra
(') > 0. Then there exists Ky = poly(m,(1/amin)), and a
universal constant C < oo, such that the following holds.”
For the congestion function f(-) defined in (8), for any
K>K;, the following finite-horizon guarantee holds for
Algorithm 1:

K 1
LYB" < My (T+ «/nK) + Mo,
for My £ Cm and M, £ Cmi?.

Corollary 1. When the demand arrivals are stationary
(n=0), for any K > Ky, the following infinite-horizon guar-
antee holds for Algorithm 1:
LMBP < M, %, for My = Cm?.

Remark 2. In Section 5, we obtain results similar to
Theorem 1 for the dynamic pricing setting (Theorem 3).
In Online Appendix D (Theorem 4), we generalize The-
orem 1 by showing similar performance guarantees for
a whole class of congestion functions that satisfy certain
growth conditions. Informally, the congestion function
needs to be steep enough near zero to protect the nodes
from being drained of supply units.

There are several attractive features of the perfor-
mance guarantee provided by Theorem 1 for the sim-
ple and practically appealing MBP policy:
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(1) The policy is completely blind. In practice, the
platform operator at best has access to an imperfect
estimate of the demand arrival rates {¢'}, so it is a very
attractive feature of the policy that it does not need any
estimate of {¢'} whatsoever. It is worth noting that the
consequent bound of O(1/K) on the steady state opti-
mality gap remarkably matches that provided by Bane-
rjee et al. (2021) even though MBP requires no
knowledge of ¢, whereas the policy of Banerjee et al.
(2021) requires exact knowledge of ¢. (However, our
constant is quadratic in the number of nodes m,
whereas the constant in the other paper is linear in .)
As shown in Banerjee et al. (2018, proposition 4), if the
estimate of demand arrival rates is imperfect, any state
independent policy (such as that of Banerjee et al.
(2021)) generically suffers a long run (steady state) per
customer optimality gap of (1) (as K — o0).

(2) Guarantee on transient performance. In contrast
with Banerjee et al. (2021), who provide only a steady-
state bound for finite K, we are able to provide a perfor-
mance guarantee for finite horizon and finite (large
enough) K. The horizon-dependent term K/T in our
bound on optimality gap is small if the total number of
arrivals T is large compared with the number of supply
units K.

It is worth noting that our bound does not deteriorate
as the system size increases in the “large market
regime,” where the number of supply units K increases
proportionally to the demand arrival rates (this regime
is natural in ride-hailing settings, taking the trip dura-
tion to be of order 1 in physical time, and where a non-
trivial fraction of cars are busy at any time (Braverman
et al. 2019). Let T™%! denote the horizon in physical time.
As K increases in the large market regime, the primitive
¢ remains unchanged, whereas T = ©(K - ™) because
there are O(K) arrivals per unit of physical time, and
C £ 1)K is the average rate of change of ¢ with respect to
physical time Hence, we can rewrite our performance
guarantee as

W}—W%’IBPSM< L +%+ \/Z) @M<L+ \/Z>

Treal Treal

which is small when T — oo and { = o(1).

(3) Guarantee for time-varying arrivals. Our bound
shows that MBP is near optimal when the demand’s
average rate of change is small (7K = 0(1)) and that the
performance guarantee of MBP degrades gracefully as
nK increases. If the demand arrival rates remain sta-
tionary for blocks of time, for example, the first half of
the horizon has one stationary arrival rate matrix and
the second half of the horizon has another stationary
arrival rate matrix, then applying Corollary 1 to each
contiguous block of time with stationary demand could
yield a better guarantee than directly applying Theo-
rem 1 to the entire horizon.

(4) Flexibility in the choice of congestion function.
Because of the richness of the class of congestion func-
tions covered in Online Appendix D that generalize
Theorem 1, the system controller now has the addi-
tional flexibility to choose a suitable congestion func-
tion f(-). From a practical perspective, this flexibility
can allow significant performance gains to be unlocked
by making an appropriate choice of f(-), as evidenced
by our numerical experiments in Section 6.1.

4. Proof of Theorem 1
In this section, we provide the key propositions and
lemmas that lead to a proof of Theorem 1. Our analysis
generalizes and refines the so-called Lyapunov drift
method in the network control literature (Neely 2010).
We first define a sequence of deterministic optimiza-
tion problems that arise in the continuum limit: the
static planning problem (SPP) (Harrison 2003, Dai and
Lin 2005), whose values we use to upper bound the
optimal finite (and infinite) horizon per period W (and
W) defined in (4) and (5). The SPP is a linear program
(LP) defined for any demand arrival rates ¢:

SPP(¢) : maximizey

Wiz ¢T * Xtk (11)
€7 ,jeP(1),keD(1)

s.t. Z ¢, Xjr(ej —e) =0
€7 ,jeP(1),keD(1)

(flow balance),

(12)
ijk < ]-/ ijk = 0/
j€P(1),keD(1)
Vj,keV,1eT.(demand constraint).
(13)

One interprets x; as the fraction of type T demand that
is served by pickup location j and dropoff location k,
and the objective (11) as the rate at which payoff is gen-
erated under the fractions x. In the SPP (11-13), one
maximizes the rate of payoff generation subject to the
requirement that the average inflow of supply units to
each node in V must equal the outflow (Constraint 12)
and that x are indeed fractions (Constraint 13). Let
WSPP(9) be the optimal value of SPP(¢). The following
proposition formalizes that, the optimal finite horizon
per customer payoff W; cannot be much larger than

WSPP(@) where ¢ 2 1 e

Proposition 1. For any horizon T < oo, any K and any
starting state q[0], the finite horizon and steady-state aver-
age payoff Wi, W* are upper bounded as

— K —
Wi < WSPP(®) m=, W< WSPP(@), (14)
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We obtain the finite horizon upper bound to W in (14)
by slightly relaxing the flow constraint (12) to accom-
modate the fact that flow balance need not be exactly
satisfied over a finite horizon. The proof is in Online
Appendix A.

Our proposed MBP policy and its analysis is closely
related to the (partial) dual of the SPP(¢b’):

minimizey g'(y), for g'(y)

A ¢ .
) Wyek +Yj = Ye) " 15
TEZT(PTJGP(IT%?D(T)( ek + Y = V) (15)

Here, (x)* £ max{0,x}, and y are the dual variables cor-
responding to the flow balance constraints (12) and have
the interpretation of “congestion costs” (Neely 2010);
that is, y; can be thought of as the “cost” of having one
extra supply unit at node j. In fact, as we describe in
Online Appendix I, MBP has the attractive property that
it executes stochastic mirror descent (Beck and Teboulle
2003) on (15) (where the inverse mirror map is the anti-
derivative of the congestion function (-)).

Our main result, Theorem 1, is directly driven by
the following proposition that connects the perfor-
mance of MBP and the benchmark in the nonstation-
ary environment.

Proposition 2. Consider the setting in Theorem 1. Then
there exists Ky =poly(m,(1/amin)), and a universal con-
stant C < oo, such that the following holds. For the conges-
tion function f(-) defined in (8), for any K > Ky, and any
0 < Ay < T the following guarantees hold for Algorithm 1:

K 1
L¥BP <M, A_T + M, K + ATﬂ’lT],
for M1 £ Cm and M, £ Cm?®.

We illustrate the high-level structure of the proof in
Figure 3. We introduce a “batch size” quantity Az; Aris
only used for the purpose of analysis and is not part of
our algorithms. The loss of MBP policy in A7 periods
can be decomposed into three terms:

(1) The first term (from left to right in Figure 3),
is L3 WSPP@) _ WMBP - We call it the policy gap.
We bound the policy gap using a Lyapunov analysis

Figure 3. (Color online) Roadmap of the Proof of Proposition 2

in Proposition 3. The antiderivative of the congestion
function f(-) serves as the Lyapunov function. Our
choice of f(-) ensures that the policy gap is (provably)
small despite the no-underflow constraints.

(2) The second term, WSPP@) — (1/Ag)S A7 WSPP()
arises from the temporal variation of demand; there-
fore, we call it the variation gap (it is zero for stationary
demand). We bound the variation gap in Proposition
4 using graph-theoretic analysis of the sensitivity of
the SPP to ¢.

(3) The third term, Wi — WSPP(®), has already been
bounded in Proposition 1.

Intuitively, the quantities in Figure 3 highlight the
following tradeoff. When Ar is large, the policy gap is
small; when A7 is small, the variation gap is small.
Theorem 1 follows by balancing this tradeoff and set-
ting Ay = ©(min(,/K/n, T)), which we prove in Online
Appendix D.

4.1. Bounding the Policy Gap
In this section, we prove the following proposition that
bounds the policy gap under MBP.

Proposition 3. Consider a set of m nodes and any sequence
of demand arrival rates {¢'},.r that satisfy Condition 1.
Recall that @i = ming<<ra(p’) > 0. Then there exists
K; =poly(m, (1/amin)), and a universal constant C < oo,
such that the following holds. For the congestion function f(:)
defined in (8), for any K > Kj, the following guarantees hold
for Algorithm 1:

sz_i WSTP(@) _ WMBP < M, 5+M21
T2 T K
for My £ Cm and M, £ Cm®.

Notably, this proposition holds for arbitrary sequences
of demand arrival rates satisfying Condition 1. The
proof is based on Lyapunov analysis. A Lyapunov
function will allow us to decompose the expected pay-
off from the next arrival into a combination of the objec-
tive, change in potential, and a per-period loss. We use
the antiderivative of f(-) as our Lyapunov function; for

MBP 1 s Ar—111,SPP(g! SPP(¢) *
War s Ny WHEEFE) w Wi,
—e L & v
—_———— S—_————— —_—————
=0(&+4) Sl <&r

Variation Gap

Policy Gap

(Proposition 1)

(Proposition 4)

(Proposition 3)
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the congestion function fin (8), this is

F@) 2 - 2%; NG (16)
IS

The motivation for our choice of Lyapunov function
comes from the “drift-plus-penalty” framework in the
network control literature (Neely 2006, 2010; Gupta
and Radovanovi¢ 2020). We generalize and refine the
framework by adding a new term in the analysis, which
allows us to bound the suboptimality contributed by
underflow.

Recall that WSPP(¥) s the optimal value of SPP
(11-13) with demand arrival rate &', ?MB[t] denotes
the payoff collected under the MBP policy in the tth
period, and ¢'(-) is the dual problem (15). We have the
following key lemma (proved in Online Appendix B.1).

Lemma 1 (Suboptimality of MBP in One Period). Con-
sider any congestion function f(-) that is strictly increasing
and continuously differentiable. We have the following
decomposition (recall that K = K + mVK):

WSPP(9) _ R [pMBP[f] lqlt]]

< K(F(q[t]) — E[Fqlt + 1] [q]t]])

Vi change in potential

1
+ —max max If' @1
2K €V ge[gin-Lqin+2]

V; loss due to stochasticity

+ (WD — g (f(q[1]) + 1glt] =0,3je V) .

V3 dual optimality gap

V4 loss due to underflow

17)

In Lemma 1, the left-hand side (LHS) of (17) is the sub-
optimality incurred by MBP (benchmark against the
value of SPP(¢")) in a single period. On the right-hand
side (RHS) of (17), V; and V, come from the standard
Lyapunov drift argument; V3 is the negative of the dual
suboptimality at y = f(q[]), and hence it is always non-
positive; amd V), is the payoff loss because of underflow.

For the change in potential V, it forms a telescoping
series when summing over many periods and will
therefore remain bounded. Hence, as we average over
many periods, we have that VV; tends to zero.

We now proceed to upper bound V> +V3;+ Vs on
the right-hand side of (17). We outline our analysis in
the following. Observe that the terms V, and Vj are
nonnegative, whereas V3 is nonpositive; thus, the goal
is to show that V3 compensates for V, + V4. First, V; is
large when there exist very short queues (because the
congestion function (8) changes rapidly only for short
queue lengths), and V, is nonzero only when some

queues are empty. Helpfully, it turns out that V3 is more
negative in these same cases; we show this by exploiting
the structure of the dual problem (15). In Lemma 2, we
provide an upper bound for V3 that becomes more neg-
ative as the shortest queue length decreases. We prove
Lemma 2 in Online Appendix B.2 by using complemen-
tary slackness for the SPP (11-13).

Lemma 2. Consider any congestion function f(-) that is
strictly increasing and continuously differentiable and any
¢ with connectedness a(p) > 0. We have

+

Vs < —a(d)- maxf (q) —minf(g,) — 2m

The following lemma bounds V, + V5 + V4. The proof is
in Online Appendix B.3. (In fact, we prove a general
version of the lemma that applies to all congestion
functions that satisfy certain growth conditions formal-
ized in Condition 3 in Online Appendix C. The growth
conditions serve to ensure that V3 compensates for
Vo + V4.)

Lemma 3. Consider the congestion function (8) and any
¢ with connectedness a(¢)>0. Then there exists Ky =
poly(m, (1/a(¢))) such that for K> Ky and a universal
constant C>0,

1
Va+Vs+ Vi< Moz for My £ Cm*.  (18)

Recall that K = K + mVK.

Putting Lemmas 1 and 3 together leads to the follow-
ing proof of Proposition 3. The main idea is to use the
Lyapunov drift argument of Neely (2010), namely, to
sum the expectation of (17) (the bound in Lemma 1)
over the first T time steps.

Proof of Proposition 3. Plugging in Lemma 3 into (17)
in Lemma 1 and taking expectation, we obtain that there
exists Ky = poly(m, (1/amin)) such that forany 0 <t < T,

WSPP@) _ B[oMPP[4]] < K (E[F(q[t])] - E[F(q]t + 1])])
+ Mz% for K > K, (19)

where K = K+mVK. Take the sum of both sides of
Inequality (19) from t=0 to t=T —1 and divide the
sum by T. This yields

1 2 SPP(p!
< (¢') _ j\7MBP
T ;w Wy

< ~ (E[F(g[0])] - E[F@IT])]) +MZ%

< for K> Kj.

=l T

_ _ 1
sup (F((h) - F(‘lz)) + M~
EHrRCe) K
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Let M; £ supg 4. «o(F(q;) —F(q,)). Observe that the
function F(q) given in (16) is negative F(q) <0 for all
q €Q and is a convex function that achieves its mini-
mum at q = 11. Hence,

1
<0-—i q)=— — = .
M; <0 érggf) F(q) F(m 1) 2m

Therefore, the policy gap of MBP is upper bounded
by M;(K/T)+M,(1/K), where M;=Cm, My =Cn?,
and C does not depend on m, K, or amin. Moreover,
K = K+mVK € [K,2K] taking K; > m?. This concludes
the proof. O

We conclude with some informal intuition as to why
MBP with congestion function f(-) given in (8) and nor-
malized queue lengths q defined in (9) ensures a small
policy gap. MBP could run into two issues due to the
no-underflow constraints: (i) The queue lengths corre-
sponding to the optimal dual variables lie outside of
the state space; and (ii) the Lyapunov drift could be
positive at certain “boundary states,” that is, states
where some of the queues are empty. For issue (i),
although the range of normalized queue length q
belongs to [0,1], the range of f(q) goes to (—co, —v/m)
as K — 0. As a result, for large enough K, there exists
q € Q such that f(q) corresponds to the optimal dual
variables.® For issue (ii), first, this problem only occurs
when there exists empty queues. At these states, the
dual suboptimality at £(q) is large because f(0) — —oo
as K — oo, which creates a negative Lyapunov drift
that “pushes” f(q) toward the optimal dual variable.
This corresponds to the intuition that MBP is aggres-
sive in preserving supply units in near-empty queues.
In contrast, we show in Online Appendix H.2 that regu-
lar backpressure (i.e., linear £(-)) may fail to address the
two issues mentioned previously, leading to a large

policy gap.

4.2. Bounding the Variation Gap
We have the following result that bounds the variation

&ap-
Proposition 4. Suppose the demand arrival rates vary

n-slowly (Definition 1) for some 1 > 0. Fix a horizon T. For
any 0 <t <T —1, we have

Z WSPP(dy) > WSPP(¢) mnT. (20)
t 1

The proof is based on sensitivity analysis of the linear
program SPP(¢) via flow decomposition (Williamson
2019). In essence, our approach involves decomposing
the feasible flow for SPP(¢) into directed cycles and sub-
sequently reducing it to satisfy constraints in SPP(¢'").
We prove Proposition 4 in Online Appendix C.

4.3. Proof of Proposition 2

Using Proposition 3 and considering the first A peri-
ods, we obtain that there exists K, = poly(i, (1/min)),
and a universal constant C < oo, such that the following
holds. For the congestion function f(-) defined in (8), for
any K> K, the following guarantees hold for Algo-
rithm 1:

Ar—1
Z WSPP(¢’ WMBP < M + Mz

for My £ Cm and M, £ Cm?. (21)

Suppose the demand varies 1;-slowly on [0, Ar]. Using
Proposition 1 and then Proposition 4, we have

MBP * MBP
LYBP = Wy — WA

o (o ) -
Ar T

1 = SPP(') K MBP
< mnlAT+A—TZW +mAT Wi,

t=0

<Cm K + M ) +mr]1AT+m£
At

K 1
< —m(C+1)+My—+mn,Ar. (22)
At K

Here, we used (21) in the third inequality. Suppose the
demand varies n,-slowly in batch ¢, and because the
demand varies n-slowly over the whole horizon [0, T],

we must have 1= (1/|_T/ATJ)ZLT/ATJ 1n,- Now take
average on both sides of (22) over |T/Ar] batches, we
obtain the result.

5. Generalizations and Extensions

In this section, we consider two general settings: one
with finite buffer queues and one allows JPA. We
show that the extended models enjoy similar perfor-
mance guarantees to that in Theorem 1 under mild
conditions on the model primitives.

5.1. Congestion Functions for Finite
Buffer Queue

Suppose the queues at a subset of nodes V}, C V have a
finite buffer constraint. For j€ V}, denote the buffer
size by d; = d K for some scaled buffer size d € (0,1). (If
di>1, the buffer size exceeds the number of supply
units d; > K and there is no constraint as a result, i.e.,
j# Vi) We will find it convenient to define d; =1 for
each j € V\Vy. To avoid the infeasible case where the
buffers are too small to accommodate all supply units,
we assume that Zjevaj > 1. The normalized state space



Downloaded from informs.org by [128.59.177.150] on 31 October 2023, at 09:09 . For personal use only, all rights reserved.

Kanoria and Qian: Blind Dynamic Resource Allocation via Mirror Backpressure

12

Management Science, Articles in Advance, pp. 1-18, © 2023 INFORMS

will be
Q2{q:17q=1,0<q<d}, where d;24d;/K.

Similar to the case of entry control, we need to keep q
in the interior of €3, which is achieved by defining the
normalized queue lengths q as

+d;0
_jéu for 6x=VK and

K2K+ (Z HJ.) k. (23)

154

One can verify that q € Q for any feasible state q. When
dj=1forall j € V, the definition of 7; in (23) reduces to
the one in (9). The congestion functions (f;("));c, are
monotone increasing functions that map (normalized)
queue lengths to congestion costs. Here we will state

our main results for the congestion function vector:

fi(@;)

N \/ﬁCb (—i) —(i) —Dy |, VjEVb,
a d; d;

—m g, Vje V\Vy.
(24)

Here C, and D, are normalizing constants’ chosen to
ensure that (i) for all j,k € V, we have that fj(ﬁj) =fi(@,)
when both queues are empty g; = gx = 0; and (ii) for all
jok € Vi, we have that fi(7;) = fi(7,) when both queues
are full g;=d;, qr=di. (We state the results for other
choices of congestion functions in Online Appendix C.)

Note that f;(-) in (24) is identical to f(-) in (8) for j ¢ V},
that is, (24) is a generalization of (8) to the case where
some queues have buffer constraints. The intuitive rea-
son (24) is a suitable congestion function is that it enables
MBP to focus on queues that are currently either almost
empty or almost full (the congestion function values for
those queues take on their smallest and largest values,
respectively), and use the control levers available to
make the queue lengths for those queues trend strongly
away from the boundary they are close to.

We have the following result for the finite-buffer set-
ting. The proof is in Online Appendix D.

Theorem 2. Consider a set V of m £ |V| > 1 nodes, a sub-
set Vi, €V of buffer-constrained nodes with scaled buffer
sizes dj € (0,1) Vj € Vi satisfying® > cyd; > 1. Consider
any sequence of demand arrival rates (&'),.r that satisfy
Condition 1 and vary n-slowly (Definition 1). Recall that

Omin = minggi<ra(’). Then there exists Ky = poly (m,a,

L), and a universal constant C < oo, such that the fol-

lowing holds. For the congestion function f(-) defined in
(24), for any K> Kj, the following guarantees hold for

Algorithm 1:
MBP K 1
L7 <My T + \/U_K +M> X’

for M;=Cm,

M, =

1 ( vl )3/2 .

minjeyd; min{zjevd]- —-1,1}
5.2. JPA Setting

In this section, we consider the JPA setting and design
the corresponding MBP policy. The platform’s control
problem is to set a price for each demand origin-
destination pair and decide an assignment at each
period to maximize payoff. Our model here will be sim-
ilar to that of Banerjee et al. (2021), except that the plat-
form does not know demand arrival rates, and we
allow a finite horizon. The demand types 7, pick-up
neighborhood P(t), and drop-off neighborhood D(7)
are defined in the same way as in Section 2. For simplic-
ity, we assume that the demand type distribution ¢ =
(¢, )re7 is time invariant and that all buffers have infi-
nite capacity in this section.

The platform control and payoff in this setting are as
follows. At time ¢, after observing the demand type
7[t] =7, the system chooses a price p.[t] € [p™", pma]
and a decision

P(7)|-| D
(ijk[t])jeP(I),keD(T) c {0,1}| (D1 1D(7) |

such that Z
j€P(1), keD(1)

.X]‘Tk[t] < 1.

(25)

As before, we require x;[t] = 0if g;[t] = 0.

The result of the platform control is as follows:

(1) Upon seeing the price, the arriving demand unit
will decline (to buy) with probability F.(p:[t]), where
F(+) is the cumulative distribution function of type t©
demand’s willingness-to-pay.

(2) If the demand accepts (i.e., buys), then a supply
unit relocates based on x;;[t]. Meanwhile, the platform
collects payoff v[t] = p.[t] — cju, where cj is the “cost”
of serving a demand unit of type 7 using pick-up node
j and drop-off node k. If the demand unit declines, the
supply units do not move and v[f] = 0.

We assume the following regularity conditions to
hold for demand functions (F.(p)),. These assump-
tions are quite standard in the revenue management lit-
erature (Gallego and Van Ryzin 1994).

Condition 2. Assumptions on demand functions.

(1) Assume’ F,(p™™) = 0 and that F,(p™>) = 1.

(2) Each demand type’s willingness-to-pay is nonatomic
with support [p™™, p™@] and positive density everywhere
on the support; hence, F(p.) is differentiable and strictly
increasing on (p™, p™). (If the support is a subinterval of
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[pmin, pmax] we redefine p™™ and p™®™ to be the boundaries
of this subinterval.)

(3) The revenue functions ro(u.) £ p_-p-(u,) are con-
cave and twice continuously differentiable, where u._ denotes
the fraction of demand of type T that is realized (i.e., willing

to pay the price offered).

As a consequence of Condition 2, parts 1 and 2, the
willingness to pay distribution F.(-) has an inverse
denoted as p-(u,) : [0,1] — [p™™, p™@], which gives the
price that will cause any desired fraction u_€[0,1] of
demand to be realized. (The concavity assumption in
part 3 of the condition is stated in terms of this function
p-(-).) Without loss of generality, let max;erpr™ +
max; kev, ce7 | Gjek| = 1.

In the JPA setting, the net demand ¢_p_ plays a role
in myopic revenues but also affects the distribution of
supply, and the chosen prices need to balance myopic
revenues with maintaining a good spatial distribution
of supply. Intuitively, when sufficiently flexible pricing
is available as a control lever, the system should modu-
late the quantity of demand through changing the
prices (and serving all the demand that is then realized)
rather than apply entry control (i.e., dropping some
demand proactively). Our MBP policy for this setting
will have this feature.

The dual problem to the SPP in the JPA setting is (see
Online Appendix E for the statement of SPP and the
derivation of its dual)

minimizey gpa(y) for gpa(y)

£ max |7 + max  (—Cipx +1; — .
Zng{OSyTsl} (i) yTjE’P(T),kGD(T)( ok Y1 = Ye)

€T
(26)

Once again, the MBP policy (Algorithm 2) is defined to
achieve the argmaxes in the definition of the dual objec-
tive gjpa(-) with the ys replaced by congestion costs:
MBP dynamically sets prices p, such that mean fraction
of demand realized under the policy is the outer arg-
max in the definition (26) of gjpa(+), and the assignment
decision of MBP achieves the inner argmax in the defi-
nition (26) of gjpa(+). The policy again has the property
that it executes stochastic mirror descent on the dual
objective gjpa(-). The optimization problem for comput-
ing u_[t] is a one-dimensional concave maximization
problem (Condition 2, part 3); hence, u_[t] can be effi-
ciently computed.

The MBP policy retains the advantage that it does
not require any prior knowledge of gross demand ¢.
We assume that the willingness-to-pay distributions
F.(-) are exactly known to the platform; it may be possi-
ble to relax this assumption via a modified policy that
“learns” the F.(-); however, pursuing this direction is
beyond the scope of the present paper.

Algorithm 2 (MBP Policy for JPA)
At the start of period ¢, the system observes t[t] =7

(", k") ¢ arg maxiep ) geppo {—=Cjok + @[ ED =A@, [HD};
if g;-[t] > 0 then

pelt] e arg max,, cfoyy{re(uy) + g - (—Crae +f5 (@
(D) = fie (@, [ED)Y;
pelt] < F (u [t
Xjegke [t] <1, that is, if the incoming demand stays,
serve it by pick up from j* and drop off at k*, other-
wise do nothing;
else

‘ Xjor[t] <= O, that is, drop the incoming demand;
end
The queue lengths update as

qlt+1] = qlf] - %x,-wk*[t](ef ).

We have the following performance guarantee for
Algorithm 2, analogous to Theorem 1.

Theorem 3. Fix a set V of m=|V| > 1 nodes, minimum
and maximum allowed prices (p™, p2™) oy, any (¢, P, D)
that satisfy Condition 1 (strong connectivity), and willingness-
to-pay distributions (F).er that satisfy Condition 2. Then
there exist K; < 0o, My = Cm, and My = Cm? for some uni-
versal constant C> 0 such that for the congestion function f(-)
defined in (8), the following guarantee holds for Algorithm 2.
For any horizon T and for any K > Ky, we have

K 1 1
MBP _ pp B 1z MBP _ pp S
Ly _M1T+M2K, and L _M2K
We outline the proof of Theorem 3 in Online Appendix E.

6. Application to Shared Transportation

Systems
Our setting can be mapped to shared transportation sys-
tems such as bike sharing and ride-hailing systems. In
this context, the nodes in our model correspond to geo-
graphical locations, whereas supply units and demand
units correspond to vehicles and customers, respectively.

6.1. Dynamic Incentive Program for Bike
Sharing Systems

Chung et al. (2018) explain that Citi Bike’s Bike Angel
incentive program works as follows: there are two
types of bike stations at any time: the incentivized ones
and neutral ones; depending on the origin and the des-
tination stations of a trip, different amounts of points
are awarded to the rider. The points have monetary
values. The system objective is to minimize out-of-
stock and out-of-bike events. Therefore, to view it as an
application of our JPA model, we can view the amount
of points awarded for a certain trip as (the negative of)
price of this trip; the customers have a demand function
denoting their response to reward points (i.e., negative
of prices); and the value the platform derives from a
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ride equals customer utility and/or revenue generated
(which is a constant) minus the cash value of points
awarded. By using a JPA-based MBP policy, the plat-
form can dynamically set the number of reward points
for each origin-destination pair. In docked bike sharing
systems, there is a constraint on the number of docks
available at each location. Such constraints are seam-
lessly handled in our framework as detailed earlier in
Section 5.1. One concern may be that our model ignores
travel delays. However, in most bike sharing systems,
the fraction of bikes in transit at any time is typically
quite small (under 10%-20%)."" As a result, we expect
our control insights to retain their power despite the
presence of delays. (Indeed, we will numerically dem-
onstrate in Section 6.1 that this is the case in the ride-
hailing setting; see the excess supply case where MBP
performs well even when the vast majority of supply is
in transit at any time.) We leave a detailed study of bike
sharing platforms to future work.

6.2. Online Control of Ride-Hailing Platforms
Ride-hailing platforms make dynamic decisions to opti-
mize their objectives (e.g., revenue, welfare). For most
ride-hailing platforms in North America, pricing is used
to modulate demand. In certain countries such as China,
however, pricing is a less acceptable lever; hence, admis-
sion control of customers is used as a control lever
instead. In both cases, the platform further decides
where (near the demand’s origin) to dispatch a car from,
and where (near the demand’s destination) to drop off a
customer. These scenarios are captured, respectively, by
the JEA model'! studied in Section 2 and JPA model
studied in Section 5. Again, a concern may be that travel
delays play a significant role in ride-hailing, whereas
delays are ignored in our theory. In the following sec-
tion, we summarize a numerical investigation of ride-
hailing focusing on entry and assignment controls only
(a full description is provided in Online Appendix F).
We find that MBP performs well despite the presence of
travel delays. To address the case where the available
supply is scarce, we heuristically adapt MBP to incorpo-
rate the Little’s law constraint (Section 6.3.1).

6.3. Numerical Investigation of the Application to
Ride-Hailing
In Section 6.3.1, we examine the performance of MBP
policy when there are travel delays using numerical
experiments. The simulation environment we study is
inspired by ride-hailing and leverages demand esti-
mates deduced from NYC yellow cab data (Buchholz
2022) and travel times from Google Maps. In Section
6.3.2, we provide the summary of simulations that
study the performance of MBP policy in large net-
works. In the interest of space, we provide only the
key findings of our simulations here and defer a full

description of the simulation environment and various
technical details to Online Appendix F.

6.3.1. Travel Delays and the Supply-Aware MBP Pol-
icy. In the following, we investigate the performance
of the MBP policy when there are travel delays. Similar
to our main setting'? in Section 2, we allow the platform
two control levers: entry control and assignment/
dispatch control. Our theoretical model made the sim-
plifying assumption that pickup and service of demand
are instantaneous. We relax this assumption in our
numerical experiments by adding realistic travel times.
We retain our simplifying assumption that drivers do
not relocate in the absence of a passenger. We consider
the following two cases:

(1) Excess supply. The number of cars in the system is
slightly (5%) above the “fluid requirement” (see Online
Appendix F.1 for details on the “fluid requirement”) to
achieve the value of the static planning problem.

(2) Scarce supply. The number of cars fall short (by
25%) of the “fluid requirement”; that is, there are not
enough cars to realize the optimal solution of static
planning problem (11)—(13) under instantaneous relo-
cation (even if we ignore stochasticity).

We compare our MBP policy to three state-of-the-art
policies in literature: the fluid-based policy in Banerjee
et al. (2021), the utility-delay optimal algorithm (UDOA)
in Neely (2006), and the deficit MaxWeight (DMW) pol-
icy in Jiang and Walrand (2009). The UDOA policy is in
fact a member of the MBP family of policies, with expo-
nential congestion function f(q) = @ - (e?(1~1) — ¢®@~1))
for suitable w,qo >0. See Online Appendix F for a
detailed description of these benchmark policies.

6.3.1.1. Summary of Findings. We make a natural
modification of the MBP policy (with Congestion Func-
tion (8)) to account for finite travel times; specifically, we
use a supply-aware MBP policy that estimates and uses a
shadow price of keeping a vehicle (supply unit) occu-
pied for one unit of time."* This policy is described at the
end of this section.

6.3.1.2. Excess Supply Case. We simulate the (sta-
tionary) system from 8 a.m. to 12 p.m. with 100 ran-
domly generated initial states.'* The simulation results
on performance are shown in Figure 4. The results
show that MBP policy significantly outperforms both
the DMW policy and the fluid-based policy and consis-
tently outperforms the UDOA policy: The average
payoff under MBP over four hours is about 105% of
WS (here WSPP is again an upper bound on the
steady-state performance15), whereas UDOA, DMW,
and the fluid-based policy achieve 100%, 81%, and
68% of WSFP, respectively. The performance of the
static policy converges very slowly to W', leading to
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Figure 4. (Color online) Per Period Payoff Under the MBP,
UDOA, DMW, and Fluid-Based Policy, Relative to W5'*

Payoff Generated Per Period, K=1Kﬂ
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Note. For each data point, we run 100 experiments; the error bars rep-
resent the 90% confidence intervals.

poor transient performance.'® The performance of the
DMW policy deteriorates over time because the “fake
packets” it generates accumulate in the system.

6.3.1.3. Scarce Supply Case. In the scarce supply
case, for example, K = 0.75Kg, no policy can achieve a
stationary performance of W'F; rather, we have a
steady-state upper bound of W5F(0.75) ~ 0.86WSFF for
this K, where W5FP(0.75) is the value of the problem
given by (11)-(13) together with the supply constraint
(27). Figure 5 shows that the MBP policy again vastly
outperforms the DMW policy and the fluid-based pol-
icy and has similar performance to the UDOA policy in

Figure 5. (Color online) Per Period Payoff Under the (Modi-
fied) MBP, (Modified) UDOA, (Modified) DMW, and Fluid-
Based Policy, Relative to WS(0.75), the Value of SPP Along
with Constraint (27) for K = 0.75Ky

Payoff Generated Per Period, K=0.75KfI
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Note. For each data point, we run 100 experiments; the error bars rep-
resent the 90% confidence intervals.

the scarce supply case. MBP generates average per
period payoff that is 99% of the steady-state upper
bound over four hours, whereas the UDOA, DMW,
and fluid-based policy achieve 98%, 85%, and 74%,
respectively, of the steady-state upper bound over the
same period. Reassuringly, the mean value of v(t) in
our simulations of supply-aware MBP is within 10% of
the optimal dual variable to the tightened supply con-
straint (28) in the supply-aware SPP (11-13 along with
28); both values are close to 0.50. Again, we observe
that the average performance of static policy improves
(slowly) as the time horizon gets longer, whereas the
performance of DMW deteriorates.

6.3.1.4. Supply-Aware MBP Policy. To heuristically
modify MBP to account for travel times, we begin by
observing that the SPP must now include a Little’s law
constraint. (The same observation was previously lever-
aged by Braverman et al. (2019) and Banerjee et al. (2021)
to formally handle travel times, albeit under the assump-
tion that travel times are i.i.d. exponentially distributed.)
Our heuristic modification of MBP will maintain an esti-
mate of the shadow price corresponding to the Little’s
law constraint and penalize rides appropriately.

Applying Little’s law, if the optimal solution z* of
the SPP (here we work with the special case where ¢
does not depend on t) is realized as the average long
run assignment, the mean number of cars which are
occupied in picking up or transporting customers is
2 kev 2iep(Dije Zjy, for Dy £ Djj+ Djr, where Dj; is
the pickup time from i to j and ﬁjk is the travel time
from j to k. We augment the SPP with the additional
supply constraint

Z Z Dy - zij < K, (27)

i, keV ieP(j)

which simply encodes that the average number of cars
occupied at any time cannot exceed K. We propose and
test in the simulation the following heuristic policy
inspired by MBP, that additionally incorporates the
supply constraint. We call it supply-aware MBP. Given a
demand arrival with origin j and destination k, the pol-
icy makes its decision as per

i* — arg rr;f}))({wijk +f(@;[t]) —f@[t]) — o[t]Din}

i€P(j
If wip + (@, [t]) — f(q,[t]) — v[t]Djj 2 0 and g;-[t] > 0,
dispatch from i*, else Drop,

where we define the tightened supply constraint as

> ) Dip-zip <0.95K, (28)

j, keV ieP(j)

where the coefficient of K is the flexible “utilization”
parameter that we have set at 0.95, meaning that we are
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aiming to keep 5% vehicles free on average, system-
wide.'” Here v[t] is the current estimate of the shadow
price for the “tightened” version of supply Constraint
(28). We use the congestion function given in (8), that

is, f;(7,) = \m - 7 2 in our numerical simulations. An
important detail here is that the queue lengths are nor-

malized by the estimated number of free cars K —
0.95K = 0.05K instead of K. We update v[t] as

oft+1] = lv[t] e (Z D Dig-1{([t],dlt) = (),
j, keVieP(j)

MBP would dispatch from i} 0.95K>

An iteration of supply-aware MBP is equivalent to exe-
cuting a (dual) stochastic mirror descent step on the
supply-aware SPP (11)—(13) along with (28).

6.3.2. MBP Policy in Large Networks. Recall that, in
Corollary 1, the steady-state optimality gap of MBP is

shown to be O ("—;j) for Congestion Function (8). Com-

pared with the O(%) bound for the fluid-based policy
proved in Banerjee et al. (2021), our bound for MBP has
the same dependence on K but worse dependence on
m. A natural question is whether the worse dependence
on m reflects poorer performance or if it is a proof arti-
fact. We conduct numerical experiments in Online
Appendix F.2 to study this question.

6.3.2.1. Summary of Findings. We construct a family
of instances that has the same total demand rate, but
different network sizes m. We compare the perfor-
mance of our MBP policy with the fluid-based policy in
Banerjee et al. (2021) for different values of fleet size K
and network size (i.e., number of locations) m. The
results demonstrate that MBP consistently outperforms
the fluid-based policy in steady state across different
choices of m and K. Also, the steady-state suboptimality
of MBP appears to scale as m/K (and not m?/K, which
was the scaling of our formal upper bound on the opti-

mality gap).

7. Discussion

In this paper we considered the payoff maximizing
dynamic control of a closed network of resources. We
proposed a novel family of policies called MBP, which
generalize the celebrated backpressure policy such that
it executes mirror descent with the desired mirror map
while retaining the simplicity of backpressure. The MBP
policy overcomes the challenge stemming from the
no-underflow constraint, and it does not require any
knowledge of demand arrival rates. We proved that
MBP achieves good transient performance for demand

arrival rates that are stationary or vary slowly over time,
losing at most O((K/T) + (1/K) + /1K) payoff per cus-
tomer, where K is the number of supply units, T is the
number of customers over the horizon of interest, and n
is the average rate of change in demand arrival rates per
customer arrival. We considered a variety of control
levers: entry control, assignment control and pricing,
and allowed for finite buffer sizes. We discussed the
application of our results to the control of shared trans-
poration systems and scrip systems.

One natural question is whether our bounds capture
the right scaling of the per customer optimality gap of
MBP with K, T, and 7, relative to the best policy that is
given exact demand arrival rates and horizon length T
in advance. Consider the joint entry-assignment setting
(Section 2). It is not hard to construct examples showing
that each of the terms in our bound is unavoidable: A
1/K optimality gap arises in steady state (under station-
ary demand arrival rates), for instance, in a two-node
entry-control-only example where the two demand
arrival rates are exactly equal to each other, the K/T
term arises because over a finite horizon the flow bal-
ance constraints need not be satisfied exactly, and MBP
does not exploit this flexibility fully, and the /7K term
arises in examples where demand arrival rates oscillate
(with a period of order /K/n) but MBP does not take
full advantage of the flexibility to allow queue lengths
to oscillate alongside. We omit these examples in the
interest of space.

We point out some interesting directions that emerge
from our work:

1. Improved performance via “centering” MBP based on
demand arrival rates. If the optimal shadow prices y*
are known (or learned by learning ¢ via observing
demand), we can modify the congestion function to
f{d;) =y;+f(g,)- For the resulting “centered” MBP
policy, based on the result of Huang and Neely (2009)
and the convergence of mirror descent, we are opti-
mistic that the steady state regret will decay exponen-
tially in K.

2. Another promising direction is to pursue the
viewpoint that there is an MBP policy that (very nearly)
maximizes the steady state rate of payoff generation,
specifically for the choice of congestion functions f;(-)
that are the discrete derivatives of the relative value
function F(q) (for the average payoff maximization
dynamic programming problem) with respect to 7;; see
Chapter 7.4 of Bertsekas (1995) for background on
dynamic programming. Thus, estimates of the relative
value function F(q) can guide the choice of congestion
function.

Endnotes

1 For a more detailed discussion on this condition and its connec-
tion to the present paper, please refer to Remark 1 in Section 2.
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2 Analyses of i.i.d. unit demand arrivals have been shown to gener-
alize easily to more general arrival processes, for example, Markov-
ian arrivals with bounded demand units per period as in Huang
and Neely (2009), although at a significant notational burden. Given
the aforementioned precedent, we reason that the cost of carrying
the reader through this generalization exceeds the benefit of doing
so and assume i.i.d. unit demand arrivals throughout the paper.

3In (4), the expectations are taken over the randomness in arrivals
and (possibly) control decisions and that the supremum is well
defined because the payoffs are bounded from above.

“ The methodology we will propose will seamlessly accommodate gen-
eral mappings f(-) such that f = VF, where F(-): Q — R is a strongly
convex function, a special case of which is £(q) £ [ (7). ..., - (ﬁm)]-r
for any monotone increasing (f;). Here it suffices to consider a single
congestion function f(-), whereas in Section 5.1, we will use queue-
specific congestion functions f;(-).

5 Here “poly” indicates a polynomial. The constant C is universal in
the sense that it does not depend on K, 11, or dmin.

6 Optimal dual variables for (15) is nonunique, because if y* is opti-
mal, y* + 01 is also optimal for any 6 € R. Therefore, we can always
find an optimal dual variable that corresponds to f(q) where q € Q.

7 Define € £ %K Let)hb(ﬁ) 21— 7)’% —7 7 and h(7) £ —7 2. Define
he)—-h(1/3" d _ B _
o MUY h) and Dy 2 Iy (1/3cpd)) — G, 'h(1/ X jevdy)- In

b e (1/2@3/)
addition to the properties listed in the main text, we also have that
£i(d;/>"4eyd¢) has the same value for all j € V. These properties are

useful in the following analysis.
8 Recall that we define d; £ 1 for all j € V\ V4.

9 The assumption F,(p™") = 0 is without loss of generality, because
if a fraction of demand is unwilling to pay p™7, that demand can be
excluded from ¢ itself.

10 The report at https://nacto.org/bike-share-statistics-2017/ tells
us that U.S. dock-based systems produced an average of 1.7 rides/
bike/day, whereas dockless bike share systems nationally had an
average of about 0.3 rides/bike/day. Average trip duration was 12
minutes for pass holders (subscribers) and 28 minutes for casual
users. In other words, for most systems, each bike was used less
than one hour per day, which implies that less than 10% of bikes
are in use at any given time during day hours (in fact, the utilization
is less than 20% even during rush hours).

" The JEA setting can be mapped to ride-hailing as follows: There
is a demand type 7 corresponding to each (origin, destination) pair
(j, k) = V2, with P(t) being nodes close to the origin j and D(t) being
nodes close to the destination k.

12 The correspondence between our (ride-hailing) simulation setting
and the JEA setting is as follows: In the ride-hailing setting, the type
of a demand is its origin-destination pair, that is, 7 =V x V. For
type (j, k) demand, its supply neighborhood is the neighboring loca-
tions of j, which we denote by (with a slight abuse of notation) P(j).
We do not consider flexible dropoff; therefore, D(j, k) = {k}. In our
simulations, we focus on the special case where demand is station-
ary instead of time varying, even though MBP policies are expected
to work well if demand varies slowly over time. We make this
choice because it allows us to compare performance against that of
the policy proposed in Banerjee et al. (2021) for the stationary
demand setting.

13 To make the comparison fair, we modify the UDOA and DMW
policies using the same heuristic approach, as the original UDOA
and DMW policies do not take into account the travel delays.

* We first uniformly sample 100 points from the simplex {q: 2y
gi = K}, which are used as the system’s initial states at 6 a.m. (note that
all the cars are free). Then we “warm-up” the system by employing the

static policy from 6 a.m. to 8 a.m., assuming the demand arrival pro-
cess during this period to be stationary (with the average demand
arrival rate during this period as mean). Finally, we use the system’s
states at 8 a.m. as the initial states.

15 WSPP js still an upper bound on stationary performance when

pickup and service times are included in our model. However, in
this case a transient upper bound is difficult to derive. As a result,
we use the ratio of average per period payoff to WST as a perfor-
mance measure, with the understanding that it may exceed one at
early times.

18 For example, the average payoff generated by static policy in the
last hour of a 20-hour period is 0.96 WSTT.

7 Keeping a small fraction of vehicles free is helpful in managing
the stochasticity in the system. The present paper does not study
how to systematically choose the utilization parameter.
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