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Abstract. We study the problem of maximizing payoff generated over a period of time in 
a general class of closed queueing networks with a finite, fixed number of supply units that 
circulate in the system. Demand arrives stochastically, and serving a demand unit (cus
tomer) causes a supply unit to relocate from the “origin” to the “destination” of the cus
tomer. The key challenge is to manage the distribution of supply in the network. We 
consider general controls including customer entry control, pricing, and assignment. Moti
vating applications include shared transportation platforms and scrip systems. Inspired by 
the mirror descent algorithm for optimization and the backpressure policy for network 
control, we introduce a rich family of mirror backpressure (MBP) control policies. The MBP 
policies are simple and practical and crucially do not need any statistical knowledge of the 
demand (customer) arrival rates (these rates are permitted to vary in time). Under mild 
conditions, we propose MBP policies that are provably near optimal. Specifically, our poli
cies lose at most O K

T + 1
K +

ffiffiffiffiffiffi
ηK

p� �
payoff per customer relative to the optimal policy that 

knows the demand arrival rates, where K is the number of supply units, T is the total num
ber of customers over the time horizon, and η is the demand process’ average rate of 
change per customer arrival. An adaptation of MBP is found to perform well in numerical 
experiments based on data from NYC Cab.
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1. Introduction
The control of complex systems with circulating re
sources such as shared transportation platforms and scrip 
systems has been heavily studied in recent years. The 
hallmark of such systems is that serving a demand unit 
causes a (reusable) supply unit to be relocated. Closed 
queueing networks (i.e., networks where a fixed number 
of supply units circulate in the system) provide a power
ful abstraction for these applications (Braverman et al. 
2019, Banerjee et al. 2021). The key challenge is managing 
the distribution of supply in the network. A widely adopted 
approach for this problem is to solve the deterministic 
optimization problem that arises in the continuum limit 
(often called the static planning problem) and show that the 
resulting control policy is near optimal in a certain 
asymptotic regime. However, this approach only works 
under the restrictive assumption that the system parameters 
(demand arrival rates) are precisely known, and most existing 
works assume time invariant parameters.

In this paper, we relax both assumptions. We propose 
a family of simple control policies that are blind in that 
they use no prior knowledge of demand arrival rates 
and prove strong transient and steady-state perfor
mance guarantees for these policies for time-varying 
demand arrival rates. Strong performance in simula
tions backs up our theoretical findings.

1.1. Informal Description of Our Model
Our main setting is one where the control levers include 
entry control and flexible assignment of resources, with 
time-varying demand arrival rates. Later we allow dy
namic pricing control and show that our machinery and 
guarantees extend seamlessly. For simplicity, we intro
duce here the special case of our main model with entry 
control only. We consider a closed queueing network 
that consists of a set of nodes (locations) V, and a fixed 
number K of supply units that circulate in the system. 
Demand units with different origin-destination pairs (j, k) 
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arrive stochastically over slotted time with some time- 
varying arrival rates which are unknown to the control
ler. The controller dynamically decides whether to admit 
each incoming demand unit. Each control decision to 
admit a demand unit has two effects: It generates a cer
tain payoff wjk depending on the origin-destination pair 
of the demand unit, and it causes a supply unit to relocate 
from the origin j to the destination k instantaneously. 
The goal of the system is to maximize the collected pay
off over a period of time.

Notably, the greedy policy, which admits a demand 
unit if a supply unit is available in its pick-up neigh
borhood, is generically far from optimal: Even as 
K → ∞, the optimality gap per demand unit of this 
policy is Ω(1) even in steady state; see Online Appen
dix H.1. The intuition is that some nodes have no 
available supply an Ω(1) fraction of the time in steady 
state under the greedy policy. Furthermore, if demand 
arrival rates are imperfectly known, any state inde
pendent policy (such as that of Banerjee et al. 2021) 
generically suffers a steady-state optimality gap per 
demand unit of Ω(1) (Banerjee et al. 2018, proposition 
4; 2021).

1.2. Our Control Policy
The system state at time t is the vector of queue lengths 
q[t] � [q1[t], : : : , q | V | [t]]⊤, which sums up to the total 
supply 1⊤q[t] � K; we work with a normalized queue 
length vector q satisfying 1⊤q[t] � 1. Our proposed 
mirror backpressure (MBP) policy makes entry control 
decisions according to the following simple rule: Admit 
a demand unit with origin node j and destination node 
k if and only if the score wjk + f (qj[t]) � f (qk[t]) ≥ 0 and 
qj[t] > 0. Here, f (·)¢ �

ffiffiffiffi
m

√
· q�1

2
j is a suitably chosen 

congestion function, a monotone increasing function that 
causes the policy to be generous in allowing use of sup
ply from long queues while protecting supply in near- 
empty queues. See Figures 1 and 2 for illustrations. The 
MBP policy is agnostic to demand arrival rates.

1.3. Performance Guarantee
We show that, under a mild connectivity assump
tion on the network, the MBP policy is near optimal. 
Specifically, we show that our policies lose payoff (per 
demand unit) at most O

�
(K=T) + (1=K) +

ffiffiffiffiffiffi
ηK

p �
rela

tive to the optimal policy that knows the demand 
arrival rates, where K is the number of supply units, T 
is the number of demand units that arrive during the 
period of interest, and η is the demand process’ average 
rate of change per customer arrival. Our result is nona
symptotic, that is, our performance guarantee holds for 
finite K and T and thus covers both transient and steady 
state performance. In particular, for stationary demand 
arrivals, taking T → ∞, we obtain a steady-state opti
mality gap of O(1=K). Our bound further provides a 
guarantee on transient performance: The horizon- 
dependent term K/T in our bound on optimality gap is 
small if the total number of arrivals T over the horizon 
is large compared with the number of supply units K. 
Our policies retain their good performance if the 
demand arrival rate’s average rate of change over K 
periods, that is, the term ηK, is small. We find that our 
bound is invariant to system size in a relevant scaling 
regime (the large market regime) where the number of 
supply units K increases proportionally to the demand 
arrival rates (see the discussion after Theorem 1). In this 
regime, Treal ¢T=K is an invariant as K → ∞, which 
can be interpreted as the time horizon measured in 
physical time. Let ζ¢ηK be the average rate of change 
of demand with respect to physical time. We can 
rewrite our bound on the optimality gap as 

O 1
Treal +

1
K

+
ffiffiffi
ζ

p
� �

⟶K→∞ O 1
Treal +

ffiffiffi
ζ

p
� �

:

1.4. Motivation for Our Control Policy
Our control approach is inspired by the celebrated 
backpressure methodology of Tassiulas and Ephre
mides (1992) for the control of queueing networks. 
Backpressure simply uses queue lengths as congestion 
costs (the shadow prices to the flow constraints; the 
flow constraint for each queue is that the inflow must 

Figure 1. Our MBP Policy Admits a Demand with Origin j 
and Destination k if and Only if the Previously Illustrated 
Score Is Nonnonnegative and j Has at Least One Supply Unit 

Figure 2. Example of a Congestion Function (a Mapping 
from Queue Lengths to Congestion Costs) That Aggressively 
Protects Supply Units in Near-Empty Queues 
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be equal to the outflow in the long run) and chooses a 
control decision at each time that maximizes the myo
pic payoff inclusive of congestion costs. Concretely, in 
the special case where entry control is the only lever
age, backpressure admits a demand if and only if the 
payoff of serving the demand plus the origin queue 
length exceeds the destination queue length. This sim
ple approach has been used very effectively in a range 
of settings arising in cloud computing, networking, 
and so on (Georgiadis et al. 2006). Backpressure is prov
ably near optimal (in the large market limit) in many 
settings where payoffs accrue from serving jobs be
cause it has the property of executing dual stochastic 
gradient descent (SGD) on the controller’s determinis
tic (continuum limit) optimization problem. However, 
this property breaks down when the so-called “no- 
underflow constraint” binds, making it challenging to 
use backpressure in our setting.

The no-underflow constraint is that each decision to 
admit a demand unit needs to be backed by an avail
able supply unit at the pick-up node of the demand. 
This constraint binds in our setting under backpressure 
because we model nonzero payoffs from serving a cus
tomer, as a result of which the congestion-adjusted 
myopic payoff can be positive even if the origin queue 
is empty (see Online Appendix H.2 for a discussion). 
Moreover, several popular workarounds to this issue 
fail in our setting (see Section 1.7).

Our Mirror Backpressure (MBP) policy generalizes the 
celebrated backpressure (BP) policy. Whereas BP uses the 
queue lengths as congestion costs, MBP employs a flexi
bly chosen congestion function f (·) to translate from queue 
lengths to congestion costs. The mirror map can be flexi
bly chosen to fit the problem geometry arising from the 
no-underflow constraints. Roughly, we find better per
formance with congestion functions which are steep for 
small queue lengths, the intuition being that this makes 
MBP more aggressive in protecting the shortest queues 
(and hence preventing underflow). In case of finite buf
fers, we use congestion functions which moreover in
crease steeply as the queue length approaches buffer 
capacity, to prevent buffer overflow (Section 5.1).

1.5. Analytical Approach
We show that MBP has the property that it executes 
dual stochastic mirror descent (Nemirovsky and Yudin 
1983, Beck and Teboulle 2003) on the platform’s contin
uum limit optimization problem, which generalizes the 
SGD property of backpressure. We develop a general 
machinery to prove performance guarantees for MBP: 
We use the antiderivative of the chosen congestion func
tion as the Lyapunov function in our analysis and adapt 
the Lyapunov drift method from the network control lit
erature to obtain sharp bounds on the suboptimality 
caused by the no-underflow constraint. Our analysis 
exploits the structure of the platform’s continuum limit 

optimization problem (see Section 4). Our work fits into 
the broad literature on the control of stochastic proces
sing networks (Harrison 2003).

1.6. Applications
Our models include a number of ingredients that are 
central in many applications. We illustrate its versatil
ity by discussing the application to shared transporta
tion systems (Section 6) and the application to scrip 
systems (Online Appendix G). These applications and 
the relevant settings in the paper are summarized in 
Table 1.

Shared transportation systems include ride-hailing 
and bike sharing systems. Here the nodes in our model 
correspond to geographical locations, while supply 
units and demand units correspond to vehicles and 
customers, respectively. Bike sharing systems dynami
cally incentivize certain trips using point systems to 
minimize out-of-bike and out-of-dock events caused by 
demand imbalance. Our pricing setting is relevant for 
the design of a dynamic incentive program for bike 
sharing; in particular, it allows for a limited number of 
docks. Ride-hailing platforms make dynamic decisions 
to optimize their objectives (e.g., revenue, welfare). For 
ride-hailing, our joint pricing-assignment (JPA) model 
is relevant in regions such as North America, and our 
entry-assignment control model is relevant in regions 
where dynamic pricing is undesirable like in China. We 
perform simulations of ride-hailing and find that our 
MBP policy, suitably adapted to account for positive 
travel times, performs well (Section 6.1).

A scrip system is a nonmonetary trade economy 
where agents use scrips (tokens, coupons, artificial 
currency) to exchange services (because monetary 
transfer is undesirable or impractical), for example, 
for babysitting or kidney exchange. A key challenge 
in these markets is the design of the admission-and- 
provider-selection rule: If an agent is running low on 
scrip balance, should the agent be allowed to request 
services? If yes, and if there are several possible provi
ders for a trade, who should be selected as the service 
provider? In Online Appendix G, we show that a natu
ral model of a scrip system is a special case of our 
entry-assignment control setting, yielding a near opti
mal admission-and-provider-selection control rule.

1.7. Literature Review
1.7.1. MaxWeight/Backpressure Policy. Backpressure 
(also known as MaxWeight; Tassiulas and Ephremides 
1992, Georgiadis et al. 2006) are well-studied dynamic 
control policies in constrained queueing networks for 
workload minimization (Stolyar 2004, Dai and Lin 2008), 
queue length minimization (Eryilmaz and Srikant 2012), 
utility maximization (Eryilmaz and Srikant 2007), and 
so on. Attractive features of MaxWeight/backpressure 
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policies include their simplicity and provably good per
formance and that arrival/service rate information is 
not required beforehand.

The main challenge in using backpressure in set
tings with payoffs is the no-underflow constraints, as 
described earlier. Several works make strong assump
tions to ensure the constraint does not bind: For exam
ple, Dai and Lin (2005) assume that the network satisfies 
a so-called extreme allocation available (EAA) condition; 
Stolyar (2005) assumes that payoffs are generated only 
by the source nodes, which have infinite queue lengths. 
Huang and Neely (2011) consider networks where the 
no-underflow constraint does bind, but the payoffs are 
generated only by the output nodes. In our setting, pay
offs are essential (there is value generated by serving a 
customer) and can be generated by any node. Therefore, 
the no-underflow constraint binds, and none of the 
aforementioned assumptions hold for our network. 
Another workaround is a machinery that introduces vir
tual queues (Jiang and Walrand 2009). The idea is to intro
duce a “fake” supply unit into the network each time the 
constraint binds to preserve the SGD property of back
pressure. However, in open queueing networks, these 
fake supply units eventually leave the system and there
fore have a small effect (under appropriate assumptions). 
In our closed network setting, these fake supply units, 
once created, never leave and therefore would build up 
in the system, irreparably damaging performance.

Most of this literature considers the open queueing 
networks setting, where packets/jobs enter and leave, 
and there is much less work on closed networks. An 
exception is a recent paper on assignment control of 
closed networks by Banerjee et al. (2018), which shows 
the large deviations optimality of “scaled” MaxWeight 
policies.

Similar to MBP, several works use nonlinear functions 
of queue lengths for decision making to improve on the 
performance of Backpressure in a variety of contexts. 
Walton (2015) proposes concave switching policies that 
generalize backpressure to address a weakness of back
pressure in fixed route multihop networks, namely, that 
the number of queues it needs to maintain grows rapidly 
in network size. Neely (2006) uses exponential functions 
of queue length as congestion functions to achieve the 
optimal delay-utility tradeoff. Gupta and Radovanović 
(2020) use nonlinear functions of the state variables in 
the context of online stochastic bin-packing to obtain 

distribution-oblivious algorithms with sublinear addi
tive suboptimality. Gupta and Radovanović (2020) also 
identify the connection to mirror descent as we do for 
MBP.

1.7.2. Mirror Descent. Mirror descent (MD) is a gener
alization of the gradient descent algorithm for optimiza
tion (Nemirovsky and Yudin 1983, Beck and Teboulle 
2003). Recently, there have been several works that use 
online MD to solve other online decision-making pro
blems, including the k-server problem (Bubeck et al. 
2018) and various online packing and covering problems 
(Agrawal and Devanur 2014, Gupta and Molinaro 2016).

1.7.3. Applications: Shared Transportation, Scrip Sys
tems. Most of the ride-hailing literature studied controls 
that require the exact knowledge of system parameters: 
Özkan and Ward (2020) studied payoff maximizing 
assignment control in an open queueing network model, 
Braverman et al. (2019) derived the optimal state inde
pendent routing policy that sends empty vehicles to 
under-supplied locations, and Banerjee et al. (2021) 
adopted the Gordon-Newell closed queueing network 
model and considered various controls that maximize 
throughput, welfare, or revenue. Balseiro et al. (2021) 
considered a dynamic programming-based approach 
for dynamic pricing for a specific network of star struc
ture. Ma et al. (2019) studied the somewhat different 
issue of ensuring that drivers have the incentive to 
accept dispatches by setting prices that are sufficiently 
smooth in space and time in a model with no demand 
stochasticity. Banerjee et al. (2018), who assume a near 
balance condition1 on demands and equal pickup costs, 
may be the only paper in this space that does not 
require knowledge of system parameters. Compared 
with Banerjee et al. (2021), who obtain a steady-state 
optimality gap of O 1

K
� �

(in the absence of travel times) 
assuming perfect knowledge of demand arrival rates that 
are assumed to be stationary, our control policy achieves 
the same steady-state optimality gap with no knowledge 
of demand arrival rates and further achieves a transient 
optimality gap under time-varying demand arrival rates 
of O((K=T) + (1=K) +

ffiffiffiffiffiffi
ηK

p
) for a finite number of arri

vals T and average changes of up to η per arrival in 
demand arrival rates. Some of these papers are able to 
formally handle travel delays: Braverman et al. (2019) 
and Banerjee et al. (2018, 2021) prove theoretical results 

Table 1. Summary of Applications of Our Model

Application Control lever Corresponding setting in this paper

Ride-hailing in the United States and Europe Pricing and dispatch Joint pricing-assignment
Ride-hailing in China Admission and dispatch Joint entry-assignment
Bike sharing Reward points Pricing (finite buffer queues)
Scrip systems Admission and provider selection Joint entry-assignment
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for the setting with independent and identically distrib
uted (i.i.d.) geometric/exponential travel delays; Ma 
et al. (2019) consider deterministic travel delays. Con
versely, Balseiro et al. (2021) ignores travel delays in 
their theory and later heuristically adapt their policy to 
accommodate travel delay (the present paper follows a 
similar approach). Özkan and Ward (2020) is the only 
paper among these that (like the present paper) allows 
time-varying demand.

Our model can be applied to the design of dynamic 
incentive programs for bike sharing systems (Chung 
et al. 2018) and service provider rules for scrip systems 
(Johnson et al. 2014, Agarwal et al. 2019). For example, 
the “minimum scrip selection rule” proposed in John
son et al. (2014) is a special case of our policy, and our 
methodology leads to control rules in much more gen
eral settings as described in Online Appendix G.

1.7.4. Other Related Work. A related stream of re
search studies online stochastic bipartite matching (Cal
dentey et al. 2009, Adan and Weiss 2012, Bušić and 
Meyn 2015, Mairesse and Moyal 2016); the main differ
ence between their setting and ours is that we study a 
closed system where supply units never enter or leave 
the system. Network revenue management is a classical 
set of (open network) dynamic resource allocation pro
blems (Gallego and Van Ryzin 1994, Talluri and Van 
Ryzin 2006, Bumpensanti and Wang 2020). Jordan and 
Graves (1995), Désir et al. (2016), Shi et al. (2019), and 
others study how process flexibility can facilitate im
proved performance, analogous to our use of assign
ment control to maximize payoff (when all pickup costs 
are equal), but the focus there is more on network design 
than on control policies. Again, this is an open network 
setting in that each supply unit can be used only once.

1.8. Organization of the Paper
The remainder of our paper is organized as follows. 
Section 2 presents our main model of joint entry- 
assignment control with time-varying demand arrival 
rates and the platform objective. Section 3 introduces 
the MBP policy and presents our main theoretical 
result, that is, a performance guarantee for the MBP 
policies. Section 4 outlines the proof of our main result. 
In Section 5, we provide MBP policies for the joint 
pricing-assignment control setting, demonstrating the 
versatility of our approach. In Section 6, we discuss the 
applications to shared transportation systems.

1.8.1. Notation. All vectors are column vectors if not 
specified otherwise. The transpose of vector or matrix x 
is denoted as x⊤. We use Rn

+ to denote the nonnegative 
orthant, and Rn

++ to denote the positive orthant. We use 
ei to denote the ith unit column vector with the ith coor
dinate being one and all other coordinates being zero, 

and 1 (0) to denote the all one (zero) column vector, 
where the dimension of the vector will be indicated in 
the superscript when it is not clear from the context.

2. Model: Joint Entry-Assignment Control
In this section, we formally define our model of joint 
entry-assignment control in closed queueing networks. 
We consider a finite-state Markov chain model with slot
ted time t � 0, 1, 2, : : : , where a fixed number (denoted 
by K) of identical supply units circulate among a set of 
nodes V (locations), with m¢ |V | > 1. In our model, t 
will capture the number of demand units (customers) 
who have arrived thus far.

2.1. Queues (System State)
At each node j ∈ V, there is an infinite-buffer queue 
of supply units. (Section 5.1 shows how to seamlessly 
incorporate finite-buffer queues.) The system state is the 
vector of queue lengths at time t, which we denote by 
q[t] � [q1[t], : : : , qm[t]]⊤. Denote the state space of queue 
lengths by ΩK ¢ {q : q ∈ Zm

+ , 1⊤q � K}, and the normal
ized state space by Ω¢ {q : q ∈ Rm

+ , 1⊤q � 1}.

2.2. Demand Types and Time-Varying 
Arrival Process

We assume exactly one demand unit (customer) arrives 
at each period t and denote its abstract type by τ[t] ∈ T , 
and the type for the demand unit is drawn from distri
bution ft � (φt

τ)τ∈T , independent of demands in earlier 
periods.2 The demand arrival rate (i.e., type distribution) 
can be time varying. Importantly, the system can ob
serve the type of the arriving demand at the beginning 
of each time slot, but the probabilities (arrival rates) ft are 
not known. Thus, we substantially relax the assumption 
in previous works that the system has exact knowledge 
of demand arrival rates (Özkan and Ward 2020, Balseiro 
et al. 2021, Banerjee et al. 2021).

Each demand type τ ∈ T has a pick-up neighborhood 
P(τ) ⊂ V,P(τ) ≠ ∅ and drop-off neighborhood D(τ) ⊂

V,D(τ) ≠ ∅. The sets (P(τ))τ∈V and (D(τ))τ∈V are model 
primitives. (In shared transportation systems, each de
mand type τ may correspond to an (origin, destination) 
pair in V2, with P(τ) being nodes close to the origin and 
D(τ) being nodes close to the destination.)

2.3. Temporal Uncertainty of Demand 
Arrival Rates

We define the following notion of η-slowly varying demand 
that characterizes the average amount of change of de
mand arrival rates over a finite time horizon.

Definition 1. We say that demand arrival rates vary 
η-slowly over a finite horizon T if

1
T � 1

XT�1

t�1
‖ft+1 � ft‖1 ≤ η:
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2.4. Control and Payoff
At time t, after observing the demand type τ[t] � τ, the 
system makes a decision

(xjτk[t])j∈P(τ), k∈D(τ) ∈ {0, 1}
| P(τ) | · | D(τ) |

such that
X

j∈P(τ), k∈D(τ)

xjτk[t] ≤ 1: (1) 

Here xjτk[t] � 1 stands for the platform choosing pick- 
up node j ∈ P(τ) and drop-off node k ∈ D(τ), causing a 
supply unit to be relocated from j to k. The constraint in 
(1) captures that each demand unit is either served by 
one supply unit or not served. With xjτk[t] � 1, the sys
tem collects payoff v[t] � wjτk. Without loss of general
ity, we assume the scaling maxτ∈T , j∈P(τ), k∈D(τ) |wjτk | � 1:

Because the queue lengths are nonnegative by defini
tion, we require the following no-underflow constraint to 
be met at any t:

xjτk[t] � 0 if qj[t] � 0: (2) 

As a convention, let xjτ′k � 0 if τ′ ≠ τ.
A feasible policy specifies, for each time t ∈ {1, 2, : : : }, 

a mapping from the history thus far of demand types 
(τ[t′])t′≤t and states (q[t′])t′≤t to a decision xjτk[t] ∈

{0, 1}
| P(τ) | · | D(τ) | satisfying (2), where τ � τ[t] as above. 

We allow xjτk[t] to be randomized, although our pro
posed policies will be deterministic. The set of feasible 
policies is denoted by U.

2.5. System Dynamics and Objective
The dynamics of system state q[t] is as follows:

q[t + 1] � q[t] +
X

τ∈T , j∈P(τ),k∈D(τ)

(�ej + ek)xjτk[t], (3) 

that is, a supply unit is relocated from j to k. We use 
vπ[t] to denote the payoff collected at time t under con
trol policy π. Let Wπ

T denote the average payoff per 
period (i.e., per customer) collected by policy π in the 
first T periods, and let W∗

T denote the optimal payoff 
per period in the first T periods over all admissible poli
cies. Mathematically, they are defined, respectively, as3

Wπ
T ¢ min

q∈ΩK

1
T
XT

t�1
E[vπ[t] |q[0] � q],

W∗
T ¢ sup

π∈U

max
q∈ΩK

1
T
XT

t�1
E[vπ[t] |q[0] � q]: (4) 

Define the infinite-horizon per period payoff Wπ col
lected by policy π and the optimal per period payoff 
over all admissible policies W∗, respectively, as

Wπ¢ lim inf
T→∞

Wπ
T , W∗ ¢ lim sup

T→∞

W∗
T: (5) 

We measure the performance of a control policy π by 
its finite- and infinite-horizon per-customer optimality 

gap (“loss”), defined, respectively, as

LπT � W∗
T � Wπ

T and Lπ � W∗ � Wπ: (6) 

We consider the worst-case initial system state when 
evaluating a given policy and the best initial state for 
the optimal benchmark; see (4). Such a definition of 
optimality gap provides a conservative bound on pol
icy performance and avoids the (unilluminating) dis
cussion of the dependence of performance on initial 
state.

We make the following mild connectivity assump
tion on the primitives ({ft}t≤T,P,D).

Condition 1 (Strong Connectivity of ({ft}t≤T,P,D)). For 
any demand arrival rates f, define the connectedness of tri
ple (f, P, D) as

α(f,P,D)¢ min
S ( V,S≠∅

X

τ∈P�1(S)∩D�1(V\S)

φτ: (7) 

Here P�1(S)¢ {τ ∈ T : P(τ) ∩ S ≠ ∅} is the set of demand 
types for which nodes S can serve as a pickup node, and 
D�1(·) is defined similarly. We assume that for any 1 ≤ t ≤

T, (ft,P,D) is strongly connected, namely, that α(ft,P, 
D) > 0.

The strong connectivity of (f,P,D) is equivalent to 
requiring that with (stationary) demand arrival rates f, 
for every ordered pair of nodes (j, k), there is a sequence 
of demand types with positive arrival rates and corre
sponding pick-up and drop-off nodes that would take 
a supply unit from j eventually to k.

We conclude this section with the observation that 
the main assumption of Banerjee et al. (2018) is auto
matically violated in our setting.

Remark 1. The complete resource pooling (CRP) con
dition imposed in Banerjee et al. (2018, assumption 3) 
is automatically violated in the following subclass of 
our model. Consider our setup including Condition 1, 
where each demand type τ � (i, j) corresponds to an 
origin-destination pair and that P(i, j) � {i}, D(i, j) �

{j}. The CRP condition can be stated as follows: for 
each subset of nodes S ( V, S ≠ ∅, the “net demand” 
µS ¢

P
i∈S
P

j∈V\Sφij is less than the “net supply” λS ¢ 
P

j∈V\S
P

i∈Sφji, that is, µS < λS. Clearly, any demand 
arrival rates f violate CRP, because if µS < λS for 
some S ( V, S ≠ ∅, then this means that µV\S > λV\S 

(given that µV\S � λS and λV\S � µS by definition), that 
is, CRP is violated.

3. MBP Policies and Main Result
In this section, we propose a family of blind online con
trol policies and state our main result for these policies, 
which provides a strong transient and steady-state per
formance guarantee for finite systems.
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3.1. MBP Policies
We propose a family of online control policies that we 
call MBP policies. Each member of the MBP family is 
specified by a mapping of normalized queue lengths 
(which we will define later) f(q) : Ω → Rm, where f(q)

¢ [f (q1), : : : , f (qm)]
⊤ and f is a monotone increasing 

function.4 We will refer to f (·) as the congestion function, 
which maps each (normalized) queue length to a con
gestion cost at that node, based on which MBP will 
make its decisions.

In this section we will state our main result for the 
congestion function:

f (qj) ¢ �
ffiffiffiffi
m

√
· q�1

2
j , (8) 

and postpone the results for other choices of congestion 
functions to Online Appendix D (see also Remark 2). 
We will later clarify the precise role of the congestion 
function and show that it is related to the mirror map 
in mirror descent (Beck and Teboulle 2003). Similar to 
the design of effective mirror descent algorithms, the 
choice of congestion function should depend on the 
constraints of the setting, leading to an interesting inter
play between problem geometry and policy design. For 
instance, we use a different congestion function for the 
setting in Section 5.1 where there are additional buffer 
capacity constraints.

For technical reasons, we need to keep q in the inte
rior of the normalized state space Ω; that is, we need to 
ensure that all normalized queue lengths remain posi
tive. This is achieved by defining the normalized queue 
lengths q as

qi ¢
qi + δK

K̃
for δK ¢

ffiffiffiffi
K

√
and K̃ ¢K + mδK: (9) 

This definition leads to 1⊤q � 1 and therefore q ∈ Ω.
Our proposed MBP policy for the joint entry- 

assignment control problem is given in Algorithm 1. 
MBP serves a demand of type τ using a supply unit at 
j∗ and relocate it to k∗ if and only if

(j∗, k∗) � arg max
j∈P(τ), k∈D(τ)

wjτk + f (qj) � f (qk), (10) 

and that wj∗τk∗ + f (qj∗ ) � f (qk∗ ) is nonnegative, and the ori
gin node j∗ has at least one supply unit (see Figure 1 for 
illustration of the score in Section 1). The score in (10) is 
nonnegative if and only if the payoff wjτk of serving the 
demand outweighs the difference of congestion costs 
(given by f (qk) and f (qj)) between the dropoff node k 
and the pickup node j. Roughly speaking, MBP is more 
willing to take a supply unit from a long queue and 
add it to a short queue than vice versa (Figures 1 and 2). 
The policy is not only completely blind but also semilo
cal; that is, it only uses the queue lengths at the origin 
and destination. The congestion cost (8) increases with 
queue length (as required) and furthermore decreases 

sharply as queue length approaches zero. Observe that 
such a choice of congestion function makes MBP very 
reluctant to take supply units from short queues and 
helps to enforce no-underflow Constraint (2).

Algorithm 1 (MBP Policy for Joint Entry-Assignment Control)
At the start of period t, the system observes demand 
type τ[t] � τ:

(j∗, k∗) ← arg maxj∈P(τ), k∈D(τ)wjτk + f (qj[t]) � f (qk[t])
if wj∗τk∗ + f (qj∗ [t]) � f (qk∗ [t]) ≥ 0 and qj∗ [t] > 0 then

xj∗τk∗ [t] ← 1, that is, serve the incoming demand 
using a supply unit from j∗ and relocate it to k∗;

else
xj∗τk∗ [t] ← 0, that is, drop the incoming demand;

end
The queue lengths update as q[t + 1] � q[t] � 1

K̃ xj∗τk∗

[t](ej∗ � ek∗ ).

3.2. Performance Guarantee for MBP Policies
We now formally state the main performance guaran
tee of our paper for the joint entry-assignment control 
model introduced in Section 2. We will outline the 
proof in Section 4 and extend the result to the dynamic 
pricing setting in Section 5.

Theorem 1. Consider a set of m nodes and any sequence 
of demand arrival rates {ft}t≤T that satisfy Condition 1
and vary η-slowly (Definition 1). Define αmin ¢min1≤t≤Tα 

(ft) > 0. Then there exists K1 � poly(m, (1=αmin)), and a 
universal constant C < ∞, such that the following holds.5
For the congestion function f (·) defined in (8), for any 
K ≥ K1, the following finite-horizon guarantee holds for 
Algorithm 1:

LMBP
T ≤ M1

K
T

+
ffiffiffiffiffiffi
ηK

p
� �

+ M2
1
K

,

for M1 ¢Cm and M2 ¢Cm2:

Corollary 1. When the demand arrivals are stationary 
(η� 0), for any K ≥ K1, the following infinite-horizon guar
antee holds for Algorithm 1:

LMBP ≤ M2
1
K

, for M2 � Cm2:

Remark 2. In Section 5, we obtain results similar to 
Theorem 1 for the dynamic pricing setting (Theorem 3). 
In Online Appendix D (Theorem 4), we generalize The
orem 1 by showing similar performance guarantees for 
a whole class of congestion functions that satisfy certain 
growth conditions. Informally, the congestion function 
needs to be steep enough near zero to protect the nodes 
from being drained of supply units.

There are several attractive features of the perfor
mance guarantee provided by Theorem 1 for the sim
ple and practically appealing MBP policy: 
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(1) The policy is completely blind. In practice, the 
platform operator at best has access to an imperfect 
estimate of the demand arrival rates {ft}, so it is a very 
attractive feature of the policy that it does not need any 
estimate of {ft} whatsoever. It is worth noting that the 
consequent bound of O(1=K) on the steady state opti
mality gap remarkably matches that provided by Bane
rjee et al. (2021) even though MBP requires no 
knowledge of f, whereas the policy of Banerjee et al. 
(2021) requires exact knowledge of f. (However, our 
constant is quadratic in the number of nodes m, 
whereas the constant in the other paper is linear in m.) 
As shown in Banerjee et al. (2018, proposition 4), if the 
estimate of demand arrival rates is imperfect, any state 
independent policy (such as that of Banerjee et al. 
(2021)) generically suffers a long run (steady state) per 
customer optimality gap of Ω(1) (as K → ∞).

(2) Guarantee on transient performance. In contrast 
with Banerjee et al. (2021), who provide only a steady- 
state bound for finite K, we are able to provide a perfor
mance guarantee for finite horizon and finite (large 
enough) K. The horizon-dependent term K/T in our 
bound on optimality gap is small if the total number of 
arrivals T is large compared with the number of supply 
units K.

It is worth noting that our bound does not deteriorate 
as the system size increases in the “large market 
regime,” where the number of supply units K increases 
proportionally to the demand arrival rates (this regime 
is natural in ride-hailing settings, taking the trip dura
tion to be of order 1 in physical time, and where a non
trivial fraction of cars are busy at any time (Braverman 
et al. 2019). Let Treal denote the horizon in physical time. 
As K increases in the large market regime, the primitive 
f remains unchanged, whereas T �Θ(K · Treal) because 
there are Θ(K) arrivals per unit of physical time, and 
ζ¢ηK is the average rate of change of f with respect to 
physical time Hence, we can rewrite our performance 
guarantee as

W∗
T � WMBP

T ≤ M 1
Treal +

1
K +

ffiffiffi
ζ

p
� �

⟶K→∞ M 1
Treal +

ffiffiffi
ζ

p
� �

, 

which is small when Treal → ∞ and ζ � o(1).
(3) Guarantee for time-varying arrivals. Our bound 

shows that MBP is near optimal when the demand’s 
average rate of change is small (ηK � o(1)) and that the 
performance guarantee of MBP degrades gracefully as 
ηK increases. If the demand arrival rates remain sta
tionary for blocks of time, for example, the first half of 
the horizon has one stationary arrival rate matrix and 
the second half of the horizon has another stationary 
arrival rate matrix, then applying Corollary 1 to each 
contiguous block of time with stationary demand could 
yield a better guarantee than directly applying Theo
rem 1 to the entire horizon.

(4) Flexibility in the choice of congestion function. 
Because of the richness of the class of congestion func
tions covered in Online Appendix D that generalize 
Theorem 1, the system controller now has the addi
tional flexibility to choose a suitable congestion func
tion f (·). From a practical perspective, this flexibility 
can allow significant performance gains to be unlocked 
by making an appropriate choice of f (·), as evidenced 
by our numerical experiments in Section 6.1.

4. Proof of Theorem 1
In this section, we provide the key propositions and 
lemmas that lead to a proof of Theorem 1. Our analysis 
generalizes and refines the so-called Lyapunov drift 
method in the network control literature (Neely 2010).

We first define a sequence of deterministic optimiza
tion problems that arise in the continuum limit: the 
static planning problem (SPP) (Harrison 2003, Dai and 
Lin 2005), whose values we use to upper bound the 
optimal finite (and infinite) horizon per period W∗

T (and 
W∗) defined in (4) and (5). The SPP is a linear program 
(LP) defined for any demand arrival rates f:

SPP(f) : maximizex
X

τ∈T , j∈P(τ), k∈D(τ)

wjτk ·φτ · xjτk (11) 

s:t:
X

τ∈T , j∈P(τ), k∈D(τ)

φτ · xjτk(ej � ek) � 0

(flow balance),
(12) 

X

j∈P(τ),k∈D(τ)

xjτk ≤ 1, xjτk ≥ 0,

∀j, k ∈ V, τ ∈ T : (demand constraint):
(13) 

One interprets xjτk as the fraction of type τ demand that 
is served by pickup location j and dropoff location k, 
and the objective (11) as the rate at which payoff is gen
erated under the fractions x. In the SPP (11–13), one 
maximizes the rate of payoff generation subject to the 
requirement that the average inflow of supply units to 
each node in V must equal the outflow (Constraint 12) 
and that x are indeed fractions (Constraint 13). Let 
WSPP(f) be the optimal value of SPP(f). The following 
proposition formalizes that, the optimal finite horizon 
per customer payoff W∗

T cannot be much larger than 
WSPP(f), where f ¢ 1

T
PT�1

t�0 ft.

Proposition 1. For any horizon T < ∞, any K and any 
starting state q[0], the finite horizon and steady-state aver
age payoff W∗

T, W∗ are upper bounded as

W∗
T ≤ WSPP(f) + m K

T
, W∗ ≤ WSPP(f): (14) 
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We obtain the finite horizon upper bound to W∗
T in (14) 

by slightly relaxing the flow constraint (12) to accom
modate the fact that flow balance need not be exactly 
satisfied over a finite horizon. The proof is in Online 
Appendix A.

Our proposed MBP policy and its analysis is closely 
related to the (partial) dual of the SPP(ft):

minimizey gt(y), for gt(y)

¢
X

τ∈T

φt
τ max

j∈P(τ),k∈D(τ)
(wjτk + yj � yk)

+
: (15) 

Here, (x)
+
¢max{0, x}, and y are the dual variables cor

responding to the flow balance constraints (12) and have 
the interpretation of “congestion costs” (Neely 2010); 
that is, yj can be thought of as the “cost” of having one 
extra supply unit at node j. In fact, as we describe in 
Online Appendix I, MBP has the attractive property that 
it executes stochastic mirror descent (Beck and Teboulle 
2003) on (15) (where the inverse mirror map is the anti
derivative of the congestion function f(·)).

Our main result, Theorem 1, is directly driven by 
the following proposition that connects the perfor
mance of MBP and the benchmark in the nonstation
ary environment.

Proposition 2. Consider the setting in Theorem 1. Then 
there exists K1 � poly(m, (1=αmin)), and a universal con
stant C < ∞, such that the following holds. For the conges
tion function f (·) defined in (8), for any K ≥ K1, and any 
0 < ∆T < T the following guarantees hold for Algorithm 1:

LMBP
T ≤ M1

K
∆T

+ M2
1
K

+ ∆Tmη,

for M1 ¢Cm and M2 ¢Cm2:

We illustrate the high-level structure of the proof in 
Figure 3. We introduce a “batch size” quantity ∆T; ∆T is 
only used for the purpose of analysis and is not part of 
our algorithms. The loss of MBP policy in ∆T periods 
can be decomposed into three terms: 

(1) The first term (from left to right in Figure 3), 
is 1

T
PT�1

t�0 WSPP(ft) � WMBP
T . We call it the policy gap. 

We bound the policy gap using a Lyapunov analysis 

in Proposition 3. The antiderivative of the congestion 
function f(·) serves as the Lyapunov function. Our 
choice of f(·) ensures that the policy gap is (provably) 
small despite the no-underflow constraints.

(2) The second term, WSPP(f) � (1=∆T)
P∆T�1

t�0 WSPP(ft)

arises from the temporal variation of demand; there
fore, we call it the variation gap (it is zero for stationary 
demand). We bound the variation gap in Proposition 
4 using graph-theoretic analysis of the sensitivity of 
the SPP to f.

(3) The third term, W∗
T � WSPP(f), has already been 

bounded in Proposition 1.
Intuitively, the quantities in Figure 3 highlight the 

following tradeoff. When ∆T is large, the policy gap is 
small; when ∆T is small, the variation gap is small. 
Theorem 1 follows by balancing this tradeoff and set
ting ∆T �Θ(min(

ffiffiffiffiffiffiffiffiffi
K=η

p
, T)), which we prove in Online 

Appendix D.

4.1. Bounding the Policy Gap
In this section, we prove the following proposition that 
bounds the policy gap under MBP.

Proposition 3. Consider a set of m nodes and any sequence 
of demand arrival rates {ft}t≤T that satisfy Condition 1. 
Recall that αmin � min0≤t≤Tα(ft) > 0. Then there exists 
K1 � poly(m, (1=αmin)), and a universal constant C < ∞, 
such that the following holds. For the congestion function f (·)

defined in (8), for any K ≥ K1, the following guarantees hold 
for Algorithm 1:

1
T
XT�1

t�0
WSPP(ft) � WMBP

T ≤ M1
K
T + M2

1
K ,

for M1 ¢Cm and M2 ¢Cm2:

Notably, this proposition holds for arbitrary sequences 
of demand arrival rates satisfying Condition 1. The 
proof is based on Lyapunov analysis. A Lyapunov 
function will allow us to decompose the expected pay
off from the next arrival into a combination of the objec
tive, change in potential, and a per-period loss. We use 
the antiderivative of f(·) as our Lyapunov function; for 

Figure 3. (Color online) Roadmap of the Proof of Proposition 2
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the congestion function f in (8), this is

F(q)¢ � 2
ffiffiffiffi
m

√ X

j∈V

ffiffiffiffi
qj

q
: (16) 

The motivation for our choice of Lyapunov function 
comes from the “drift-plus-penalty” framework in the 
network control literature (Neely 2006, 2010; Gupta 
and Radovanović 2020). We generalize and refine the 
framework by adding a new term in the analysis, which 
allows us to bound the suboptimality contributed by 
underflow.

Recall that WSPP(ft) is the optimal value of SPP 
(11–13) with demand arrival rate ft, vMBP[t] denotes 
the payoff collected under the MBP policy in the tth 
period, and gt(·) is the dual problem (15). We have the 
following key lemma (proved in Online Appendix B.1).

Lemma 1 (Suboptimality of MBP in One Period). Con
sider any congestion function f (·) that is strictly increasing 
and continuously differentiable. We have the following 
decomposition (recall that K̃ � K + m

ffiffiffiffi
K

√
):

WSPP(ft) �E[vMBP[t] |q[t]]

≤ K̃(F(q[t]) �E[F(q[t + 1]) |q[t]])
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

V1 change in potential

+
1

2K̃
max

j∈V
max

q∈ qj[t]� 1
K̃,qj[t]+1

K̃

� � | f ′(q) |

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
V2 loss due to stochasticity

+ (WSPP(ft) � gt(f(q[t])))
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

V3 dual optimality gap

+ 1{qj[t] � 0, ∃j ∈ V}
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

V4 loss due to underflow

:

(17) 

In Lemma 1, the left-hand side (LHS) of (17) is the sub
optimality incurred by MBP (benchmark against the 
value of SPP(ft)) in a single period. On the right-hand 
side (RHS) of (17), V1 and V2 come from the standard 
Lyapunov drift argument; V3 is the negative of the dual 
suboptimality at y � f(q[t]), and hence it is always non
positive; amd V4 is the payoff loss because of underflow.

For the change in potential V1, it forms a telescoping 
series when summing over many periods and will 
therefore remain bounded. Hence, as we average over 
many periods, we have that V1 tends to zero.

We now proceed to upper bound V2 + V3 + V4 on 
the right-hand side of (17). We outline our analysis in 
the following. Observe that the terms V2 and V4 are 
nonnegative, whereas V3 is nonpositive; thus, the goal 
is to show that V3 compensates for V2 + V4. First, V2 is 
large when there exist very short queues (because the 
congestion function (8) changes rapidly only for short 
queue lengths), and V4 is nonzero only when some 

queues are empty. Helpfully, it turns out that V3 is more 
negative in these same cases; we show this by exploiting 
the structure of the dual problem (15). In Lemma 2, we 
provide an upper bound for V3 that becomes more neg
ative as the shortest queue length decreases. We prove 
Lemma 2 in Online Appendix B.2 by using complemen
tary slackness for the SPP (11–13).

Lemma 2. Consider any congestion function f (·) that is 
strictly increasing and continuously differentiable and any 
f with connectedness α(f) > 0. We have

V3 ≤ �α(f) · max
j∈V

f (qj) � min
j∈V

f (qj) � 2m
� �+

:

The following lemma bounds V2 + V3 + V4. The proof is 
in Online Appendix B.3. (In fact, we prove a general 
version of the lemma that applies to all congestion 
functions that satisfy certain growth conditions formal
ized in Condition 3 in Online Appendix C. The growth 
conditions serve to ensure that V3 compensates for 
V2 + V4.)

Lemma 3. Consider the congestion function (8) and any 
f with connectedness α(f) > 0. Then there exists K1 �

poly(m, (1=α(f))) such that for K ≥ K1 and a universal 
constant C > 0,

V2 + V3 + V4 ≤ M2
1
K̃

for M2 ¢Cm2: (18) 

Recall that K̃ � K + m
ffiffiffiffi
K

√
.

Putting Lemmas 1 and 3 together leads to the follow
ing proof of Proposition 3. The main idea is to use the 
Lyapunov drift argument of Neely (2010), namely, to 
sum the expectation of (17) (the bound in Lemma 1) 
over the first T time steps.

Proof of Proposition 3. Plugging in Lemma 3 into (17) 
in Lemma 1 and taking expectation, we obtain that there 
exists K1 � poly(m, (1=αmin)) such that for any 0 ≤ t ≤ T,

WSPP(ft) �E[vMBP[t]] ≤ K̃ E[F(q[t])] �E[F(q[t + 1])]
� �

+ M2
1
K̃

for K ≥ K1, (19) 

where K̃ � K + m
ffiffiffiffi
K

√
. Take the sum of both sides of 

Inequality (19) from t� 0 to t � T � 1 and divide the 
sum by T. This yields

1
T
XT�1

t�0
WSPP(ft) � WMBP

T

≤
K̃
T
E[F(q[0])] �E[F(q[T])]
� �

+ M2
1
K̃

≤
K̃
T

sup
q1,q2∈Ω

F(q1) � F(q2)
� �

+ M2
1
K̃

for K ≥ K1:
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Let M1 ¢ supq1, q2∈Ω(F(q1) � F(q2)). Observe that the 
function F(q) given in (16) is negative F(q) ≤ 0 for all 
q ∈ Ω and is a convex function that achieves its mini
mum at q � 1

m 1. Hence,

M1 ≤ 0 � inf
q∈Ω

F(q) � �F 1
m 1
� �

� 2m:

Therefore, the policy gap of MBP is upper bounded 
by M1(K̃=T) + M2(1=K̃), where M1 � Cm, M2 � Cm2, 
and C does not depend on m, K, or αmin. Moreover, 
K̃ � K + m

ffiffiffiffi
K

√
∈ [K, 2K] taking K1 ≥ m2. This concludes 

the proof. w

We conclude with some informal intuition as to why 
MBP with congestion function f(·) given in (8) and nor
malized queue lengths q defined in (9) ensures a small 
policy gap. MBP could run into two issues due to the 
no-underflow constraints: (i) The queue lengths corre
sponding to the optimal dual variables lie outside of 
the state space; and (ii) the Lyapunov drift could be 
positive at certain “boundary states,” that is, states 
where some of the queues are empty. For issue (i), 
although the range of normalized queue length q 
belongs to [0, 1], the range of f (q) goes to (�∞, �

ffiffiffiffi
m

√
)

as K → ∞. As a result, for large enough K, there exists 
q ∈ Ω such that f(q) corresponds to the optimal dual 
variables.6 For issue (ii), first, this problem only occurs 
when there exists empty queues. At these states, the 
dual suboptimality at f(q) is large because f (0) → �∞

as K → ∞, which creates a negative Lyapunov drift 
that “pushes” f(q) toward the optimal dual variable. 
This corresponds to the intuition that MBP is aggres
sive in preserving supply units in near-empty queues. 
In contrast, we show in Online Appendix H.2 that regu
lar backpressure (i.e., linear f(·)) may fail to address the 
two issues mentioned previously, leading to a large 
policy gap.

4.2. Bounding the Variation Gap
We have the following result that bounds the variation 
gap.

Proposition 4. Suppose the demand arrival rates vary 
η-slowly (Definition 1) for some η > 0. Fix a horizon T. For 
any 0 ≤ t ≤ T � 1, we have

1
T
XT

t�1
WSPP(ft) ≥ WSPP(f) � mηT: (20) 

The proof is based on sensitivity analysis of the linear 
program SPP(f) via flow decomposition (Williamson 
2019). In essence, our approach involves decomposing 
the feasible flow for SPP(f) into directed cycles and sub
sequently reducing it to satisfy constraints in SPP(ft). 
We prove Proposition 4 in Online Appendix C.

4.3. Proof of Proposition 2
Using Proposition 3 and considering the first ∆T peri
ods, we obtain that there exists K2 � poly(m, (1=αmin)), 
and a universal constant C < ∞, such that the following 
holds. For the congestion function f (·) defined in (8), for 
any K ≥ K2, the following guarantees hold for Algo
rithm 1:

1
∆T

X∆T�1

t�0
WSPP(ft) � WMBP

∆T
≤ M1

K
∆T

+ M2
1
K ,

for M1 ¢Cm and M2 ¢Cm2: (21) 

Suppose the demand varies η1-slowly on [0, ∆T]. Using 
Proposition 1 and then Proposition 4, we have

LMBP
∆T

� W∗
∆T

� WMBP
∆T

≤ WSPP(f) + m K
∆T

� �

� WMBP
∆T

≤ mη1∆T +
1

∆T

X∆T�1

t�0
WSPP(ft)

 !

+ m K
∆T

� WMBP
∆T

≤ Cm K
∆T

+ M2
1
K

� �

+ mη1∆T + m K
∆T

≤
K

∆T
m(C + 1) + M2

1
K + mη1∆T: (22) 

Here, we used (21) in the third inequality. Suppose the 
demand varies ηℓ-slowly in batch ℓ, and because the 
demand varies η-slowly over the whole horizon [0, T], 
we must have η � (1=⌊T=∆T⌋)

P⌊T=∆T⌋

ℓ�1 ηℓ. Now take 
average on both sides of (22) over ⌊T=∆T⌋ batches, we 
obtain the result.

5. Generalizations and Extensions
In this section, we consider two general settings: one 
with finite buffer queues and one allows JPA. We 
show that the extended models enjoy similar perfor
mance guarantees to that in Theorem 1 under mild 
conditions on the model primitives.

5.1. Congestion Functions for Finite 
Buffer Queue

Suppose the queues at a subset of nodes Vb ⊂ V have a 
finite buffer constraint. For j ∈ Vb, denote the buffer 
size by dj � djK for some scaled buffer size dj ∈ (0, 1). (If 
dj ≥ 1, the buffer size exceeds the number of supply 
units dj ≥ K and there is no constraint as a result, i.e., 
j ∉ Vb.) We will find it convenient to define dj � 1 for 
each j ∈ V\Vb. To avoid the infeasible case where the 
buffers are too small to accommodate all supply units, 
we assume that 

P
j∈Vdj > 1. The normalized state space 
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will be

Ω¢ {q : 1⊤q � 1, 0 ≤ q ≤ d}, where dj ¢dj=K:

Similar to the case of entry control, we need to keep q 
in the interior of Ω, which is achieved by defining the 
normalized queue lengths q as

qj ¢
qj + djδK

K̃
for δK �

ffiffiffiffi
K

√
and

K̃ ¢K +
X

j∈V
dj

0

@

1

AδK: (23) 

One can verify that q ∈ Ω for any feasible state q. When 
dj � 1 for all j ∈ V, the definition of qj in (23) reduces to 
the one in (9). The congestion functions (fj(·))j∈V are 
monotone increasing functions that map (normalized) 
queue lengths to congestion costs. Here we will state 
our main results for the congestion function vector:
fj(qj)

¢

ffiffiffiffi
m

√
· Cb · 1 �

qj

dj

 !�1
2

�
qj

dj

 !�1
2

� Db

0

@

1

A, ∀j ∈ Vb,

�
ffiffiffiffi
m

√
· qj

�1
2 ∀j ∈ V\Vb:

8
>>><

>>>:

(24) 

Here Cb and Db are normalizing constants7 chosen to 
ensure that (i) for all j, k ∈ V, we have that fj(qj) � fk(qk)

when both queues are empty qj � qk � 0; and (ii) for all 
j, k ∈ Vb, we have that fj(qj) � fk(qk) when both queues 
are full qj � dj, qk � dk. (We state the results for other 
choices of congestion functions in Online Appendix C.)

Note that fj(·) in (24) is identical to f (·) in (8) for j ∉ Vb, 
that is, (24) is a generalization of (8) to the case where 
some queues have buffer constraints. The intuitive rea
son (24) is a suitable congestion function is that it enables 
MBP to focus on queues that are currently either almost 
empty or almost full (the congestion function values for 
those queues take on their smallest and largest values, 
respectively), and use the control levers available to 
make the queue lengths for those queues trend strongly 
away from the boundary they are close to.

We have the following result for the finite-buffer set
ting. The proof is in Online Appendix D.

Theorem 2. Consider a set V of m¢ |V | > 1 nodes, a sub
set Vb ⊆ V of buffer-constrained nodes with scaled buffer 
sizes dj ∈ (0, 1) ∀j ∈ Vb satisfying8 P

j∈Vdj > 1. Consider 
any sequence of demand arrival rates (ft)t≤T that satisfy 
Condition 1 and vary η-slowly (Definition 1). Recall that 
αmin � min0≤t≤Tα(ft). Then there exists K1 � poly

�
m, d, 

1
αmin

�
, and a universal constant C < ∞, such that the fol

lowing holds. For the congestion function f(·) defined in 
(24), for any K ≥ K1, the following guarantees hold for 

Algorithm 1:

LMBP
T ≤ M1

K
T

+
ffiffiffiffiffiffi
ηK

p
� �

+ M2
1
K

,

for M1 � Cm,

M2 � C 1
minj∈Vdj

P
j∈Vdj

min{
P

j∈Vdj � 1, 1}

 !3=2
ffiffiffiffi
m

√
:

5.2. JPA Setting
In this section, we consider the JPA setting and design 
the corresponding MBP policy. The platform’s control 
problem is to set a price for each demand origin- 
destination pair and decide an assignment at each 
period to maximize payoff. Our model here will be sim
ilar to that of Banerjee et al. (2021), except that the plat
form does not know demand arrival rates, and we 
allow a finite horizon. The demand types τ, pick-up 
neighborhood P(τ), and drop-off neighborhood D(τ)
are defined in the same way as in Section 2. For simplic
ity, we assume that the demand type distribution f �

(φτ)τ∈T is time invariant and that all buffers have infi
nite capacity in this section.

The platform control and payoff in this setting are as 
follows. At time t, after observing the demand type 
τ[t] � τ, the system chooses a price pτ[t] ∈ [pmin

τ , pmax
τ ]

and a decision

(xjτk[t])j∈P(τ), k∈D(τ) ∈ {0, 1}
|P(τ) | · |D(τ) |

such that
X

j∈P(τ),k∈D(τ)

xjτk[t] ≤ 1:

(25) 

As before, we require xjτk[t] � 0 if qj[t] � 0.
The result of the platform control is as follows: 
(1) Upon seeing the price, the arriving demand unit 

will decline (to buy) with probability Fτ(pτ[t]), where 
Fτ(·) is the cumulative distribution function of type τ 
demand’s willingness-to-pay.

(2) If the demand accepts (i.e., buys), then a supply 
unit relocates based on xjτk[t]. Meanwhile, the platform 
collects payoff v[t] � pτ[t] � cjτk, where cjτk is the “cost” 
of serving a demand unit of type τ using pick-up node 
j and drop-off node k. If the demand unit declines, the 
supply units do not move and v[t] � 0.

We assume the following regularity conditions to 
hold for demand functions (Fτ(pτ))τ. These assump
tions are quite standard in the revenue management lit
erature (Gallego and Van Ryzin 1994).

Condition 2. Assumptions on demand functions. 
(1) Assume9 Fτ(pmin

τ ) � 0 and that Fτ(pmax
τ ) � 1.

(2) Each demand type’s willingness-to-pay is nonatomic 
with support [pmin

τ , pmax
τ ] and positive density everywhere 

on the support; hence, Fτ(pτ) is differentiable and strictly 
increasing on (pmin

τ , pmax
τ ). (If the support is a subinterval of 
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[pmin
τ , pmax

τ ], we redefine pmin
τ and pmax

τ to be the boundaries 
of this subinterval.)

(3) The revenue functions rτ(µτ)¢µτ · pτ(µτ) are con
cave and twice continuously differentiable, where µτ denotes 
the fraction of demand of type τ that is realized (i.e., willing 
to pay the price offered).

As a consequence of Condition 2, parts 1 and 2, the 
willingness to pay distribution Fτ(·) has an inverse 
denoted as pτ(µτ) : [0, 1] → [pmin

τ , pmax
τ ], which gives the 

price that will cause any desired fraction µτ ∈ [0, 1] of 
demand to be realized. (The concavity assumption in 
part 3 of the condition is stated in terms of this function 
pτ(·).) Without loss of generality, let maxτ∈T pmax

τ +

maxj, k∈V,τ∈T |cjτk | � 1.
In the JPA setting, the net demand φτµτ plays a role 

in myopic revenues but also affects the distribution of 
supply, and the chosen prices need to balance myopic 
revenues with maintaining a good spatial distribution 
of supply. Intuitively, when sufficiently flexible pricing 
is available as a control lever, the system should modu
late the quantity of demand through changing the 
prices (and serving all the demand that is then realized) 
rather than apply entry control (i.e., dropping some 
demand proactively). Our MBP policy for this setting 
will have this feature.

The dual problem to the SPP in the JPA setting is (see 
Online Appendix E for the statement of SPP and the 
derivation of its dual)

minimizey gJPA(y) for gJPA(y)

¢
X

τ∈T

φτ max
{0≤µτ≤1}

 

rτ(µτ) + µτ max
j∈P(τ),k∈D(τ)

(�cjτk + yj � yk)

!

:

(26) 

Once again, the MBP policy (Algorithm 2) is defined to 
achieve the argmaxes in the definition of the dual objec
tive gJPA(·) with the ys replaced by congestion costs: 
MBP dynamically sets prices pτ such that mean fraction 
of demand realized under the policy is the outer arg
max in the definition (26) of gJPA(·), and the assignment 
decision of MBP achieves the inner argmax in the defi
nition (26) of gJPA(·). The policy again has the property 
that it executes stochastic mirror descent on the dual 
objective gJPA(·). The optimization problem for comput
ing µτ[t] is a one-dimensional concave maximization 
problem (Condition 2, part 3); hence, µτ[t] can be effi
ciently computed.

The MBP policy retains the advantage that it does 
not require any prior knowledge of gross demand f. 
We assume that the willingness-to-pay distributions 
Fτ(·) are exactly known to the platform; it may be possi
ble to relax this assumption via a modified policy that 
“learns” the Fτ(·); however, pursuing this direction is 
beyond the scope of the present paper.

Algorithm 2 (MBP Policy for JPA)
At the start of period t, the system observes τ[t] � τ
(j∗, k∗) ← arg maxj∈P(τ), k∈D(τ){�cjτk + fj(qj[t])� fk(qk[t])};
if qj∗ [t] > 0 then

µτ[t] ← arg max
µτ∈[0, 1]

{rτ(µτ) + µτ · (�cj∗τk∗ + fj∗ (qj∗

[t]) � fk∗ (qk∗ [t]))};
pτ[t] ← F�1

τ (µτ[t]);
xj∗τk∗ [t] ← 1, that is, if the incoming demand stays, 
serve it by pick up from j∗ and drop off at k∗, other
wise do nothing;

else
xj∗τk∗ [t] ← 0, that is, drop the incoming demand;

end
The queue lengths update as 

q[t + 1] � q[t] �
1
K̃

xj∗τk∗ [t](ej∗ � ek∗ ):

We have the following performance guarantee for 
Algorithm 2, analogous to Theorem 1.

Theorem 3. Fix a set V of m � |V | > 1 nodes, minimum 
and maximum allowed prices (pmin

τ , pmax
τ )τ∈T , any (f,P,D)

that satisfy Condition 1 (strong connectivity), and willingness- 
to-pay distributions (Fτ)τ∈T that satisfy Condition 2. Then 
there exist K1 < ∞, M1 � Cm, and M2 � Cm2 for some uni
versal constant C> 0 such that for the congestion function f (·)

defined in (8), the following guarantee holds for Algorithm 2. 
For any horizon T and for any K ≥ K1, we have

LMBP
T ≤ M1

K
T + M2

1
K , and LMBP ≤ M2

1
K :

We outline the proof of Theorem 3 in Online Appendix E.

6. Application to Shared Transportation 
Systems

Our setting can be mapped to shared transportation sys
tems such as bike sharing and ride-hailing systems. In 
this context, the nodes in our model correspond to geo
graphical locations, whereas supply units and demand 
units correspond to vehicles and customers, respectively.

6.1. Dynamic Incentive Program for Bike 
Sharing Systems

Chung et al. (2018) explain that Citi Bike’s Bike Angel 
incentive program works as follows: there are two 
types of bike stations at any time: the incentivized ones 
and neutral ones; depending on the origin and the des
tination stations of a trip, different amounts of points 
are awarded to the rider. The points have monetary 
values. The system objective is to minimize out-of- 
stock and out-of-bike events. Therefore, to view it as an 
application of our JPA model, we can view the amount 
of points awarded for a certain trip as (the negative of) 
price of this trip; the customers have a demand function 
denoting their response to reward points (i.e., negative 
of prices); and the value the platform derives from a 
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ride equals customer utility and/or revenue generated 
(which is a constant) minus the cash value of points 
awarded. By using a JPA-based MBP policy, the plat
form can dynamically set the number of reward points 
for each origin-destination pair. In docked bike sharing 
systems, there is a constraint on the number of docks 
available at each location. Such constraints are seam
lessly handled in our framework as detailed earlier in 
Section 5.1. One concern may be that our model ignores 
travel delays. However, in most bike sharing systems, 
the fraction of bikes in transit at any time is typically 
quite small (under 10%–20%).10 As a result, we expect 
our control insights to retain their power despite the 
presence of delays. (Indeed, we will numerically dem
onstrate in Section 6.1 that this is the case in the ride- 
hailing setting; see the excess supply case where MBP 
performs well even when the vast majority of supply is 
in transit at any time.) We leave a detailed study of bike 
sharing platforms to future work.

6.2. Online Control of Ride-Hailing Platforms
Ride-hailing platforms make dynamic decisions to opti
mize their objectives (e.g., revenue, welfare). For most 
ride-hailing platforms in North America, pricing is used 
to modulate demand. In certain countries such as China, 
however, pricing is a less acceptable lever; hence, admis
sion control of customers is used as a control lever 
instead. In both cases, the platform further decides 
where (near the demand’s origin) to dispatch a car from, 
and where (near the demand’s destination) to drop off a 
customer. These scenarios are captured, respectively, by 
the JEA model11 studied in Section 2 and JPA model 
studied in Section 5. Again, a concern may be that travel 
delays play a significant role in ride-hailing, whereas 
delays are ignored in our theory. In the following sec
tion, we summarize a numerical investigation of ride- 
hailing focusing on entry and assignment controls only 
(a full description is provided in Online Appendix F). 
We find that MBP performs well despite the presence of 
travel delays. To address the case where the available 
supply is scarce, we heuristically adapt MBP to incorpo
rate the Little’s law constraint (Section 6.3.1).

6.3. Numerical Investigation of the Application to 
Ride-Hailing

In Section 6.3.1, we examine the performance of MBP 
policy when there are travel delays using numerical 
experiments. The simulation environment we study is 
inspired by ride-hailing and leverages demand esti
mates deduced from NYC yellow cab data (Buchholz 
2022) and travel times from Google Maps. In Section 
6.3.2, we provide the summary of simulations that 
study the performance of MBP policy in large net
works. In the interest of space, we provide only the 
key findings of our simulations here and defer a full 

description of the simulation environment and various 
technical details to Online Appendix F.

6.3.1. Travel Delays and the Supply-Aware MBP Pol
icy. In the following, we investigate the performance 
of the MBP policy when there are travel delays. Similar 
to our main setting12 in Section 2, we allow the platform 
two control levers: entry control and assignment/ 
dispatch control. Our theoretical model made the sim
plifying assumption that pickup and service of demand 
are instantaneous. We relax this assumption in our 
numerical experiments by adding realistic travel times. 
We retain our simplifying assumption that drivers do 
not relocate in the absence of a passenger. We consider 
the following two cases: 

(1) Excess supply. The number of cars in the system is 
slightly (5%) above the “fluid requirement” (see Online 
Appendix F.1 for details on the “fluid requirement”) to 
achieve the value of the static planning problem.

(2) Scarce supply. The number of cars fall short (by 
25%) of the “fluid requirement”; that is, there are not 
enough cars to realize the optimal solution of static 
planning problem (11)–(13) under instantaneous relo
cation (even if we ignore stochasticity).

We compare our MBP policy to three state-of-the-art 
policies in literature: the fluid-based policy in Banerjee 
et al. (2021), the utility-delay optimal algorithm (UDOA) 
in Neely (2006), and the deficit MaxWeight (DMW) pol
icy in Jiang and Walrand (2009). The UDOA policy is in 
fact a member of the MBP family of policies, with expo
nential congestion function f (q) � ω · (eω(q�q0) � eω(q0�q))

for suitable ω, q0 > 0. See Online Appendix F for a 
detailed description of these benchmark policies.

6.3.1.1. Summary of Findings. We make a natural 
modification of the MBP policy (with Congestion Func
tion (8)) to account for finite travel times; specifically, we 
use a supply-aware MBP policy that estimates and uses a 
shadow price of keeping a vehicle (supply unit) occu
pied for one unit of time.13 This policy is described at the 
end of this section.

6.3.1.2. Excess Supply Case. We simulate the (sta
tionary) system from 8 a.m. to 12 p.m. with 100 ran
domly generated initial states.14 The simulation results 
on performance are shown in Figure 4. The results 
show that MBP policy significantly outperforms both 
the DMW policy and the fluid-based policy and consis
tently outperforms the UDOA policy: The average 
payoff under MBP over four hours is about 105% of 
WSPP (here WSPP is again an upper bound on the 
steady-state performance15), whereas UDOA, DMW, 
and the fluid-based policy achieve 100%, 81%, and 
68% of WSPP, respectively. The performance of the 
static policy converges very slowly to WSPP, leading to 
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poor transient performance.16 The performance of the 
DMW policy deteriorates over time because the “fake 
packets” it generates accumulate in the system.

6.3.1.3. Scarce Supply Case. In the scarce supply 
case, for example, K � 0:75Kfl, no policy can achieve a 
stationary performance of WSPP; rather, we have a 
steady-state upper bound of WSPP(0:75) ≈ 0:86WSPP for 
this K, where WSPP(0:75) is the value of the problem 
given by (11)–(13) together with the supply constraint 
(27). Figure 5 shows that the MBP policy again vastly 
outperforms the DMW policy and the fluid-based pol
icy and has similar performance to the UDOA policy in 

the scarce supply case. MBP generates average per 
period payoff that is 99% of the steady-state upper 
bound over four hours, whereas the UDOA, DMW, 
and fluid-based policy achieve 98%, 85%, and 74%, 
respectively, of the steady-state upper bound over the 
same period. Reassuringly, the mean value of v(t) in 
our simulations of supply-aware MBP is within 10% of 
the optimal dual variable to the tightened supply con
straint (28) in the supply-aware SPP (11–13 along with 
28); both values are close to 0.50. Again, we observe 
that the average performance of static policy improves 
(slowly) as the time horizon gets longer, whereas the 
performance of DMW deteriorates.

6.3.1.4. Supply-Aware MBP Policy. To heuristically 
modify MBP to account for travel times, we begin by 
observing that the SPP must now include a Little’s law 
constraint. (The same observation was previously lever
aged by Braverman et al. (2019) and Banerjee et al. (2021) 
to formally handle travel times, albeit under the assump
tion that travel times are i.i.d. exponentially distributed.) 
Our heuristic modification of MBP will maintain an esti
mate of the shadow price corresponding to the Little’s 
law constraint and penalize rides appropriately.

Applying Little’s law, if the optimal solution z∗ of 
the SPP (here we work with the special case where f 
does not depend on t) is realized as the average long 
run assignment, the mean number of cars which are 
occupied in picking up or transporting customers is 
P

j, k∈V
P

i∈P(j)Dijk · z∗
ijk, for Dijk ¢ D̃ij + D̂jk, where D̃ij is 

the pickup time from i to j and D̂jk is the travel time 
from j to k. We augment the SPP with the additional 
supply constraint

X

j, k∈V

X

i∈P(j)
Dijk · zijk ≤ K, (27) 

which simply encodes that the average number of cars 
occupied at any time cannot exceed K. We propose and 
test in the simulation the following heuristic policy 
inspired by MBP, that additionally incorporates the 
supply constraint. We call it supply-aware MBP. Given a 
demand arrival with origin j and destination k, the pol
icy makes its decision as per

i∗ ← arg max
i∈P(j)

{wijk + f (qi[t]) � f (qk[t]) � v[t]Dijk}

If wi∗jk + f (qi∗ [t]) � f (qk[t]) � v[t]Di∗jk ≥ 0 and qi∗ [t] > 0,
dispatch from i∗, else Drop, 

where we define the tightened supply constraint as
X

j,k∈V

X

i∈P(j)
Dijk · zijk ≤ 0:95K, (28) 

where the coefficient of K is the flexible “utilization” 
parameter that we have set at 0.95, meaning that we are 

Figure 4. (Color online) Per Period Payoff Under the MBP, 
UDOA, DMW, and Fluid-Based Policy, Relative to WSPP 
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Figure 5. (Color online) Per Period Payoff Under the (Modi
fied) MBP, (Modified) UDOA, (Modified) DMW, and Fluid- 
Based Policy, Relative to WSPP(0:75), the Value of SPP Along 
with Constraint (27) for K � 0:75Kfl 
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aiming to keep 5% vehicles free on average, system
wide.17 Here v[t] is the current estimate of the shadow 
price for the “tightened” version of supply Constraint 
(28). We use the congestion function given in (8), that 
is, fj(qj) �

ffiffiffiffi
m

√
· q�1=2

j , in our numerical simulations. An 
important detail here is that the queue lengths are nor
malized by the estimated number of free cars K �

0:95K � 0:05K instead of K. We update v[t] as

v[t + 1] �

"

v[t] +
1
K

 
X

j,k∈V

X

i∈P(j)
Dijk · 1{(o[t],d[t]) � (j,k),

MBP would dispatch from i} � 0:95K

!#+

:

An iteration of supply-aware MBP is equivalent to exe
cuting a (dual) stochastic mirror descent step on the 
supply-aware SPP (11)–(13) along with (28).

6.3.2. MBP Policy in Large Networks. Recall that, in 
Corollary 1, the steady-state optimality gap of MBP is 
shown to be O m2

K

� �
for Congestion Function (8). Com

pared with the O m
K
� �

bound for the fluid-based policy 
proved in Banerjee et al. (2021), our bound for MBP has 
the same dependence on K but worse dependence on 
m. A natural question is whether the worse dependence 
on m reflects poorer performance or if it is a proof arti
fact. We conduct numerical experiments in Online 
Appendix F.2 to study this question.

6.3.2.1. Summary of Findings. We construct a family 
of instances that has the same total demand rate, but 
different network sizes m. We compare the perfor
mance of our MBP policy with the fluid-based policy in 
Banerjee et al. (2021) for different values of fleet size K 
and network size (i.e., number of locations) m. The 
results demonstrate that MBP consistently outperforms 
the fluid-based policy in steady state across different 
choices of m and K. Also, the steady-state suboptimality 
of MBP appears to scale as m/K (and not m2=K, which 
was the scaling of our formal upper bound on the opti
mality gap).

7. Discussion
In this paper we considered the payoff maximizing 
dynamic control of a closed network of resources. We 
proposed a novel family of policies called MBP, which 
generalize the celebrated backpressure policy such that 
it executes mirror descent with the desired mirror map 
while retaining the simplicity of backpressure. The MBP 
policy overcomes the challenge stemming from the 
no-underflow constraint, and it does not require any 
knowledge of demand arrival rates. We proved that 
MBP achieves good transient performance for demand 

arrival rates that are stationary or vary slowly over time, 
losing at most O((K=T) + (1=K) +

ffiffiffiffiffiffi
ηK

p
) payoff per cus

tomer, where K is the number of supply units, T is the 
number of customers over the horizon of interest, and η 
is the average rate of change in demand arrival rates per 
customer arrival. We considered a variety of control 
levers: entry control, assignment control and pricing, 
and allowed for finite buffer sizes. We discussed the 
application of our results to the control of shared trans
poration systems and scrip systems.

One natural question is whether our bounds capture 
the right scaling of the per customer optimality gap of 
MBP with K, T, and η, relative to the best policy that is 
given exact demand arrival rates and horizon length T 
in advance. Consider the joint entry-assignment setting 
(Section 2). It is not hard to construct examples showing 
that each of the terms in our bound is unavoidable: A 
1=K optimality gap arises in steady state (under station
ary demand arrival rates), for instance, in a two-node 
entry-control-only example where the two demand 
arrival rates are exactly equal to each other, the K/T 
term arises because over a finite horizon the flow bal
ance constraints need not be satisfied exactly, and MBP 
does not exploit this flexibility fully, and the 

ffiffiffiffiffiffi
ηK

p
term 

arises in examples where demand arrival rates oscillate 
(with a period of order 

ffiffiffiffiffiffiffiffiffi
K=η

p
) but MBP does not take 

full advantage of the flexibility to allow queue lengths 
to oscillate alongside. We omit these examples in the 
interest of space.

We point out some interesting directions that emerge 
from our work: 

1. Improved performance via “centering” MBP based on 
demand arrival rates. If the optimal shadow prices y∗

are known (or learned by learning f via observing 
demand), we can modify the congestion function to 
f̃ j(qj) � y∗

j + f (qj). For the resulting “centered” MBP 
policy, based on the result of Huang and Neely (2009) 
and the convergence of mirror descent, we are opti
mistic that the steady state regret will decay exponen
tially in K.

2. Another promising direction is to pursue the 
viewpoint that there is an MBP policy that (very nearly) 
maximizes the steady state rate of payoff generation, 
specifically for the choice of congestion functions fj(·)
that are the discrete derivatives of the relative value 
function F(q) (for the average payoff maximization 
dynamic programming problem) with respect to qj; see 
Chapter 7.4 of Bertsekas (1995) for background on 
dynamic programming. Thus, estimates of the relative 
value function F(q) can guide the choice of congestion 
function.

Endnotes
1 For a more detailed discussion on this condition and its connec
tion to the present paper, please refer to Remark 1 in Section 2.
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2 Analyses of i.i.d. unit demand arrivals have been shown to gener
alize easily to more general arrival processes, for example, Markov
ian arrivals with bounded demand units per period as in Huang 
and Neely (2009), although at a significant notational burden. Given 
the aforementioned precedent, we reason that the cost of carrying 
the reader through this generalization exceeds the benefit of doing 
so and assume i.i.d. unit demand arrivals throughout the paper.
3 In (4), the expectations are taken over the randomness in arrivals 
and (possibly) control decisions and that the supremum is well 
defined because the payoffs are bounded from above.
4 The methodology we will propose will seamlessly accommodate gen
eral mappings f(·) such that f � ∇F, where F(·) : Ω →R is a strongly 
convex function, a special case of which is f(q)¢ [f1(q1), : : : , fm(qm)]

⊤

for any monotone increasing (fj). Here it suffices to consider a single 
congestion function f (·), whereas in Section 5.1, we will use queue- 
specific congestion functions fj(·).
5 Here “poly” indicates a polynomial. The constant C is universal in 
the sense that it does not depend on K, m, or αmin.
6 Optimal dual variables for (15) is nonunique, because if y∗ is opti
mal, y∗ +θ1 is also optimal for any θ ∈ R. Therefore, we can always 
find an optimal dual variable that corresponds to f(q) where q ∈ Ω.
7 Define ɛ¢ δK

K̃ . Let hb(q)¢ (1 � q)
�1

2 � q�1
2 and h(q)¢ � q�1

2. Define 

Cb ¢
h(ɛ)�h

�
1=
P

j∈V
dj

�

hb(ɛ)�hb

�
1=
P

j∈V
dj

� and Db ¢hb
�
1=
P

j∈Vdj
�

� C�1
b h
�
1=
P

j∈Vdj
�
. In 

addition to the properties listed in the main text, we also have that 
fj
�
dj=
P
ℓ∈Vdℓ

�
has the same value for all j ∈ V. These properties are 

useful in the following analysis.
8 Recall that we define dj ¢1 for all j ∈ V\Vb.
9 The assumption Fτ(pmin

τ ) � 0 is without loss of generality, because 
if a fraction of demand is unwilling to pay pmin

τ , that demand can be 
excluded from f itself.
10 The report at https://nacto.org/bike-share-statistics-2017/ tells 
us that U.S. dock-based systems produced an average of 1.7 rides/ 
bike/day, whereas dockless bike share systems nationally had an 
average of about 0.3 rides/bike/day. Average trip duration was 12 
minutes for pass holders (subscribers) and 28 minutes for casual 
users. In other words, for most systems, each bike was used less 
than one hour per day, which implies that less than 10% of bikes 
are in use at any given time during day hours (in fact, the utilization 
is less than 20% even during rush hours).
11 The JEA setting can be mapped to ride-hailing as follows: There 
is a demand type τ corresponding to each (origin, destination) pair 
(j, k) � V2, with P(τ) being nodes close to the origin j and D(τ) being 
nodes close to the destination k.
12 The correspondence between our (ride-hailing) simulation setting 
and the JEA setting is as follows: In the ride-hailing setting, the type 
of a demand is its origin-destination pair, that is, T � V × V. For 
type (j, k) demand, its supply neighborhood is the neighboring loca
tions of j, which we denote by (with a slight abuse of notation) P(j). 
We do not consider flexible dropoff; therefore, D(j, k) � {k}. In our 
simulations, we focus on the special case where demand is station
ary instead of time varying, even though MBP policies are expected 
to work well if demand varies slowly over time. We make this 
choice because it allows us to compare performance against that of 
the policy proposed in Banerjee et al. (2021) for the stationary 
demand setting.
13 To make the comparison fair, we modify the UDOA and DMW 
policies using the same heuristic approach, as the original UDOA 
and DMW policies do not take into account the travel delays.
14 We first uniformly sample 100 points from the simplex q :

P
i∈V

�

qi � K}, which are used as the system’s initial states at 6 a.m. (note that 
all the cars are free). Then we “warm-up” the system by employing the 

static policy from 6 a.m. to 8 a.m., assuming the demand arrival pro
cess during this period to be stationary (with the average demand 
arrival rate during this period as mean). Finally, we use the system’s 
states at 8 a.m. as the initial states.
15 WSPP is still an upper bound on stationary performance when 
pickup and service times are included in our model. However, in 
this case a transient upper bound is difficult to derive. As a result, 
we use the ratio of average per period payoff to WSPP as a perfor
mance measure, with the understanding that it may exceed one at 
early times.
16 For example, the average payoff generated by static policy in the 
last hour of a 20-hour period is 0:96WSPP.
17 Keeping a small fraction of vehicles free is helpful in managing 
the stochasticity in the system. The present paper does not study 
how to systematically choose the utilization parameter.
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